1
|
Chen W, Xu H, Chen M, Tang P, Wang K. Spray-Induced Gene Silencing for Postharvest Protection: dsRNA Stability and Insecticidal Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10778-10786. [PMID: 40262032 DOI: 10.1021/acs.jafc.4c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Sprayable double-stranded RNA (dsRNA) pesticides, based on RNA interference (RNAi), have shown promise in preharvest crop protection, yet their use for postharvest grain storage remains underexplored. In this study, we evaluated the efficacy and stability of sprayable dsRNA in protecting stored rice grains from the lesser grain borer (Rhyzopertha dominica). Results showed significant insecticidal activity, with 72% mortality observed after ingestion of grains stored for 60 days post-treatment, compared to 90% mortality in freshly treated grains. To assess dsRNA persistence, we developed a sensitive detection method for low-input samples. Approximately 73% of the initial dsRNA remained detectable after 60 days of storage, with increased absorption into the rice hull over time. These findings demonstrate the durability and effectiveness of sprayable dsRNA in stored grain protection and underscore its potential as a sustainable alternative to chemical pesticides for postharvest pest management.
Collapse
Affiliation(s)
- Wei Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Honglei Xu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Mengjiao Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Peian Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Kangxu Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Li Z, Yoon JS, Zhong Z, Ruan Y, Yang C, Zhou X, Zhang Y, Pan H. HvStaufenC contributes to the high RNAi efficiency in the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104304. [PMID: 40132674 DOI: 10.1016/j.ibmb.2025.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
RNA interference (RNAi) has been shown to be relatively effective in coleopteran insects, with limited exploration into the molecular mechanisms that underlie this effectiveness. This study specifically examines the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata (Hvig), known for its high RNAi efficiency. Here, we utilized RNAi and CRISPR/Cas9 techniques to identify and validate the genes involved in the RNAi pathway that enhance RNAi efficacy in Hvig. We identified a total of 15 potential genes within the RNAi pathway that may impact RNAi efficiency. The bioassay results showed that only knockdown of HvStaufenC in the 3rd instar larvae could block the abnormal body color phenotype and lethality induced by the subsequent silencing of the two marker genes, HvTH (tyrosine hydroxylase) and HvABCH1 (ATP-binding cassette H transporter gene), respectively. Additionally, successful CRISPR/Cas9-mediated knockout of HvStaufenC led to the generation of stable, heritable mutants that exhibited insensitivity to RNAi, displaying no response to RNAi targeting HvTH and HvABCH1. Compared to the wild-type strain, the HvStaufenC knockout (HvStaufenCKO) mutant females demonstrated a 42 % decrease in oviposition rate and a 41.3 % reduction in egg hatchability. This study demonstrates that HvStaufenC gene is crucial for the RNAi efficiency of Hvig and offers new evidence into the RNAi mechanisms in coleopteran species.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - June-Sun Yoon
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Zexin Zhong
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yalin Ruan
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiao Yang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xuguo Zhou
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, 61801-3795, USA
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huipeng Pan
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Jiang Y, Zong S, Wang X, Zhu-Salzman K, Zhao J, Xiao L, Xu D, Xu G, Tan Y. pH-responsive nanoparticles for oral delivery of RNAi for sustained protection against Spodoptera exigua. Int J Biol Macromol 2025; 306:141763. [PMID: 40049501 DOI: 10.1016/j.ijbiomac.2025.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
To enhance the RNAi efficiency of dsRNA against the Spodoptera exigua through a feeding method, we developed a pH-responsive nanoparticle, chitosan-polyethylene glycol-carboxyl (CS-PEG-COOH). This nanoparticle enhances RNAi efficiency by improving dsRNA stability in the midgut of S. exigua and can intelligently release dsRNA under alkaline conditions. Firstly, the CS-PEG-COOH carrier was prepared via cross-linking reactions, and the mass ratio of dsRNA to CS-PEG-COOH was obtained using electrophoretic mobility. The carrier composite materials were then characterized using isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and Zeta potential analysis. The stability and delivery efficiency of the dsRNA/CS-PEG-COOH complex were then verified using electrophoretic mobility and fluorescence labeling methods. Finally, the RNAi efficiency and synergistic mechanism of the complex were analyzed using feeding methods and RNA-seq. The results show that CS-PEG-COOH (40.16 nm size, + 6.44 mV charge) forms a clustered complex with dsRNA through hydrogen bonding and hydrophobic interactions. CS-PEG-COOH significantly enhancing the stability and delivery efficiency of dsRNA in the midgut of S. exigua. Additionally, at pH > 8, dsRNA could be released from dsRNA/CS-PEG-COOH. The RNAi results showed that, dsRNA/CS-PEG-COOH could effectively inhibit the expression of the Acetylcholinesterase (Ace1 + Ace2) gene (65 %), and led to significantly increase mortality (51.82 %), a prolonged developmental period (25 %) and reduced egg production (22.02 %). The physiological and molecular synergistic mechanisms were revealed by RNA-seq analysis. The CS-PEG-COOH-loaded dsACE1 + dsACE2 led to down-regulation of genes related to drug metabolism, hormone synthesis, and stratum corneum biosynthesis, which inhibited insect growth and development. Overall, We developed an appropriate delivery method for dsRNA application in Lepidoptera, providing a basis for developing RNA pesticides with high efficiency and environmental safety.
Collapse
Affiliation(s)
- Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Suman Zong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 210037, Jiangsu Province, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China.
| |
Collapse
|
4
|
Li J, Chen W, Lin Y, Bi X, Li W, Chen P, He Q, Shen G, Sun Y, Jin C. Methionine-Based Sulfonium Lipid Mediates dsRNA for Gene Silencing in Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7609-7619. [PMID: 40105146 DOI: 10.1021/acs.jafc.4c11424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Effective gene carriers will promote the application of RNA interference (RNAi) technology in future pesticide development. This paper reports a group of novel methionine-based sulfonium lipid compounds (MSLs) and screens their gene delivery abilities in vitro and in vivo. Experiments showed that most MSLs could encapsulate nucleic acids into nanoparticles at an S/P ratio of 4:1, with nanoparticle sizes ranging from 124 to 216 nm and zeta potentials ranging from +27 to 40 mV, and could effectively protect nucleic acids from enzymatic degradation. MSLs successfully mediated the cellular uptake and transfection of nucleic acids in Kc cells and insects. Using dsRNA of CHT10 as the RNAi target, four MSLs were proven to mediate dsRNA interference in Drosophila melanogaster and Ostrinia furnacalis and achieved significant growth inhibition during larval development, eventually leading to pest death. The study demonstrates that MSLs are useful nanocarriers for the development of dsRNA pesticides.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang 163319, China
| | - Wenyang Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yue Lin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xinrui Bi
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wanning Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Peiyu Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Guinan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Chenghao Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang 163319, China
| |
Collapse
|
5
|
Ren Q, Zhang Q, Liu Y, Li S, Zhang J, Wang Y, El Wakil A, Moussian B, Zhang J. PEI-SWNT improves RNAi efficiency in Locusta migratoria via dsRNA injection delivery system. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106361. [PMID: 40082048 DOI: 10.1016/j.pestbp.2025.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
The instability of double-stranded RNA (dsRNA) restricts the application of RNA interference (RNAi) technology in agricultural pest management. Various types of nanocarriers have been developed and employed for the stable delivery of dsRNA. Nonetheless, it remains unclear which type of nanomaterial could deliver dsRNA stably and efficiently for gene knockdown in Locusta migratoria. In this study, we evaluated the ability of three biocompatible and low-toxicity inorganic nanomaterials-polyethylenimine (PEI)-functionalized single-walled carbon nanotube (PEI-SWNT), polyethylenimine-functionalized carbon quantum dots (PEI-CQDs), and layered double hydroxide (LDH)-to bind and stabilize dsRNA. The results revealed that, compared to PEI-CQDs and LDH, PEI-SWNT more effectively protected dsRNA from degradation in locust gut fluids, across various temperatures, and under different pH conditions. Furthermore, we investigated the efficacy of PEI-SWNT/dsRNA complexes in suppressing endogenous genes in locusts through both injection and oral administration methods. Compared to bare dsRNA, PEI-SWNT/dsRNA complexes enhanced RNAi efficiency by up to 46.0 % and increased mortality by up to 39.0 %. Moderate levels of PEI-SWNT could improve the germination rate of wheat, while not affecting leaf growth in the short term. To our knowledge, this study is the first to apply PEI-SWNT inorganic nanomaterials in insects, which provides a foundational basis and compelling evidence for the development of nanomaterial-based nucleic acid pesticides.
Collapse
Affiliation(s)
- Qiurong Ren
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qian Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yangyang Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuai Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianqin Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- Université Côte d'Azur, INRAe, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, School of Synthetic Biology, Shanxi University, Taiyuan, Shanxi 030006, China; School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
6
|
Niu Y, Zhang S, Shi F, Zhao Y, Li M, Zong S, Tao J. Transcriptome analysis identifies key genes in juvenile hormone and ecdysteroid signaling pathways and their roles in regulating reproductive system development of adult Monochamus saltuarius. Int J Biol Macromol 2025; 295:139634. [PMID: 39788234 DOI: 10.1016/j.ijbiomac.2025.139634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Monochamus saltuarius is an important vector of pinewood nematode in Eurasia with a high reproductive capacity. Endocrine hormones play a key role in insect reproduction. Understanding the mechanism of internal regulation can provide targets for pest control. However, this type of research on M. saltuarius remain limited. Our study constructed transcriptome of the internal reproductive systems in male and female M. saltuarius across three development stages. Interference experiments targeting the MSALMet1 and exploring its critical role in reproduction. Transcriptome results revealed that 42 genes related to the juvenile hormone and ecdysteroid pathways were identified. Among them, 12 genes were significantly enriched in reproduction-related pathways, and the expression patterns of 14 genes aligned with the developmental trend of the internal reproductive system, suggesting that they may play a regulatory role in reproductive processes. Furthermore, protein-protein interaction networks elucidated the complex interactions among these genes, shedding light on their diverse functions. Notably, bioinformatics analysis and interference experiments revealed that MSALMet1 having the profound effect on reproductive system development in both sexes. These findings highlight the critical role of endocrine-related genes in regulating reproductive development and provide a theoretical foundation for regulating reproduction at molecular level, potentially contributing to M. saltuarius population control.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Wang F, Zhou K, Yu Y, Peng L, Ye Y, Lin C, Xu C, Shen Z. RNAi-based transgenic maize to control double-spotted leaf beetle (Monolepta hieroglyphica). PEST MANAGEMENT SCIENCE 2025; 81:1412-1421. [PMID: 39552424 DOI: 10.1002/ps.8543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The double-spotted leaf beetle (DLB), Monolepta hieroglyphica, is becoming a significant corn pest in China. It mainly attacks corn silk and developing kernels during the adult stage and is causing significant corn yield loss in north-eastern China. The damage caused by DLB is expected to worsen as pesticide usage is likely to decrease along with the upcoming commercial planting of transgenic lepidopteran-resistant maize in China. Therefore, it is highly desirable to develop transgenic corn for DLB resistance. RESULTS Three target genes, MhSsj1, MhSnf7 and MhSec23A were cloned from DLB by their sequence similarity to their corresponding homologous genes known for their effectiveness as RNA interference (RNAi) targets in western corn rootworm (WCR, Diabrotica virgifera virgifera). Injection of the double-stranded RNAs (dsRNAs) of MhSsj1, MhSnf7 and MhSec23A to DLB adults was highly effective to suppress the messenger RNAs (mRNAs) of these genes and resulted in high mortality. Furthermore, a synergistic effect was observed among the dsRNAs of these three target genes. Transgenic maize plants simultaneously transcribing dsRNAs of any two of the three target genes were found to be highly resistant to DLB adults, showcasing the potential of utilizing RNAi-based strategy for transgenic DLB control. CONCLUSION MhSsj1, MhSnf7 and MhSec23A are effective RNAi target genes and transgenic corn based on suppression of these genes by RNAi are effective for controlling adult DLB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fahao Wang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kangdi Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yifan Yu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Luyao Peng
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuxuan Ye
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, China
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chao Xu
- Hangzhou Ruifeng Biosciences Ltd, Hangzhou, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Ruifeng Biosciences Ltd, Hangzhou, China
| |
Collapse
|
8
|
Liu M, Wang Q, Lai B, Chen Y, Ge R, Yan S, Bu C. RNA interference targeting β-N-acetylhexosaminidase genes impairs molting and development of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106259. [PMID: 40015851 DOI: 10.1016/j.pestbp.2024.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
β-N-acetylhexosaminidases (HEXs) are key chitin-degrading enzymes in insects. Here, we identified TuHex1 and TuHex2 using insect orthologous genes by searching Tetranychus urticae genome and transcriptome database to investigate their roles in mite molting. TuHex1 and TuHex2 expression was induced by 20-hydroxyecdysone (20E), and inhibition of TuHex1 and TuHex2 expression by RNAi resulted in wrinkled cuticle or an inability to shed the old cuticle in nymphs, which may be due to a reduction in particle deposition in the exocuticle and lamellar structure in the endocuticle as revealed by scanning electron microscopy and transmission electron microscopy. The results suggest that the TuHex1 and TuHex2 genes play an essential role in the molting and developmental process of the mite. TuHex2, with a mortality rate of 67.41 % in the leaf disc assay, was a potential RNAi target by oral feeding. Spraying of nanocarrier-delivered bacteria expressing dsTuHex2 at 500 ng/μL kept spider mites at a consistently low level throughout the 14 days and showed good mite control comparable to that of matrine. In addition, nanocarrier-delivered dsTuHex2 is safe for Neoseiulus californicus in our experiments, providing its potential for green mite management.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Qianwen Wang
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Bin Lai
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Rongchumu Ge
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
9
|
Tan J, Sheng CW, Karthi S, Jiang N, Zhang C, Du H, Zhao K, Liu S, Li MY, Chen J. New Insights into Expanding the Insecticidal Spectrum of dsRNA Mediated by the High Sequence Identity between dsRNA and Nontarget mRNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4605-4616. [PMID: 39948051 DOI: 10.1021/acs.jafc.4c12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
RNA interference (RNAi) is being used to develop methods to control pests, yet its widespread application is limited by the high comprehensive application cost of dsRNAs. Here, we utilized the high identity matching between double-stranded RNA (dsRNA) and nontarget genes to achieve expanding the dsRNA insecticidal spectrum. First, we found that dsRNA was more likely to induce off-target effects in genes with higher transcript levels and higher sequence identity; the existence of either a completely contiguous matching sequence exceeding 15 nt or a partially contiguous matching sequence of 24 nt between genes can lead to off-target effects in Tribolium castaneum. Accordingly, we successfully interfered with T. castaneum and Laodelphax striatellus using dsRNA targeted against Nilaparvata lugens. Additionally, the use of dsRNA targeting L. striatellus effectively interfered with N. lugens, both instances resulting in lethal effects. Moreover, the dsRNA spray method proved to be more efficient than the rice seedling soaking method to deliver dsRNA. Our research offers new insights into expanding the insecticidal spectrum of dsRNA mediated by a high degree of sequence identity between genes.
Collapse
Affiliation(s)
- Jiayu Tan
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Cheng-Wang Sheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Sengodan Karthi
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Nan Jiang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Chenyu Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Haochen Du
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Kezhi Zhao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Su Liu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Mao-Ye Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Jiasheng Chen
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
10
|
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:67-91. [PMID: 39901962 PMCID: PMC11787108 DOI: 10.1007/s12298-025-01550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
MicroRNAs (miRNAs) are endogenous, small molecules that negatively regulate gene expression to control the normal development and stress response in plants. They mediate epigenetic changes and regulate gene expression at both transcriptional and post-transcriptional levels. Synthetic biology approaches have been utilized to design efficient artificial miRNAs (amiRNAs) or target-mimics to regulate specific gene expression for understanding the biological function of genes and crop improvement. The amiRNA based gene silencing is an effective technique to "turn off" gene expression, while miRNA target-mimics or decoys are used for efficiently down regulating miRNAs and "turn on" gene expression. In this context, the development of endogenous target-mimics (eTMs) and short tandem target mimics (STTMs) represent promising biotechnological tools for enhancing crop traits like stress tolerance and disease resistance. Through this review, we present the recent developments in understanding plant miRNA biogenesis, which is utilized for the efficient design and development of amiRNAs. This is important to incorporate the artificially synthesized miRNAs as internal components and utilizing miRNA biogenesis pathways for the programming of synthetic circuits to improve crop tolerance to various abiotic and biotic stress factors. The review also examines the recent developments in the use of miRNA target-mimics or decoys for efficiently down regulating miRNAs for trait improvement. A perspective analysis and challenges on the use of amiRNAs and STTM as potent tools to engineer useful traits in plants have also been presented.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
11
|
Hou QL, Zhang HQ, Zhu JN, Chen EH. Tyrosine Hydroxylase Is Required for the Larval-Pupal Transformation and Immunity of Plutella xylostella: Potential for Pest Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27818-27829. [PMID: 39630615 DOI: 10.1021/acs.jafc.4c09279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Plutella xylostella has developed high levels of resistance to many commonly used insecticides. Tyrosine hydroxylase (TH) is essential for insect survival; thus, we evaluated whether TH could be a potential target for controlling P. xylostella. In this study, PxTH was identified; further qPCR analysis showed that PxTH increased its expression during larval pupation and was highly expressed in the head and epidermis of prepupa in P. xylostella. Subsequently, we found a significant decrease in insect pupation and eclosion rates after injection of dsPxTH or a feeding diet supplemented with 3-iodo-tyrosine (3-IT) as a TH inhibitor in P. xylostella. Moreover, this study suggested that PxTH enzyme activity and dopamine concentrations were significantly decreased, agreeing with the blockage of larval-pupal cuticle tanning, with thinner puparium and less melanization after feeding 3-IT. In addition, expression levels of four antimicrobial peptide genes were significantly inhibited after P. xylostella feeding with 3-IT, and injection of Escherichia coli resulted in 73.3% mortality, indicating that PxTH was required for immune responses. In summary, these results confirmed that PxTH was involved in the development and immunity of P. xylostella, suggesting a critical potential novel insecticide target for RNAi-based pest control.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han-Qiao Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Li T, Yuan L, Jiang D, Yan S. HcCYP6AE178 plays a crucial role in facilitating Hyphantria cunea's adaptation to a diverse range of host plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106194. [PMID: 39672613 DOI: 10.1016/j.pestbp.2024.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 12/15/2024]
Abstract
Strong multi-host adaptability significantly contributes to the rapid dissemination of Hyphantria cunea. The present study explores the involvement of cytochrome P450 monooxygenase (P450) in the multi-host adaptation of H. cunea and aims to develop RNA pesticides targeting essential P450 genes to disrupt this adaptability. The results showed that inhibiting P450 activity notably reduced larval weight and food-intake across seven plants groups. The P450 gene HcCYP6AE178 was highly upregulated in H. cunea larvae from medium- and low-preference host plant groups. Silencing HcCYP6AE178 significantly decreased H. cunea larval body weight, increased larval mortality, inhibited energy metabolism genes expression and interfered with growth regulatory genes expression. Overexpression of HcCYP6AE178 enhanced the tolerance of Drosophila and Sf9 cells to the plant defensive substances cytisine and coumarin. The RNA pesticide CS-dsHcCYP6AE178 constructed using chitosan (CS) exhibited remarkable stability. Treatment with CS-dsHcCYP6AE178 effectively reduced H. cunea larval body weight, heightened larval mortality, and disrupted growth regulatory genes expression in low-preference host plant groups. Combined treatment of CS-dsHcCYP6AE178 and coumarin significantly elevated H. cunea larval mortality compared to coumarin alone, accompanied by the inhibition of growth regulatory genes expression and an abnormal increase in energy metabolism genes expression. Taken together, HcCYP6AE178 is essential for the adaptation of H. cunea to multiple host plants, and RNA pesticides targeting HcCYP6AE178 can effectively impair the performance of H. cunea in different host plants.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
13
|
Han J, Rotenberg D. Microinjection-enabled gene silencing in first instar larvae of western flower thrips, Frankliniella occidentalis, reveals vital genes for larval survival. INSECT SCIENCE 2024. [PMID: 39614628 DOI: 10.1111/1744-7917.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
The western flower thrips (Frankliniella occidentalis) is a significant agricultural pest, causing severe global yield losses due to extensive feeding damage and the transmission of plant pathogenic viruses. Despite recent advancements in RNA interference (RNAi) in thrips species, its application has been mostly limited to the adult stage. Given the crucial role of first instar larval thrips in acquiring and transmitting orthotospoviruses, achieving gene silencing in these larvae is critical for studying virus entry and acquisition. While thoracic and abdominal injections have proven effective in adult thrips, the low post-injection survival rate hinders their use in larval thrips. This study addresses this challenge by presenting a microinjection methodology to deliver dsRNA into the hemolymph of first instar larval thrips through the coxa, the first proximal segment of the foreleg. This method significantly improved larval survival rate by preventing detrimental damage to the internal tissues. Significant knockdown of V-ATPase-B, cytochrome P450 (CYP3653A2), and apolipophorin-II/I (ApoLp-II/I) transcripts was confirmed after 48 and/or 72 h post injection (hpi), corresponding to the first and second instar larval stages, respectively. Silencing CYP3653A2 or ApoLp-II/I significantly increased larval mortality. These findings demonstrate proof-of-principle of gene silencing and associated silencing phenotype (mortality) for first instar larval thrips and highlight the essential role of CYP3653A2 and ApoLp-II/I in larval vitality. Our RNAi-based tool offers an opportunity to investigate the molecular mechanisms of thrips-orthotospovirus interactions, as the virus must be acquired by young larval thrips for successful transmission to plants, thus presenting potential targets for thrips pest management.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Qiao H, Chen J, Dong M, Shen J, Yan S. Nanocarrier-Based Eco-Friendly RNA Pesticides for Sustainable Management of Plant Pathogens and Pests. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1874. [PMID: 39683262 DOI: 10.3390/nano14231874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies. RNA interference (RNAi), described as post-transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustainable disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides possess many advantages, such as strong targeting, good environmental compatibility, and an easy development process. In this review, we systematically introduce the development of RNAi technology, highlight the advantages of RNA pesticides, and illustrate the challenges faced in developing high-efficiency RNA pesticides and the benefits of nanocarriers. Furthermore, we introduce the process and mechanism of nanocarrier-mediated RNAi technology, summarize the applications of RNA pesticides in controlling plant pathogens and pests, and finally outline the current challenges and future prospects. The current review provides theoretical guidance for the in-depth research and diversified development of RNA pesticides, which can promote the development and practice of nanocarrier-mediated RNAi.
Collapse
Affiliation(s)
- Heng Qiao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jingyi Chen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Dong
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Gao Y, Cai T, Yu C, Zeng Q, Wan Y, Song L, He S, Li J, Wan H. A putative endonuclease reduces the efficiency of oral RNA interference in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:5771-5779. [PMID: 39007259 DOI: 10.1002/ps.8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The RNA interference (RNAi) efficiency of double-stranded RNA (dsRNA) delivery to insects by various methods is different and the reduced efficacy of feeding dsRNA is partly due to the presence of DNA/RNA non-specific endonuclease in the insect gut. However, the mechanism leading to the low RNAi efficiency of Nilaparvata lugens by feeding remains elusive. RESULTS In this study, we identified a putatively DNA/RNA non-specific endonuclease gene in the N. lugens genome database that was highly expressed in the first nymphal instar and the midgut. Different expression levels of NldsRNase after feeding and injection suggested that NldsRNase might interfere with oral RNAi in N. lugens. A co-delivery RNAi strategy further revealed that the presence of NldsRNase reduces RNAi efficiency. In vitro dsRNA degradation experiments also showed that the stability of dsRNA was higher in a gut mixture from nymphs injected with dsNldsRNase. These results support the idea that the low oral RNAi response observed in N. lugens is likely due to the presence of NldsRNase. CONCLUSIONS Our study provides insight into the differences in RNAi response between the injection and feeding of dsRNA in N. lugens and sheds light on the mechanisms underlying the reduced efficacy of RNAi via feeding. These findings may help to inform the development of more-effective RNAi-based strategies controlling N. lugens and other insect pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinghong Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ludan Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Quilez-Molina AI, Niño Sanchez J, Merino D. The role of polymers in enabling RNAi-based technology for sustainable pest management. Nat Commun 2024; 15:9158. [PMID: 39443470 PMCID: PMC11499660 DOI: 10.1038/s41467-024-53468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
The growing global food demand, coupled with the limitations of traditional pest control methods, has driven the search for innovative and sustainable solutions in agricultural pest management. In this review, we highlight polymeric nanocarriers for their potential to deliver double-stranded RNA (dsRNA) and control pests through the gene-silencing mechanism of RNA interference (RNAi). Polymer-dsRNA systems have shown promise in protecting dsRNA, facilitating cellular uptake, and ensuring precise release. Despite these advances, challenges such as scalability, cost-efficiency, regulatory approval, and public acceptance persist, necessitating further research to overcome these obstacles and fully unlock the potential of RNAi in sustainable agriculture.
Collapse
Affiliation(s)
- Ana Isabel Quilez-Molina
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, Spain
| | - Jonatan Niño Sanchez
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia, Spain
- iuFOR, Sustainable Forest Management Research Institute, University of Valladolid, Palencia, Spain
| | - Danila Merino
- Sustainable Biocomposite Materials, POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
18
|
Xue Q, Li J, Vereecken S, Li Q, Zhi Z, Dubruel P, Taning CNT, De Schutter K. Functionally Modified Graphene Oxide as an Alternative Nanovehicle for Enhanced dsRNA Delivery in Improving RNAi-Based Insect Pest Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39365919 DOI: 10.1021/acs.jafc.4c05215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
RNA interference (RNAi) has shown substantial promise as a sustainable pest management solution. However, the efficacy of RNAi-based insecticides heavily relies on advanced nanocarrier-mediated delivery systems. In this study, we modified raw graphene oxide into positively charged nanocarriers (GONs) tailored to bind with double-stranded RNA (dsRNA). The resulting GONs@dsRNA complexes demonstrated a small particle size (106 nm) and maintained stability under various conditions, including insect gut extracts, extreme pH, and extreme temperature. Furthermore, GONs efficiently transported dsRNA molecules into Drosophila S2 cells and Lepidoptera Sf9 cells, leading to an enhanced target transcript knockdown. Targeting the vacuolar ATPase gene, vha26, induced significant mortality and target transcript knockdown in D. suzukii adults but not in S. exigua. Finally, GONs@dsRNA complexes exhibited negligible cytotoxicity at both the cellular and organismal levels. This study demonstrates the potential of GONs as a biosafe nanovehicle for efficient dsRNA delivery into insects, presenting an alternative strategy for advancing RNAi applications in fundamental studies and pest control.
Collapse
Affiliation(s)
- Qi Xue
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jiangjie Li
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Sven Vereecken
- Polymer Chemistry and Biomaterials group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Zijian Zhi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent 9000, Belgium
| | - Clauvis Nji Tizi Taning
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Kristof De Schutter
- Molecular Entomology Laboratory, Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
19
|
Ali A, Shahbaz M, Ölmez F, Fatima N, Umar UUD, Ali MA, Akram M, Seelan JSS, Baloch FS. RNA interference: a promising biotechnological approach to combat plant pathogens, mechanism and future prospects. World J Microbiol Biotechnol 2024; 40:339. [PMID: 39358476 DOI: 10.1007/s11274-024-04143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, 54000, Lahore, Punjab, Pakistan
| | - Ummad Ud Din Umar
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus, Bosan Road, 60800, Multan, Pakistan
| | - Md Arshad Ali
- Biotechnology Program, Faculty of Science and Natural, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, 63100, Bahawalpur, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia.
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir Mersin, Turkey.
| |
Collapse
|
20
|
Wei ZH, Zhao P, Ning XY, Xie YQ, Li Z, Liu XX. Nanomaterial-Encapsulated dsRNA-Targeting Chitin Pathway─A Potential Efficient and Eco-Friendly Strategy against Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20905-20917. [PMID: 39258562 DOI: 10.1021/acs.jafc.4c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The r-strategy pests are very challenging to effectively control because of their rapid population growth and strong resurgence potential and are more prone to developing pesticide resistance. As a typical r-strategy pest, the cosmopolitan cotton aphid, Aphis gossypii Glover, seriously impacts the growth and production of cucurbits and cotton. The present study developed a SPc/double-stranded RNA (dsRNA)/botanical strategy to enhance the control efficacy of A. gossypii. The results demonstrated that the expression of two chitin pathway genes AgCHS2 and AgHK2 notably changed in A. gossypii after treated by three botanical pesticides, 1% azadirachtin, 1% matrine, and 5% eucalyptol. SPc nanocarrier could significantly enhance the environmental stability, cuticle penetration, and interference efficiency of dsRNA products. The SPc/dsRNA/botanical complex could obviously increase the mortality of A. gossypii in both laboratory and greenhouse conditions. This study provides an eco-friendly control technique for enhanced mortality of A. gossypii and lower application of chemical pesticides. Given the conservative feature of chitin pathway genes, this strategy would also shed light on the promotion of management strategies against other r-strategy pests using dsRNA/botanical complex nanopesticides.
Collapse
Affiliation(s)
- Zi-Han Wei
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin-Yuan Ning
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Qing Xie
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiao-Xia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Wang Y, Li X, Zhu C, Yi S, Zhang Y, Hong Z. Plant-derived artificial miRNA effectively reduced the proliferation of aphid (Aphidoidea) through spray-induced gene silencing. PEST MANAGEMENT SCIENCE 2024; 80:4322-4332. [PMID: 38647144 DOI: 10.1002/ps.8138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Aphids (Hemiptera: Aphididae) are notorious sap-sucking insects that rampantly threaten agricultural production worldwide. Current management against aphids in the field heavily relies on chemical pesticides, which makes economical and eco-friendly methods urgently needed. Spray-induced gene silencing (SIGS) offers a powerful and precise approach to pest management. However, the high costs and instability of double-stranded RNA (dsRNA) regulators applied for downstream RNA interference (RNAi) still limit this strategy. It remains uncertain if RNAi regulators applied in SIGS could extend to small RNA (sRNA), especially miRNA. RESULTS We chose two sRNA sequences, miR-9b and miR-VgR, whose corresponding targets ABCG4 and VgR are both essential for aphid growth and development. The efficacy of these sequences was initially verified by chemically synthetic single-stranded RNA (syn-ssRNA). Through spray treatment, we observed a significantly decreased survival number and increased abnormality rate of green peach aphids fed on the host under laboratory conditions. Based on our previous study, we generated transgenic plants expressing artificial miR-9b (amiR-9b) and miR-VgR (amiR-VgR). Remarkably, plant-derived amiRNA exerted potent and long-lasting inhibitory efficacy with merely one percent concentration of chemical synthetics. Notably, the simultaneous application of amiR-9b and amiR-VgR exhibited superior inhibitory efficacy. CONCLUSION We explored the potential use of sRNA-based biopesticide through SIGS while investigating the dosage requirements. To optimize this strategy, the utilization of plant-derived amiRNA was proposed. The results suggested that attributed to stability and durability, deploying amiRNA in pest management is a potential and promising solution for the field application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuanlin Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shijie Yi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry, and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Li SP, Chen ZX, Gao G, Bao YQ, Fang WY, Zhang YN, Liu WX, Lorenzen M, Wiegmann BM, Xuan JL. Development of an agroinfiltration-based transient hairpin RNA expression system in pak choi leaves (Brassica rapa ssp. chinensis) for RNA interference against Liriomyza sativae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106091. [PMID: 39277418 DOI: 10.1016/j.pestbp.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The vegetable leafminer (Liriomyza sativae) is a devastating invasive pest of many vegetable crops and horticultural plants worldwide, causing serious economic loss. Conventional control strategy against this pest mainly relies on the synthetic chemical pesticides, but widespread use of insecticides easily causes insecticide resistance development and is harmful to beneficial organisms and environment. In this context, a more environmentally friendly pest management strategy based on RNA interference (RNAi) has emerged as a powerful tool to control of insect pests. Here we report a successful oral RNAi in L. sativae after feeding on pak choi (Brassica rapa ssp. chinensis) that transiently express hairpin RNAs targeting vital genes in this pest. First, potentially lethal genes are identified by searching an L. sativae transcriptome for orthologs of the widely used V-ATPase A and actin genes, then expression levels are assessed during different life stages and in different adult tissues. Interestingly, the highest expression levels for V-ATPase A are observed in the adult heads (males and females) and for actin in the abdomens of adult females. We also assessed expression patterns of the target hairpin RNAs in pak choi leaves and found that they reach peak levels 72 h post agroinfiltration. RNAi-mediated knockdown of each target was then assessed by letting adult L. sativae feed on agroinfiltrated pak choi leaves. Relative transcript levels of each target gene exhibit significant reductions over the feeding time, and adversely affect survival of adult L. sativae at 24 h post infestation in genetically unmodified pak choi plants. These results demonstrate that the agroinfiltration-mediated RNAi system has potential for advancing innovative environmentally safe pest management strategies for the control of leaf-mining species.
Collapse
Affiliation(s)
- Shu-Peng Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Anhui Watermelon and Melon Biological Breeding Engineering Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zi-Xu Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ge Gao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Qi Bao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Ying Fang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jing-Li Xuan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Alagarsamy M, Amal TC, Karuppan S, Adhimoolam K. Comparative proteomic analysis of resistant and susceptible cotton genotypes in response to leaf hopper infestation. J Proteomics 2024; 305:105258. [PMID: 39004338 DOI: 10.1016/j.jprot.2024.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The cotton leaf hopper is a major pest in cotton, causing a hopper burn in leaves. In this study, a comparative proteomic analysis of NDLH2010 (Resistant) and LRA5166 (Susceptible), infected with leaf hopper, was employed using a nano LC-MS/MS approach. A total of 1402 proteins varied significantly between leaf hopper-infected and control plants. The resistant and susceptible genotypes had differentially expressed proteins (DEPs) of 743 and 659, respectively. Functional annotation of DEPs revealed that the DEPs were primarily associated with stress response, hormone synthesis, photosynthesis, cell wall, and secondary metabolites. Notably, DEPs such as polyphenol oxidase, carboxypeptidase, heat shock proteins, protein BTR1-like isoform X2, chaperone protein ClpB1, and β glucosidase factors associated with environmental stress response were also detected. Quantitative real-time PCR (qRT-PCR) analysis confirmed a positive correlation between protein abundances and transcripts for all genes. Collectively, this study provides the molecular mechanisms associated with cotton defense responses against leaf hopper. SIGNIFICANCE STATEMENT: Cotton, a natural fiber, assumes a pivotal role as a raw material for textile industries, thereby bearing significant importance in the global economy. The cotton production sector is considerably affected by both biotic and abiotic stresses. The cotton leaf hopper (Amrasca biguttula biguttula (Ishida)) stands as a polyphagous insect, emerging as a dominant sap-feeding pest of the cotton crop. The continuous onslaught of sap-feeding insects on cotton plants has a detrimental impact, with leaf hoppers potentially causing yield reductions of up to 50%. Therefore, comprehending the molecular interplay between cotton and leaf hopper, elucidated at the proteome level, holds promise for more effective pest management strategies. This approach holds the potential to offer insights that contribute to the development of leaf hopper-resistant cotton varieties.
Collapse
Affiliation(s)
- Manivannan Alagarsamy
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, TN, India.
| | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, TN, India
| | | | - Karthikeyan Adhimoolam
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| |
Collapse
|
25
|
Wang Y, Mbiza NIT, Liu T, Wang Y, Zhang Y, Luo X, Chu L, Li J, Yang Y, Wang X, Zhang J, Yu Y. SfREPAT38, a pathogen response gene (REPAT), is involved in immune response of Spodoptera frugiperda larvae through mediating Toll signalling pathway. INSECT MOLECULAR BIOLOGY 2024; 33:417-426. [PMID: 38549231 DOI: 10.1111/imb.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/06/2024] [Indexed: 07/10/2024]
Abstract
REPAT (response to pathogen) is an immune-associated gene family that plays important roles in insect immune response to pathogens. Although nine REPAT genes have been identified in Spodoptera frugiperda (Lepidoptera: Noctuidae) currently, their functions and mechanisms in the immune response to pathogens still remain unclear. Therefore, SfREPAT38, a pathogen response gene (REPAT) of S. frugiperda, was characterised and its function was analysed. The results showed that SfREPAT38 contains a signal peptide and a transcription activator MBF2 (multi-protein bridging factor 2) domain. Quantitative real-time polymerase chain reaction analysis showed that SfREPAT38 was highly expressed in the sixth-instar larvae (L6) and was the highest in expression in the midgut of L6. We found that the expression of SfREPAT38 could be activated by challenge with four microbial pathogens (Bacillus thuringiensis, Metarhizium anisopliae, Spodoptera exigua nuclearpolyhedrosis and Escherichia coli), except 12 h after E. coli infection. Furthermore, the SfREPAT38 expression levels significantly decreased at 24, 48 and 72 h after SfREPAT38 dsRNA injection or feeding. Feeding with SfREPAT38 dsRNA significantly decreased the weight gain of S. frugiperda, and continuous feeding led to the death of S. frugiperda larvae from the fourth day. Moreover, SfREPAT38 dsRNA injection resulted in a significant decrease of weight gain on the fifth day. Silencing SfREPAT38 gene down-regulated the expression levels of immune genes belonging to the Toll pathway, including SPZ, Myd88, DIF, Cactus, Pell and Toll18W. After treatment with SfREPAT38 dsRNA, S. frugiperda became extremely sensitive to the B. thuringiensis infection, and the survival rate dramatically increased, with 100% mortality by the eighth day. The weight of S. frugiperda larvae was also significantly lower than that of the control groups from the second day onwards. In addition, the genes involved in the Toll signalling pathway and a few antibacterial peptide related genes were down-regulated after treatment. These results showed that SfREPAT38 is involved in the immune response of S. frugiperda larvae through mediating Toll signalling pathway.
Collapse
Affiliation(s)
- Yuxue Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Natasha Isabel Tanatsiwa Mbiza
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Ting Liu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yi Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yi Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Xincheng Luo
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Longyan Chu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Jianping Li
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yazhen Yang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Xiangping Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Jianmin Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, College of Life Sciences, Yangtze University, Jingzhou, Hubei Province, China
| | - Yonghao Yu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi Province, China
| |
Collapse
|
26
|
Liu M, Ge R, Song L, Chen Y, Yan S, Bu C. The chitinase genes TuCht4 and TuCht10 are indispensable for molting and survival of Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104150. [PMID: 38871132 DOI: 10.1016/j.ibmb.2024.104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, TuCht1 (group II), TuCht4 (group I) and TuCht10 (group IV) were identified, and their roles during molting process were investigated. TuCht1 was mainly expressed in the deutonymphal stage, while TuCht4 was mainly expressed in the nymphal stage and the highest expression level of TuCht10 was observed in the larvae. Feeding RNAi assays have shown that group I TuCht4 and group Ⅳ TuCht10 are involved in mite molting. Suppression of TuCht4 or TuCht10 resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes TuCht4 and TuCht10 are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Rongchumu Ge
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Lihong Song
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
27
|
Hu Y, Feng B, Wang F. Analysis of maternal effect genes from maternal mRNA in eggs of Sogatella furcifera. Heliyon 2024; 10:e34014. [PMID: 39055844 PMCID: PMC11269863 DOI: 10.1016/j.heliyon.2024.e34014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
To understand how many kinds of mRNAs in female adults can be transferred into the eggs and the molecular basis of embryonic axis specification in Sogatella furcifera, we performed de novo transcriptome sequencing of six cDNA libraries of female adults and unfertilized eggs. Total 60,306 unigenes were obtained, with an average length of 1114.51 bp and N50 length of 2112 bp. Total 2900 differentially expressed genes with 496 upregulated and 2404 downregulated were found in unfertilized egg compared to female adult. Most of mRNAs in female adult could be passed into its eggs. Total 65 maternal effect genes were identified, including many homologous genes involved in embryonic axis specialization of D. melanogaster. This study provide transcriptome resources to elucidate the functions of maternal effect genes and the molecular basis of embryonic axis specification in S. furcifera in the future.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bo Feng
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fanghai Wang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
28
|
Vatanparast M, Merkel L, Amari K. Exogenous Application of dsRNA in Plant Protection: Efficiency, Safety Concerns and Risk Assessment. Int J Mol Sci 2024; 25:6530. [PMID: 38928236 PMCID: PMC11204322 DOI: 10.3390/ijms25126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The use of double-stranded RNA (dsRNA) for plant protection shows great potential as a sustainable alternative to traditional pesticides. This review summarizes the current state of knowledge on using exogenous dsRNA in plant protection and includes the latest findings on the safety and efficiency of this strategy. The review also emphasizes the need for a cautious and comprehensive approach, considering safety considerations such as off-target effects and formulation challenges. The regulatory landscape in different regions is also discussed, underscoring the need for specific guidelines tailored to dsRNA-based pesticides. The review provides a crucial resource for researchers, regulators, and industry stakeholders, promoting a balanced approach incorporating innovation with thorough safety assessments. The continuous dialog emphasized in this review is essential for shaping the future of dsRNA-based plant protection. As the field advances, collaboration among scientists, regulators, and industry partners will play a vital role in establishing guidelines and ensuring the responsible, effective, and sustainable use of dsRNA in agriculture.
Collapse
Affiliation(s)
| | | | - Khalid Amari
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plant, Institute for Biosafety in Plant Biotechnology, D-06484 Quedlinburg, Germany
| |
Collapse
|
29
|
Sinclair BJ, Saruhashi S, Terblanche JS. Integrating water balance mechanisms into predictions of insect responses to climate change. J Exp Biol 2024; 227:jeb247167. [PMID: 38779934 DOI: 10.1242/jeb.247167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Efficient water balance is key to insect success. However, the hygric environment is changing with climate change; although there are compelling models of thermal vulnerability, water balance is often neglected in predictions. Insects survive desiccating conditions by reducing water loss, increasing their total amount of water (and replenishing it) and increasing their tolerance of dehydration. The physiology underlying these traits is reasonably well understood, as are the sources of variation and phenotypic plasticity. However, water balance and thermal tolerance intersect at high temperatures, such that mortality is sometimes determined by dehydration, rather than heat (especially during long exposures in dry conditions). Furthermore, water balance and thermal tolerance sometimes interact to determine survival. In this Commentary, we propose identifying a threshold where the cause of mortality shifts between dehydration and temperature, and that it should be possible to predict this threshold from trait measurements (and perhaps eventually a priori from physiological or -omic markers).
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, Western University, London, ON, CanadaN6A 5B7
| | - Stefane Saruhashi
- Department of Biology, Western University, London, ON, CanadaN6A 5B7
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
30
|
Li X, Xiao J, Cheng X, Zhang H, Zheng W. Nanomaterial-encapsulated dsRNA of ecdysone-induced early gene E75, a potential RNAi-based SIT strategy for pest control against Bactrocera dorsalis. Int J Biol Macromol 2024; 263:130607. [PMID: 38447848 DOI: 10.1016/j.ijbiomac.2024.130607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan‑sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiedan Xiao
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Cheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
31
|
Mahalle RM, Mota-Sanchez D, Pittendrigh BR, Kim YH, Seong KM. miRNA Dynamics for Pest Management: Implications in Insecticide Resistance. INSECTS 2024; 15:238. [PMID: 38667368 PMCID: PMC11049821 DOI: 10.3390/insects15040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Utilizing chemical agents in pest management in modern agricultural practices has been the predominant approach since the advent of synthetic insecticides. However, insecticide resistance is an emerging issue, as pest populations evolve to survive exposure to chemicals that were once effective in controlling them, underlining the need for advanced and innovative approaches to managing pests. In insects, microRNAs (miRNAs) serve as key regulators of a wide range of biological functions, characterized by their dynamic expression patterns and the ability to target genes. Recent studies are increasingly attributed to the significance of miRNAs in contributing to the evolution of insecticide resistance in numerous insect species. Abundant miRNAs have been discovered in insects using RNA sequencing and transcriptome analysis and are known to play vital roles in regulation at both the transcriptional and post-transcriptional levels. Globally, there is growing research interest in the characterization and application of miRNAs, especially for their potential role in managing insecticide resistance. This review focuses on how miRNAs contribute to regulating insecticide resistance across various insect species. Furthermore, we discuss the gain and loss of functions of miRNAs and the techniques for delivering miRNAs into the insect system. The review emphasizes the application of miRNA-based strategies to studying their role in diminishing insecticide resistance, offering a more efficient and lasting approach to insect management.
Collapse
Affiliation(s)
- Rashmi Manohar Mahalle
- Institute of Agricultural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Keon Mook Seong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
32
|
Xu QY, Zhang ZL, Zhang R, Hoffman AA, Fang JC, Luo GH. Tyrosine hydroxylase plays crucial roles in larval cuticle formation and larval-pupal tanning in the rice stem borer, Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105836. [PMID: 38582598 DOI: 10.1016/j.pestbp.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.
Collapse
Affiliation(s)
- Qing-Yu Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014, China
| | - Zhi-Ling Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014, China
| | - Ary A Hoffman
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Saberi E, Mondal M, Paredes-Montero JR, Nawaz K, Brown JK, Qureshi JA. Optimal dsRNA Concentration for RNA Interference in Asian Citrus Psyllid. INSECTS 2024; 15:58. [PMID: 38249064 PMCID: PMC10816725 DOI: 10.3390/insects15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The Asian citrus psyllid (ACP) is a citrus pest and insect vector of "Candidatus Liberibacter asiaticus", the causal agent of citrus greening disease. Double-stranded RNA (dsRNA) biopesticides that trigger RNA interference (RNAi) offer an alternative to traditional insecticides. Standardized laboratory screening of dsRNA requires establishing the minimal effective concentration(s) that result in effective RNAi "penetrance" and trigger RNAi, resulting in one or more measurable phenotypes, herein, significant gene knockdown and the potential for mortality. In this study, knockdown was evaluated for a range of dsRNA concentrations of three ACP candidate genes, clathrin heavy chain (CHC), vacuolar ATPase subunit A (vATPase-A), and sucrose non-fermenting protein 7 (Snf7). Gene knockdown was quantified for ACP teneral adults and 3rd instar nymphs allowed a 48 h ingestion-access period (IAP) on 10, 50,100, 200, and 500 ng/µL dsRNA dissolved in 20% sucrose followed by a 5-day post-IAP on orange jasmine shoots. Significant gene knockdown (p < 0.05) in ACP third instar nymphs and adults ranged from 12-34% and 18-39%, 5 days post-IAP on dsRNA at 10-500 and 100-500 ng/µL, respectively. The threshold concentration beyond which no significant gene knockdown and adult mortality was observed post-48 h IAP and 10-day IAP, respectively, was determined as 200 ng/µL, a concentration indicative of optimal RNAi penetrance.
Collapse
Affiliation(s)
- Esmaeil Saberi
- Southwest Florida Research and Education Center, Department of Entomology and Nematology, IFAS, University of Florida, Immokalee, FL 34142, USA;
| | - Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (M.M.); (K.N.)
- RNAissance Ag, LLC, Saint Louis, MO 63132, USA
| | - Jorge R. Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, MI 48710, USA;
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil EC090112, Ecuador
| | - Kiran Nawaz
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (M.M.); (K.N.)
- RNAissance Ag, LLC, Saint Louis, MO 63132, USA
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA; (M.M.); (K.N.)
| | - Jawwad A. Qureshi
- Southwest Florida Research and Education Center, Department of Entomology and Nematology, IFAS, University of Florida, Immokalee, FL 34142, USA;
| |
Collapse
|
34
|
Victoria J, Tripathi S, Prakash V, Tiwari K, Mahra S, Sharma A, Rana S, Kandhol N, Sahi S, Tripathi DK, Sharma S. Encapsulated nanopesticides application in plant protection: Quo vadis? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108225. [PMID: 38147708 DOI: 10.1016/j.plaphy.2023.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
The increased global food insecurity due to the growing population can be addressed with precision and sustainable agricultural practices. To tackle the issues regarding food insecurity, farmers used different agrochemicals that improved plant growth and protection. Among these agrochemicals, synthetic pesticides used for plant protection in the agricultural field have various disadvantages. Conventional applications of synthetic pesticides have drawbacks such as rapid degradation, poor solubility, and non-target effects, as well as increased pesticide runoff that pollutes the environment. Nanotechnology has evolved as a potential solution to increase agricultural productivity through the development of different nanoforms of agrochemicals such as nanopesticides, nano-fabricated fertilizers, nanocapsules, nanospheres, nanogels, nanofibers, nanomicelles, and nano-based growth promoters. Encapsulation of these pesticides inside the nanomaterials has provided good biocompatibility over conventional application by inhibiting the early degradation of active ingredients (AI), increasing the uptake and adhesion of pesticides, improving the stability, solubility, and permeability of the pesticides, and decreasing the environmental impacts due to the pesticide runoff. In this review, different nanoforms of encapsulated pesticides and their smart delivery systems; nanocarriers in RNA interference (RNAi) based pesticides; environmental fate, practical implications, management of nanopesticides; and future perspectives are discussed.
Collapse
Affiliation(s)
- J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Adwithiya Sharma
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St., Philadelphia, PA, 19104, USA
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
35
|
Barathi S, Sabapathi N, Kandasamy S, Lee J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. ENVIRONMENTAL RESEARCH 2024; 240:117432. [PMID: 37865327 DOI: 10.1016/j.envres.2023.117432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Insecticides are indispensable for modern agriculture to ensuring crop protection and optimal yields. However, their excessive use raises concerns regarding their adverse effects on agriculture and the environment. This study examines the impacts of insecticides on agriculture and proposes remediation strategies. Excessive insecticide application can lead to the development of resistance in target insects, necessitating higher concentrations or stronger chemicals, resulting in increased production costs and disruption of natural pest control mechanisms. In addition, non-target organisms, such as beneficial insects and aquatic life, suffer from the unintended consequences of insecticide use, leading to ecosystem imbalances and potential food chain contamination. To address these issues, integrated pest management (IPM) techniques that combine judicious insecticide use with biological control and cultural practices can reduce reliance on chemicals. Developing and implementing selective insecticides with reduced environmental persistence is crucial. Promoting farmer awareness of responsible insecticide use, offering training and resources, and adopting precision farming technologies can minimize overall insecticide usage.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Nadana Sabapathi
- Centre of Translational Research, Shenzhen Bay Laboratory, Guangming, 518107, China
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Coimbatore, 641004, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
36
|
Zhu Y, Kong L, Wang X, Xu J, Qian X, Yang Y, Xu Z, Zhu KY. Rolling circle transcription: A new system to produce RNA microspheres for improving RNAi efficiency in an agriculturally important lepidopteran pest (Mythimna separate). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105680. [PMID: 38072537 DOI: 10.1016/j.pestbp.2023.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
We applied a new RNA interference (RNAi) system using rolling circle transcription (RCT) technology to generate RNA microspheres (RMS) for targeting two key chitin synthetic pathway genes [chitin synthase A (CHSA), chitin synthase B (CHSB)] in the larvae of the oriental armyworm (Mythimna separate), a RNAi-unsusceptible agriculturally important lepidopteran pest. Feeding the third-instar larvae with the RMS-CHSA- or RMS-CHSB-treated corn leaf discs suppressed the expression of CHSA by 81.7% or CHSB by 88.1%, respectively, at 72 h. The silencing of CHSA consequently affected the larval development, including the reduced body weight (54.0%) and length (41.3%), as evaluated on the 7th day, and caused significant larval mortalities (51.1%) as evaluated on the 14th day. Similar results were obtained with the larvae fed RMS-CHSB. We also compared RNAi efficiencies among different strategies: 1) two multi-target RMS [i.e., RMS-(CHSA + CHSB), RMS-CHSA + RMS-CHSB], and 2) multi-target RMS and single-target RMS (i.e., either RMS-CHSA or RMS-CHSB) and found no significant differences in RNAi efficiency. By using Cy3-labeled RMS, we confirmed that RMS can be rapidly internalized into Sf9 cells (<6 h). The rapid cellular uptake of RMS accompanied with significant RNAi efficiency through larval feeding suggests that the RCT-based RNAi system can be readily applied to study the gene functions and further developed as bio-pesticides for insect pest management. Additionally, our new RNAi system takes the advantage of the microRNA (miRNA)-mediated RNAi pathway using miRNA duplexes generated in vivo from the RMS by the target insect. The system can be used for RNAi in a wide range of insect species, including lepidopteran insects which often exhibit extremely low RNAi efficiency using other RNAi approaches.
Collapse
Affiliation(s)
- Yutong Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinqian Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazheng Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| |
Collapse
|
37
|
Dalaisón-Fuentes LI, Pascual A, Crespo M, Andrada NL, Welchen E, Catalano MI. Knockdown of double-stranded RNases (dsRNases) enhances oral RNA interference (RNAi) in the corn leafhopper, Dalbulus maidis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105618. [PMID: 37945254 DOI: 10.1016/j.pestbp.2023.105618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023]
Abstract
The leafhopper Dalbulus maidis is a harmful pest that causes severe damage to corn crops. Conventional chemical pesticides have negative environmental impacts, emphasizing the need for alternative solutions. RNA interference (RNAi) is a more specific and environmentally friendly method for controlling pests and reducing the negative impacts of current pest management practices. Previous studies have shown that orally administered double-stranded RNA (dsRNA) is less effective than injection protocols in silencing genes. This study focuses on identifying and understanding the role of double-stranded ribonucleases (dsRNases) in limiting the efficiency of oral RNAi in D. maidis. Three dsRNases were identified and characterized, with Dmai-dsRNase-2 being highly expressed in the midgut and salivary glands. An ex vivo degradation assay revealed significant nuclease activity, resulting in high instability of dsRNA when exposed to tissue homogenates. Silencing Dmai-dsRNase-2 improved the insects' response to the dsRNA targeting the gene of interest, providing evidence of dsRNases involvement in oral RNAi efficiency. Therefore, administering both dsRNase-specific and target gene-specific-dsRNAs simultaneously is a promising approach to increase the efficiency of oral RNAi and should be considered in future control strategies.
Collapse
Affiliation(s)
- Lucía I Dalaisón-Fuentes
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Agustina Pascual
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina.
| | - Mariana Crespo
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Nicolás L Andrada
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María I Catalano
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Avenida Presidente Frondizi 2650 (2700), Pergamino, Argentina; Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Monteagudo 2772 (2700), Pergamino, Argentina
| |
Collapse
|
38
|
Jiang X, Zhong F, Chen Y, Shi D, Chao L, Yu L, He B, Xu C, Wu Y, Tang B, Duan H, Wang S. Novel compounds ZK-PI-5 and ZK-PI-9 regulate the reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae), with insecticide potential. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1850-1861. [PMID: 37478561 DOI: 10.1093/jee/toad140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Trehalase inhibitors prevent trehalase from breaking down trehalose to provide energy. Chitinase inhibitors inhibit chitinase activity affecting insect growth and development. This is an important tool for the investigation of regulation of trehalose metabolism and chitin metabolism in insect reproduction. There are few studies on trehalase or chitinase inhibitors' regulation of insect reproduction. In this study, ZK-PI-5 and ZK-PI-9 were shown to have a significant inhibitory effect on the trehalase, and ZK-PI-9 significantly inhibited chitinase activity in female pupae. We investigated the reproduction regulation of Spodoptera frugiperda using these new inhibitors and evaluated their potential as new insecticides. Compounds ZK-PI-5 and ZK-PI-9 were injected into the female pupae, and the control group was injected with solvent (2% DMSO). The results showed that the emergence failure rate for pupae treated with inhibitors increased dramatically and aberrant phenotypes such as difficulty in wings spreading occurred. The oviposition period and longevity of female adults in the treated group were significantly shorter than those in the control group, and the ovaries developed more slowly and shrank earlier. The egg hatching rate was significantly reduced by treatment with the inhibitor. These results showed that the two new compounds had a significant impact on the physiological indicators related to reproduction of S. frugiperda, and have pest control potential. This study investigated the effect of trehalase and chitin inhibitors on insect reproduction and should promote the development of green and efficient insecticides.
Collapse
Affiliation(s)
- Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Yan Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Dongmei Shi
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Caidi Xu
- Jing Hengyi School of Education, HangzhouNormal University, Hangzhou, Zhejiang 311121, P.R.China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department ,Guiyang University, Guiyang 550005, P.R.China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Hongxia Duan
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
39
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Wu F, Du Z, Zhang T, Jiang L, Zhang L, Ge S. A neurotransmitter histamine mediating phototransduction and photopreference in Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2023; 79:3002-3011. [PMID: 36966484 DOI: 10.1002/ps.7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The biogenic amine histamine plays a critical role in the phototransduction and photopreference of most insects. Here, we study the function of histamine in Callosobruchus maculatus, a global storage pest. RESULTS In our experiment, we initially identified the histidine decarboxylase (hdc) gene through bioinformation analysis. We subsequently investigated effects of hdc and histamine on the photopreference of C. maculatus using a combination of RNA interference (RNAi), electroretinograms (ERG), immunostaining, and photopreference behavior approaches. Our results showed that histamine was required for visual signal transduction of C. maculatus, and increased its photopreference regardless of the wavelength. CONCLUSION This is the first study analyzing the molecular characteristics of C. maculatus photopreference, which forms the basis for a molecular mechanism for the effects of histamine on its visual transduction and preference. In practice, better understanding the photopreference patterns contributes to IPM (integrated pest management) for this storage pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong Du
- College of Life Sciences, Fujian Normal University, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fuzhou, China
| | - Tianhao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijie Zhang
- Science and Technical Research Center of China Customs, Beijing, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Zhang C, Ding Y, Zhou M, Tang Y, Chen R, Chen Y, Wen Y, Wang S. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae. Parasit Vectors 2023; 16:259. [PMID: 37533099 PMCID: PMC10394979 DOI: 10.1186/s13071-023-05865-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Mosquitoes are an important vector of viral transmission, and due to the complexity of the pathogens they transmit, vector control may be the most effective strategy to control mosquito-borne diseases. Chitin is required for insect growth and development and is absent in higher animals and plants, so regulating the chitin synthesis pathway can serve as a potentially effective means to control vector insects. Most of the current research on the chitin synthase (CHS) gene is focused on chitin synthase-1 (CHS-1), while relatively little is known about chitin synthase-2 (CHS-2). RESULTS The CHS-2 gene of Ae. albopictus is highly conserved and closely related to that of Aedes aegypti. The expression of CHS-2 in the third-instar larvae and pupal stage of Ae. albopictus was relatively high, and CHS-2 expression in adult mosquitoes reached the highest value 24 h after blood-feeding. In the fourth-instar larvae of Ae. albopictus, CHS-2 expression was significantly higher in the midgut than in the epidermis. Silencing CHS-2 in Ae. albopictus larvae had no effect on larval survival and emergence. The expression of four genes related to chitin synthesis enzymes was significantly upregulated, the expression level of three genes was unchanged, and only the expression level of GFAT was significantly downregulated. The expression of chitin metabolism-related genes was also upregulated after silencing. The level of chitin in the midgut of Ae. albopictus larvae was significantly decreased, while the chitinase activity was unchanged. The epithelium of the midgut showed vacuolization, cell invagination and partial cell rupture, and the structure of the peritrophic membrane was destroyed or even absent. METHODS The expression of CHS-2 in different developmental stages and tissues of Aedes albopictus was detected by real-time fluorescence quantitative PCR (qPCR). After silencing CHS-2 of the fourth-instar larvae of Ae. albopictus by RNA interference (RNAi), the expression levels of genes related to chitin metabolism, chitin content and chitinase activity in the larvae were detected. The structure of peritrophic membrane in the midgut of the fourth-instar larvae after silencing was observed by paraffin section and hematoxylin-eosin (HE) staining. CONCLUSION CHS-2 can affect midgut chitin synthesis and breakdown by regulating chitin metabolic pathway-related genes and is involved in the formation of the midgut peritrophic membrane in Ae. albopictus, playing an important role in growth and development. It may be a potential target for enhancing other control methods.
Collapse
Affiliation(s)
- Chen Zhang
- Hangzhou Normal University, Hangzhou, China
| | | | - Min Zhou
- Hangzhou Normal University, Hangzhou, China
| | - Ya Tang
- Hangzhou Normal University, Hangzhou, China
| | - Rufei Chen
- Hangzhou Normal University, Hangzhou, China
| | | | - Yating Wen
- Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
42
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
43
|
Chen WW, Zhang H, Chen Y, Zeng WH, Li ZQ. Combined use of lipopolysaccharide-binding protein dsRNA and Gram-negative bacteria for pest management of Coptotermes formosanus. PEST MANAGEMENT SCIENCE 2023; 79:2299-2310. [PMID: 36775842 DOI: 10.1002/ps.7405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND RNA interference (RNAi) technology is an environmentally friendly strategy for controlling insect pests. Lipopolysaccharide-binding protein (LBP) recognizes lipopolysaccharides, which are a major outer membrane constituent of Gram-negative bacteria. We propose that the LBP gene is a potential target for termite management; however, to date, no studies have examined this gene in termites. RESULTS In this study, we cloned the LBP gene of Coptotermes formosanus (Cf) and found that the mortality rate of termite workers significantly increased, and the repellence of these workers to Gram-negative bacteria was suppressed after knockdown of CfLBP using double-stranded RNA (dsRNA) injection and feeding. Moreover, the mortality rate of termite workers fed with CfLBP dsRNA and three Gram-negative bacteria (provided separately) was over 50%, which was much higher than that of termites treated with either CfLBP dsRNA or Gram-negative bacteria. Finally, we found that CfLBP impacts the IMD pathway to regulate the immune response of C. formosanus to Gram-negative bacteria. CONCLUSION CfLBP plays a important role in the immune defense of termites against Gram-negative bacteria. It can be used as an immunosuppressant for RNAi-based termite management and is an ideal target for termite control based on the combined use of RNAi and pathogenic bacteria. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen-Hui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
44
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
45
|
Sandal S, Singh S, Bansal G, Kaur R, Mogilicherla K, Pandher S, Roy A, Kaur G, Rathore P, Kalia A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int J Mol Sci 2023; 24:ijms24119161. [PMID: 37298113 DOI: 10.3390/ijms24119161] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.
Collapse
Affiliation(s)
- Shelja Sandal
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Gulshan Bansal
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Suneet Pandher
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Gurmeet Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Pankaj Rathore
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| |
Collapse
|
46
|
Zhang R, Lun X, Zhang Y, Zhao Y, Xu X, Zhang Z. Characterization of Ionotropic Receptor Gene EonuIR25a in the Tea Green Leafhopper, Empoasca onukii Matsuda. PLANTS (BASEL, SWITZERLAND) 2023; 12:2034. [PMID: 37653951 PMCID: PMC10223087 DOI: 10.3390/plants12102034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Ionotropic receptors (IRs) play a central role in detecting chemosensory information from the environment and guiding insect behaviors and are potential target genes for pest control. Empoasca onukii Matsuda is a major pest of the tea plant Camellia sinensis (L.) O. Ktze, and seriously influences tea yields and quality. In this study, the ionotropic receptor gene EonuIR25a in E. onukii was cloned, and the expression pattern of EonuIR25a was detected in various tissues. Behavioral responses of E. onukii to volatile compounds emitted by tea plants were determined using olfactometer bioassay and field trials. To further explore the function of EonuIR25a in olfactory recognition of compounds, RNA interference (RNAi) of EonuIR25a was carried out by ingestion of in vitro synthesized dsRNAs. The coding sequence (CDS) length of EonuIR25a was 1266 bp and it encoded a 48.87 kD protein. EonuIR25a was enriched in the antennae of E. onukii. E. onukii was more significantly attracted by 1-phenylethanol at a concentration of 100 µL/mL. Feeding with dsEonuIR25a significantly downregulated the expression level of EonuIR25a, after 3 h of treatment, which disturbed the behavioral responses of E. onukii to 1-phenylethanol at a concentration of 100 µL/mL. The response rate of E. onukii to 1-phenylethanol was significantly decreased after dsEonuIR25a treatment for 12 h. In summary, the ionotropic receptor gene EonuIR25a was highly expressed in the antennae of E. onukii and was involved in olfactory recognition of the tea plant volatile 1-phenylethanol. The present study may help us to use the ionotropic receptor gene as a target for the behavioral manipulation of E. onukii in the future.
Collapse
Affiliation(s)
- Ruirui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiaoyue Lun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yunhe Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Science, Ji’nan 250100, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| |
Collapse
|
47
|
Carroll E, Kunte N, McGraw E, Gautam S, Range R, Noveron-Nunez JA, Held DW, Avila LA. Gene silencing in adult Popillia japonica through feeding of double-stranded RNA (dsRNA) complexed with branched amphiphilic peptide capsules (BAPCs). FRONTIERS IN INSECT SCIENCE 2023; 3:1151789. [PMID: 38469482 PMCID: PMC10926504 DOI: 10.3389/finsc.2023.1151789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 03/13/2024]
Abstract
Gene silencing by feeding double-stranded (dsRNA) holds promise as a novel pest management strategy. Nonetheless, degradation of dsRNA in the environment and within the insect gut, as well as inefficient systemic delivery are major limitations to applying this strategy. Branched amphiphilic peptide capsules (BAPCs) complexed with dsRNA have been used to successfully target genes outside and inside the gut epithelium upon ingestion. This suggests that BAPCs can protect dsRNA from degradation in the gut environment and successfully shuttle it across gut epithelium. In this study, our objectives were to 1) Determine whether feeding on BAPC-dsRNA complexes targeting a putative peritrophin gene of P. japonica would result in the suppression of gut peritrophin synthesis, and 2) gain insight into the cellular uptake mechanisms and transport of BAPC-dsRNA complexes across the larval midgut of P. japonica. Our results suggest that BAPC-dsRNA complexes are readily taken up by the midgut epithelium, and treatment of the tissue with endocytosis inhibitors effectively suppresses intracellular transport. Further, assessment of gene expression in BAPC- peritrophin dsRNA fed beetles demonstrated significant downregulation in mRNA levels relative to control and/or dsRNA alone. Our results demonstrated that BAPCs increase the efficacy of gene knockdown relative to dsRNA alone in P. japonica adults. To our knowledge, this is the first report on nanoparticle-mediated dsRNA delivery through feeding in P. japonica.
Collapse
Affiliation(s)
- Elijah Carroll
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Ryan Range
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | | | - David W. Held
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
48
|
Timani K, Bastarache P, Morin PJ. Leveraging RNA Interference to Impact Insecticide Resistance in the Colorado Potato Beetle, Leptinotarsa decemlineata. INSECTS 2023; 14:418. [PMID: 37233046 PMCID: PMC10231074 DOI: 10.3390/insects14050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata Say, is a potato pest that can cause important economic losses to the potato industry worldwide. Diverse strategies have been deployed to target this insect such as biological control, crop rotation, and a variety of insecticides. Regarding the latter, this pest has demonstrated impressive abilities to develop resistance against the compounds used to regulate its spread. Substantial work has been conducted to better characterize the molecular signatures underlying this resistance, with the overarching objective of leveraging this information for the development of novel approaches, including RNAi-based techniques, to limit the damage associated with this insect. This review first describes the various strategies utilized to control L. decemlineata and highlights different examples of reported cases of resistances against insecticides for this insect. The molecular leads identified as potential players modulating insecticide resistance as well as the growing interest towards the use of RNAi aimed at these leads as part of novel means to control the impact of L. decemlineata are described subsequently. Finally, select advantages and limitations of RNAi are addressed to better assess the potential of this technology in the broader context of insecticide resistance for pest management.
Collapse
Affiliation(s)
| | | | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (K.T.); (P.B.)
| |
Collapse
|
49
|
Gilbert C, Maumus F. Sidestepping Darwin: horizontal gene transfer from plants to insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101035. [PMID: 37061183 DOI: 10.1016/j.cois.2023.101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Horizontal transfer of genetic material (HT) is the passage of DNA between organisms by means other than reproduction. Increasing numbers of HT are reported in insects, with bacteria, fungi, plants, and insects acting as the main sources of these transfers. Here, we provide a detailed account of plant-to-insect HT events. At least 14 insect species belonging to 6 orders are known to have received plant genetic material through HT. One of them, the whitefly Bemisia tabaci (Middle East Asia Minor 1), concentrates most of these transfers, with no less than 28 HT events yielding 55 plant-derived genes in this species. Several plant-to-insect HT events reported so far involve gene families known to play a role in plant-parasite interactions. We highlight methodological approaches that may further help characterize these transfers. We argue that plant-to-insect HT is likely more frequent than currently appreciated and that in-depth studies of these transfers will shed new light on plant-insect interactions.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France.
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| |
Collapse
|
50
|
Guan R, Li T, Smagghe G, Miao X, Li H. Editorial: dsRNA-based pesticides: production, development, and application technology. Front Bioeng Biotechnol 2023; 11:1197666. [PMID: 37122860 PMCID: PMC10133679 DOI: 10.3389/fbioe.2023.1197666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Ruobing Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guy Smagghe
- Department Biology, Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department Plants and Crops, Ghent University, Ghent, Belgium
- Institute Entomology, Guizhou University, Guizhou, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haichao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|