1
|
Alasmari SM, Albogami BZ, Nenaah GE, Nenaah SG. Bio-activities of Clerodendrum inerme extracts, essential oil, main terpenes and Ag nanoparticles against the stable fly, Stomoxys calcitrans (Diptera: Muscidae) and their non-target effects against its parasitoid, Spalangia cameroni (Hymenoptera: Pteromalidae) and earthworms. Vet Parasitol 2025; 337:110497. [PMID: 40381232 DOI: 10.1016/j.vetpar.2025.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
The stable fly, Stomoxys calcitrans, is a cosmopolitan noxious dipteran hematophagous insect of veterinary and medical importance. There is a renewed interest to develop eco-friendly green pesticides to control stable flies while avoiding the health and environmental hazards of synthetic pesticides. In that framework, Clerodendrum inerme essential oil (EO) was produced by hydrodistillation, and analysed by using (GC-FID) and GC-MS). Isoeugenol (33.1 %) and dibutyl phthalate (29.3 %) were identified as the main components. Silver nanoparticles (Ci-based AgNPs were produced using the methanol (MeOH) extract and characterized using microscopic and spectroscopic instruments. The phytochemicals exhibited considerable insecticidal bioactivity towards S. calcitrans. Using topical application, Ci-based AgNPs displayed the strongest bioactivity, followed by EO, dibutyl phthalate, isoeugenol, MeOH, and aqueous extracts. At a test concentration of 160 µg/fly, Ci-based AgNPs and EO killed all insects after 24 h. The LC50 values ranged between 41.1 and 124.6 µg/fly. Using fumigation, the EO was the strongest fumigant, followed by isoeugenol, Ci-based AgNPs, and dibutyl phthalate, where the 24 h fumigation LC50's ranged between 20.8 and 73.7 µL/L air. Botanicals substantially inhibited insects' acetylcholinesterase (AChE) bioactivity. Non-target effects revealed that the phytochemicals showed an acceptable safety margins towards the parasitoid, Spalangia cameroni with LC50 values ranged between 988.18 and ˃ 2000 µL/mL. They were considered as safe for earthworms, Eisenia fetida, at concentration up to 200 mg/kg soil. The results confirm the potential of using C. inerme extracts, EO and nanoparticles as eco-friendly green insecticides against S. calcitrans.
Collapse
Affiliation(s)
- Saeed M Alasmari
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran 1988, Saudi Arabia.
| | - Bader Z Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran 1988, Saudi Arabia.
| | - Gomah E Nenaah
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
| | - Shrook G Nenaah
- College of Medicine, Misr University for Science and Technology (MUST), 6th of October, Egypt.
| |
Collapse
|
2
|
Zhang K, Zhang C, Li Y, Li T, Yin Y, Wang K, Wang A, Zheng M, Zhang Z, Wang H. NIR laser-activated, indocyanine green-loaded bovine serum albumin nanoparticles: An established ingestible photosensitizer for a novel approach to controlling vector-borne organisms. Int J Pharm 2025; 675:125517. [PMID: 40139448 DOI: 10.1016/j.ijpharm.2025.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
In this study, we proposed a novel application of an established material by developing ingestible nanoparticles made from bovine serum albumin loaded with indocyanine green. These nanoparticles, referred to as ICG@BSA NPs, response to near infrared (NIR) laser exposure by generating reactive oxygen species. This process, known as photodynamic therapy (PDT), is designed to targeted kill vector-borne organisms. As a representative model of vectors, housefly larvae trended to uptake more protein-based ICG@BSA NPs than free ICG. This led neither to an obvious influence on larval development nor to a significant impact on the intestinal microbial population. In contrast, under NIR laser irradiation, ICG@BSA NPs could efficiently induce generation of ROS for killing larvae via damaging intestinal wall and inducing subsequent intestinal bacteria leakage. This protein-based ingestible nanoparticles integrate the independence of pesticides, pronounced PDT efficacy, and environmental friendliness, making this nanoplatform promising for controlling vector-borne organisms and associated diseases.
Collapse
Affiliation(s)
- Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Ji'nan 250022, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Ji'nan 250022, China
| | - Chenfei Zhang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Ting Li
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Kaipeng Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Anqi Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Mingjia Zheng
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China; Shandong Second Medical University, Weifang 261053, China.
| | - Haijun Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China; National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Abdel-Baki AAS, Aboelhadid SM, Ibrahium SM, Al-Quraishy S, Gadelhaq SM, Ahmed M, Abdel-Haleem HM, Reyad A, Kamel AA. Benzyl alcohol synergistic effect with deltamethrin against Musca domestica with molecular docking of potential modes of action. MEDICAL AND VETERINARY ENTOMOLOGY 2025. [PMID: 40285537 DOI: 10.1111/mve.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
The house fly (Musca domestica Linnaeus, 1758) has developed resistance to several pesticides, necessitating innovative approaches for effective control. This study explores the synergistic effects of benzyl alcohol (BA) on the toxicity of deltamethrin (D) against various life stages of M. domestica larvae, pupae and adults. Additionally, molecular docking analyses were conducted to investigate interactions with the acetylcholinesterase enzyme (AChE) and voltage-sensitive sodium channel (Vssc). Two formulations of deltamethrin were tested: deltamethrin + benzyl alcohol (DBA) mix (D 5% dissolved in ethyl alcohol, then mixed with BA at its LC50 concentration) and DBA combination (D 5% dissolved directly in pure BA). In vitro testing revealed significant synergistic effects. For larvae, the LC50 of deltamethrin alone was 0.95 mg/mL, while the DBA mix reduced it to 0.09 mg/mL, yielding a synergism factor of 10.56. For pupae, deltamethrin's LC50 was 1.32 mg/mL, compared with 0.104 mg/mL for the DBA mix, with a synergism factor of 12.69. The DBA combination also exhibited notable toxicity, with LC50 values of 0.14 mg/mL for larvae and 0.16 mg/mL for pupae, corresponding to synergism factors of 6.79 and 8.80, respectively. Against adult flies, the DBA mix and DBA combination demonstrated high fumigant toxicity, with LC50 values of 0.08 mg/L and 0.09 mg/L air, respectively, and synergism factors of 9.31 and 8.11. Docking analyses showed that deltamethrin exhibited a strong binding affinity to AChE, forming two hydrogen bonds with Lys480 and a pi-sigma interaction with Met351. BA occupied a separate binding pocket in AChE, forming two hydrogen bonds with Met309 and Lys335. Both compounds demonstrated strong, distinct binding affinities, confirming their synergistic inhibition of AChE. Against Vssc, deltamethrin (ΔG = -5.90 kcal/mol) formed a pi-pi interaction with Phe78 and a hydrogen bond with Lys79, while BA (ΔG = -3.79 kcal/mol) interacted with a different pocket via hydrophobic interactions. These findings highlight the potential of combining BA with deltamethrin to overcome insecticide resistance in house fly populations, offering a promising strategy to enhance pest control effectiveness.
Collapse
Affiliation(s)
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Manal Ahmed
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | - Heba M Abdel-Haleem
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Abdulrahman Reyad
- Departmrnt of Hydrobiology, Faculty of Science and Technology, Debrecen University, Debrecen, Hungary
| | - Asmaa A Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Liu K, Wang L, Wen S, Qiu X, Cao P, Liang P, Wu S. Role of mutation G255A in modulating pyrethroid sensitivity in insect sodium channels. Int J Biol Macromol 2025; 295:139455. [PMID: 39778843 DOI: 10.1016/j.ijbiomac.2025.139455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects. These mutations are located among the two pyrethroid receptors, i.e., PyR1 and PyR2, as predicted by previous studies. The two binding regions are relatively symmetrical, and here we focus on the linkers between S4 and S5 of Domains I and II. The S4-S5 linker can promote a rapid increase in sodium current and the onset of action potential. By predicting mutations in 19 other amino acids at all the amino acids on S4-S5 linkers, their harmfulness is analyzed, and whether they affect protein stability and drug binding is determined. Through molecular docking and based on docking scores, four mutations were predicted to affect the binding of sodium channels to pyrethroids. Mutations G255V, G255A, A906V, and A906T were introduced into the VGSC of Blattella germanica (BgNav1-1), and their effects on channel gating and pyrethroid sensitivity in Xenopus oocytes were studied. The treatment of VGSCs with two types of pyrethroids (1 nM), Types I (permethrin, bifenthrin) and II (deltamethrin, λ-cyhalothrin), produced tail currents. Among the four, mutant G255A exhibited a certain degree of increased sensitivity to the two types of pyrethroids. This finding was in contrast with the three other mutations, which demonstrated a certain degree of sensitization to one or two pyrethroids. We predicted and validated the critical mutation G255A on the insect VGSC Domain I S4-S5 linker using by electrophysiological technology. In generally, under the pressure of many insecticides, gene modifications, such as transcriptional changes and point mutations in the coding region make insects resistant to insecticides. This phenomenon leads to a higher detoxification rate of insecticides and makes the target site insensitive. However, we found that G255A mutation could promote the combination of pyrethroid and VGSCs by changing the binding force with insecticides. This finding has potential application value in reversing insect resistance. The discovery of mutation G255A exhibits considerable significance for the current use of gene editing and gene drive technology to control pests and delay their resistance development.
Collapse
Affiliation(s)
- Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Likui Wang
- Department of Entomology, College of Plant Protection, and Sanya Institute of China Agricultural University, Beijing 100193, China
| | - Shuxuan Wen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Xinyao Qiu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Liang
- Department of Entomology, College of Plant Protection, and Sanya Institute of China Agricultural University, Beijing 100193, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China.
| |
Collapse
|
5
|
Alzabib AA, Al-Sarar AS, Abobakr Y, Saleh AA. Investigating the molecular mechanisms of deltamethrin resistance in Musca domestica populations from Saudi Arabia. Parasit Vectors 2025; 18:55. [PMID: 39956894 PMCID: PMC11831778 DOI: 10.1186/s13071-025-06668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND The house fly, Musca domestica L., is a global insect pest that poses serious health risks by carrying pathogens to humans and animals. Pyrethroid (PYR) insecticides have been widely used to control agricultural pests and disease vectors. Multiple reports have documented house fly resistance to PYR insecticides. METHODS In this study, we assessed the resistance levels of M. domestica populations collected from slaughterhouses in Riyadh, Jeddah, and Taif, Saudi Arabia, against the PYR insecticide deltamethrin (DM). We also examined the genetic mutations in the voltage-sensitive sodium channel (Vssc) and P450 genes of the collected field flies and analyzed the correlation between these detected genetic mutations and the levels of DM resistance. RESULTS The house fly field populations showed very high levels of resistance to DM, with resistance ratio (RR) values of 625-, 256-, and 107-fold for Jeddah, Taif, and Riyadh, respectively. Three VSSC resistance alleles, kdr (T929 + 1014F), kdr-his (T929 + 1014H), and 1B (929I + 1014F), along with the susceptible allele (T929 + L1014) were identified in the Saudi house fly populations. The super-kdr allele (918 T + 1014F) and type N (D600N + M918T + L1014F) were not detected in Saudi house fly populations. Type 1B was the most dominant VSSC resistance allele, followed by kdr and kdr-his, in both field populations and the surviving flies exposed to DM. The resistance CYP6D1v1 allele of P450 was detected in slaughterhouse house fly populations of Riyadh, Jeddah, and Taif, with frequencies of 71%, 58%, and 60%, respectively. The VSSC resistance alleles exhibited a positive correlation with the resistance levels to DM; conversely, the CYP6D1v1 displayed a negative correlation with DM resistance levels. CONCLUSIONS In general, the Saudi house fly populations exhibited high genetic diversity, with three VSSC resistance alleles identified in slaughterhouse populations. The Vssc mutations appear to be the principal mechanism of DM resistance in Saudi house fly field populations. This study is the first report on the Vssc and CYP6D1 mutations associated with PYR resistance in M. domestica field populations from Saudi Arabia.
Collapse
Affiliation(s)
- Ali A Alzabib
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Ali S Al-Sarar
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| | - Yasser Abobakr
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, 21616, Egypt
| | - Amgad A Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, 12619, Egypt
| |
Collapse
|
6
|
You C, Zhang L, Song J, Zhen C, Ji X, Zhang L, Gao X. Diversity and distribution of Mdace mutations involved in propoxur resistance in the house fly (Musca domestica L.) in China. PEST MANAGEMENT SCIENCE 2025; 81:831-838. [PMID: 39421896 DOI: 10.1002/ps.8487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The house fly is a public health pest due to its ability to transmit various pathogens worldwide. The suppression of house flies is frequently controlled by organophosphate and carbamate insecticides, but recurrent selection has led to the mutated target. To understand the spread and evolution of Mdace mutations in house flies, we sampled flies in eight different China provinces, sequenced, and then estimated the frequencies of mutations. RESULTS The inhibition of AChE towards propoxur varied geographically and was lowest in the Heilongjiang field population, and highest in Jiangsu population. The overall frequencies of the different Mdace mutations (V260L, G342A, G342V, F407Y) varied considerably between populations. Strong positive correlations were found between acetylcholinesterase (AChE) insensitivity and the frequencies of G342V allele, 342A/V genotype and combination (260V/L-342A/V-407Y/Y) for the field populations. Eighteen combinations of Mdace at three sites (V260L, G342A/V, F407Y) were observed, with the majority of flies being categorized into the combination (260V/L-342A/V-407Y/Y), ranging in frequency from 24% (in field populations in Hubei and Hainan) to 96% (Jiangsu). CONCLUSION Based on comparison with historical data, the mutations responsible for the extremely high resistance to the level of insecticide resistance spread widely, propoxur should be limited to use for house fly control in China. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei You
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Science, Shanghai, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Lulu Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiangyun Ji
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Li X, Fang T, Gao T, Gui H, Chen Y, Zhou L, Zhang Y, Yang Y, Xu L, Long Y. Widespread presence of gut bacterium Glutamicibacter ectropisis sp. nov. confers enhanced resistance to the pesticide bifenthrin in tea pests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176784. [PMID: 39414054 DOI: 10.1016/j.scitotenv.2024.176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
The gut microbiota in Lepidopterans demonstrates variability and susceptibility to environmental influences, thereby presenting opportunities for the acquisition of novel bacterial strains. Ectropis grisescens (Warren), a notorious Lepidopteran pest, causes substantial damage to tea crops. Prolonged application usage of bifenthrin for the management of this pest has led to increased resistance. This study aims to investigate the relationship between the gut microbiota, as shaped by long-term pesticide use and the resistance of E. grisescenes. We employed high-throughput sequencing of the 16S rRNA gene to analyze the gut microbiota compositions in bifenthrin-resistant (BIF-R) and bifenthrin-sensitive (BIF-S) strains. Bifenthrin-degrading strains were isolated from the gut of BIF-R using selective media. The degradation efficiency and products of bifenthrin by the key strain were detected using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The effect of the key strain on host resistance was verified in vivo. Finally, the distribution and abundance of the degrading bacterium, in conjunction with insect's pesticide resistance, were assessed in 22 distinct E. grisescens populations. Bifenthrin resistance was diminished in BIF-R following the removal of gut bacteria, a phenomenon not observed in BIF-S. Subsequent high-throughput amplicon sequencing revealed distinct structural differences in the gut microbiota between the two groups, notably an increased abundance of Glutamicibacter in BIF-R. A newly identified bacterial strain from BIF-R larvae, Glutamicibacter ectropisis (B1), demonstrated bifenthrin degradation efficiency and the main metabolite was 2,4-di-tert-butylphenol. Inoculation of B1 into BIF-S larvae conferred increased resistance to bifenthrin. Furthermore, we confirmed the prevalence of B1 in the gut of E. grisescens across 22 tea-growing areas in China. A positive correlation was observed between the absolute abundance of B1 and bifenthrin resistance in E. grisescens. This study represents the first identification of a novel gut bacterium, G. ectropisis, which mediates host resistance through the direct degradation of bifenthrin. This mechanism has been widely validated across 22 distinct populations.
Collapse
Affiliation(s)
- Xiayu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ting Fang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Gui
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Torres JN, Hubbard CB, Murillo AC. Examining imidacloprid behaviorally resistant house flies (Musca domestica L.) (Diptera: Muscidae) for neonicotinoid cross-resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1443-1447. [PMID: 39182229 DOI: 10.1093/jme/tjae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
The house fly (Musca domestica L.) is a ubiquitous fly species commonly associated with confined animal and urban waste storage facilities. It is known for its pestiferous nature and ability to mechanically vector numerous disease-causing pathogens. Effective control of adult house fly populations has traditionally relied upon insecticidal food baits; however, due to the overuse of insecticides, resistance has proven to yield many insecticidal baits and chemical classes less effective. Imidacloprid, the most widely used neonicotinoid, has been formulated and commonly used in house fly baits for over 2 decades. However, widespread evidence of physiological and behavioral resistance to imidacloprid has been documented. While previous studies have investigated the mechanisms of behavioral resistance to imidacloprid in the house fly, it remains unclear whether behavioral resistance is specific to imidacloprid or if behavioral cross-resistance exists to other compounds within the neonicotinoid class of insecticides. The current study used no-choice and choice-feeding bioassays to examine a lab-selected imidacloprid behaviorally resistant house fly colony for cross-resistance to other insecticides in the neonicotinoid chemical class. All flies exhibited high mortality (97-100%) in no-choice assays, even when exposed to imidacloprid, indicating physiological susceptibility to all tested neonicotinoids. House flies exhibited high mortality (98-100%) in choice assays when exposed to all neonicotinoid insecticides tested besides imidacloprid. These results confirm that imidacloprid behavioral resistance is specific to the compound imidacloprid and that alternative neonicotinoids remain viable options for control. Our study showed no evidence of behavioral cross-resistance to other compounds in the neonicotinoid class.
Collapse
Affiliation(s)
| | - Caleb B Hubbard
- Department of Entomology, University of California, Riverside, CA, USA
| | - Amy C Murillo
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
9
|
Oz E. Evaluation of Cyfluthrin and Etofenprox Resistance in House Fly Musca domestica Populations in Antalya, Türkiye. BIOLOGY 2024; 13:767. [PMID: 39452076 PMCID: PMC11505003 DOI: 10.3390/biology13100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The house fly, Musca domestica L. (Diptera: Muscidae), is a significant vector for many pathogens and parasites. Presence of this vector causes economic losses due to decreased feeding activity in livestock, resulting in reduced yields of products. The repeated and unconscious application of chemical insecticides has resulted in the development of resistance in the majority of house fly populations worldwide. The aim of this research was to determine the susceptibility levels of two field M. domestica populations to cyfluthrin and etofenprox in Antalya, Türkiye. The LD50 values, resistance ratios, and resistance status were determined by exposing adult house flies to the test chemicals for one hour. The Kemer population exhibited very low resistance to cyfluthrin, with a 5-fold increase, while the Serik population, in contrast, showed moderate resistance with a 29.67-fold increase. The resistance ratios of field populations to etofenprox were 2.33-fold (no resistance) for Kemer and 6.44-fold (very low resistance) for Serik, respectively. This is the first study to determine the resistance levels of house flies against cyfluthrin and etofenprox insecticides in Türkiye. To prevent or reduce the development of resistance to insecticides in house flies, integrated control methods and resistance management programs should be employed. Furthermore, it is advised that regular monitoring tests be conducted to observe the level of resistance.
Collapse
Affiliation(s)
- Emre Oz
- Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Türkiye
| |
Collapse
|
10
|
Kamel AA, Aboelhadid SM, Abdel-Baki AAS, Ibrahium SM, Al-Quraishy S, Hassan AO, Abd El-Kareem SG, Gadelhaq SM. Benzoate Derivatives Toxicity to Musca domestica Results in Severe Muscle Relaxation and Body Distortion. NEOTROPICAL ENTOMOLOGY 2024; 53:972-983. [PMID: 38724884 DOI: 10.1007/s13744-024-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 07/18/2024]
Abstract
The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a significant threat to human and animal health and is also resistant to a variety of insecticides. Plant-derived benzoates are known to have insecticidal activities against various insects. In this study, the larvicidal, pupicidal, and adulticidal activities of benzoate derivatives (benzyl alcohol BA, benzyl benzoate BB, and methyl benzoate MB) were assessed and investigated for their effects on larval structure and acetylcholinesterase activity. Six concentrations (2.5 to 100 mg/mL) of benzoate derivatives were applied to larvae and pupae through the residual film method and topical application, respectively. Meanwhile, concentrations from 0.625 to 50 mg/L air were applied to adult flies through a fumigation assay. BA and MB achieved promising results against larvae with LC50 values of 10.90 and 11.53 mg/mL, respectively. Moreover, BA killed 100% of the larvae at a concentration of 25 mg/mL, and MB achieved the same effect at a concentration of 50 mg/mL. Regarding the pupicidal activity, MB showed a percentage inhibition rate (PIR) of 100% at a concentration of 100 mg/mL, while the same effect was achieved by BA at a concentration of 50 mg/mL. Meanwhile, BB did not show any effect on the larvae or pupae at any of the tested concentrations. Moreover, the scanning microscopy observations on the treated larvae by BA and MB estimated flaccid and deformity in the larva body with a shrunken cuticle. Additionally, both BA and MB suppress nerve signal transmission by inhibiting acetylcholinesterase. In conclusion, the results of this study indicate that BA and MB may be useful in control housefly populations. These substances cause severe muscular relaxation and deformities in insects.
Collapse
Affiliation(s)
- Asmaa A Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | | | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| |
Collapse
|
11
|
Jones RT, Fagbohun IK, Spencer FI, Chen-Hussey V, Paris LA, Logan JG, Hiscox A. A review of Musca sorbens (Diptera: Muscidae) and Musca domestica behavior and responses to chemical and visual cues. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:845-860. [PMID: 38795384 DOI: 10.1093/jme/tjae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Musca flies (Diptera: Muscidae) have been found culpable in the mechanical transmission of several infectious agents, including viruses, bacteria, protozoans, and helminths, particularly in low-income settings in tropical regions. In large numbers, these flies can negatively impact the health of communities and their livestock through the transmission of pathogens. In some parts of the world, Musca sorbens is of particular importance because it has been linked with the transmission of trachoma, a leading cause of preventable and irreversible blindness or visual impairment caused by Chlamydia trachomatis, but the contribution these flies make to trachoma transmission has not been quantified and even less is known for other pathogens. Current tools for control and monitoring of house flies remain fairly rudimentary and have focused on the use of environmental management, insecticides, traps, and sticky papers. Given that the behaviors of flies are triggered by chemical cues from their environment, monitoring approaches may be improved by focusing on those activities that are associated with nuisance behaviors or with potential pathogen transmission, and there are opportunities to improve fly control by exploiting behaviors toward semiochemicals that act as attractants or repellents. We review current knowledge on the odor and visual cues that affect the behavior of M. sorbens and Musca domestica, with the aim of better understanding how these can be exploited to support disease monitoring and guide the development of more effective control strategies.
Collapse
Affiliation(s)
- Robert T Jones
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ifeoluwa K Fagbohun
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - Freya I Spencer
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - Vanessa Chen-Hussey
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - Laura A Paris
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - James G Logan
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Alexandra Hiscox
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| |
Collapse
|
12
|
Pan D, Luo QJ, O Reilly AO, Yuan GR, Wang JJ, Dou W. Mutations of voltage-gated sodium channel contribute to pyrethroid resistance in Panonychus citri. INSECT SCIENCE 2024; 31:803-816. [PMID: 37650774 DOI: 10.1111/1744-7917.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and β-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiu-Juan Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Andrias O O Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Marcombe S, Doeurk B, Thammavong P, Veseli T, Heafield C, Mills MA, Kako S, Prado MF, Thomson S, Millett S, Hill T, Kentsley I, Davies S, Pathiraja G, Daniels B, Browne L, Nyamukanga M, Harvey J, Rubinstein L, Townsend C, Allen Z, Davey-Spence C, Hupi A, Jones AK, Boyer S. Metabolic Resistance and Not Voltage-Gated Sodium Channel Gene Mutation Is Associated with Pyrethroid Resistance of Aedes albopictus (Skuse, 1894) from Cambodia. INSECTS 2024; 15:358. [PMID: 38786914 PMCID: PMC11122440 DOI: 10.3390/insects15050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.
Collapse
Affiliation(s)
- Sébastien Marcombe
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
- Vector Control Consulting—South East Asia Sole Co., Ltd., Vientiane P.O. Box 3463, Laos
| | - Bros Doeurk
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| | - Phoutmany Thammavong
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
| | - Tuba Veseli
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Derby DE65 5NX, UK
| | - Christian Heafield
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX14 2RN, UK
| | - Molly-Ann Mills
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sedra Kako
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Marcelly Ferreira Prado
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford University Hospitals, Churchill Hospital, Genetics Laboratories, Old Rd, Headington, Oxford OX3 7LE, UK
| | - Shakira Thomson
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Burnham-On-Sea TA8 1AZ, UK
| | - Saffron Millett
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Timothy Hill
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Imogen Kentsley
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Brighton BN8 4HR, UK
| | - Shereena Davies
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Shrewsbury SY1 4YP, UK
| | - Geethika Pathiraja
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Wallingford OX10 7EA, UK
| | - Ben Daniels
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Lucianna Browne
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Reading RG31 4SE, UK
| | - Miranda Nyamukanga
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Wythenshawe Hospital, Southmoor Rd, Wythenshawe M23 9LT, Manchester, UK
| | - Jess Harvey
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford Nanopore Technologies plc, Unit 3, Genesis Building, Library Avenue, Harwell, Didcot OX11 0SG, Oxfordshire, UK
| | - Lyranne Rubinstein
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, 69009 Lyon, France
| | - Chloe Townsend
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Zack Allen
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Christopher Davey-Spence
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Adina Hupi
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX3 8HP, UK
| | - Andrew K. Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| |
Collapse
|
14
|
Zhang Y, Wang Y, Zhao N, Lun X, Zhao C, Liu Q, Meng F. Long-term trends in housefly (Musca domestica L.) insecticide resistance in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105880. [PMID: 38685246 DOI: 10.1016/j.pestbp.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024]
Abstract
Controlling housefly populations relies on the use of insecticides, which inevitably leads to the development of resistance. A better and more comprehensive understanding of the spatial and temporal distribution of resistance could guide the control of houseflies. However, most studies on housefly resistance in China are scattered and poorly coordinated. We collected resistance data from houseflies in the published literature and from the vector biomonitoring system of the Chinese Center for Disease Control and Prevention. A 5- or 10-year resolution was used to study the temporal dynamics of resistance to five commonly used insecticides: deltamethrin, permethrin, beta-cypermethrin, dichlorvos, and propoxur. ArcGIS was used to visualize their spatial distributions. The correlation between year and resistance coefficient was determined using SPSS 26.0 and RStudio to explore the changes in resistance over the years. A total of 2128 data were included in this study, ranging from 1982 to 2022, based on which we found significant increases in resistance over the past forty years for the five studied insecticides. Among them, pyrethroids had the most strikingly elevated resistance level and were mainly distributed in the northern and southeastern coastal areas. Dichlorvos and propoxur had intermediate increases in resistance, and most of these increases were identified in North China and the Yangtze River. Housefly resistance to commonly used insecticides in China is increasing and spatially heterogeneous. This finding also highlights the necessity of continuous routine surveillance of housefly resistance, which could guide future housefly control operations and slow the development of resistance.
Collapse
Affiliation(s)
- Yajun Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yiguan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Chunchun Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, World Health and Organization (WHO) Collaborating Centre for Vector Surveillance and Management, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| |
Collapse
|
15
|
Khan HAA. Lack of fitness costs associated with resistance to permethrin in Musca domestica. Sci Rep 2024; 14:245. [PMID: 38167477 PMCID: PMC10761951 DOI: 10.1038/s41598-023-50469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Resistance to permethrin has been reported in Pakistani strains of Musca domestica. The present study explored the performance of biological traits and analyzed life tables to determine whether there is any detrimental effect of permethrin resistance on the fitness of permethrin-resistant strains [an isogenic resistant strain (Perm-R) and a field strain (Perm-F)] compared to a susceptible strain (Perm-S). Perm-R and Perm-F exhibited 233.93- and 6.87-fold resistance to permethrin, respectively. Life table analyses revealed that the Perm-R strain had a significantly shorter preadult duration, longer longevity, shorter preoviposition period, higher fecundity, finite rate of increase, intrinsic rate of increase, net reproductive rate and a shorter mean generation time, followed by the Perm-F strain when compared to the Perm-S strain. Data of the performance of biological traits reveled that permethrin resistance strains had a better fit than that of the Perm-S strain. The enhanced fitness of resistant strains of M. domestica may accelerate resistance development to permethrin and other pyrethroids in Pakistan. Some possible measures to manage M. domestica and permethrin resistance in situations of fitness advantage are discussed.
Collapse
|
16
|
Freeman JC, Scott JG. Genetics, genomics and mechanisms responsible for high levels of pyrethroid resistance in Musca domestica. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105752. [PMID: 38225095 DOI: 10.1016/j.pestbp.2023.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Insecticide resistance is both economically important and evolutionarily interesting phenomenon. Identification of the mutations responsible for resistance allows for highly sensitive resistance monitoring and allows tools to study the forces (population genetics, fitness costs, etc.) that shape the evolution of resistance. Genes coding for insecticide targets have many well-characterized mutations, but the mutations responsible for enhanced detoxification have proven difficult to identify. We employed multiple strategies to identify the mutations responsible for the extraordinarily high permethrin resistance in the KS17-R strain of house fly (Musca domestica): insecticide synergist assays, linkage analysis, bulk segregant analyses (BSA), transcriptomics and long read DNA (Nanopore) sequencing. The >85,100-fold resistance in KS17-R was partially suppressed by the insecticide synergists piperonyl butoxide and S,S,S-tributylphosphorothionate, but not by diethyl maleate nor by injection. This suggests the involvement of target site insensitivity, CYP-mediated resistance, possibly hydrolase mediated resistance and potentially other unknown factors. Linkage analysis identified chromosomes 1, 2, 3 and 5 as having a role in resistance. BSA mapped resistance loci on chromosomes 3 and 5. The locus on chromosome 3 was centered on the voltage sensitive sodium channel. The locus on chromosome 5 was associated with a duplication of multiple detoxification genes. Transcriptomic analyses and long read DNA sequencing revealed overexpressed CYPs and esterases and identified a complex set of structural variants at the chromosome 5 locus.
Collapse
Affiliation(s)
- Jamie C Freeman
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, New York, USA
| | - Jeffrey G Scott
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, New York, USA.
| |
Collapse
|
17
|
Yang X, Mou R, Liang Q, Cheng J, Wu Y, Tan W, Wu J. Frequency and polymorphism of acetylcholinesterase gene involved in the organophosphate resistance of Musca domestica in Guizhou Province, China. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22045. [PMID: 37602787 DOI: 10.1002/arch.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Organophosphate (OP) resistance has been prevalent in Musca domestica populations worldwide since 1960s. Previous studies have demonstrated that point mutations of the acetylcholinesterase gene (Ace) are one of the important molecular mechanisms underlying OP resistance. However, few studies have investigated the molecular mechanisms of OP resistance in the past 10 years in China. In this study, we investigated the status of OP resistance and genetic diversity of Ace in the field populations of houseflies in Guizhou Province of China. The bioassays showed that the houseflies had 142-304-fold resistance to dichlorvos (DDVP) and 122-364-fold resistance to temephos, compared to the susceptible houseflies. Five nonsynonymous mutations (Y226F, V260L, G342A/V, F407Y) in Ace were detected among the 7 field populations, with an average frequency of 5.4%, 55%, 68%, 32%, and 94%, respectively, of which the Y226F mutation had not been reported previously. Eleven combinations of triple mutations (at positions 260, 342, and 407) were observed, of which the combination 260L/V+342A/V+407Y was predominant. The ZY and AS populations showed greatest diversity of allelic combination and the other five populations showed different distributions among different regions. These results indicate that the resistance to OPs is prevalent among the housefly populations and target-site insensitivity is the main cause of resistance in Guizhou Province. The difference in distribution and the allelic diversity of Ace in field populations may be due to the complexity and variability of insecticide application. It is necessary to monitor resistance to insecticides and conduct management of houseflies in Guizhou Province.
Collapse
Affiliation(s)
- Xi Yang
- Provincial Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang, China
- Department of Basic Medical Science, Qiannan Medical College for Nationalities, Duyun, China
| | - Rong Mou
- Provincial Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang, China
| | - Qiuguo Liang
- Provincial Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang, China
- Department of Basic Medical Science, Qiannan Medical College for Nationalities, Duyun, China
| | - Jinzhi Cheng
- Provincial Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang, China
| | - Yuanming Wu
- Provincial Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Jiahong Wu
- Provincial Key Laboratory of Modern Pathogen Biology, Department of Parasitology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Mertz RW, Dressel AE, Fisher CR, Moon RD, Donahue WA, Kasai S, Scott JG. Frequencies and distribution of kdr and Ace alleles that cause insecticide resistance in house flies in the United States. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105497. [PMID: 37532356 DOI: 10.1016/j.pestbp.2023.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 08/04/2023]
Abstract
House flies (Musca domestica L) are nuisances and vectors of pathogens between and among humans and livestock. Population suppression has been accomplished for decades with pyrethroids and acetylcholinesterase (AChE) inhibitors, but recurrent selection has led to increased frequency of alleles conferring resistance to those two classes of active ingredients (Geden et al., 2021). A common mechanism of resistance to both classes involves an altered target site (mutations in Voltage gated sodium channel (Vgsc) for pyrethroids or in Ace for AChE inhibitors). As part of ongoing efforts to understand the origin, spread and evolution of insecticide resistance alleles in house fly populations, we sampled flies in 11 different US states, sequenced, and then estimated frequencies of the Vgsc and Ace alleles. There was substantial variation in frequencies of the four common knockdown resistance alleles (kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L10414F) and 1B (T929I + L1014F) across the sampled states. The kdr allele was found in all 11 states and was the most common allele in four of them. The super-kdr allele was detected in only six collections, with the highest frequencies found in the north, northeast and central United States. The kdr-his allele was the most common allele in PA, NC, TN and TX. In addition, a novel super-kdr-like mutation in mutually exclusive exon 17a was found. The overall frequencies of the different Ace alleles, which we name based on the amino acid present at the mutation sites (V260L, A316S, G342A/V and F407Y), varied considerably between states. Five Ace alleles were identified: VAGF, VAVY, VAGY, VAAY and VSAY. Generally, the VSAY allele was the most common in the populations sampled. The susceptible allele (VAGF) was found in all populations, ranging in frequency from 3% (KS) to 41% (GA). Comparisons of these resistance allele frequencies with those previously found suggests a dynamic interaction between the different alleles, in terms of levels of resistance they confer and likely fitness costs they impose in the absence of insecticides.
Collapse
Affiliation(s)
- Robert W Mertz
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | - Anastacia E Dressel
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | - Cera R Fisher
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | - Roger D Moon
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Hafez AM, Abbas N. Biological Fitness Cost, Demographic Growth Characteristics, and Resistance Mechanism in Alpha-Cypermethrin-Resistant Musca domestica (Diptera: Muscidae). BIOLOGY 2023; 12:1021. [PMID: 37508450 PMCID: PMC10376271 DOI: 10.3390/biology12071021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Musca domestica L., a pest of animals and humans, has developed resistance to alpha-cypermethrin, a pyrethroid insecticide commonly used to control medically important pests in many countries, including Saudi Arabia. We investigated the mechanism underlying the development of alpha-cypermethrin resistance and life history characteristics of alpha-cypermethrin-susceptible (Alpha-SS) and alpha-cypermethrin-resistant (Alpha-RS) M. domestica using the age-stage, two-sex life table theory, which is crucial for developing a future rational management strategy and minimizing the negative effects of alpha-cypermethrin on the environment. Our results showed that Alpha-RS M. domestica had a 405.93-fold increase in resistance to alpha-cypermethrin relative to Alpha-SS M. domestica. This increase in the resistance toward insecticide was attributed to metabolic enzymes, such as glutathione S-transferases, specific esterases, and cytochrome P450 monooxygenases. Furthermore, Alpha-RS M. domestica exhibited lower relative fitness (0.50), longevity, survival rate, life expectancy, reproductive values, intrinsic rate of increase, net reproductive rate, fecundity, maternity, and finite rate of increase, along with shorter larval, female preadult, and adult durations than Alpha-SS M. domestica, indicating fitness costs associated with most parameters. However, no significant differences were found between the strains in the following parameters: egg, pupa, and male preadult durations; adult preoviposition, total preoviposition, and oviposition periods; female ratio; and total generation time. Additionally, Alpha-RS M. domestica had a markedly lower intrinsic rate of increase, net reproductive rate, and finite rate of increase than Alpha-SS M. domestica. The results of this study suggest that alpha-cypermethrin resistance may lead to dominant fitness costs in M. domestica. Overall, these findings will aid in the development of rational control strategies for M. domestica as well as help to reduce pesticide pollution.
Collapse
Affiliation(s)
- Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Andreazza F, Valbon W, Dong K. Transfluthrin enhances odorant receptor-mediated spatial repellency in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105387. [PMID: 37105616 DOI: 10.1016/j.pestbp.2023.105387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Mosquito-borne diseases are an increasing global health challenge and vector-based interventions remain the most important methods for reducing the public health burden of most mosquito-borne diseases. Transfluthrin, a volatile pyrethroid insecticide, is used widely and effectively as an insecticide and as a repellent. In a recent study, we showed that at very low concentrations transfluthrin repels Aedes aegypti mosquitoes in a hand-in-cage assay without detectable stimulation of antennal olfactory responses. Furthermore, activation of sodium channels by transfluthrin enhances repellency by DEET, which has been reported to repel mosquitoes via odorant receptor (Or)-dependent and Or-independent mechanisms. However, whether activation of sodium channels by transfluthrin can serve as a general mechanism for synergizing the activities of other repellents remain unknown. In this study, we found that, in hand-in-cage assay, transfluthrin enhanced repellency by geranyl acetate and (E)-β-farnesene, which activate AaOr31. Such enhancement was not observed in AaOr31-knockout mosquitoes and dampened in a pyrethroid-resistant strain carrying two sodium channel mutations, which reduce the action of transfluthrin on sodium channels. In addition, transfluthrin also enhanced repellency by (-)-borneol, (±)-citronellal, camphor, and eucalyptol, which activate Or-mediated repellency. Our study has uncovered the ability of transfluthrin to enhance the repellency to a variety of mosquito repellents, beyond DEET, and provided experimental support for the emerging paradigm of synergistic interactions between repellency mediated by sodium channel activation and Or activation. These findings have potential implications in the development of more effective mosquito repellent mixtures.
Collapse
Affiliation(s)
| | - Wilson Valbon
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
21
|
Norris RH, Baker OS, Burgess ER, Tarone A, Gerry A, Trout Fryxell RT, Hinkle NC, Olds C, Boxler D, Wise KL, Machtinger ET, Scott JG. Selection for, and characterization of, fluralaner resistance in the house fly, Musca domestica. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105355. [PMID: 36963950 DOI: 10.1016/j.pestbp.2023.105355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
House flies, Musca domestica (L), are the mechanical vector of >100 human and animal pathogens, including those that are antibiotic-resistant. Given that house flies are associated closely with human and livestock activity, they present medical and veterinary health concerns. Although there are numerous strategies for control of house fly populations, chemical control has been favored in many facilities. Products with pyrethroid active ingredients have been used predominantly for >35 years in space sprays. As a result, strong selection for pyrethroid resistance has led to reduced control of many populations. Reliance on a limited number of insecticides for decades has created fly control problems necessitating the discovery and formulation of new control chemistries. Fluralaner is a relatively new insecticide and acaricide (first reported in 2010), belonging to the isoxazoline class. These insecticides target the glutamate- and gamma-aminobutyric acid-gated (GABA) chloride channels, which is a different mode of action from other insecticides used against house flies. Although is it not currently registered for house fly control in the United States, previous work has shown that fluralaner is highly toxic to house flies and that there was limited cross-resistance found in laboratory strains having high levels of resistance to other insecticides. Herein, we characterized the time and age dependency of fluralaner toxicity, detected cross-resistance in populations from across the United States, and selected a highly resistant (>11,000-fold) house fly strain. We found that the fluralaner LD50 of 18-24 h old flies was 2-fold higher than for 5-6 d old flies. This appears to be due to more rapid penetration of fluralaner into the 5-6 d old flies. Fluralaner resistance was inherited as an intermediate to incompletely dominant trait and was mapped to chromosomes 5 and 3. Resistance could be suppressed to 7-fold with piperonyl butoxide, suggesting that cytochrome P450 (CYP)-mediated detoxification was a major mechanism of resistance. Decreased penetration was also demonstrated as a mechanism of resistance. The utility of fluralaner for house fly control is discussed.
Collapse
Affiliation(s)
- Rachel H Norris
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA
| | - Oshneil S Baker
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Edwin R Burgess
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Aaron Tarone
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alec Gerry
- Department of Entomology, University of California, Riverside, CA 92507, USA
| | - Rebecca T Trout Fryxell
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nancy C Hinkle
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Cassandra Olds
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - David Boxler
- West Central Research, Extension and Education Center, University of Nebraska-Lincoln, North Platte, NE 69101, USA
| | - Kenneth L Wise
- NYS Integrated Pest Management Program, Cornell AgriTech, Geneva, NY 14456, USA
| | - Erika T Machtinger
- Department of Entomology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Alzabib AA, Al-Sarar AS, Abobakr Y, Saleh AA. Single and Combined Mutations of Acetylcholinesterase Gene Giving Resistance to Pirimiphos-Methyl in Musca domestica Slaughterhouse Populations. INSECTS 2023; 14:218. [PMID: 36975903 PMCID: PMC10053409 DOI: 10.3390/insects14030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The house fly Musca domestica L. (Diptera: Muscidae) is a worldwide medical and veterinary pest, causing great economic losses. Organophosphate insecticides have been widely used to control house fly populations. The main objectives of the present study were to evaluate the resistance levels of M. domestica slaughterhouse populations, collected from Riyadh, Jeddah, and Taif, against the organophosphate insecticide pirimiphos-methyl and investigate the genetic mutations of the Ace gene associated with pirimiphos-methyl resistance. The obtained data showed that there were significant differences among pirimiphos-methyl LC50 values of the studied populations, where the highest LC50 was recorded for the Riyadh population (8.44 mM), followed by Jeddah and Taif populations (2.45 mM and 1.63 mM, respectively). Seven nonsynonymous SNPs were detected in the studied house flies. The Ile239Val and Glu243Lys mutations are reported for the first time, whereas Val260Leu, Ala316Ser, Gly342Ala, Gly342Val, and Phe407Tyr were previously reported in M. domestica field populations from other countries. Considering three mutations associated with insecticide resistance, at amino acid positions 260, 342, and 407 of acetylcholinesterase polypeptide, 17 combinations were recovered in this study. Three out of these seventeen combinations were frequently found both worldwide and in the three Saudi house fly field populations, as well as their pirimiphos-methyl-surviving flies. Overall, the single and combined Ace mutations are apparently associated with pirimiphos-methyl resistance, and the obtained data can be useful in managing house fly field populations in Saudi Arabia.
Collapse
Affiliation(s)
- Ali A. Alzabib
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ali S. Al-Sarar
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yasser Abobakr
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Animal Pests, Plant Protection Research Institute (PPRI), Agricultural Research Center (ARC), Alexandria 21616, Egypt
| | - Amgad A. Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
23
|
Roca-Acevedo G, Boscaro I, Toloza AC. Global Pattern of kdr-Type Alleles in Musca domestica (L.). CURRENT TROPICAL MEDICINE REPORTS 2022; 10:1-10. [PMID: 36569791 PMCID: PMC9760529 DOI: 10.1007/s40475-022-00281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Purpose of Review Houseflies, Musca domestica L., are an important sanitary pest that affects human and domesticated animals. They are mechanical carriers of more than 100 human and animal diseases including protozoan, bacterial, helminthic, and viral infections. Recently, it was demonstrated that houseflies acquired, harbored, and transmitted SARS-CoV-2 (COVID-19) for up to 1 day post-exposure. The most widely used control strategy relays on the application of pyrethroid insecticides due to their effectiveness, low mammalian toxicity, low cost, and environmental safety. The main mechanism of action of pyrethroids is to exert their toxic effects through affecting the voltage-sensitive sodium channel (VSSC) modifying the transmission of the nerve impulse and leading to the death of the insects. Target site insensitivity of the VSSC is due to the presence of single nuclear polymorphisms (SNPs) named knockdown mutations (kdr). In this review, we synthetize recent data on the type and distribution of these mutations globally. Recent Findings Housefly resistance is reported in several countries. Increased applications of pyrethroids to control housefly populations led to the emergence of multiple evolutionary origins of resistance determined by five amino acid substitutions or specific mutations in the VSSC: kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L1014F), type N (D600N + M918T + L1014F), and 1B (T929I + L1014F). According to the global map obtained, high levels of resistance to pyrethroids are associated with the L1014F mutation found mostly in North America, Europe, and Asia, while the super-kdr mutation was mostly found in the American continent. The level of protection conferred by these alleles against pyrethroids was generally kdr-his < kdr < Type N ≤ super-kdr ≤ 1B. The relative fitness of the alleles under laboratory conditions was susceptible ≅ kdr-his > kdr > super-kdr suggesting that the fitness cost of an allele was relative to the presence of other alleles in a population and that the reversion of resistance in a free insecticide environment might be quite variable from one region to another. Summary An adequate integrated pest management program should consider monitoring susceptibility to pyrethroids to detect early levels of resistance and predict the spread and evolution of resistant phenotypes and genotypes. From this review, the pyrethroid resistance status of housefly population was determined in very few countries and has evolved independently in different areas of the world affecting chemical control programs.
Collapse
Affiliation(s)
- Gonzalo Roca-Acevedo
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, Villa Martelli, Buenos Aires, Argentina
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivana Boscaro
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Ceferino Toloza
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, Villa Martelli, Buenos Aires, Argentina
- Universidad CAECE, Avenida de Mayo 866, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Pagac AA, Geden CJ, Burgess ER, Riggs MR, Machtinger ET. Filth Fly Parasitoid (Hymenoptera: Pteromalidae) Monitoring Techniques and Species Composition in Poultry Layer Facilities. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2006-2012. [PMID: 36130177 DOI: 10.1093/jme/tjac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Muscid flies, especially house flies (Musca domestica L.) (Diptera: Muscidae), are a major pest of poultry layer facilities. Augmentative biological control of muscid flies with pteromalid wasps has gained increased attention in recent years. Knowing which pteromalid species are present in a specific area could produce more effective filth fly control. The purpose of this project was to survey parasitoid populations in poultry layer facilities in central and southeastern Pennsylvania from June through September. Two genera of parasitoids, Spalangia and Trichomalopsis, were collected over the course of the survey. Overall, out of 3,724 parasitized pupae the species collected in order of most to least common were Spalangia cameroni Perkins, Spalangia nigroaenea Curtis, Trichomalopsis spp., and Spalangia endius Walker. House fly parasitism overall and by each parasitoid species varied by location and over the four study months. A second objective was to evaluate a new parasitoid trap for surveying parasitoid wasp populations. This device uses a combination of house fly third instars and development media. This was compared to a more traditional method, the sentinel bag, which uses only fly pupae. A higher proportion of Spalangia spp. emerged from the new trap design and more Trichomalopsis spp. emerged from the sentinel bag. This suggests that using this new device alongside the traditional collection method may result in more accurate sampling of pteromalid populations.
Collapse
Affiliation(s)
- Alexandra A Pagac
- Veterinary Entomology Laboratory, Pennsylvania State University, 06 Chemical Ecology Laboratory, State College, PA 16802, USA
| | - Christopher J Geden
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Edwin R Burgess
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive Gainesville, FL 32611-0620, USA
| | - Montana R Riggs
- Veterinary Entomology Laboratory, Pennsylvania State University, 06 Chemical Ecology Laboratory, State College, PA 16802, USA
| | - Erika T Machtinger
- Veterinary Entomology Laboratory, Pennsylvania State University, 06 Chemical Ecology Laboratory, State College, PA 16802, USA
| |
Collapse
|
25
|
Major KM, Weston DP, Wellborn GA, Lydy MJ, Poynton HC. Predicting Resistance: Quantifying the Relationship between Urban Development, Agricultural Pesticide Use, and Pesticide Resistance in a Nontarget Amphipod. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14649-14659. [PMID: 36201633 DOI: 10.1021/acs.est.2c04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Resistance alleles within the voltage-gated sodium channel (vgsc) have been correlated with pyrethroid resistance in wild populations of the nontarget amphipod, Hyalella azteca from California (CA), U.S.A. In the present study, we expand upon the relationship between land use and the evolution of pesticide resistance in H. azteca to develop a quantitative methodology to target and screen novel populations for resistance allele genotypes in a previously uninvestigated region of the U.S. (New England: NE). By incorporating urban land development and toxicity-normalized agricultural pesticide use indices into our site selection, we successfully identified three amino acid substitutions associated with pyrethroid resistance. One of the resistance mutations has been described in H. azteca from CA (L925I). We present the remaining two (vgsc I936F and I936V) as novel pyrethroid-resistance alleles in H. azteca based on previous work in insects and elevated cyfluthrin resistance in one NE population. Our results suggest that urban pesticide use is a strong driver in the evolution of resistance alleles in H. azteca. Furthermore, our method for resistance allele screening provides an applied framework for detecting ecosystem impairment on a nationwide scale that can be incorporated into ecological risk assessment decisions.
Collapse
Affiliation(s)
- Kaley M Major
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Gary A Wellborn
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| |
Collapse
|
26
|
Fritz ML. Utility and challenges of using whole-genome resequencing to detect emerging insect and mite resistance in agroecosystems. Evol Appl 2022; 15:1505-1520. [PMID: 36330307 PMCID: PMC9624086 DOI: 10.1111/eva.13484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Arthropods that invade agricultural ecosystems systematically evolve resistance to the control measures used against them, and this remains a significant and ongoing challenge for sustainable food production systems. Early detection of resistance evolution could prompt remedial action to slow the spread of resistance alleles in the landscape. Historical approaches used to detect emerging resistance included phenotypic monitoring of agricultural pest populations, as well as monitoring of allele frequency changes at one or a few candidate pesticide resistance genes. In this article, I discuss the successes and limitations of these traditional monitoring approaches and then consider whether whole-genome scanning could be applied to samples collected from agroecosystems over time for resistance monitoring. I examine the qualities of agroecosystems that could impact application of this approach to pesticide resistance monitoring and describe a recent retrospective analysis where genome scanning successfully detected an oligogenic response to selection by pesticides years prior to pest management failure. I conclude by considering areas of further study that will shed light on the feasibility of applying whole-genome scanning for resistance risk monitoring in agricultural pest species.
Collapse
Affiliation(s)
- Megan L. Fritz
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
27
|
Ahmadi E, Khajehali J, Jonckheere W, Van Leeuwen T. Biochemical and insecticidal effects of plant essential oils on insecticide resistant and susceptible populations of Musca domestica L. point to a potential cross-resistance risk. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105115. [PMID: 35715054 DOI: 10.1016/j.pestbp.2022.105115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Essential oils (EOs) can provide important alternatives to chemical insecticides in the control of pests. In this study, 12 EOs of native plant species from Iran were evaluated for their adulticidal activity against the house fly. In addition, we examined the insecticidal activity of Zataria multiflora and Rosmarinus officinalis EOs on adult female house flies from pyrethroid and organophosphate resistant and susceptible populations, using both fumigant and topical bioassays. The involvement of detoxification enzymes in susceptibility was investigated with synergism experiments in vivo, while the inhibitory effects of R. officinalis and Zataria multiflora EOs on the activities of cytochrome P450-dependent monooxygenases (P450s), carboxylesterases (CarEs) and glutathione S-transferases (GSTs) were determined by enzymatic inhibition assays in vitro. The EOs of Z. multiflora, Mentha pulegium, R. officinalis and Thymus vulgaris were the most effective against adults in contact topical assays, while oils extracted from Eucalyptus cinerea, Z. multiflora, Citrus sinensis, R. officinalis, Pinus eldarica and Lavandula angustifolia where the most effective in fumigant assays. Rosmarinus officinalis and Z. multiflora EOs were selected for further investigation and showed higher toxicity against a susceptible population, compared to two insecticide-resistant populations. Correlation analysis suggested cross-resistance between these EOs and pyrethroids in the resistant populations. The toxicity of both EOs on the resistant populations was synergized by three detoxification enzyme inhibitors. Further, in vitro inhibition studies showed that R. officinalis and Z. multiflora EOs more effectively inhibited the activities of the detoxification enzymes from flies of the susceptible population compared to those of the pyrethroid resistant populations. Synergistic and enzymatic assays further revealed that increased activities of P450s, GSTs, and CarEs are possibly involved in the cross-resistance between EOs and pyrethroids. Investigating the molecular mechanisms of P450s, GSTs, and CarEs in the resistance to EOs should be subject to further studies.
Collapse
Affiliation(s)
- Ebrahim Ahmadi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Páramo MER, Dos Santos KR, Filgueiras MDG, Fernandes ÉKK, Montalva C, Humber RA, Luz C. Activity Against Musca domestica of Hypocrealean Fungi Isolated from Culicids in Central Brazil and Formulated in Vermiculite. NEOTROPICAL ENTOMOLOGY 2022; 51:474-482. [PMID: 35575878 DOI: 10.1007/s13744-022-00963-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Musca domestica L. is a cosmopolitan nuisance of high sanitary importance. Entomopathogenic fungi are innovative and attractive tools for integrated control of the housefly to overcome insufficient levels of control caused by increasing resistance of this pest against chemical insecticides. High virulence of a fungal strain is a prerequisite to develop a mycoinsecticide, and the present study investigated the potential of hypocrealean fungi from the genera Beauveria, Clonostachys, Cordyceps, Akanthomyces, Metarhizium, and Tolypocladium, isolated from mosquitoes in Central Brazil against M. domestica. The highest mortalities (larvae, pupae, and adults) were caused by Metarhizium humberi IP 478 (98%) and IP 421 (90%), Metarhizium anisopliae IP 432 (85%), Beauveria bassiana IP 433 (82%), and Tolypocladium cylindrosporum IP 425 (68%) after a 23-day exposure of initially pre-pupating third instar larvae to conidia mixed with vermiculite. Lethal concentrations to kill 90% of adults of IP 433 and IP 478 were 5 × 107 and 108 conidia g-1 substrate, respectively. Fifty percent of adults were killed within 4 to 5 days of exposure initially as pupae close to emergence to substrate treated with conidia of IP 478 or IP 433 at 1.1 × 108 conidia g-1, respectively. The other fungal strains tested were less virulent. The results demonstrate high potentials for conidial preparations in vermiculite of IP 433 and IP 478 as candidates for the biological control of both pre-pupating larvae, pupae, and emerging adults of houseflies.
Collapse
Affiliation(s)
- Manuel E Rueda Páramo
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Univ Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Buenos Aires, Argentina
| | - Karine R Dos Santos
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Marcos D G Filgueiras
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Éverton K K Fernandes
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Cristian Montalva
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil
- Lab de Salud de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Univ Austral de Chile, Valdivia, Chile
| | - Richard A Humber
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil
- USDA-ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Christian Luz
- Lab de Patologia de Invertebrados (LPI), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Univ Federal de Goiás (UFG), Goiânia, Goiás, Brazil.
| |
Collapse
|
29
|
Wang K, Zhao J, Han Z, Chen M. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105088. [PMID: 35430059 DOI: 10.1016/j.pestbp.2022.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The bird-cherry-oat aphid, Rhopalosiphum padi, is a serious agricultural pest of Triticeae crops, and pyrethroids are the most widely used chemical pesticides for the control of the aphid. Our previous studies found that some R. padi field populations have developed resistance against pyrethroids; an M918L target-site mutation of the voltage gated sodium channel was present in the pyrethroid resistant individuals, while the high-level resistance to lambda-cyhalothrin revealed the presence of other mechanisms in the pest. Here, we conducted genome-wide transcriptional analysis for the lambda-cyhalothrin susceptible (SS) and resistant (LC-RR) strains of R. padi. Results indicated that 2457 genes were differently expressed between the SS and LC-RR strains. In the LC-RR, a total of 1265 and 1192 genes were up- and down-regulated, respectively. KEGG analysis implicated enrichment of P450 involved in insecticide metabolic pathways in the resistant transcriptome. qRT-PCR results confirmed that two P450 genes (CYP6DC1 and CYP380C47) were significantly overexpressed in the LC-RR individuals. Furthermore, RNA interference (RNAi) of CYP6DC1 or CYP380C47 significantly increased mortality of R. padi exposure to lambda-cyhalothrin. These results suggest that the overexpression of CYP6DC1 and CYP380C47 contributed to the lambda-cyhalothrin resistance in the pest. This study provides knowledge for further analyzing the molecular mechanism of resistance to pyrethroids in R. padi.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junning Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojun Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
You C, Li Z, Yin Y, Na N, Gao X. Time of Day-Specific Changes in Metabolic Detoxification and Insecticide Tolerance in the House Fly, Musca domestica L. Front Physiol 2022; 12:803682. [PMID: 35069260 PMCID: PMC8777124 DOI: 10.3389/fphys.2021.803682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Both insects and mammals all exhibit a daily fluctuation of susceptibility to chemicals at different times of the day. However, this phenomenon has not been further studied in the house fly (Musca domestica L.) and a better understanding of the house fly on chronobiology should be useful for controlling this widespread disease vector. Here we explored diel time-of-day variations in insecticide susceptibility, enzyme activities, and xenobiotic-metabolizing enzyme gene expressions. The house fly was most tolerant to beta-cypermethrin in the late photophase at Zeitgeber time (ZT) 8 and 12 [i.e., 8 and 12 h after light is present in the light-dark cycle (LD)]. The activities of cytochrome P450, GST, and CarE enzymes were determined in the house flies collected at various time, indicating that rhythms occur in P450 and CarE activities. Subsequently, we observed diel rhythmic expression levels of detoxifying genes, and CYP6D1 and MdαE7 displayed similar expression patterns with enzyme activities in LD conditions, respectively. No diel rhythm was observed for CYP6D3 expression. These data demonstrated a diel rhythm of metabolic detoxification enzymes and insecticide susceptibility in M. domestica. In the future, the time-of-day insecticide efficacy could be considered into the management of the house fly.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zelin Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuanzhi Yin
- Department of Entomology, China Agricultural University, Beijing, China
| | - Naretuya Na
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Granada Y, Mejía-Jaramillo AM, Zuluaga S, Triana-Chávez O. Molecular surveillance of resistance to pyrethroids insecticides in Colombian Aedes aegypti populations. PLoS Negl Trop Dis 2021; 15:e0010001. [PMID: 34905537 PMCID: PMC8735628 DOI: 10.1371/journal.pntd.0010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/06/2022] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction In Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels. Materials and methods In this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes. Results Mosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression. Conclusions In this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures. The main method of preventing Aedes-borne diseases such as dengue, Zika, and chikungunya is by targeting the primary mosquito vector, Aedes aegypti, with insecticides. However, the success of these vector control strategies is jeopardized by the widespread development of insecticide resistance in mosquito populations. Furthermore, the molecular mechanisms of insecticide resistance in Ae. aegypti are still not well understood, resulting in limited resistance mitigation and management strategies. In this paper, we found that resistance to some pyrethroid insecticides in different Colombian cities is associated with three allelic substitutions V419L, V1016I, and F1534C, on the voltage-gated sodium channel gene, known as kdr (‘knock-down resistance’) mutations, with all three mutations present in mosquitoes resistant to pyrethroids. The data also showed that kdr mutations are important in conferring low resistance levels, but after around 10-fold intensity, the allele frequencies don’t change, indicating that other mechanisms contribute to the resistance. Thus, we found that mosquitoes under selective pressure with insecticides present also altered enzymatic activities such as esterases and mixed-function oxidases, indicating that kdr mutations and metabolic enzymes are involved in the resistance expression. The findings on the extent of insecticide resistance and the molecular mechanisms underpinning the problem will impact the surveillance, selection, and rational use of insecticides by local health authorities.
Collapse
Affiliation(s)
- Yurany Granada
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
- * E-mail:
| |
Collapse
|
32
|
Qu R, Zhu J, Li M, Jashenko R, Qiu X. Multiple Genetic Mutations Related to Insecticide Resistance are Detected in Field Kazakhstani House Flies (Muscidae: Diptera). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2338-2348. [PMID: 34197608 DOI: 10.1093/jme/tjab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 06/13/2023]
Abstract
The house fly (Musca domestica Linnaeus) is an important disease vector. Insecticide resistance is an obstacle to effective house fly control. Previous studies have demonstrated that point mutations in acetylcholinesterase (Ace), carboxylesterase (MdαE7) and voltage-sensitive sodium channel (Vssc), and over-expression of CYP6D1v1 confer insecticide resistance in the house fly. However, information about the status and underlying mechanisms of insecticide resistance in Kazakhstani house flies is lacking. In this study, we investigated the occurrence of genetic mutations associated with insecticide resistance in field house flies collected at six different locations in southern Kazakhstan. Four mutations (V260L, G342A/V, and F407Y) in Ace and three mutations (G137D and W251L/S) in MdαE7 were detected with appreciable frequencies. Notably, haplotypes carrying triple-loci mutations in Ace and double mutations in MdαE7 were found in Kazakhstan. The L1014H and L1014F mutations in Vssc, and CYP6D1v1 resistance allele were detected at a low frequency in some of the six investigated house fly populations. Phylogenetic analyses of haplotypes supported multiple origins of resistance mutations in Ace and MdαE7. These observations suggest that house flies in southern Kazakhstan may exhibit significant resistance to organophosphates and carbamates. Regular monitoring of insecticide resistance is recommended to achieve effective house fly control by chemical agents in southern Kazakhstan.
Collapse
Affiliation(s)
- Ruina Qu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Roman Jashenko
- Institute of Zoology of the Republic of Kazakhstan, Almaty 050060, Kazakhstan
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
You C, Shan C, Ma Z, Zhang Y, Zhao R, Gao X. The overexpression and variant of CYP6G4 associated with propoxur resistance in the housefly, Musca domestica L. PEST MANAGEMENT SCIENCE 2021; 77:4321-4330. [PMID: 33942965 DOI: 10.1002/ps.6461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The control of the housefly, Musca domestica, heavily relies on the application of insecticides. Propoxur, a carbamate, has been widely used for vector control. The housefly populations with high propoxur resistance display point mutations and overexpression of acetylcholinesterase. However, the roles of cytochrome P450 monoxygenases (P450s), as important detoxification enzymes, remain poorly understand in the housefly resistant to propoxur. RESULTS P450s were implied to contribute to propoxur resistance based on the synergism of piperonyl butoxide (PBO) and the increase of P450 enzyme activity in the near-isogenic line propoxur resistant strain (N-PRS). Five P450 genes (CYP6G4, CYP6A25, CYP304A1, CYP6D3, and CYP6A1) by RNA-sequencing comparison were significantly up-regulated in the N-PRS strain with >1035-fold resistance to propoxur. A total of 13 non-synonymous mutations of three P450 genes (CYP6G4, CYP6D3, and CYP6D8) were found in the N-PRS strain. The amino acid substitutions of CYP6D3 and CYP6D8 were probably not resistance-associated single nucleotide polymorphisms (SNPs) because they were also found in the aabys susceptible strain. However, CYP6G4 variant in the N-PRS strain was not found in the aabys strain. The conjoint analysis of mutations and a series of genetic crosses exhibited that the housefly propoxur resistance was strongly associated with the mutations of CYP6G4 gene. CONCLUSION Our results suggested that a combination of up-regulated transcript levels and mutations of CYP6G4 contributed to propoxur resistance in the housefly. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing, China
| | - Chao Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhuo Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yi Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Rui Zhao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Freeman JC, Smith LB, Silva JJ, Fan Y, Sun H, Scott JG. Fitness studies of insecticide resistant strains: lessons learned and future directions. PEST MANAGEMENT SCIENCE 2021; 77:3847-3856. [PMID: 33506993 DOI: 10.1002/ps.6306] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The evolution of insecticide resistance is generally thought to be associated with a fitness cost in the absence of insecticide exposure. However, it is not clear how these fitness costs manifest or how universal this phenomenon is. To investigate this, we conducted a literature review of publications that studied fitness costs of insecticide resistance, selected papers that met our criteria for scientific rigor, and analyzed each class of insecticides separately as well as in aggregate. The more than 170 publications on fitness costs of insecticide resistance show that in 60% of the experiments there is a cost to having resistance, particularly for measurements of reversion of resistance and reproduction. There were differences between classes of insecticides, with fitness costs seen less commonly for organochlorines. There was considerable variation in the experiments performed. We suggest that future papers will have maximum value to the community if they quantitatively determine resistance levels, identify the resistance mechanisms present (and the associated mutations), have replicated experiments, use related strains (optimally congenic with the resistance mutation introgressed into different genetic backgrounds) and measure fitness by multiple metrics. Studies on the fitness costs of insecticide resistance will continue to enlighten our understanding of the evolutionary process and provide valuable information for resistance management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jamie C Freeman
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Letícia B Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Juan J Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Yinjun Fan
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Haina Sun
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Senthoorraja R, Subaharan K, Manjunath S, Pragadheesh VS, Bakthavatsalam N, Mohan MG, Senthil-Nathan S, Basavarajappa S. Electrophysiological, behavioural and biochemical effect of Ocimum basilicum oil and its constituents methyl chavicol and linalool on Musca domestica L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50565-50578. [PMID: 33963471 PMCID: PMC8105153 DOI: 10.1007/s11356-021-14282-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/30/2021] [Indexed: 05/17/2023]
Abstract
Ocimum basilicum essential oil (EO) was evaluated for its biological effects on M. domestica. Characterization of O. basilicum EO revealed the presence of methyl chavicol (70.93%), linalool (9.34%), epi-α-cadinol (3.69 %), methyl eugenol (2.48%), γ-cadinene (1.67%), 1,8-cineole (1.30%) and (E)-β-ocimene (1.11%). The basil EO and its constituents methyl chavicol and linalool elicited a neuronal response in female adults of M. domestica. Adult female flies showed reduced preference to food source laced with basil EO and methyl chavicol. Substrates treated with EO and methyl chavicol at 0.25% resulted in an oviposition deterrence of over 80%. A large ovicidal effect was found for O. basilicum EO (EC50 9.74 mg/dm3) followed by methyl chavicol (EC50 10.67 mg/dm3) and linalool (EC50 13.57 mg/dm3). Adults exposed to EO (LD50 10.01 μg/adult) were more susceptible to contact toxicity than to methyl chavicol and linalool (LD50 13.62 μg/adult and LD50 43.12 μg/adult respectively). EO and its constituents methyl chavicol and linalool also induced the detoxifying enzymes Carboxyl esterase (Car E) and Glutathione S - transferases (GST).
Collapse
Affiliation(s)
- Rajendran Senthoorraja
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
- DOS in Zoology, University of Mysore, Mysore, 570006, India
| | - Kesavan Subaharan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India.
| | - Sowmya Manjunath
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | - Vppalayam Shanmugam Pragadheesh
- National Centre for Biological Sciences-TIFR, Bengaluru, 560065, India
- CSIR- Central Institute of Medicinal and Aromatic Plants, Regional Centre, Bengaluru, 560065, India
| | - Nandagopal Bakthavatsalam
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | - Muthu Gounder Mohan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | | |
Collapse
|
36
|
Freeman JC, San Miguel K, Scott JG. All resistance alleles are not equal: the high fitness cost of super-kdr in the absence of insecticide. PEST MANAGEMENT SCIENCE 2021; 77:3693-3697. [PMID: 33002280 DOI: 10.1002/ps.6115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mutations in the voltage-sensitive sodium channel are an important mechanism of resistance to pyrethroid insecticides. In Musca domestica, common resistance alleles are kdr, super-kdr and kdr-his. The levels of resistance that these alleles confer is known, but the fitness of these alleles relative to each other and to susceptible alleles is unknown. We used crosses from congenic strains of M. domestica to establish populations with known allele frequencies and then examined the changes in allele and genotype frequencies over 25 generations under laboratory conditions. RESULTS There was a significant fitness cost for the super-kdr allele, which decreased from the starting frequency of 0.25 to 0.05 after 25 generations. The fitness of the kdr, kdr-his and susceptible alleles were similar. The greatest change in genotype frequency was seen for the super-kdr/super-kdr genotype, which was no longer detected after 25 generations. CONCLUSION The fitness cost associated with the super-kdr allele is consistent with previous reports and appears to be a factor in helping to restrain high levels of resistance in field populations (the super-kdr allele confers higher levels of resistance than kdr or kdr-his). It is known that the relative costs of different alleles are environmentally dependent, but our results also demonstrate that the relative fitness of given alleles depends on which alleles are present in a given population, as previous pairwise comparisons of allele fitness do not exactly match (except for super-kdr) the results obtained using this four allele study. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jamie C Freeman
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Keri San Miguel
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Robinson A, Bickford-Smith J, Abdurahman Shafi O, Abraham Aga M, Shuka G, Debela D, Hordofa G, Alemayehu W, Sarah V, Last A, MacLeod D, Burton MJ, Logan JG. Towards an odour-baited trap to control Musca sorbens, the putative vector of trachoma. Sci Rep 2021; 11:14209. [PMID: 34244535 PMCID: PMC8271020 DOI: 10.1038/s41598-021-91609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022] Open
Abstract
Musca sorbens is a synanthropic filth fly that aggressively attacks people to feed from mucous membranes of the eyes, nose or mouth, from open sores, or from sweat. It has long been suspected that this fly contributes to the transmission of eye infections, particularly trachoma, and recent work has added to the evidence base that M. sorbens is a trachoma vector in Ethiopia. There are few options to control M. sorbens, largely due to a lack of evidence. Space spraying with insecticides is effective, but an environmentally sound and long-term sustainable solution would be better, for example, mass trapping. We tested commercially available and homemade trap types in a pilot (laboratory) study and three field studies. A homemade design, built from a bucket and two empty water bottles, baited with a commercially available lure, The Buzz, was found to be most effective. This trap caught 3848 M. sorbens over 26 trap 'events' (3- or 4-day periods); mean/median per 24 h 43.6 (standard deviation 137.10)/2.25 (IQR 0.25-12.67). The Buzz lure is cheap and effective for 4 weeks, and trap components cheap and locally available. Further studies are needed to understand the impact of this trap on local fly populations and the local transmission of trachoma.
Collapse
Affiliation(s)
- Ailie Robinson
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Jack Bickford-Smith
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Oumer Abdurahman Shafi
- The Fred Hollows Foundation, P.O. Box 6307, Addis Ababa, Ethiopia
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Gemeda Shuka
- The Fred Hollows Foundation, P.O. Box 6307, Addis Ababa, Ethiopia
| | - Dereje Debela
- The Fred Hollows Foundation, P.O. Box 6307, Addis Ababa, Ethiopia
- Population Service International, Addis Ababa, Ethiopia
| | - Gebreyes Hordofa
- The Fred Hollows Foundation, P.O. Box 6307, Addis Ababa, Ethiopia
- Netherlands Development Organization, The Hague, The Netherlands
| | - Wondu Alemayehu
- The Fred Hollows Foundation, P.O. Box 6307, Addis Ababa, Ethiopia
| | - Virginia Sarah
- Global Partnerships Executive, The Fred Hollows Foundation, 12-15 Crawford Mews, York Street, London, W1H1LX, UK
| | - Anna Last
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - David MacLeod
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Matthew J Burton
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
38
|
Ahmadi E, Khajehali J. Dichlorvos Resistance in the House Fly Populations, Musca domestica, of Iranian Cattle Farms. J Arthropod Borne Dis 2020; 14:344-352. [PMID: 33954208 PMCID: PMC8053071 DOI: 10.18502/jad.v14i4.5271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Insecticide resistance is one of the most important problems associated with the control of Musca domestica, due to the potential of the rapid development of resistance to different chemical insecticides. The present study was carried out to evaluate dichlorvos resistance in the house fly populations collected from central regions of Iran, Isfahan Province and Chaharmahal and Bakhtiari Province, during 2017 to 2019. Methods: Bioassays were carried out using a standard topical application method as well as a fumigation method. The Koohrang population (susceptible) with the lowest LD50 values to dichlorvos was chosen to calculate the resistance ratios (RR). Altered sensitivity of acetylcholinesterase (AChE), a target enzyme for dichlorvos, was investigated. Results: According to the results, very high levels of dichlorvos resistance were observed in the Mobarake population (RR= 80.25-fold by topical application and 33-fold by fumigation bioassay), and Isfahan population (RR= 107.30-fold by topical application and 43-fold by fumigation bioassay) compared to the Koohrang population. Acetylcholinesterase of the Koohrang population was the most sensitive to inhibition by dichlorvos based on the determination of median inhibitory concentration (IC50), but AChE of Mobarake and Isfahan populations were 741.93- and 343.94- fold less sensitive to inhibition. Conclusion: The insensitivity of AChE was possibly involved in dichlorvos resistance in the house fly populations.
Collapse
Affiliation(s)
- Ebrahim Ahmadi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
39
|
Hubbard CB, Gerry AC. Selection, Reversion, and Characterization of House Fly (Diptera: Muscidae) Behavioral Resistance to the Insecticide Imidacloprid. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1843-1851. [PMID: 32516402 DOI: 10.1093/jme/tjaa105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Insecticide resistance in pest populations is an increasing problem in both urban and rural settings caused by over-application of insecticides and lack of rotation among chemical classes. The house fly (Musca domestica L.) is a cosmopolitan fly species implicated in the transmission of numerous pathogens, and which can be extremely pestiferous when present in high numbers. The evolution of insecticide resistance has long been documented in house flies, with resistance reported to all major insecticide classes. House fly resistance to imidacloprid, the most widely used neonicotinoid insecticide available for fly control, has been selected for in field populations through both physiological and behavioral resistance mechanisms. In the current study, house flies collected from a southern California dairy were selectively bred for behavioral resistance to imidacloprid, without increasing the physiological resistance profile of the selected flies. Flies were also successfully selected for behavioral susceptibility to imidacloprid. The rapid selection for either behavioral resistance or behavioral susceptibility suggests that inheritable alleles conferring behavioral resistance were already present in the wild-type fly population collected from the dairy site. The methods used for the specific selection of behavioral resistance (or susceptibility) in the fly population will be useful for further studies on the specific mechanisms conferring this resistance. House fly behavioral resistance was further investigated using behavioral observation and feeding preference assays, with resistance determined to be both contact-dependent and specific to the insecticide (imidacloprid) rather than to a non-insecticidal component of a bait matrix as previously documented.
Collapse
Affiliation(s)
| | - Alec C Gerry
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
40
|
Cai T, Huang YH, Zhang F. Ovarian morphological features and proteome reveal fecundity fitness disadvantages in β-cypermethrin-resistant strains of Blattella germanica (L.) (Blattodea: Blattellidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104682. [PMID: 32980072 DOI: 10.1016/j.pestbp.2020.104682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
To evaluate whether the development of β-cypermethrin resistance in Blattella germanica (L.) (Blattaria: Blattellidae) affects the fecundity fitness of this insect and to determine the underlying mechanism, we compared fecundity differences between β-cypermethrin-resistant (R) and sensitive (S) strains of B. germanica, observed the physiological structural changes of ovaries from an visual perspective, and analyzed differences in the ovarian proteome using proteomic methods. The results showed that, compared with the S strain of B. germanica, the R strain of B. germanica had a significantly higher ootheca shedding rate, a significantly lower number of hatched and surviving nymphs, a significantly higher female proportion in the population and defective ovarian development. Ovarian proteomic analysis showed a total of 64 differentially expressed proteins in the R strain, including 18 upregulated proteins and 46 downregulated proteins. Twenty-four significantly differentially expressed proteins were further studied, and 14 were successfully identified, which were mainly classified into the following categories: immunity-related proteins, development-related proteins, structural proteins, energy metabolism-related proteins and proteins with unknown functions. The differential expression of these proteins reflects the overall changes in cell structure and metabolism associated with β-cypermethrin resistance and explains the possible molecular mechanism of fecundity fitness disadvantages. In summary, β-cypermethrin resistance can cause fecundity fitness disadvantages in B. germanica. The metabolic deviations needed to overcome the adverse effects of insecticides may result in an energy exchange that affects energy allocation and, ultimately, the basic needs of the insect. The fitness cost due to insecticide resistance is critical to the delay of the evolution of resistance.
Collapse
Affiliation(s)
- Tong Cai
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, People's Republic of China
| | - Yan-Hong Huang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), 41 Jiefang Road, Jinan 250013, People's Republic of China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, People's Republic of China..
| |
Collapse
|
41
|
Guillem-Amat A, López-Errasquín E, Sánchez L, González-Guzmán M, Ortego F. Inheritance, Fitness Cost, and Management of Lambda-Cyhalothrin Resistance in a Laboratory-Selected Strain of Ceratitis capitata (Wiedemann). INSECTS 2020; 11:insects11090551. [PMID: 32825143 PMCID: PMC7565299 DOI: 10.3390/insects11090551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The management of the medfly, Ceratitis capitata, in Spanish citrus crops relies mainly on the use of insecticides and the release of sterile males. However, the development of resistance to different insecticides in field populations, including lambda-cyhalothrin, implies a threat for the sustainable control of this pest. The inheritance, fitness cost, and management of lambda-cyhalothrin resistance were examined in the laboratory-selected W-1Kλ strain. We have demonstrated that lambda-cyhalothrin resistance in W-1Kλ is autosomic, completely dominant, and polygenic. In addition, individuals from W-1Kλ showed a lower embryo to pupal viability, a slower developmental time from egg to pupae, and an increase in adults' weight and longevity. We did not find significant trade-offs in the activity of digestive hydrolytic enzymes, with the exception of higher α-amylase activity in W-1Kλ females. A comparative study with different insecticide treatment strategies showed that lambda-cyhalothrin resistance increased when several consecutive treatments with this insecticide were applied. However, the alternation of this insecticide with spinosad was enough to delay the development of resistance. Our results indicate that the rotation of lambda-cyhalothrin with spinosad-a practice already used in some fields-may contribute to prevent the development of resistance.
Collapse
Affiliation(s)
- Ana Guillem-Amat
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (A.G.-A.); (E.L.-E.); (M.G.-G.)
| | - Elena López-Errasquín
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (A.G.-A.); (E.L.-E.); (M.G.-G.)
| | - Lucas Sánchez
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Miguel González-Guzmán
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (A.G.-A.); (E.L.-E.); (M.G.-G.)
| | - Félix Ortego
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (A.G.-A.); (E.L.-E.); (M.G.-G.)
| |
Collapse
|
42
|
Soonwera M, Sittichok S. Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and of their synergistic combinations against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20201-20214. [PMID: 32239399 DOI: 10.1007/s11356-020-08529-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The knockdown and adulticidal activities of individual Cymbopogon citratus and Eucalyptus globulus essential oils (EOs) and their combinations were evaluated against three medical insect pests (Aedes aegypti, Aedes albopictus, and Musca domestica) using a WHO susceptibility test. The knockdown and adulticidal activities against the three medical insect pests of combinations of C. citratus and E. globulus EOs were higher than those of individual EOs alone. Combinations of 7.5% C. citratus + 7.5% E. globulus EOs and 10% C. citratus + 10% E. globulus EOs exhibited the highest efficacy against females of the three species with 100% knockdown and mortality rates at 1 and 24 h after exposure, respectively. Their adulticidal activities were equivalent to that of 10% w/v cypermethrin. In contrast, 70% v/v ethyl alcohol negative control was not effective at all. The combinations of EOs showed a synergistic effect, i.e., their adulticidal activity was improved by 0.2 to 100%, with increased knockdown and mortality rates, compared to individual EOs. The highest synergistic effect on effective knockdown and adulticidal activities against females of the three species was achieved by a combination of 2.5% C. citratus + 2.5% E. globulus EOs, with 36.6 to 100% knockdown rate increase and 33.5 to 98.9% mortality rate increase. This study demonstrates that all tested combinations of C. citratus and E. globulus EOs were effective adulticidal agents against females of Ae. aegypti, Ae. albopictus, and M. domestica and have a high potential for development into a botanical insecticide for controlling populations of Aedes mosquitoes and houseflies.
Collapse
Affiliation(s)
- Mayura Soonwera
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand.
| | - Sirawut Sittichok
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
43
|
Zhao J, Wang Y, Li X, Gai Z. Genome-wide identification and characterization of Toll-like receptors (TLRs) in housefly (Musca domestica) and their roles in the insecticide resistance. Int J Biol Macromol 2020; 150:141-151. [DOI: 10.1016/j.ijbiomac.2020.02.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
|
44
|
Role transformation of fecundity and viability: The leading cause of fitness costs associated with beta-cypermethrin resistance in Musca domestica. PLoS One 2020; 15:e0228268. [PMID: 31999782 PMCID: PMC6992221 DOI: 10.1371/journal.pone.0228268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/12/2020] [Indexed: 02/03/2023] Open
Abstract
Fitness is closely associated with the development of pesticide resistance in insects, which determines the control strategies employed to target species and the risks of toxicity faced by non-target species. After years of selections with beta-cypermethrin in laboratory, a strain of housefly was developed that was 684,521.62-fold resistant (CRR) compared with the susceptible strain (CSS). By constructing ≤ 21 d and ≤ 30 d life tables, the differences in life history parameters between CSS and CRR were analyzed. The total production numbers of all the detected development stages in CRR were lower than in CSS. Except for the lower mortality of larvae, all the other detected mortalities in CRR were higher than in CSS. ♀:♂ and normal females of CRR were also lower than those of CSS. For CRR, the relative fitness was 0.25 in the ≤ 21 d life table and 0.24 in the ≤ 30 d life table, and a lower intrinsic rate of increase (rm) and net reproductive rate (Ro) were detected. Based on phenotype correlation and structural equation model (SEM) analyses, fecundity and viability were the only directly positive fitness components affecting fitness in CRR and CSS, and the other components played indirect roles in fitness. The variations of the relationships among fitness, fecundity and viability seemed to be the core issue resulting in fitness differences between CRR and CSS. The interactions among all the detected fitness components and the mating frequency-time curves appeared to be distinctly different between CRR and CSS. In summary, fecundity and its related factors separately played direct and indirect roles in the fitness costs of a highly beta-cypermethrin-resistant housefly strain.
Collapse
|
45
|
Reynolds LA, Hornett EA, Jiggins CD, Hurst GDD. Suppression of Wolbachia-mediated male-killing in the butterfly Hypolimnas bolina involves a single genomic region. PeerJ 2019; 7:e7677. [PMID: 31592190 PMCID: PMC6777490 DOI: 10.7717/peerj.7677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Sex ratio distorting agents (maternally inherited symbionts and meiotically-driving sex chromosomes) are common in insects. When these agents rise to high frequencies they create strong population sex ratio bias and selection then favours mutations that act to restore the rare sex. Despite this strong selection pressure, the evolution of mutations that suppress sex ratio distorting elements appears to be constrained in many cases, where sex-biased populations persist for many generations. This scenario has been observed in the butterfly Hypolimnas bolina, where Wolbachia-mediated male killing endured for 800–1,000 generations across multiple populations before the evolution of suppression. Here we test the hypothesis that this evolutionary lag is the result of suppression being a multilocus trait requiring multiple mutations. Methods We developed genetic markers, based on conservation of synteny, for each H. bolina chromosome and verified coverage using recombinational mapping. We then used a Wolbachia-infected mapping family to assess each chromosome for the presence of loci required for male survival, as determined by the presence of markers in all surviving sons. Results Informative markers were obtained for each of the 31 chromosomes in H. bolina. The only marker that cosegregated with suppression was located on chromosome 25. A genomic region necessary for suppression has previously been located on this chromosome. We therefore conclude that a single genomic region of the H. bolina genome is necessary for male-killing suppression. Discussion The evolutionary lag observed in our system is not caused by a need for changes at multiple genomic locations. The findings favour hypotheses in which either multiple mutations are required within a single genomic region, or the suppressor mutation is a singularly rare event.
Collapse
Affiliation(s)
- Louise A Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emily A Hornett
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Sanada-Morimura S, Fujii T, Chien HV, Cuong LQ, Estoy GF, Matsumura M. Selection for imidacloprid resistance and mode of inheritance in the brown planthopper, Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2019; 75:2271-2277. [PMID: 30701654 DOI: 10.1002/ps.5364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Strong resistance to imidacloprid in Nilaparvata lugens (Stål) has developed in Southeast and East Asia. Although the mode of inheritance for resistance is very useful information for pest control, this information is unknown in N. lugens. Here, we established two resistant strains that were selected from field populations in Vietnam and the Philippines, and conducted crossing experiments to determine the inheritance pattern. RESULTS The resistance ratio of 50% lethal dose (LD50 ) values for the two resistance-selected strains, i.e., resistant strains originating from Vietnam (VT-Res) and the Philippines (PH-Res), to their control strains were ∼ 8- and 157-fold, respectively. Reciprocal cross experiments between VT-Res and the susceptible strain (S-strain), and between PH-Res and the S-strain showed that the degree of dominance was 0.81 and 0.82, and 0.95 and 0.96, respectively. Analysis of the F2 populations and backcrosses to the parental strains indicated that resistance is a major-gene trait following Mendelian inheritance. The strength of the resistance was suppressed by pre-treatment with piperonyl butoxide, an inhibitor of cytochrome P450-monooxygenases. CONCLUSION Our results suggest that imidacloprid resistance in N. lugens is autosomal and an almost completely dominant major-gene trait that is likely manifested by high expression levels of a detoxification enzyme. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sachiyo Sanada-Morimura
- Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Japan
| | - Tomohisa Fujii
- Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Japan
| | - Ho Van Chien
- Southern Regional Plant Protection Center, Tien Giang, Vietnam
| | - Le Quoc Cuong
- Southern Regional Plant Protection Center, Tien Giang, Vietnam
| | - Gerardo F Estoy
- Agusan Experiment Station, Philippine Rice Research Institute, Basilisa, Remedios T. Romualdez, Philippines
| | - Masaya Matsumura
- Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Japan
| |
Collapse
|
47
|
Application of the Scorpion Neurotoxin AaIT against Insect Pests. Int J Mol Sci 2019; 20:ijms20143467. [PMID: 31311095 PMCID: PMC6678123 DOI: 10.3390/ijms20143467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
Androctonus australis Hector insect toxin (AaIT), an insect-selective toxin, was identified in the venom of the scorpion Androctonus australis. The exclusive and specific target of the toxin is the voltage-gated sodium channels of the insect, resulting in fast excitatory paralysis and even death. Because of its strict toxic selectivity and high bioactivity, AaIT has been widely used in experiments exploring pest bio-control. Recombinant expression of AaIT in a baculovirus or a fungus can increase their virulence to insect pests and diseases vectors. Likewise, transgenic plants expressing AaIT have notable anti-insect activity. AaIT is an efficient toxin and has great potential to be used in the development of commercial insecticides.
Collapse
|
48
|
Freeman JC, Ross DH, Scott JG. Insecticide resistance monitoring of house fly populations from the United States. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:61-68. [PMID: 31378362 DOI: 10.1016/j.pestbp.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/10/2023]
Abstract
Insecticide resistance in house fly populations is a major problem faced by livestock producers worldwide. A survey of insecticide resistance levels and pyrethroid resistance allele frequencies in the United States was conducted in 2008-09, but little is known about how resistance levels have changed over the last 10 years. In addition, new target-site pyrethroid resistance alleles that confer high levels of resistance have been recently identified in the voltage-sensitive sodium channel, and their frequencies in field populations are unknown. Our aim in this study was to reassess the resistance status of house flies from select locations in the United States by examining resistance levels against commonly used insecticides and frequencies of known resistance alleles. House flies were collected from animal production facilities in five different states between 2016 and 2018. Resistance levels to three insecticides (permethrin, tetrachlorvinphos, and methomyl), representing three classes of insecticides (pyrethroids, organophosphates and carbamates) varied geographically and were lowest in the population collected from New Mexico, intermediate in the population collected from Utah, and greatest in the population from Kansas. The recently identified 1B pyrethroid resistance allele increased dramatically in frequency compared to previous reports, most notably in populations from Kansas and Maryland, indicating that it may already be widespread around the United States. Based on comparison with historical data, the population collected from Kansas represents one of the most highly permethrin resistant populations ever sampled. If the alleles responsible for this level of resistance spread, pyrethroids may be of limited use for house fly control in the United States in the near future.
Collapse
Affiliation(s)
- Jamie C Freeman
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA
| | - Douglas H Ross
- Bayer Animal Health, 12707 Shawnee Mission Parkway, Shawnee, Kansas 66216, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
49
|
Resistance of House Fly, Musca domestica L. (Diptera: Muscidae), to Five Insecticides in Zhejiang Province, China: The Situation in 2017. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:4851914. [PMID: 31341522 PMCID: PMC6612408 DOI: 10.1155/2019/4851914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/04/2019] [Accepted: 05/19/2019] [Indexed: 11/17/2022]
Abstract
Objectives High dependency on pesticides could cause selection pressure leading to the development of resistance. This study was conducted to assess the resistance of the house fly, Musca domestica, to five insecticides, namely, permethrin, deltamethrin, beta-cypermethrin, propoxur, and dichlorvos, in Zhejiang Province. Methods Field strains of house flies were collected from the 12 administrative districts in Zhejiang Province in 2011, 2014, and 2017, respectively. Topical application method was adopted for the bioassays. The probit analysis was used to determine the median lethal doses with the 95% confidence interval, and then the resistance ratio (RR) was calculated. The insecticides resistance in different years and the correlations of the resistance between different insecticides were also analyzed. Results The resistance of field strains house flies to insecticides in Zhejiang Province was relatively common, especially for permethrin, deltamethrin, and beta-cypermethrin. The reversion of the resistance to dichlorvos was found, and most of the field strains in Zhejiang Province became sensitive to dichlorvos in 2017. Propoxur was much easier to cause very high level of resistance; the Hangzhou strain had the highest RR value more than 1000 in 2014, and five field strains had the RR value more than 100 in 2017. Compared to 2011 and 2014, the resistance of the house flies to propoxur and deltamethrin increased significantly in 2017. The resistance of permethrin, deltamethrin, beta-cypermethrin, and propoxur was significantly correlated with each other, and the resistance of dichlorvos was significantly correlated with beta-cypermethrin. Conclusions Our results suggested that resistance was existed in permethrin, deltamethrin, beta-cypermethrin, and propoxur in the house flies of Zhejiang Province, while the resistance reversion to dichlorvos was found.
Collapse
|
50
|
Hanai D, Hardstone Yoshimizu M, Scott JG. The Insecticide Resistance Allele kdr-his has a Fitness Cost in the Absence of Insecticide Exposure. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2992-2995. [PMID: 30277509 DOI: 10.1093/jee/toy300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/08/2023]
Abstract
House flies, Musca domestica L. (Diptera: Muscidae), are major pests at animal production facilities. Insecticides, particularly pyrethroids, have been used for control of house fly populations for more than 30 yr, but the evolution of resistance will likely jeopardize fly control efforts. A major mechanism of pyrethroid resistance in the house fly is target site insensitivity (due to mutations in the Voltage-sensitive sodium channel [Vssc]). Based on a survey of house fly populations in 2007 and 2008, the most common resistance allele at 2/3 of the states in the United States is kdr-his. This was unexpected given the relatively lower level of resistance this allele confers, and led to speculation that the kdr-his allele may have a minimal fitness cost in the absence of insecticide. The goal of this study was to evaluate the fitness cost of kdr-his by monitoring the changes in allele frequency over 15 generations in the absence of insecticide. In crosses with two different insecticide susceptible strains, we found that kdr-his had a significant fitness cost. The implications of these results to insecticide resistance monitoring and management are discussed.
Collapse
Affiliation(s)
- Daisuke Hanai
- Agro Products Division, Nippon-Soda Co., Ltd., Ohtemachi, Chiyoda-ku, Tokyo, Japan
| | | | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY
| |
Collapse
|