1
|
La Vecchia M, Clavenna MG, Sculco M, Sala G, Marradi D, Barberis E, Joseph S, Mellai M, Pagano N, Boldorini R, Azzimonti B, Bona E, Pasolli E, Prodam F, Sacerdote C, Ferrante D, Ghelardi E, Manfredi M, Aspesi A, Dianzani I. Gut microbiota and metabolome signatures in obese and normal-weight patients with colorectal tumors. iScience 2025; 28:112221. [PMID: 40230532 PMCID: PMC11995084 DOI: 10.1016/j.isci.2025.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Here, we aim to improve our understanding of various colorectal cancer (CRC) risk factors (obesity, unhealthy diet, and gut microbiota/metabolome alteration), analyzing 120 patients with colon polyps, divided in normal-weight (NW) or overweight/obese (OB). Dietary habits data (validated EPIC questionnaires) revealed a higher consumption of processed meat among OB vs. NW patients. Both mucosa-associated microbiota (MAM) on polyps and lumen-associated microbiota (LAM) analyses uncovered distinct bacterial signatures in the two groups. Importantly, we found an enrichment of the pathogenic species Finegoldia magna in MAM of OB patients, regardless of their polyp stage. We observed distinct mucosal-associated metabolome signatures, with OB patients showing increased pyroglutamic acid and reduced niacin levels, and performed microbiota-metabolome integrated analysis. These findings support a model where different risk factors may contribute to tumorigenesis in OB vs. NW patients, highlighting the potential impact of processed meat consumption and F. magna on CRC development among OB patients.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | | | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Denise Marradi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy
| | - Soni Joseph
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Marta Mellai
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nico Pagano
- Department of Gastroenterology, University Hospital "Maggiore della Carità", 28100 Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Pathology Unit, University Hospital "Maggiore della Carità", 28100 Novara, Italy
| | - Barbara Azzimonti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elisa Bona
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
- Department for Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy
- Simple Departmental Structure Research Laboratories - Integrated Activities Research and Innovation Department, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Flavia Prodam
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- SCDU Endocrinology, University Hospital "Maggiore della Carità", Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Carlotta Sacerdote
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Ferrante
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
2
|
Peltek S, Bannikova S, Khlebodarova TM, Uvarova Y, Mukhin AM, Vasiliev G, Scheglov M, Shipova A, Vasilieva A, Oshchepkov D, Bryanskaya A, Popik V. The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2024; 25:12059. [PMID: 39596128 PMCID: PMC11594194 DOI: 10.3390/ijms252212059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium Geobacillus icigianus was analyzed immediately after THz irradiation (0.23 W/cm2, 130 μm, 15 min) and at 10 min after its completion. THz irradiation does not affect the activity of heat shock protein genes and diminishes the activity of genes whose products are involved in peptidoglycan recycling, participate in redox reactions, and protect DNA and proteins from damage, including genes of chaperone protein ClpB and of DNA repair protein RadA, as well as genes of catalase and kinase McsB. Gene systems responsible for the homeostasis of transition metals (copper, iron, and zinc) proved to be the most sensitive to THz irradiation; downregulation of these systems increased significantly 10 min after the end of the irradiation. It was also hypothesized that some negative effects of THz radiation on metabolism in G. icigianus cells are related to disturbances in activities of gene systems controlled by metal-sensitive transcription factors.
Collapse
Affiliation(s)
- Sergey Peltek
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Svetlana Bannikova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Tamara M. Khlebodarova
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Yulia Uvarova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Aleksey M. Mukhin
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Gennady Vasiliev
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Mikhail Scheglov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| | - Aleksandra Shipova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Asya Vasilieva
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Dmitry Oshchepkov
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Alla Bryanskaya
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| |
Collapse
|
3
|
Wu X, Deng Y, Xu Y, Kang H, Hu JJ, Yoon J, Liang G. Activatable Fluorescence and Bio/Chemiluminescence Probes for Aminopeptidases: From Design to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409893. [PMID: 39235570 DOI: 10.1002/adma.202409893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aminopeptidases are exopeptidases that catalyze the cleavage of amino acid residues from the N-terminal fragment of protein or peptide substrates. Owing to their function, they play important roles in protein maturation, signal transduction, cell-cycle control, and various disease mechanisms, notably in cancer pathology. To gain better insights into their function, molecular imaging assisted by fluorescence and bio/chemiluminescence probes has become an indispensable method to their superiorities, including excellent sensitivity, selectivity, and real-time and noninvasive imaging. Numerous efforts are made to develop activatable probes that can effectively enhance efficiency and accuracy as well as minimize the side effects. This review is classified according to the type of aminopeptidases, summarizing some recent works on the design, work mechanism, and sensing, imaging, and theranostic performance of their activatable probe. Finally, the current challenges are outlined in developing activatable probes for aminopeptidases and provide possible solutions for future advancements.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
4
|
Lee CD, Rizvi A, McBride SM. KipOTIA detoxifies 5-oxoproline and promotes the growth of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592088. [PMID: 38746432 PMCID: PMC11092664 DOI: 10.1101/2024.05.01.592088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is an anaerobic enteric pathogen that disseminates in the environment as a dormant spore. For C. difficile and other sporulating bacteria, the initiation of sporulation is a regulated process that prevents spore formation under favorable growth conditions. In Bacillus subtilis , one such mechanism for preventing sporulation is the Kinase Inhibitory Protein, KipI, which impedes activation of the main sporulation kinase. In addition, KipI functions as part of a complex that detoxifies the intermediate metabolite, 5-oxoproline (OP), a harmful by-product of glutamic acid. In this study, we investigate the orthologous Kip proteins in C. difficile to determine their roles in the regulation of sporulation and metabolism. Using deletion mutants in kipIA and the full kipOTIA operon, we show that unlike in B. subtilis, the Kip proteins have no significant impact on sporulation. However, we found that the kip operon encodes a functional oxoprolinase that facilitates detoxification of OP. Further, our data demonstrate that KipOTIA not only detoxifies OP, but also allows OP to be used as a nutrient source that supports the robust growth of C. difficile , thereby facilitating the conversion of a toxic byproduct of metabolism into an effective energy source.
Collapse
|
5
|
Tannous R, Shelef O, Kopp T, Fridman M, Shabat D. Hyper-Responsive Chemiluminescent Probe Reveals Distinct PYRase Activity in Pseudomonas aeruginosa. Bioconjug Chem 2024; 35:472-479. [PMID: 38518220 PMCID: PMC11036351 DOI: 10.1021/acs.bioconjchem.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Pyrrolidone carboxyl peptidase, commonly known as PYRase, is an exopeptidase that catalytically cleaves an N-terminal pyroglutamic acid from peptides or proteins. The diverse functions of PYRases in bacterial enzymology have prompted the development of various bacterial diagnostic techniques. However, the specific physiological role and activity of this enzyme across the bacterial kingdom remain unclear. Here, we present a functional phenoxy-1,2-dioxetane chemiluminescent probe (PyrCL) that can selectively detect PYRase activity in both Gram-positive and Gram-negative bacteria. The probe activation mechanism is based on the cleavage of a pyroglutamyl substrate, followed by a release of the phenoxy-dioxetane luminophore, which then undergoes efficient chemiexcitation to emit a green photon. Probe PyrCL exhibits an effective turn-on response with superior detection capability in terms of response time and sensitivity compared to existing fluorescence probes. The superior detection sensitivity of the chemiluminescent probe enables us to reveal previously undetected PYRase activity in Streptococcus mutans. Furthermore, it enables the discrimination of Pseudomonas aeruginosa from other Gram-negative bacteria in the tested panel, based on their distinct PYRase activity. We expect that probe PyrCL will have great value for PYRase-based bacteria diagnosis with use in basic research and clinical applications.
Collapse
Affiliation(s)
- Rozan Tannous
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Omri Shelef
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Tal Kopp
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Zhang S, Ma M, Li J, Li J, Xu L, Gao D, Ma P, Han H, Song D. A Pyroglutamate Aminopeptidase 1 Responsive Fluorescence Imaging Probe for Real-Time Rapid Differentiation between Thyroiditis and Thyroid Cancer. Anal Chem 2024; 96:5897-5905. [PMID: 38557023 DOI: 10.1021/acs.analchem.3c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Current diagnostic methods for thyroid diseases, including blood tests, ultrasound, and biopsy, always have difficulty diagnosing thyroiditis accurately, occasionally mistaking it for thyroid cancer. To address this clinical challenge, we developed Ox-PGP1, a novel fluorescent probe realizing rapid, noninvasive, and real-time diagnostic techniques. This is the first imaging tool capable of noninvasively distinguishing between thyroiditis and thyroid cancer. Ox-PGP1 was introduced as a fluorescent probe custom-built for the specific detection and quantification of pyroglutamate aminopeptidase 1 (PGP-1), a known pivotal biomarker of inflammation. Ox-PGP1 overcame the disadvantages of traditional enzyme-responsive fluorescent probes that relied on the intramolecular charge transfer (ICT) mechanism, including the issue of high background fluorescence, while offering exceptional photostability under laser irradiation. The spectral properties of Ox-PGP1 were meticulously optimized to enhance its biocompatibility. Furthermore, the low limit of detection (LOD) of Ox-PGP1 was determined to be 0.09 μg/mL, which demonstrated its remarkable sensitivity and precision. Both cellular and in vivo experiments validated the capacity of Ox-PGP1 for accurate differentiation between normal, inflammatory, and cancerous thyroid cells. Furthermore, Ox-PGP1 showed the potential to rapidly and sensitively differentiate between autoimmune thyroiditis and anaplastic thyroid carcinoma in a mouse model, achieving results in just 5 min. The successful design and application of Ox-PGP1 represent a substantial advancement in technology over traditional diagnostic approaches, potentially enabling earlier interventions for thyroid diseases.
Collapse
Affiliation(s)
- Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jiaxin Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Hui Han
- Thyroid Surgery Department, General Surgery Center, First Hospital of Jilin University, Xinmin Street 1, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
7
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
8
|
Wang C, Tian Z, Zhang M, Deng Y, Tian X, Feng L, Cui J, James TD, Ma X. Visual identification of gut bacteria and determination of natural inhibitors using a fluorescent probe selective for PGP-1. Anal Chim Acta 2022; 1191:339280. [PMID: 35033245 DOI: 10.1016/j.aca.2021.339280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/24/2021] [Accepted: 11/10/2021] [Indexed: 11/01/2022]
Abstract
PGP-1 is a bacterial hydrolase that can hydrolyze the amide bond of the l-pyroglutamate (L-pGlu) residue at the amino terminus of proteins and peptides. Guided by the biological function of PGP-1, an off-on NIR fluorescent probe DDPA was developed for the visual sensing of PGP-1 by conjugating pyroglutamic acid (recognition group) and DDAN (fluorophore). Using intestinal bacteria cultivation, eight bacteria strains with active PGP-1 were identified and cultivated efficiently using DDPA. In addition, three natural inhibitors against PGP-1 were isolated from the medical herb Psoralea corylifolia, which could be used to interfere with bacterial metabolism in the gut. As such, the fluorescent probe DDPA provides an efficient method and potential tool for the investigation of intestinal microbiota.
Collapse
Affiliation(s)
- Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ming Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian, 116044, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ying Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian, 116044, China
| | - Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China; Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
9
|
Hu S, Chen X, Qin X, Dong G, Lin Y, Gai W, Zhao H, Ke B, Li M. A bioluminescent probe for in vivo imaging of pyroglutamate aminopeptidase in a mouse model of inflammation. Bioorg Med Chem Lett 2021; 43:128049. [PMID: 33882272 DOI: 10.1016/j.bmcl.2021.128049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023]
Abstract
Pyroglutamate aminopeptidase (PGP) specifically cleaves the peptide bond of pyroglutamic acid linked to the N-terminal end of a polypeptide or protein. Previous studies showed that PGP was associated with several physiological processes and diseases especially those involving inflammation. Utilizing a 'caging' strategy, we designed and synthesized a bioluminescence probe (PBL) with a limit-of-detection of 3.7 * 10-4 mU/mL. In vivo imaging in a mouse model of inflammatory liver disease revealed that the probe has excellent sensitivity and selectivity and provides a powerful tool for studying the physiological and pathological processes involving PGP.
Collapse
Affiliation(s)
- Shilong Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinxin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenrui Gai
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanqing Zhao
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
10
|
Dhanasingh I, Sung JY, La JW, Kang E, Lee DW, Lee SH. Structure of oxidized pyrrolidone carboxypeptidase from Fervidobacterium islandicum AW-1 reveals unique structural features for thermostability and keratinolysis. Biochem Biophys Res Commun 2021; 540:101-107. [PMID: 33460839 DOI: 10.1016/j.bbrc.2020.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
Pyrrolidone carboxypeptidases (Pcps) (E.C. 3.4.19.3) can cleave the peptide bond adjacent to pyro-glutamic acid (pGlu), an N-terminal modification observed in some proteins that provides protection against common proteases. Pcp derived from extremely thermophilic Fervidobacterium islandicum AW-1 (FiPcp), that belongs to the cysteine protease family, is involved in keratin utilization under stress conditions. Although an irreversible oxidative modification of active cysteine to its sulfonic acid derivative (Cys-SO3H) renders the enzyme inactive, the molecular details for the sulfonic acid modification in inactive Pcp remain unclear. Here, we determined the crystal structure of FiPcp at 1.85 Å, revealing the oxidized form of cysteine sulfonic acid (C156-SO3H) in the catalytic triad (His-Cys-Glu), which participates in the hydrolysis of pGlu residue containing peptide bond. The three oxygen atoms of cysteine sulfonic acid were stabilized by hydrogen bonds with H180, carbonyl backbone of Q83, and water molecules, resulting in inactivation of FiPcp. Furthermore, FiPcp demonstrated a unique 139KKKK142 motif involved in inter-subunit electrostatic interactions whose mutation significantly affects the thermostability of tetrameric FiPcp. Thus, our high-resolution structure of the first inactive FiPcp with irreversible oxidative modification of active cysteine provides not only the molecular basis of the redox-dependent catalysis of Pcp, but also the structural features of its thermostability.
Collapse
Affiliation(s)
- Immanuel Dhanasingh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Republic of Korea
| | - Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Won La
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunju Kang
- NEWTREE Co., Ltd., Seoul, 05604, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
11
|
Cao T, Zhang L, Zheng L, Qian J, Iqbal A, Iqbal K, Qin W, Liu Y. A ratiometric fluorescent sensor for rapid detection of the pyroglutamate aminopeptidase-1 in mouse tumors. J Mater Chem B 2021; 9:4546-4554. [PMID: 34046652 DOI: 10.1039/d1tb00372k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pyroglutamate aminopeptidase-1 (PGP-1) is an important enzyme that plays an indispensable role in the process of inflammation. Up to now, few reports have been reported on the detection of PGP-1 activity in vivo and in vitro, and there are no reports on ratiometric detection. Here, the first red-emitting ratiometric fluorescent sensor (DP-1) for the specific detection of PGP-1 both in vivo and in vitro was designed and synthesized by using DCD-NH2 as the luminescent parent and pyroglutamate as a recognition group. After interacting with PGP-1, the amide bond is hydrolyzed by the enzyme and the color of the solution changes from yellow (λabs = 420 nm) to red (λabs = 520 nm), accompanied by obvious fluorescence emission wavelength change (from ∼564 nm to ∼616 nm). The probe has high specificity and sensitivity towards PGP-1 in about 10 min, and the DL is as low as 0.25 ng mL-1. Interestingly, under the stimulation of Freund's incomplete adjuvant and lipopolysaccharide, the imaging of DP-1 in HepG2 and RAW264 cells shows that the expression of PGP-1 is associated with inflammation. What's more, for the first, the imaging of a mouse tumor model confirms that the enzyme is closely related to the occurrence of some inflammation and tumor diseases. These results indicate that DP-1 can be used as an effective tool for real-time monitoring of PGP-1 levels both in vivo and in vitro and the study of inflammatory tumor pathology.
Collapse
Affiliation(s)
- Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
| | - Lei Zheng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jing Qian
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Anam Iqbal
- Department of Chemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Kanwal Iqbal
- Department of Chemistry, Sardar Bahadur Khan Women's University, Quetta 87300, Pakistan
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
| |
Collapse
|
12
|
Pinto G, Picariello G, Addeo F, Chianese L, Scaloni A, Caira S. Proteolysis and Process-Induced Modifications in Synbiotic Yogurt Investigated by Peptidomics and Phosphopeptidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8744-8754. [PMID: 32678598 DOI: 10.1021/acs.jafc.0c02603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Probiotic and synbiotic yogurt preparations were manufactured at the semi-industrial pilot scale with Lactobacillus acidophilus and Bifidobacteria strains without inulin or fortified with 1 and 3% (w/w) inulin. The pathway of casein breakdown was determined in probiotic, synbiotic, conventional yogurt, and nonstarted milk base using HPLC-ESI-MS/MS-based peptidomics and phosphopeptidomics; in the latter case, casein phosphorylated peptides (CPPs) were previously enriched by hydroxyapatite chromatography. Compared with traditional yogurt, casein proteolysis increased in probiotic and even more in synbiotic yogurt with 1% inulin. Fortification with 3% inulin greatly modified the proteolytic pattern, indicating a characteristic contribution of probiotics to proteolysis. The enhanced proteolysis in synbiotic yogurt exposed the neo-formed peptides to progressively increase enzymatic or chemical modifications, such as dephosphorylation of CPPs, methionine oxidation, and formation of N-terminal pyroglutamic acids. These modifications might constitute molecular signature descriptors of metabolic processes mediated by complex bacterial communities, with technological, nutritional, and sensorial significance.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council, Via Roma, 64, 83100 Avellino, Italy
| | - Francesco Addeo
- Department of Agriculture, Università degli Studi di Napoli "Federico II", via Università 100, Parco Gussone, 80055 Portici, Italy
| | - Lina Chianese
- Department of Agriculture, Università degli Studi di Napoli "Federico II", via Università 100, Parco Gussone, 80055 Portici, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Simonetta Caira
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
13
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu A, He F, Yu C, Qu Y, Zhang Q, Lv J, Zhang X, Ran Y, Wei C, Wu J. The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect 2019. [DOI: 10.1002/slct.201902852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Xu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Feng He
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chenggong Yu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Ying Qu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Qiuqiong Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jiahui Lv
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Xiangna Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Yingying Ran
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chao Wei
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jingde Wu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| |
Collapse
|
15
|
Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Zhang J, Chai X, He XP, Kim HJ, Yoon J, Tian H. Fluorogenic probes for disease-relevant enzymes. Chem Soc Rev 2019; 48:683-722. [PMID: 30520895 DOI: 10.1039/c7cs00907k] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditional biochemical methods for enzyme detection are mainly based on antibody-based immunoassays, which lack the ability to monitor the spatiotemporal distribution and, in particular, the in situ activity of enzymes in live cells and in vivo. In this review, we comprehensively summarize recent progress that has been made in the development of small-molecule as well as material-based fluorogenic probes for sensitive detection of the activities of enzymes that are related to a number of human diseases. The principles utilized to design these probes as well as their applications are reviewed. Specific attention is given to fluorogenic probes that have been developed for analysis of the activities of enzymes including oxidases and reductases, those that act on biomacromolecules including DNAs, proteins/peptides/amino acids, carbohydrates and lipids, and those that are responsible for translational modifications. We envision that this review will serve as an ideal reference for practitioners as well as beginners in relevant research fields.
Collapse
Affiliation(s)
- Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Agrawal R, Singh R, Kumar A, Kumar A, Makde RD. Crystal structures of pyrrolidone-carboxylate peptidase I from Deinococcus radiodurans reveal the mechanism of L-pyroglutamate recognition. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:308-316. [DOI: 10.1107/s2059798319000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022]
Abstract
Pyrrolidone-carboxylate peptidase (PCP) catalyzes the removal of an unusual amino acid, L-pyroglutamate (pG), from the N-termini of peptides and proteins. It has implications in the functional regulation of different peptides in both prokaryotes and eukaryotes. However, the pG-recognition mechanism of the PCP enzyme remains largely unknown. Here, crystal structures of PCP I from Deinococcus radiodurans (PCPdr) are reported in pG-free and pG-bound forms at resolutions of 1.73 and 1.55 Å, respectively. Four protomers in PCPdr form a tetrameric structure. The residues responsible for recognizing the pG residue are mostly contributed by a flexible loop (loop A) that is present near the active site. These residues are conserved in all known PCPs I, including those from mammals. Phe9 and Phe12 of loop A form stacking interactions with the pyrrolidone ring of pG, while Asn18 forms a hydrogen bond to OE of pG. The main chain of a nonconserved residue, Leu71, forms two hydrogen bonds to NH and OE of pG. Thus, pG is recognized in the S1 substrate subsite of the enzyme by both van der Waals and polar interactions, which provide specificity for the pG residue of the peptide. In contrast to previously reported PCP I structures, the PCPdr tetramer is in a closed conformation with an inaccessible active site. The structures show that the active site can be accessed by the substrates via disordering of loop A. This disordering could also prevent product inhibition by releasing the bound pG product from the S1 subsite, thus allowing the enzyme to engage a fresh substrate.
Collapse
|
18
|
Lin W, Zheng X, Fang D, Zhou S, Wu W, Zheng K. Identifying hQC Inhibitors of Alzheimer's Disease by Effective Customized Pharmacophore-Based Virtual Screening, Molecular Dynamic Simulation, and Binding Free Energy Analysis. Appl Biochem Biotechnol 2018; 187:1173-1192. [PMID: 30187344 DOI: 10.1007/s12010-018-2780-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023]
Abstract
Human glutaminyl cyclase (hQC) appeared as a promising new target with its inhibitors attracted much attention for the treatment of Alzheimer's disease (AD) in recent years. But so far, only a few compounds have been reported as hQC inhibitors. To find novel and potent hQC inhibitors, a high-specificity ZBG (zinc-binding groups)-based pharmacophore model comprising customized ZBG feature was first generated using HipHop algorithm in Discovery Studio software for screening out hQC inhibitors from the SPECS database. After purification by docking studies and drug-like ADMET properties filters, four potential hit compounds were retrieved. Subsequently, these hit compounds were subjected to 30-ns molecular dynamic (MD) simulations to explore their binding modes at the active side of hQC. MD simulations demonstrated that these hit compounds formed a chelating interaction with the zinc ion, which was consistent with the finding that the electrostatic interaction was the major driving force for binding to hQC confirmed with MMPBSA energy decomposition. Higher binding affinities of these compounds were also verified by the binding free energy calculations comparing with the references. Thus, these identified compounds might be potential hQC candidates and could be used for further investigation.
Collapse
Affiliation(s)
- Weicong Lin
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaojie Zheng
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Danqing Fang
- Department of Cardiothoracic Surgery, Affiliated Second Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shengfu Zhou
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenjuan Wu
- Department of Physical Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Kangcheng Zheng
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Gong Q, Zou R, Xing J, Xiang L, Zhang R, Wu A. A Ultrasensitive Near-Infrared Fluorescent Probe Reveals Pyroglutamate Aminopeptidase 1 Can Be a New Inflammatory Cytokine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700664. [PMID: 29721415 PMCID: PMC5908353 DOI: 10.1002/advs.201700664] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/26/2017] [Indexed: 05/25/2023]
Abstract
Previous study showed that pyroglutamate aminopeptidase 1 (PGP-1) has a relationship with the immune response in cells. However, whether PGP-1 is involved in inflammatory response in vivo and can serve as a new inflammatory cytokine are still unclear. To address these issues, a new near-infrared fluorescent probe, which exhibits high selectivity and super sensitivity, is developed. With this probe, the up-regulation of PGP-1 (evidenced by western blot) in BALB/c mice legs and livers under the stimulation of two main immunopotentiators is revealed for the first time. The occurrence of inflammatory process (including tissue necrosis) in mice is determined by up-regulation of tumor necrosis factor-α and hematoxylin-eosin staining. Interestingly, it is revealed for the first time that knocking down PGP-1 leads to the weakness of inflammatory process in RAW264.7 cells. These new findings suggest that PGP-1 is indeed involved in inflammatory response in vivo and can be a new inflammatory cytokine.
Collapse
Affiliation(s)
- Qiuyu Gong
- Key Laboratory of Magnetic Materials and DevicesCAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province& Division of Functional, Materials and NanodevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNo. 1219 ZhongGuan West RoadNingbo315201China
| | - Ruifen Zou
- Key Laboratory of Magnetic Materials and DevicesCAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province& Division of Functional, Materials and NanodevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNo. 1219 ZhongGuan West RoadNingbo315201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Xing
- Key Laboratory of Magnetic Materials and DevicesCAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province& Division of Functional, Materials and NanodevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNo. 1219 ZhongGuan West RoadNingbo315201China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lingchao Xiang
- Key Laboratory of Magnetic Materials and DevicesCAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province& Division of Functional, Materials and NanodevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNo. 1219 ZhongGuan West RoadNingbo315201China
| | - Renshuai Zhang
- Key Laboratory of Experimental Marine BiologyInstitute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and DevicesCAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province& Division of Functional, Materials and NanodevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNo. 1219 ZhongGuan West RoadNingbo315201China
| |
Collapse
|
20
|
Mullen L, Boerrigter K, Ferriero N, Rosalsky J, Barrett AVB, Murray PJ, Steen AD. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains. Front Microbiol 2018; 9:368. [PMID: 29559961 PMCID: PMC5845674 DOI: 10.3389/fmicb.2018.00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 11/29/2022] Open
Abstract
Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N-terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases.
Collapse
Affiliation(s)
- Lauren Mullen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Kim Boerrigter
- Malcolm X Shabazz High School, Newark, NJ, United States.,Harvard College, Cambridge, MA, United States
| | | | - Jeff Rosalsky
- Pocono Environmental Education Center, Dingmans Ferry, PA, United States
| | - Abigail van Buren Barrett
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Andrew D Steen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
21
|
Grenga L, Chandra G, Saalbach G, Galmozzi CV, Kramer G, Malone JG. Analyzing the Complex Regulatory Landscape of Hfq - an Integrative, Multi-Omics Approach. Front Microbiol 2017; 8:1784. [PMID: 29033902 PMCID: PMC5627042 DOI: 10.3389/fmicb.2017.01784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
The ability of bacteria to respond to environmental change is based on the ability to coordinate, redirect and fine-tune their genetic repertoire as and when required. While we can learn a great deal from reductive analysis of individual pathways and global approaches to gene regulation, a deeper understanding of these complex signaling networks requires the simultaneous consideration of several regulatory layers at the genome scale. To highlight the power of this approach we analyzed the Hfq transcriptional/translational regulatory network in the model bacterium Pseudomonas fluorescens. We first used extensive ‘omics’ analyses to assess how hfq deletion affects mRNA abundance, mRNA translation and protein abundance. The subsequent, multi-level integration of these datasets allows us to highlight the discrete contributions by Hfq to gene regulation at different levels. The integrative approach to regulatory analysis we describe here has significant potential, for both dissecting individual signaling pathways and understanding the strategies bacteria use to cope with external challenges.
Collapse
Affiliation(s)
- Lucia Grenga
- Department of Molecular Microbiology, John Innes CentreNorwich, United Kingdom.,School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes CentreNorwich, United Kingdom
| | - Gerhard Saalbach
- Department of Molecular Microbiology, John Innes CentreNorwich, United Kingdom
| | - Carla V Galmozzi
- Center for Molecular Biology of the University of Heidelberg, DKFZ-ZMBH AllianceHeidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg, DKFZ-ZMBH AllianceHeidelberg, Germany.,German Cancer Research CenterHeidelberg, Germany
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes CentreNorwich, United Kingdom.,School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
22
|
Zhao J, Koay EJ, Li T, Wen X, Li C. A hindsight reflection on the clinical studies of poly(l-glutamic acid)-paclitaxel. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1497. [PMID: 28895304 DOI: 10.1002/wnan.1497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/06/2022]
Abstract
Chemotherapy for cancer treatment is limited by the excessive toxicity to normal tissues. The design of chemodrug-loaded nanoformulations provides a unique approach to improve the treatment efficacy while minimizing toxicity. Despite the numerous publications of nanomedicine for the last several decades, however, only a small fraction of the developed nanoformulations have entered clinical trials, with even fewer being approved for clinical application. Poly(l-glutamic acid)-paclitaxel (PG-TXL) belongs to the few formulations that reached phase III clinical trials. Unfortunately, the development of PG-TXL stopped in 2016 due to the inability to show significant improvement over current standard care. This review will provide an overview of the preclinical and clinical evaluations of PG-TXL, and discuss lessons to be learned from this ordeal. The precise identification of suitable patients for clinical trial studies, deep understanding of the mechanisms of action, and an effective academic-industry partnership throughout all phases of drug development are important for the successful bench-to-bedside translation of new nanoformulations. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tingting Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
N-terminal pyroglutamate formation in CX3CL1 is essential for its full biologic activity. Biosci Rep 2017; 37:BSR20170712. [PMID: 28739588 PMCID: PMC5634468 DOI: 10.1042/bsr20170712] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
CX3CL1 (fractalkine) is a unique member of the CX3C chemokine family and mediates
both adhesion and cell migration in inflammatory processes. Frequently, the
activity of chemokines depends on a modified N-terminus as described for the
N-terminus of CCL2 modified to a pGlu- (pyroglutamate) residue by QC (glutaminyl
cyclase) activity. Here, we assess the role of the pGlu-modified residue of the
CX3CL1 chemokine domain in human endothelial and smooth muscle cells. For the
first time, we demonstrated using MS that QC (QPCT, gene name
of QC) or its isoenzyme isoQC (iso-glutaminyl cyclase) (QPCTL,
gene name of isoQC) catalyse the formation of N-terminal-modified pGlu-CX3CL1.
Expression of QPCT is co-regulated with its substrates
CCL2 and CX3CL1 in HUVECs (human umbilical
vein endothelial cells) and HCASMCs (human coronary artery smooth muscle cells)
upon stimulation with TNF-α and IL-1β whereas
QPCTL expression is not affected. By contrast, inhibition
of the NF-κB pathway using an IKK2 inhibitor decreased the expression of
the co-regulated targets QPCT, CCL2, and
CX3CL1. Furthermore, RNAi-mediated inhibition of
QPCT expression resulted in a reduction in
CCL2 and CX3CL1 mRNA. In HCASMCs,
N-terminal-modified pGlu1-CX3CL1 induced a significant stronger effect on
phosphorylation of ERK (extracellular signal regulated kinase) 1/2, Akt (protein
kinase B), and p38 (p38 mitogen-activated protein kinase) kinases than the
immature Gln1-CX3CL1 in a time- and concentration-dependent manner. Furthermore,
pGlu1-CX3CL1 affected the expression of CCL2, CX3CL1, and the
adhesion molecule ICAM1/CD54 (intercellular adhesion
molecule-1) inducing in higher expression level compared with its Gln1-variant
in both HCASMCs and HUVECs. These results strongly suggest that QC-catalysed
N-terminal pGlu formation of CX3CL1 is important for the stability or the
interaction with its receptor and opens new insights into the function of QC in
inflammation.
Collapse
|
24
|
Gong Q, Li L, Wu X, Ma H. Pyroglutamate aminopeptidase 1 may be an indicator of cellular inflammatory response as revealed using a sensitive long-wavelength fluorescent probe. Chem Sci 2016; 7:4694-4697. [PMID: 30155117 PMCID: PMC6013796 DOI: 10.1039/c6sc00951d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/09/2016] [Indexed: 12/13/2022] Open
Abstract
Pyroglutamate aminopeptidase 1 (PGP-1) can remove pyroglutamic acid from the N-terminus of a polypeptide, including some important anti-inflammatory proteins. Detecting the change and distribution of cellular PGP-1 in an inflammation process would be helpful to better understand the role of this enzyme. However, no report has been found on this subject, mainly due to the lack of a proper research approach. Herein, we develop such a new method by preparing a sensitive long-wavelength fluorescent probe combined with confocal fluorescence imaging. The probe, consisting of l-pyroglutamic acid and cresyl violet, exhibits high selectivity and sensitivity for PGP-1 under physiological conditions. With this probe, the up-regulation of PGP-1 in LO-2 cells under the stimulation of Freund's incomplete adjuvant and lipopolysaccharide (two main immunopotentiators) is revealed for the first time, and this up-regulation is also observed in typical phagocytic RAW264.7 cells, as evidenced by western blot and inhibition assays. Studies on the distribution of PGP-1 in cells using our probe showed that most PGP-1 is located in the cytoplasm, which is further supported by an immunofluorescence assay. Moreover, the inflammatory response induced by the immunopotentiators in either RAW264.7 or LO-2 cells is confirmed by measuring tumor necrosis factor alpha (a common inflammatory factor). The above findings indicate that cellular inflammation is accompanied by an increase in PGP-1, and PGP-1 may serve as a new indicator of cellular inflammatory response.
Collapse
Affiliation(s)
- Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| |
Collapse
|
25
|
Wang Y, Hu X, Han J, Ni L, Tang X, Hu Y, Chen T. Integrated method of thermosensitive triblock copolymer–salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide. Food Chem 2016; 194:257-64. [DOI: 10.1016/j.foodchem.2015.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022]
|
26
|
Waniek A, Hartlage-Rübsamen M, Höfling C, Kehlen A, Schilling S, Demuth HU, Roßner S. Identification of thyrotropin-releasing hormone as hippocampal glutaminyl cyclase substrate in neurons and reactive astrocytes. Biochim Biophys Acta Mol Basis Dis 2014; 1852:146-55. [PMID: 25446989 DOI: 10.1016/j.bbadis.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023]
Abstract
Recently, Aβ peptide variants with an N-terminal truncation and pyroglutamate modification were identified and shown to be highly neurotoxic and prone to aggregation. This modification of Aβ is catalyzed by glutaminyl cyclase (QC) and pharmacological inhibition of QC diminishes Aβ deposition and accompanying gliosis and ameliorates memory impairment in transgenic mouse models of Alzheimer's disease (AD). QC expression was initially described in the hypothalamus, where thyrotropin-releasing hormone (TRH) is one of its physiological substrates. In addition to its hormonal role, a novel neuroprotective function of TRH following excitotoxicity and Aβ-mediated neurotoxicity has been reported in the hippocampus. Functionally matching this finding, we recently demonstrated QC expression by hippocampal interneurons in mouse brain. Here, we detected neuronal co-expression of QC and TRH in the hippocampus of young adult wild type mice using double immunofluorescence labeling. This provides evidence for TRH being a physiological QC substrate in hippocampus. Additionally, in neocortex of aged but not of young mice transgenic for amyloid precursor protein an increase of QC mRNA levels was found compared to wild type littermates. This phenomenon was not observed in hippocampus, which is later affected by Aβ pathology. However, in hippocampus of transgenic - but not of wild type mice - a correlation between QC and TRH mRNA levels was revealed. This co-regulation of the enzyme QC and its substrate TRH was reflected by a co-induction of both proteins in reactive astrocytes in proximity of Aβ deposits. Also, in primary mouse astrocytes a co-induction of QC and TRH was demonstrated upon Aβ stimulation.
Collapse
Affiliation(s)
- Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Astrid Kehlen
- Institute for Medical Microbiology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany.
| |
Collapse
|
27
|
Höfling C, Indrischek H, Höpcke T, Waniek A, Cynis H, Koch B, Schilling S, Morawski M, Demuth HU, Roßner S, Hartlage-Rübsamen M. Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int J Dev Neurosci 2014; 36:64-73. [PMID: 24886834 DOI: 10.1016/j.ijdevneu.2014.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) from glutamine precursors at the N-terminus of a number of peptide hormones, neuropeptides and chemokines. This post-translational modification stabilizes these peptides, protects them from proteolytical degradation or is important for their biological activity. However, QC is also involved in a pathogenic pGlu modification of peptides accumulating in protein aggregation disorders such as Alzheimer's disease and familial Danish and familial British dementia. Its isoenzyme (isoQC) was shown to contribute to aspects of inflammation by pGlu-modifying and thereby stabilizing the monocyte chemoattractant protein CCL2. For the generation of respective animal models and for pharmacological treatment studies the characterization of the mouse strain and brain region-specific expression of QC and isoQC is indispensible. In order to address this issue, we used enzymatic activity assays and specific antibodies to detect both QC variants by immunohistochemistry in nine different mouse strains. Comparing different brain regions, the highest enzymatic QC/isoQC activity was detected in ventral brain, followed by cortex and hippocampus. Immunohistochemical stainings revealed that QC/isoQC activity in cortex mostly arises from isoQC expression. For most brain regions, the highest QC/isoQC activity was detected in C3H and FVB mice, whereas low QC/isoQC activity was present in CD1, SJL and C57 mice. Quantification of QC- and isoQC-immunoreactive cells by unbiased stereology revealed a higher abundance of isoQC- than of QC-immunoreactive neurons in Edinger-Westphal nucleus and in substantia nigra. In the locus coeruleus, however, there were comparable densities of QC- and of isoQC-immunoreactive neurons. These observations are of considerable importance with regard to the selection of appropriate mouse strains for the study of QC/isoQC relevance in mouse models of neurodegeneration and neuroinflammation and for the testing of therapeutical interventions in these models.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henrike Indrischek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Theodor Höpcke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Holger Cynis
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Birgit Koch
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
28
|
Shih YP, Chou CC, Chen YL, Huang KF, Wang AHJ. Linked production of pyroglutamate-modified proteins via self-cleavage of fusion tags with TEV protease and autonomous N-terminal cyclization with glutaminyl cyclase in vivo. PLoS One 2014; 9:e94812. [PMID: 24733552 PMCID: PMC3986218 DOI: 10.1371/journal.pone.0094812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022] Open
Abstract
Overproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I), and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities.
Collapse
Affiliation(s)
- Yan-Ping Shih
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Chen
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (AHJW); (KFH)
| | - Andrew H.- J. Wang
- Institute of Biological Chemistry and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail: (AHJW); (KFH)
| |
Collapse
|
29
|
Masotti F, De Noni I, Cattaneo S, Brasca M, Rosi V, Stuknyte M, Morandi S, Pellegrino L. Occurrence, origin and fate of pyroglutamyl-γ3-casein in cheese. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Simone D, Bay DC, Leach T, Turner RJ. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS One 2013; 8:e78742. [PMID: 24236045 PMCID: PMC3827258 DOI: 10.1371/journal.pone.0078742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial classes and its specialization may be driven by the substrates it transports and the environment of its host.
Collapse
Affiliation(s)
- Domenico Simone
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Bari, Italy
| | - Denice C. Bay
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thorin Leach
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
31
|
Ramsbeck D, Buchholz M, Koch B, Böhme L, Hoffmann T, Demuth HU, Heiser U. Structure–Activity Relationships of Benzimidazole-Based Glutaminyl Cyclase Inhibitors Featuring a Heteroaryl Scaffold. J Med Chem 2013; 56:6613-25. [DOI: 10.1021/jm4001709] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Ramsbeck
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Mirko Buchholz
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Birgit Koch
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Livia Böhme
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Torsten Hoffmann
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Hans-Ulrich Demuth
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| | - Ulrich Heiser
- Department
of Medicinal Chemistry, ‡Department of Enzymology §Department of Preclinical Pharmacology, Probiodrug AG, Weinbergweg 22, 06120
Halle, Germany
| |
Collapse
|
32
|
Kehlen A, Haegele M, Menge K, Gans K, Immel UD, Hoang-Vu C, Klonisch T, Demuth HU. Role of glutaminyl cyclases in thyroid carcinomas. Endocr Relat Cancer 2013. [PMID: 23183267 DOI: 10.1530/erc-12-0053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CCL2 is a chemokine known to recruit monocytes/macrophages to sites of inflammation. CCL2 is also associated with tumor progression in several cancer types. Recently, we showed that the N-terminus of CCL2 is modified to a pyroglutamate (pE)-residue by both glutaminyl cyclases (QC (QPCT)) and its isoenzyme (isoQC (QPCTL)). The pE-residue increases stability against N-terminal degradation by aminopeptidases. Here, we report an upregulation of QPCT expression in tissues of patients with thyroid carcinomas compared with goiter tissues, whereas QPCTL was not regulated. In thyroid carcinoma cell lines, QPCT gene expression correlates with the mRNA levels of its substrate CCL2. Both QPCT and CCL2 are regulated in a NF-κB-dependent pathway shown by stimulation with TNFa and IL1b as well as by inhibition with the IKK2 inhibitor and RNAi of p50. In the culture supernatant of thyroid carcinoma cells, equal amounts of pECCL2 and total CCL2 were detected by two ELISAs discriminating between total CCL2 and pECCL2, concluding that all CCL2 is secreted as pECCL2. Activation of the CCL2/CCR2 pathway by recombinant CCL2 increased tumor cell migration of FTC238 cells in scratch assays as well as thyroid carcinoma cell-derived CCL2-induced migration of monocytic THP1 cells. Suppression of CCL2 signaling by CCR2 antagonist, IKK2 inhibitor, and QPCT RNAi reduced FTC238 cell growth measured by WST8 proliferation assays. Our results reveal new evidence for a novel role of QC in thyroid carcinomas and provide an intriguing rationale for the use of QC inhibitors as a means of blocking pECCL2 formation and preventing thyroid cancer metastasis.
Collapse
Affiliation(s)
- Astrid Kehlen
- Probiodrug AG, Weinbergweg 22, Halle, Saale, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Kumar V, Gupta MK, Singh G, Prabhakar YS. CP-MLR/PLS directed QSAR study on the glutaminyl cyclase inhibitory activity of imidazoles: rationales to advance the understanding of activity profile. J Enzyme Inhib Med Chem 2012; 28:515-22. [DOI: 10.3109/14756366.2011.654111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Viney Kumar
- Molecular Modelling and Pharmacoinformatics Lab, Department of Pharmaceutical Chemistry, ISF College of Pharmacy,
Moga, India
| | - Manish K. Gupta
- Molecular Modelling and Pharmacoinformatics Lab, Department of Pharmaceutical Chemistry, ISF College of Pharmacy,
Moga, India
| | - Gagandip Singh
- Molecular Modelling and Pharmacoinformatics Lab, Department of Pharmaceutical Chemistry, ISF College of Pharmacy,
Moga, India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division, Central Drug Research Institute,
CSIR, Lucknow, India
| |
Collapse
|
35
|
Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth HU, Blennow K, Wirths O, Bayer TA. Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 2012; 287:8154-62. [PMID: 22267726 DOI: 10.1074/jbc.m111.308601] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyroglutamate-modified Aβ peptides at amino acid position three (Aβ(pE3-42)) are gaining considerable attention as potential key players in the pathogenesis of Alzheimer disease (AD). Aβ(pE3-42) is abundant in AD brain and has a high aggregation propensity, stability and cellular toxicity. The aim of the present work was to study the direct effect of elevated Aβ(pE3-42) levels on ongoing AD pathology using transgenic mouse models. To this end, we generated a novel mouse model (TBA42) that produces Aβ(pE3-42). TBA42 mice showed age-dependent behavioral deficits and Aβ(pE3-42) accumulation. The Aβ profile of an established AD mouse model, 5XFAD, was characterized using immunoprecipitation followed by mass spectrometry. Brains from 5XFAD mice demonstrated a heterogeneous mixture of full-length, N-terminal truncated, and modified Aβ peptides: Aβ(1-42), Aβ(1-40), Aβ(pE3-40), Aβ(pE3-42), Aβ(3-42), Aβ(4-42), and Aβ(5-42). 5XFAD and TBA42 mice were then crossed to generate transgenic FAD42 mice. At 6 months of age, FAD42 mice showed an aggravated behavioral phenotype compared with single transgenic 5XFAD or TBA42 mice. ELISA and plaque load measurements revealed that Aβ(pE3) levels were elevated in FAD42 mice. No change in Aβ(x)(-42) or other Aβ isoforms was discovered by ELISA and mass spectrometry. These observations argue for a seeding effect of Aβ(pE-42) in FAD42 mice.
Collapse
Affiliation(s)
- Jessica L Wittnam
- Division of Molecular Psychiatry, Georg August University Göttingen, University Medicine Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zheng LL, Niu S, Hao P, Feng K, Cai YD, Li Y. Prediction of protein modification sites of pyrrolidone carboxylic acid using mRMR feature selection and analysis. PLoS One 2011; 6:e28221. [PMID: 22174779 PMCID: PMC3235115 DOI: 10.1371/journal.pone.0028221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022] Open
Abstract
Pyrrolidone carboxylic acid (PCA) is formed during a common post-translational modification (PTM) of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR) and incremental feature selection (IFS). We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations.
Collapse
Affiliation(s)
- Lu-Lu Zheng
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
37
|
Lo YC, Su WC, Ko TP, Wang NC, Wang AHJ. Terpyridine Platinum(II) Complexes Inhibit Cysteine Proteases by Binding to Active-site Cysteine. J Biomol Struct Dyn 2011; 29:267-82. [DOI: 10.1080/073911011010524993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Cynis H, Hoffmann T, Friedrich D, Kehlen A, Gans K, Kleinschmidt M, Rahfeld JU, Wolf R, Wermann M, Stephan A, Haegele M, Sedlmeier R, Graubner S, Jagla W, Müller A, Eichentopf R, Heiser U, Seifert F, Quax PHA, de Vries MR, Hesse I, Trautwein D, Wollert U, Berg S, Freyse EJ, Schilling S, Demuth HU. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol Med 2011; 3:545-58. [PMID: 21774078 PMCID: PMC3377097 DOI: 10.1002/emmm.201100158] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N-terminus of the polypeptide. Among those, the N-terminus of monocyte chemoattractant protein 1 (CCL2 and MCP-1) is modified to a pyroglutamate (pE-) residue protecting against degradation in vivo. Here, we show that the N-terminal pE-formation depends on glutaminyl cyclase activity. The pE-residue increases stability against N-terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso-enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE1-CCL2 formation and monocyte infiltration. Consistently, administration of QC-inhibitors in inflammatory models, such as thioglycollate-induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC-inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2-driven disorders such as atherosclerosis/restenosis and fibrosis.
Collapse
|
39
|
Schilling S, Kohlmann S, Bäuscher C, Sedlmeier R, Koch B, Eichentopf R, Becker A, Cynis H, Hoffmann T, Berg S, Freyse EJ, von Hörsten S, Rossner S, Graubner S, Demuth HU. Glutaminyl cyclase knock-out mice exhibit slight hypothyroidism but no hypogonadism: implications for enzyme function and drug development. J Biol Chem 2011; 286:14199-208. [PMID: 21330373 PMCID: PMC3077621 DOI: 10.1074/jbc.m111.229385] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Indexed: 11/06/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) residues at the N terminus of peptides and proteins. Hypothalamic pGlu hormones, such as thyrotropin-releasing hormone and gonadotropin-releasing hormone are essential for regulation of metabolism and fertility in the hypothalamic pituitary thyroid and gonadal axes, respectively. Here, we analyzed the consequences of constitutive genetic QC ablation on endocrine functions and on the behavior of adult mice. Adult homozygous QC knock-out mice are fertile and behave indistinguishably from wild type mice in tests of motor function, cognition, general activity, and ingestion behavior. The QC knock-out results in a dramatic drop of enzyme activity in the brain, especially in hypothalamus and in plasma. Other peripheral organs like liver and spleen still contain QC activity, which is most likely caused by its homolog isoQC. The serum gonadotropin-releasing hormone, TSH, and testosterone concentrations were not changed by QC depletion. The serum thyroxine was decreased by 24% in homozygous QC knock-out animals, suggesting a mild hypothyroidism. QC knock-out mice were indistinguishable from wild type with regard to blood glucose and glucose tolerance, thus differing from reports of thyrotropin-releasing hormone knock-out mice significantly. The results suggest a significant formation of the hypothalamic pGlu hormones by alternative mechanisms, like spontaneous cyclization or conversion by isoQC. The different effects of QC depletion on the hypothalamic pituitary thyroid and gonadal axes might indicate slightly different modes of substrate conversion of both enzymes. The absence of significant abnormalities in QC knock-out mice suggests the presence of a therapeutic window for suppression of QC activity in current drug development.
Collapse
Affiliation(s)
| | | | | | | | - Birgit Koch
- From Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale
| | | | | | - Holger Cynis
- From Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale
| | | | - Sabine Berg
- the Institute of Diabetes, “Gerhardt Katsch,” 17495 Karlsburg
| | | | - Stephan von Hörsten
- the University of Erlangen-Nürnberg, Franz-Penzoldt-Center, Palmsanlage 5, 91054 Erlangen, and
| | - Steffen Rossner
- the Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | - Hans-Ulrich Demuth
- From Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale
- Ingenium GmbH, Fraunhoferstrasse 13, 82152 Martinsried
| |
Collapse
|
40
|
Carrillo DR, Parthier C, Jänckel N, Grandke J, Stelter M, Schilling S, Boehme M, Neumann P, Wolf R, Demuth HU, Stubbs MT, Rahfeld JU. Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus. Biol Chem 2010; 391:1419-28. [DOI: 10.1515/bc.2010.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Although enzymes responsible for the cyclization of amino-terminal glutamine residues are present in both plant and mammal species, none have yet been characterized in bacteria. Based on low sequence homologies to plant glutaminyl cyclases (QCs), we cloned the coding sequences of putative microbial QCs from Zymomonas mobilis (ZmQC) and Myxococcus xanthus (MxQC). The two recombinant enzymes exhibited distinct QC activity, with specificity constants k
cat
/K
m of 1.47±0.33 mm
-1 s-1 (ZmQC) and 142±32.7 mm
-1 s-1 (MxQC) towards the fluorescent substrate glutamine-7-amino-4-methyl-coumarine. The measured pH-rate profile of the second order rate constant displayed an interesting deviation towards the acidic limb of the pH chart in the case of ZmQC, whereas MxQC showed maximum activity in the mild alkaline pH range. Analysis of the enzyme variants ZmQCGlu46Gln and MxQCGln46Glu show that the exchanged residues play a significant role in the pH behaviour of the respective enzymes. In addition, we determined the three dimensional crystal structures of both enzymes. The tertiary structure is defined by a five-bladed β-propeller anchored by a core cation. The structures corroborate the putative location of the active site and confirm the proposed relation between bacterial and plant glutaminyl cyclases.
Collapse
|
41
|
Deshmukh M, Singh Y, Gunaseelan S, Gao D, Stein S, Sinko PJ. Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials 2010; 31:6675-84. [PMID: 20561680 PMCID: PMC2941153 DOI: 10.1016/j.biomaterials.2010.05.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/07/2010] [Indexed: 01/16/2023]
Abstract
Two vinyl sulfone functionalized crosslinkers were developed for the purpose of preparing degradable poly(ethylene glycol) (PEG) hydrogels (EMXL and GABA-EMXL hydrogels). A self-elimination degradation mechanism in which an N-terminal residue of a glutamine is converted to pyroglutamic acid with subsequent release of diamino PEG (DAP) is proposed. The hydrogels were formed via Michael addition by mixing degradable or nondegradable crosslinkers and copolymer {4% w/v; poly[PEG-alt-poly(mercapto-succinic acid)]} at room temperature in phosphate buffer (PB, pH = 7.4). Hydrogel degradation was characterized by assessing diamino PEG release and examining morphological changes as well as the swelling and weight loss ratio under physiological conditions (37 degrees C). Degradation of EMXL and GABA-EMXL hydrogels occurred by surface erosion (confirmed by SEM). GABA-EMXL degradation was significantly faster (approximately 3-fold) than EMXL; however, the degradation of both hydrogels in mouse plasma was 12-times slower than in PBS. The slower degradation rate in plasma as compared to buffer is consistent with the presence of gamma-glutamyltransferase, gamma-glutamylcyclotransferase and/or glutaminyl cyclase (QC), which have been shown to suppress pyroglutamic acid formation. The current studies suggest that EMXL and GABA-EMXL hydrogels may have biomedical applications where 1-2 week degradation timeframes are optimal.
Collapse
Affiliation(s)
- Manjeet Deshmukh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
- UMDNJ-Rutgers CounterACT Research Center of Excellence, Piscataway, New Jersey 08854
| | - Yashveer Singh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Simi Gunaseelan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Stanley Stein
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
- UMDNJ-Rutgers CounterACT Research Center of Excellence, Piscataway, New Jersey 08854
| |
Collapse
|
42
|
Seifert F, Schulz K, Koch B, Manhart S, Demuth HU, Schilling S. Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates. Biochemistry 2010; 48:11831-3. [PMID: 19921850 DOI: 10.1021/bi9018835] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Terminal glutaminyl and glutamyl residues of peptides and proteins tend to form pyroglutamic acid (pGlu) by intramolecular cylization. The rate constants for spontaneous cyclization of glutamine (10(-6) s(-1)) and glutamic acid (10(-9) s(-1)) in aqueous solution differ by approximately 3 orders of magnitude at pH 6.5. Glutaminyl cyclases (QCs) from plants and mammals accelerate pGlu formation. Human QC exhibits a rate enhancement of 2.2 x 10(5) for glutamate cyclization, approximately 2 orders of magnitude lower than that of the corresponding N-terminal glutaminyl reaction. Thus, glutaminyl cyclases are enzymes with only modest specificity for cyclization of their primary glutaminyl substrates and may provide a link between glutamate cyclization and pathophysiology.
Collapse
|
43
|
Buchholz M, Hamann A, Aust S, Brandt W, Böhme L, Hoffmann T, Schilling S, Demuth HU, Heiser U. Inhibitors for Human Glutaminyl Cyclase by Structure Based Design and Bioisosteric Replacement. J Med Chem 2009; 52:7069-80. [DOI: 10.1021/jm900969p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | - Hans-Ulrich Demuth
- Department of Medicinal Chemistry
- Department of Enzymology
- Department of Preclinical Pharmacology
| | | |
Collapse
|
44
|
Stephan A, Wermann M, von Bohlen A, Koch B, Cynis H, Demuth HU, Schilling S. Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS J 2009; 276:6522-36. [DOI: 10.1111/j.1742-4658.2009.07337.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Murín R, Mohammadi G, Leibfritz D, Hamprecht B. Glial Metabolism of Valine. Neurochem Res 2009; 34:1195-203. [DOI: 10.1007/s11064-008-9895-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2008] [Indexed: 11/29/2022]
|
46
|
Cynis H, Rahfeld JU, Stephan A, Kehlen A, Koch B, Wermann M, Demuth HU, Schilling S. Isolation of an Isoenzyme of Human Glutaminyl Cyclase: Retention in the Golgi Complex Suggests Involvement in the Protein Maturation Machinery. J Mol Biol 2008; 379:966-80. [DOI: 10.1016/j.jmb.2008.03.078] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/12/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
|
47
|
Welker E, Hathaway L, Xu G, Narayan M, Pradeep L, Shin HC, Scheraga HA. Oxidative folding and N-terminal cyclization of onconase. Biochemistry 2007; 46:5485-93. [PMID: 17439243 PMCID: PMC2535829 DOI: 10.1021/bi602495a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally.
Collapse
Affiliation(s)
- Ervin Welker
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy, H-6701, Szeged, Temesvári krt. 62. Hungary
- Institute of Enzymology of the Hungarian Academy, H-1114, Budapest, Karolina út 62. Hungary
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Laura Hathaway
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Guoqiang Xu
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Mahesh Narayan
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Lovy Pradeep
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Hang-Cheol Shin
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| |
Collapse
|
48
|
Pang CNI, Hayen A, Wilkins MR. Surface accessibility of protein post-translational modifications. J Proteome Res 2007; 6:1833-45. [PMID: 17428077 DOI: 10.1021/pr060674u] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein post-translational modifications are crucial to the function of many proteins. In this study, we have investigated the structural environment of 8378 incidences of 44 types of post-translational modifications with 19 different approaches. We show that modified amino acids likely to be involved in protein-protein interactions, such as ester-linked phosphorylation, methylarginine, acetyllysine, sulfotyrosine, hydroxyproline, and hydroxylysine, are clearly surface associated. Other modifications, including O-GlcNAc, phosphohistidine, 4-aspartylphosphate, methyllysine, and ADP-ribosylarginine, are either not surface associated or are in a protein's core. Artifactual modifications were found to be randomly distributed throughout the protein. We discuss how the surface accessibility of post-translational modifications can be important for protein-protein interactivity.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems Biology Group, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
49
|
Schilling S, Stenzel I, von Bohlen A, Wermann M, Schulz K, Demuth HU, Wasternack C. Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions. Biol Chem 2007; 388:145-53. [PMID: 17261077 DOI: 10.1515/bc.2007.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 10(5)- to 10(6)-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.
Collapse
|
50
|
Cynis H, Schilling S, Bodnár M, Hoffmann T, Heiser U, Saido TC, Demuth HU. Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1618-25. [PMID: 17005457 DOI: 10.1016/j.bbapap.2006.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/29/2006] [Accepted: 08/11/2006] [Indexed: 11/19/2022]
Abstract
Mammalian cell lines were examined concerning their Glutaminyl Cyclase (QC) activity using a HPLC method. The enzyme activity was suppressed by a QC specific inhibitor in all homogenates. Aim of the study was to prove whether inhibition of QC modifies the posttranslational maturation of N-glutamine and N-glutamate peptide substrates. Therefore, the impact of QC-inhibition on amino-terminal pyroglutamate (pGlu) formation of the modified amyloid peptides Abeta(N3E-42) and Abeta(N3Q-42) was investigated. These amyloid-beta peptides were expressed as fusion proteins with either the pre-pro sequence of TRH, to be released by a prohormone convertase, or as engineered amyloid precursor protein for subsequent liberation of Abeta(N3Q-42) after beta- and gamma-secretase cleavage during posttranslational processing. Inhibition of QC leads in both expression systems to significantly reduced pGlu-formation of differently processed Abeta-peptides. This reveals the importance of QC-activity during cellular maturation of pGlu-containing peptides. Thus, QC-inhibition should impact bioactivity, stability or even toxicity of pyroglutamyl peptides preventing glutamine and glutamate cyclization.
Collapse
Affiliation(s)
- Holger Cynis
- Probiodrug AG, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | | | | | | | |
Collapse
|