1
|
Jiang H, Dong Y, Pan S, Zhou H, Cui H. Optimization of the Extraction Process and Comprehensive Evaluation of the Antimicrobial and Antioxidant Properties of Different Polar Parts of the Ethanol Extracts of Cannabis sativa L. ACS OMEGA 2025; 10:17453-17467. [PMID: 40352509 PMCID: PMC12060038 DOI: 10.1021/acsomega.4c10986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The total flavonoids of Cannabis sativa L. were selected as the research object, and the extraction process of C. sativa L. was optimized on the basis of a single factor experiment utilizing a five-factor, three-level response surface method. Subsequently, the vitro antimicrobial and antioxidant activities of the flavonoids were evaluated. The optimized extraction conditions were as follows: ratio of liquid to solid, 24.69:1 mL/g; soaking time, 102.12 min; extraction time, 165.96 min; ethanol concentration, 46.59%; extraction temperature, 86.87 °C. The extraction rate of C. sativa L. flavonoids (CSF) was found to be 5.51 ± 0.04 mg/g. The extraction of crude flavonoid (i.e., flavonoids extracted under the optimal extraction process) was conducted using four solvents, resulting in five C. sativa L. flavonoid extracts (petroleum ether, CSFp; n-butanol, CSFb; ethyl acetate, CSFe; aqueous phase, CSFw; and crude flavonoid, CSF). CSF contains 10 flavonoid components. In vitro, all five CSF samples demonstrated good total reducing power, effective scavenging capacity against DPPH and ABTS+ radicals, and pronounced inhibitory effects against Escherichia coli, Bacillus subtilis, and Bacillus pumilus. Analytic Hierarchy Process (AHP) was employed to evaluate the five CSF samples in terms of antibacterial and antioxidant activity. The results indicated that petroleum-ether-extracted C. sativa L. flavonoids (CSFp) exhibited the most pronounced antibacterial and antioxidant effects.
Collapse
Affiliation(s)
- Han Jiang
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Yao Dong
- College
of Biology & Food Engineering, Jilin
Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Simeng Pan
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Hongli Zhou
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
- Engineering
Research Center for Agricultural Resources and Comprehensive Utilization
of Jilin Province, Jilin Institute of Chemical
Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Hao Cui
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
- Engineering
Research Center for Agricultural Resources and Comprehensive Utilization
of Jilin Province, Jilin Institute of Chemical
Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| |
Collapse
|
2
|
Chen YJ, Liao SW, Lai YL, Li YF, Lu YC, Tai CK. Epigenetic downregulation of the proapoptotic gene HOXA5 in oral squamous cell carcinoma. Mol Med Rep 2025; 31:56. [PMID: 39704209 DOI: 10.3892/mmr.2024.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Homeobox A5 (HOXA5) has been identified as a tumor suppressor gene in breast cancers, but its role in oral squamous cell carcinoma (OSCC) has not been confirmed. The Illumina GoldenGate Assay for methylation identified that DNA methylation patterns differ between tumorous and normal tissues in the oral cavity and that HOXA5 is one of the genes that are hypermethylated in oral tumor tissues. The present study obtained more‑complete information on the methylation status of HOXA5 by using the Illumina Infinium MethylationEPIC BeadChip and bisulfite sequencing assays. The results indicated that HOXA5 hypermethylation has great potential as a biomarker for detecting OSCC. Comparing HOXA5 RNA expression between normal oral tissue and OSCC tissue samples indicated that its median level was 2.06‑fold higher in normal tissues that in OSCC tissues. Moreover, treatment using the demethylating agent 5‑aza‑2'‑deoxycytidine can upregulate HOXA5 expression in OSCC cell lines, verifying that the silencing of HOXA5 is primarily regulated by its hypermethylation. It was also found that upregulation of HOXA5 expression can not only increase OSCC cell death but that it can also enhance the therapeutic effect of cisplatin both in vitro and in vivo, suggesting that HOXA5 is an epigenetically downregulated proapoptotic gene in OSCC.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chia‑Yi 62102, Taiwan, R.O.C
| | - Shin-Wei Liao
- Department of Biomedical Sciences, National Chung Cheng University, Chia‑Yi 62102, Taiwan, R.O.C
| | - Yen-Ling Lai
- Department of Biomedical Sciences, National Chung Cheng University, Chia‑Yi 62102, Taiwan, R.O.C
| | - Yu-Fen Li
- Department of Public Health, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yin-Che Lu
- Division of Hematology‑Oncology, Ditmanson Medical Foundation Chia‑Yi Christian Hospital, Chia‑Yi 60002, Taiwan, R.O.C
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia‑Yi 62102, Taiwan, R.O.C
| |
Collapse
|
3
|
Yang Q, Huan R, Meng D, Qi J, Xia L. Progress in the study of anti-tumor effects and mechanisms of vitexin. Pharmacol Rep 2025; 77:124-134. [PMID: 39477892 DOI: 10.1007/s43440-024-00664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 01/21/2025]
Abstract
Vitexin (apigenin-8-C-beta-D-glucopyranoside) is a natural flavonoid derivative with anti-cancer, antioxidant, anti-inflammatory, antihypertensive, anti-asthma, anti-epilepsy, and other therapeutic effects. It is extracted from pearl millet, hawthorn, pigeon bean, mung bean, and other medicinal plants. Vitexin has received widespread attention because of its significant anti-tumor effect. It induces apoptosis and anti-tumor angiogenesis, inhibits tumor cell migration and invasion, regulates tumor cell autophagy and immunity, and increases patient sensitivity to radiotherapy and chemotherapy. It has a significant anti-tumor effect on breast, prostate, liver, cervical, and colon cancers, gliomas, and other malignant tumors. This review demonstrates the latest research progress on the anti-tumor effects and potential mechanisms of vitexin. It summarizes its anti-tumor mechanism to provide new theoretical support and reference for cancer treatment.
Collapse
Affiliation(s)
- Qiming Yang
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Huan
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Defeng Meng
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junwei Qi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Zhao C, He Y, Shi H, Han C, Zhu X, Wang C, Wang B, Liu J, Shi Y, Hua D. Investigating the molecular mechanism of vitexin targeting CDK1 to inhibit colon cancer cell proliferation via GEO chip data mining, computer simulation, and biological activity verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1637-1652. [PMID: 39145810 DOI: 10.1007/s00210-024-03341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024]
Abstract
The objective of this study is to explore the antiproliferative activity of the traditional Chinese medicine monomer vitexin on colon cancer HCT-116 cells and its underlying mechanism. The in vitro antiproliferative activity of vitexin on colon cancer HCT-116 cells was evaluated using the CCK-8 assay. Potential drug targets for colon cancer were identified through GEO chip data mining, and molecular docking using Schrödinger software was conducted. Molecular dynamics simulations were employed to deeply analyze the interaction between candidate compounds and target proteins. Flow cytometry was employed to examine the cell cycle. The impact of vitexin on the expression of CDK1/cyclinB proteins in HCT-116 cells was assessed through Western blot analysis, immunofluorescence, and CDK inhibition assay. Vitexin exhibited inhibitory effects on colon cancer HCT-116 cells, with a half inhibitory concentration (IC50) value of 203.27 ± 9.85 μmol/L. The analysis of differential gene expression in GEO and TCGA datasets, along with the GENECARD dataset of related disease genes, identified 91 disease targets, including "CDK1." Vitexin induced cell cycle arrest in the G2/M phase of HCT-116 cells. Molecular docking revealed a strong interaction between Vitexin and CDK1 (Docking score - 9.497), with molecular dynamics simulations confirming the stability of the Vitexin-CDK1 complex and comparable inhibitory effects to Flavopiridol. Vitexin can inhibit the expression of CDK1/cyclin B proteins in HCT-116 cells, with an IC50 of 58.06 ± 3.07 μmol/L. Vitexin may inhibit colon cancer HCT-116 cell proliferation by suppressing CDK1/cyclin B expression, leading to cell cycle arrest in the G2/M phase.
Collapse
Affiliation(s)
- Chenying Zhao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Yifan He
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Hailong Shi
- School of Basic Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Chaojun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang, China.
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Huang K, Ding R, Lai C, Wang H, Fan X, Chu Y, Fang Y, Hua T, Yuan H. Vitexin attenuates neuropathic pain by regulating astrocyte autophagy flux and polarization via the S1P/ S1PR1-PI3K/ Akt axis. Eur J Pharmacol 2024; 981:176848. [PMID: 39094925 DOI: 10.1016/j.ejphar.2024.176848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Neuropathic pain (NP) is associated with astrocytes activation induced by nerve injury. Reactive astrocytes, strongly induced by central nervous system damage, can be classified into A1 and A2 types. Vitexin, a renowned flavonoid compound, is known for its anti-inflammatory and analgesic properties. However, its role in NP remains unexplored. This study aims to investigate the effects of vitexin on astrocyte polarization and its underlying mechanisms. A mouse model of NP was established, and primary astrocytes were stimulated with sphingosine-1-phosphate (S1P) to construct a cellular model. The results demonstrated significant activation of spinal astrocytes on days 14 and 21. Concurrently, reactive astrocytes predominantly differentiated into the A1 type. Western blot analysis revealed an increase in A1 astrocyte-associated protein (C3) and a decrease in A2 astrocyte-associated protein (S100A10). Serum S1P levels increased on days 14 and 21, alongside a significant upregulation of Sphingosine-1-phosphate receptor 1 (S1PR1) mRNA expression and elevated expression of chemokines. In vitro, stimulation with S1P inhibited the Phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt) signaling pathway and autophagy flux, promoting polarization of astrocytes towards the A1 phenotype while suppressing the polarization of A2 astrocytes. Our findings suggest that vitexin, acting on astrocytes but not microglia, attenuates S1P-induced downregulation of PI3K/Akt signaling, restores autophagy flux in astrocytes, regulates A1/A2 astrocyte ratio, and reduces chemokine and S1P secretion, thereby alleviating neuropathic pain caused by nerve injury.
Collapse
Affiliation(s)
- Kesheng Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Chengyuan Lai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaoyi Fan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yan Chu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Hongbin Yuan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
6
|
Lotfi MS, Rassouli FB. Natural Flavonoid Apigenin, an Effective Agent Against Nervous System Cancers. Mol Neurobiol 2024; 61:5572-5583. [PMID: 38206472 DOI: 10.1007/s12035-024-03917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Cancer is a serious public health concern worldwide, and nervous system (NS) cancers are among the most life-threatening malignancies. Efforts have been devoted to introduce natural anticancer agents with minimal side effects. Apigenin is an edible flavonoid that is abundantly found in many vegetables and fruits. Various pharmaceutical activities, including anti-inflammatory, antioxidative, antimicrobial, and anticancer effects have been reported for apigenin. This review provides insights into the therapeutic effects of apigenin and flavonoids with similar structure on glioblastoma and neuroblastoma. Current evidence indicates that apigenin has the unique ability to cross the blood-brain barrier, and its antioxidative, anti-inflammatory, neurogenic, and neuroprotective effects have made this flavonoid a great option for the treatment of neurodegenerative disorders. Meanwhile, apigenin has low toxicity on normal neuronal cells, while induces cytotoxicity on NS cancer cells via triggering several signal pathways and molecular targets. Anticancer effects of apigenin have been contributed to various mechanisms such as induction of cell cycle arrest and apoptosis, and inhibition of migration, invasion, and angiogenesis. Although apigenin is a promising pharmaceutical agent, its low bioavailability is an important issue that must be solved before introducing to clinic. Recently, nano-delivery of apigenin by liposomes and poly lactic-co-glycolide nanoparticles has greatly improved functionality of this agent. Hence, investigating pharmaceutical effects of apigenin-loaded nanocarriers on NS cancer cell lines and animal models is recommended for future studies.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Duan T, Li M, Lin Z, Meng L, Li M, Xia T, Zhang X, Lin G, Yan L, Liang M, Zhu Q, Li Z, Yang J. The Protective Effect of Vitexin on Hypertensive Nephropathy Rats. Kidney Blood Press Res 2024; 49:753-762. [PMID: 39079512 DOI: 10.1159/000540618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/18/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION Vitexin is a natural flavonoid compound extracted from Vitex leaves or seeds, exhibiting various pharmacological activities including anticancer, antihypertensive, anti-inflammatory, and spasmolytic effects. However, its protective effects on hypertensive nephropathy (HN) and the underlying mechanisms remain unclear. METHODS Spontaneous hypertension rats were fed a high-sugar and high-fat diet for 8 weeks to induce the disease HN model. From the 5th week, the rats were administered vitexin via gavage. Blood pressure was measured biweekly using the tail-cuff method. Histopathological changes were assessed using HE staining, and biochemical analyses were performed to evaluate the effects of vitexin on HN rats. The underlying mechanisms of vitexin treatment were investigated through western blotting. RESULTS The data demonstrated that vitexin significantly lowered systolic, diastolic, and mean arterial pressures and ameliorated histopathological changes in HN rats. Biochemical analyses revealed that vitexin reduced the levels of creatinine (Cr), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), total protein (TP), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and advanced glycation end products (AGEs), while increasing the levels of albumin (ALB) and superoxide dismutase (SOD). Western blotting results indicated that vitexin treatment decreased the expression of TNF-α, IL-6, and nuclear factor kappa-B (NF-κB), while increasing the expression of SOD. CONCLUSION The findings of this study suggest that vitexin exerts protective effects against HN, providing pharmacological evidence for its potential use in HN treatment.
Collapse
Affiliation(s)
- Tingting Duan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Minyi Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Ziyang Lin
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lanqing Meng
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Mengqiu Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Tao Xia
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Xianlong Zhang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Guixuan Lin
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Lufeng Yan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Mingjie Liang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Quan Zhu
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Zhenghai Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
8
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Cao X, Liu Q, Adu-Frimpong M, Shi W, Liu K, Deng T, Yuan H, Weng X, Gao Y, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic Generation of Near-Infrared Photothermal Vitexin/ICG Liposome with Amplified Photodynamic Therapy. AAPS PharmSciTech 2023; 24:82. [PMID: 36949351 DOI: 10.1208/s12249-023-02539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 03/24/2023] Open
Abstract
Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Hui Yuan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Yihong Gao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| | - Gao Xiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang, Jiangsu, People's Republic of China.
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi, 710072, People's Republic of China.
| |
Collapse
|
10
|
Anticancer Potential of Apigenin and Isovitexin with Focus on Oncogenic Metabolism in Cancer Stem Cells. Metabolites 2023; 13:metabo13030404. [PMID: 36984844 PMCID: PMC10051376 DOI: 10.3390/metabo13030404] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
It has been demonstrated that cancer stem cells (CSCs) go through metabolic changes that differentiate them from non-CSCs. The altered metabolism of CSCs plays a vital role in tumor initiation, progression, immunosuppression, and resistance to conventional therapy. Therefore, defining the role of CSC metabolism in carcinogenesis has emerged as a main focus in cancer research. Two natural flavonoids, apigenin and isovitexin, have been shown to act synergistically with conventional chemotherapeutic drugs by sensitizing CSCs, ultimately leading to improved therapeutic efficacy. The aim of this study is to present a critical and broad evaluation of the anti-CSC capability of apigenin and isovitexin in different cancers as novel and untapped natural compounds for developing drugs. A thorough review of the included literature supports a strong association between anti-CSC activity and treatment with apigenin or isovitexin. Additionally, it has been shown that apigenin or isovitexin affected CSC metabolism and reduced CSCs through various mechanisms, including the suppression of the Wnt/β-catenin signaling pathway, the inhibition of nuclear factor-κB protein expression, and the downregulation of the cell cycle via upregulation of p21 and cyclin-dependent kinases. The findings of this study demonstrate that apigenin and isovitexin are potent candidates for treating cancer due to their antagonistic effects on CSC metabolism.
Collapse
|
11
|
Enhancement of solubility, thermal stability and bioaccessibility of vitexin using phosphatidylcholine-based phytosome. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
12
|
Hu ZY, Yang ZB, Zhang R, Luo XJ, Peng J. The Protective Effect of Vitexin Compound B-1 on Rat Cerebral I/R Injury through a Mechanism Involving Modulation of miR-92b/NOX4 Pathway. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:137-147. [PMID: 35331124 DOI: 10.2174/1871527321666220324115848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent studies have uncovered that vitexin compound B-1 (VB-1) can protect neurons against hypoxia/reoxygenation (H/R)-induced oxidative injury through suppressing NOX4 expression. OBJECTIVE The aims of this study are to investigate whether VB-1 can protect the rat brain against ischemia/ reperfusion (I/R) injury and whether its effect on NOX4 expression is related to modulation of certain miRNAs expression. METHODS Rats were subjected to 2 h of cerebral ischemia followed by 24 h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score and infarct volume concomitant with an upregulation of NOX4 expression, increase in NOX activity, and downregulation of miR-92b. RESULTS Administration of VB-1 reduced I/R cerebral injury accompanied by a reverse in NOX4 and miR-92b expression. Similar results were achieved in a neuron H/R injury model. Next, we evaluated the association of miR-92b with NOX4 by its mimics in the H/R model. H/R treatment increased neurons apoptosis concomitant with an upregulation of NOX4 and NOX activity while downregulation of miR-92b. All these effects were reversed in the presence of miR-92b mimics, confirming the function of miR-92b in suppressing NOX4 expression. CONCLUSION We conclude the protective effect of VB-1 against rat cerebral I/R injury through a mechanism involving modulation of miR-92b/NOX4 pathway.
Collapse
Affiliation(s)
- Zhong-Yang Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zhong-Bao Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
13
|
Bandyopadhyay A, Dey A. Medicinal pteridophytes: ethnopharmacological, phytochemical, and clinical attributes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Almost from the very beginning of human existence, man has been interacting with plants. Throughout human history, plants have provided humans with basic needs such as sustenance, firewood, livestock feed, and wood. The world has approximately 3 million vascular plants. The treatment of primary health problems is provided primarily by traditional medicines by around 80% of the world's population. Compared to other vascular plants, pteridophytes remain underexplored in ethnobotanical aspects, despite being regarded as a valuable component of healthcare for centuries. As an alternative medicine, pteridophytes are being investigated for their pharmacological activity. Almost 2000 years ago, humans were exploring and using plant species from this lineage because of its beneficial properties since pteridophytes were the first vascular plants.
Main body of the abstract
All popular search engines such as PubMed, Google Scholar, ScienceDirect, and Scopus were searched to retrieve the relevant literature using various search strings relevant to the topic. Pteridophytes belonging to thirty different families have been documented as medicinal plants. For instance, Selaginella sp. has been demonstrated to have numerous therapeutic properties, including antioxidative, inflammation-reducing, anti-carcinogenic, diabetes-fighting, virucidal, antibacterial, and anti-senile dementia effects. In addition, clinical trials and studies performed on pteridophytes and derived compounds are also discussed in details.
Short conclusion
This review offers a compilation of therapeutically valuable pteridophytes utilized by local ethnic groups, as well as the public.
Graphical Abstract
Collapse
|
14
|
Effects of Vitexin, a Natural Flavonoid Glycoside, on the Proliferation, Invasion, and Apoptosis of Human U251 Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3129155. [PMID: 35281458 PMCID: PMC8906934 DOI: 10.1155/2022/3129155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor characterized by high recurrence and poor prognosis. Vitexin has shown activities against esophageal, liver, lung, colorectal, and ovarian cancers; however, there is little knowledge on the activity of vitexin against glioblastoma. This study was therefore designed with aims to examine the effects of vitexin on proliferation, invasion, and apoptosis of human U251 glioblastoma cells and explore the underlying molecular mechanisms using mRNA sequencing and molecular docking. Vitexin was found to inhibit cell proliferation, colony formation, and invasion and promote apoptosis in U251 cells. mRNA sequencing identified 499 differentially expressed genes in vitexin-treated U251 cells relative to controls, including 154 upregulated genes and 345 downregulated genes. Gene ontology (GO) term enrichment analysis revealed that the upregulated genes were most significantly enriched in intrinsic apoptotic signaling pathway and the downregulated genes were most significantly enriched in positive regulation of cell development and positive regulation of locomotion relating to biological processes, endoplasmic reticulum lumen and side of membrane relating to cellular components, and receptor ligand activity and receptor regulator activity relating to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the upregulated genes were involved in the pathways of transcriptional misregulation in cancer and the downregulated genes were involved in FoxO and JAK/STAT signaling pathways. Western blotting assay revealed that vitexin treatment resulted in reduced p-JAK1, p-JAK3, and p-STAT3 protein expression in U251 cells relative to untreated controls, and molecular docking predicted that vitexin had docking scores of –8.8, –10.8, and –10.5 kJ/mol with STAT3, JAK1, and JAK2, respectively. The results of the present study demonstrate that vitexin inhibits the proliferation and invasion and induces the apoptosis of glioblastoma U251 cells through suppressing the JAK/STAT3 signaling pathway, and vitexin may be a promising potential agent for the chemotherapy of glioblastoma.
Collapse
|
15
|
Abusaliya A, Ha SE, Bhosale PB, Kim HH, Park MY, Vetrivel P, Kim GS. Glycosidic flavonoids and their potential applications in cancer research: a review. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Purpose of review
Every year, the cancer patient registry increases, and the leading cause of death in a global context. Plant-based molecules are gaining attention in cancer research due to the side effects of chemotherapy. A glycosidic derivative of flavonoid (GDF) plays a significant role in cancer proliferation mechanisms. GDF inhibits cell proliferation by elevating the expression of apoptotic proteins, altering the expression of nuclear factor-kappa B (NF- κB), and decreasing mitochondrial membrane potential (Δψm) in cancer cells.
Recent findings
Reported studies on the flavonoids orientin, vitexin, prunetionoside, chrysin, and scutellarein increased attention and are being widely investigated for their potential role in different parts of cancer research. Prunetionoside is a flavonoid with high cytotoxic potential and capable of inducing necroptosis in AGS gastric cancer cells. Similarly, scutellarein is a flavonol, induces an extrinsic apoptotic pathway and downregulates the expression level of cyclin proteins in HepG2 liver cancer cells. Vitexin is reported to be capable of deregulating the expression levels of p-Akt, p-mTOR, and p-PI3K in A549 lung cancer cells. Orientin inhibits IL-8 expression and invasion in MCF-7 breast cancer cells by suppressing MMP-9 in the presence of TPA via STAT3/AP-1/ERK/PKCα-mediated signaling pathways. It also induces mitochondria-mediated intrinsic apoptosis and G0/G1 cell cycle arrest in HT29 colon cancer cells. Chrysin is a flavonoid present in honey that has been shown to play an important role in cervical and colon cancer by suppressing the AKT/mTOR/PI3K pathway and increasing ROS accumulation, LDH leakage, respectively.
Collapse
|
16
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|
17
|
Sarkar MK, Kar A, Jayaraman A, Kar Mahapatra S, Vadivel V. Vitexin isolated from Prosopis cineraria leaves induce apoptosis in K-562 leukemia cells via inhibition of the BCR-ABL-Ras-Raf pathway. J Pharm Pharmacol 2021; 74:103-111. [PMID: 34109977 DOI: 10.1093/jpp/rgab085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Leukemia is one of the severe cancer types all around the globe. Even though some chemotherapeutic drugs are available for treating leukemia, they have various side effects. As an alternative approach, herbal drugs are focused on current research to overcome leukemia. The present work was conducted to investigate the antileukemic mechanism of active phytochemical vitexin, which was isolated from ethno-medicine (Prosopis cineraria leaf) used by traditional healers of West Bengal, India. METHODS Antiproliferative mechanisms of selected phyto-compound against K-562 cells were evaluated using cellular uptake, morphological changes, DNA fragmentation, mitochondrial membrane potential and signaling pathways analysis. KEY FINDINGS Vitexin exhibited cytotoxicity by reducing mitochondrial membrane potential (32.40%) and causing DNA fragmentation (84.15%). The western blotting study indicated inhibition of cell survival proteins (BCR, ABL, H-RAS, N-RAS, K-RAS and RAF) and expression of apoptotic proteins (p38, BAX and caspase-9) in leukemia cells upon treatment with vitexin. CONCLUSIONS Based on the results, presently investigated phyto-compound vitexin could be considered for developing safe and natural drugs to treat leukemia after conducting suitable preclinical and clinical trials.
Collapse
Affiliation(s)
- Monaj Kumar Sarkar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Amrita Kar
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Adithyan Jayaraman
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
18
|
Zhou P, Zheng ZH, Wan T, Wu J, Liao CW, Sun XJ. Vitexin Inhibits Gastric Cancer Growth and Metastasis through HMGB1-mediated Inactivation of the PI3K/AKT/mTOR/HIF-1α Signaling Pathway. J Gastric Cancer 2021; 21:439-456. [PMID: 35079445 PMCID: PMC8753280 DOI: 10.5230/jgc.2021.21.e40] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Peng Zhou
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People's Republic of China
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, Nanchang, People's Republic of China
| | - Zi-Han Zheng
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, Nanchang, People's Republic of China
| | - Tao Wan
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, Nanchang, People's Republic of China
| | - Jie Wu
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, Nanchang, People's Republic of China
| | - Chuan-Wen Liao
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, Nanchang, People's Republic of China
| | - Xue-Jun Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People's Republic of China
| |
Collapse
|
19
|
Costa EC, Menezes PMN, de Almeida RL, Silva FS, de Araújo Ribeiro LA, da Silva JA, de Oliveira AP, da Cruz Araújo EC, Rolim LA, Nunes XP. Inclusion of vitexin in β-cyclodextrin: preparation, characterization and expectorant/antitussive activities. Heliyon 2020; 6:e05461. [PMID: 33305043 PMCID: PMC7711145 DOI: 10.1016/j.heliyon.2020.e05461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The study aimed to include the isolated vitexin of Jatropha mutabilis in the β-cyclodextrin cavity to improve the solubility of this flavone. Its characterization was performed by techniques such as 1H NMR/ROESY (Nuclear Magnetic Resonance Spectroscopy), FT-IR (Infrared Spectroscopy with Fourier Transform), SEM (Morphological analysis of IC by Scanning Electron Microscopy) and dissolution study in vitro. In addition, the following activities were evaluated in the animal models: expectorant, phenol red dosage in bronchoalveolar lavage and antitussive, cough induced by citric acid. In the characterization of the complex, interaction between hydrogens of ring B of vitexin and (H3) of β-CD was observed, in addition to changes in morphology. In the dissolution test, an increase in the rate of dissolution of vitexin was observed in the first 30 min for the CI vitexin/β-CD when compared with vitexin. Regarding the pharmacological activity, it was observed that the inclusion complex (IC) vitexin/β-CD in the equivalent doses of 0.2, 1 and 5 mg/kg of flavone presented higher expectorant activity when compared to vitexin (p < 0.05), suggesting increased bioavailability. As for the antitussive activity, both vitexin and the complex had similar effects and were dose independent. In the toxicity test using Artemia salina, vitexin and IC vitexin/β-CD were considered non-toxic. At last, the study efficacy of vitexin/β-CD IC as an expectorant and of vitexin as antitussive. All of these data are being described for the first time.
Collapse
Affiliation(s)
- Eliatania Clementino Costa
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil
| | | | - Ricardo Lúcio de Almeida
- Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | - Fabrício Souza Silva
- Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | | | - James Amalda da Silva
- Universidade Federal de Sergipe (UFS), Av. Gov. Marcelo Déda, São José, Lagarto, SE, Brazil
| | - Ana Paula de Oliveira
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.,Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | | | - Larissa Araújo Rolim
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.,Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | - Xirley Pereira Nunes
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.,Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| |
Collapse
|
20
|
Babaei F, Moafizad A, Darvishvand Z, Mirzababaei M, Hosseinzadeh H, Nassiri‐Asl M. Review of the effects of vitexin in oxidative stress-related diseases. Food Sci Nutr 2020; 8:2569-2580. [PMID: 32566174 PMCID: PMC7300089 DOI: 10.1002/fsn3.1567] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Vitexin is an apigenin flavone glycoside found in food and medicinal plants. It has a variety of pharmacological effects, including antioxidant, anti-inflammatory, anticancer, antinociceptive, and neuroprotective effects. This review study summarizes all the protective effects of vitexin as an antioxidant against reactive oxygen species, lipid peroxidation, and other oxidative damages in a variety of oxidative stress-related diseases, including seizure, memory impairment, cerebral ischemia, neurotoxicity, myocardial and respiratory injury, and metabolic dysfunction, with possible molecular and cellular mechanisms. This review describes any activation or inhibition of the signaling pathways that depend on the antioxidant activity of vitexin. More basic research is needed on the antioxidative effects of vitexin in vivo, and carrying out clinical trials for the treatment of oxidative stress-related diseases is also recommended.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of MedicineStudent Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Mohammadreza Mirzababaei
- Department of Clinical BiochemistrySchool of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamic and ToxicologySchool of PharmacyPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Foudah AI, Alam P, Kamal YT, Alqasoumi SI, Alqarni MH, Ross SA, Yusufoglu HS. Development and validation of a high-performance thin-layer chromatographic method for the quantitative analysis of vitexin in Passiflora foetida herbal formulations. Saudi Pharm J 2019; 27:1157-1163. [PMID: 31885475 PMCID: PMC6921218 DOI: 10.1016/j.jsps.2019.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is the development of validated HPTLC method for the quantification of vitexin from Passiflora foetida commercial herbal formulations. The developed method was validated, in accordance with ICH guidelines for precision, accuracy, specificity and robustness. The plate was developed using ethyl acetate:methanol:water:formic acid 30:4:2:1(%, v/v/v/v) on 20 × 10 cm glass coated silica gel 60 F254 plates and the developed plate was scanned and quantified densitometrically at λ = 340 nm. Linear regression analysis revealed a good linear relationship between peak area and amount of vitexin in the range of 100-700 ng/spot. The amount of vitexin in nine commercial herbal formulations was successfully quantified by the developed HPTLC method. The developed and validated high performance thin layer chromatographic method offers a new sensitive and reliable tool for quantification of vitexinin in various herbal formulations containing Passiflora foetida.
Collapse
Affiliation(s)
- Ahmed Ibrahim Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Y T Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, King Khaled University, Abha, Saudi Arabia
| | | | - Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Samir A Ross
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA.,Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Hasan Soliman Yusufoglu
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
22
|
Nyambe MN, Beukes DR, Van De Venter M, Swanepoel B, Hlangothi BG. Isolation and characterisation of altissimin: a novel cytotoxic flavonoid C-apioglucoside from Drimia altissima ( Asparagaceae). Nat Prod Res 2019; 35:717-725. [PMID: 30964337 DOI: 10.1080/14786419.2019.1596097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Flavonoids are a class of biologically active compounds with various proven nutraceutical benefits. In flavonoid C-glycosides, the aglycones are attached to sugar residues via cleavage-resistant C-C bonds which alter typical flavonoid pharmacokinetic properties. In these compounds, the combination of biological activities from the flavonoid moieties and sugar residues create unique and more diverse biological functions than those of O-glycosylated and unsubstituted flavonoids. Through a series of reverse phase chromatography techniques and various spectroscopic methods, the phytochemical investigation of Drimia altissima (L.F.) Ker Gawl., a specie from the Asparagaceae family, led to the isolation and chemical characterisation of a novel C-glucosylflavonoid, altissimin, with a unique apioglucoside arrangement to the apigenin aglycone. Altissimin was found to possess strong in vitro anti-proliferative activity against HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Mutenta N Nyambe
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Denzil R Beukes
- School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Maryna Van De Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Buyiswa G Hlangothi
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
23
|
Anti-Inflammatory and Anti-Apoptotic Effects of Acer Palmatum Thumb. Extract, KIOM-2015EW, in a Hyperosmolar-Stress-Induced In Vitro Dry Eye Model. Nutrients 2018; 10:nu10030282. [PMID: 29495608 PMCID: PMC5872700 DOI: 10.3390/nu10030282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to assess the anti-inflammatory and anti-apoptotic effects of KIOM-2015EW, the hot-water extract of maple leaves in hyperosmolar stress (HOS)-induced human corneal epithelial cells (HCECs). HCECs were exposed to hyperosmolar medium and exposed to KIOM-2015EW with or without the hyperosmolar media. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 production and apoptosis were observed, and the activation of mitogen-activated protein kinases (MAPKs) including extracellular signal regulated kinase (ERK), p38 and c-JUN N-terminal kinase (JNK) signaling and nuclear factor (NF)-κB was confirmed. Compared to isomolar medium, the induction of cell cytotoxicity significantly increased in HCECs exposed to hyperosmolar medium in a time-dependent manner. KIOM-2015EW-treatment significantly reduced the mRNA and protein expression of pro-inflammatory mediators and apoptosis. KIOM-2015EW-treatment inhibited HOS-induced MAPK signaling activation. Additionally, the HOS-induced increase in NF-κB phosphorylation was attenuated by KIOM-2015EW. The results demonstrated that KIOM-2015EW protects the ocular surface by suppressing inflammation in dry eye disease, and suggest that KIOM-2015EW may be used to treat several ocular surface diseases where inflammation plays a key role.
Collapse
|
24
|
Zhang G, Li D, Chen H, Zhang J, Jin X. Vitexin induces G2/M‑phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol Med Rep 2018; 17:4599-4604. [PMID: 29328424 DOI: 10.3892/mmr.2018.8394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Guangning Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dongyuan Li
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hao Chen
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xingyi Jin
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
25
|
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142:213-228. [DOI: 10.1016/j.ejmech.2017.07.034] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022]
|
26
|
Ganesan K, Xu B. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann N Y Acad Sci 2017; 1401:102-113. [DOI: 10.1111/nyas.13446] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program; Beijing Normal University-Hong Kong Baptist University United International College; Zhuhai Guangdong China
| | - Baojun Xu
- Food Science and Technology Program; Beijing Normal University-Hong Kong Baptist University United International College; Zhuhai Guangdong China
| |
Collapse
|
27
|
Gadioli IL, da Cunha MDSB, de Carvalho MVO, Costa AM, Pineli LDLDO. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Crit Rev Food Sci Nutr 2017; 58:785-807. [PMID: 27645583 DOI: 10.1080/10408398.2016.1224805] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Passiflora plants are strategic in the context of biodiversity for food and nutrition. We applied the procedures of a systematic review protocol to study the state of the art on identification of phenolic compounds from Passiflora plants. An automated literature search was conducted using six databases and a combination of seven keywords. All the analytical, chromatographic, and spectroscopic methods were included. The studies were classified according to their method of identification, phenolic classes, and method of extraction. In total, 8,592 abstracts were found, from which 122 studies were selected for complete reading and 82 were selected for further analysis. Techniques of extraction, evaluated parts of the plant and methods of identification were systematized. Studies with leaves were most conspicuous (54.4%), 34 species of Passiflora were evaluated and orientin, isoorientin, vitexin, isovitexin were commonly found structures. A High Performance Liquid Chromatography-diode array detector was the technique most applied, with which the same structures were identified all through the studies, although other unknown structures were detected, but not elucidated. The use of Nuclear Magnetic Resonance and Mass Spectrometry, which are more sensitive techniques, needs to be intensified, to identify other unconventional compounds detected in Passiflora, to enhance the comprehension of the bioactive compounds in these plants.
Collapse
Affiliation(s)
- Izabel Lucena Gadioli
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| | - Marcela de Sá Barreto da Cunha
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| | - Mariana Veras Oliveira de Carvalho
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| | - Ana Maria Costa
- b Embrapa Cerrados, Laboratory of Food Science , Planaltina, Federal District , Brazil
| | - Lívia de Lacerda de Oliveira Pineli
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| |
Collapse
|
28
|
Fernandes LM, da Rosa Guterres Z, Almeida IV, Vicentini VEP. Genotoxicity and Antigenotoxicity Assessments of the Flavonoid Vitexin by the Drosophila melanogaster Somatic Mutation and Recombination Test. J Med Food 2017; 20:601-609. [PMID: 28541831 DOI: 10.1089/jmf.2016.0149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vitexin is a C-glycosylated flavone found in various medicinal plants with several proven biological properties such as anti-inflammatory, antispasmodic, antimicrobial, cytotoxic, and antioxidant activities. Considering that the human population consumes many foods that contain this flavonoid, the objective of this study was to investigate the genotoxic and the antigenotoxic potentials of vitexin by the SMART (Somatic Mutation and Recombination Test) in Drosophila melanogaster wings, in vivo. To evaluate the genotoxic activity, larvae obtained from standard (ST) and high bioactivation (HB) crosses were chronically treated with different concentrations of vitexin (0.15, 0.3, and 0.6 mM). For the evaluation of antigenotoxic activity, the same vitexin concentrations were associated with two damage inducing agents: doxorubicin (0.2 mM) and benzo[a]pyrene (1.0 mM). The results obtained for genotoxic activity showed that vitexin did not induce a statistically significant increment in the frequency of mutant spots, when compared to control. The results for the evaluation of antigenotoxicity indicated that the flavonoid statistically reduced the frequency of mutant spots, when compared to those treated with only the damage inducing agents. Thus, this article presents results that have demonstrated the antigenotoxic activity of vitexin, which could be applied in new studies for the development of drugs with chemoprotective effects.
Collapse
Affiliation(s)
- Liliane Menezes Fernandes
- 1 Department of Biotechnology, Genetics and Cell Biology, State University of Maringá , Maringá, Brazil
| | - Zaira da Rosa Guterres
- 2 Department of Cytogenetics and Mutagenesis, State University of Mato Grosso do Sul-Unit Mundo Novo , Mundo Novo, Mato Grosso do Sul, Brazil
| | - Igor Vivian Almeida
- 1 Department of Biotechnology, Genetics and Cell Biology, State University of Maringá , Maringá, Brazil
| | | |
Collapse
|
29
|
He JD, Wang Z, Li SP, Xu YJ, Yu Y, Ding YJ, Yu WL, Zhang RX, Zhang HM, Du HY. Vitexin suppresses autophagy to induce apoptosis in hepatocellular carcinoma via activation of the JNK signaling pathway. Oncotarget 2016; 7:84520-84532. [PMID: 27588401 PMCID: PMC5356678 DOI: 10.18632/oncotarget.11731] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022] Open
Abstract
Vitexin, a flavonoids compound, is known to exhibit broad anti-oxidative, anti-inflammatory, analgesic, and antitumor activity in many cancer xenograft models and cell lines. The purpose of this study was to investigate the antitumor effects and underlying mechanisms of vitexin on hepatocellular carcinoma. In this study, we found that vitexin suppressed the viability of HCC cell lines (SK-Hep1 and Hepa1-6 cells) significantly. Vitexin showed cytotoxic effects against HCC cell lines in vitro by inducing apoptosis and inhibiting autophagy. Vitexin induced apoptosis in a concentration-dependent manner, and caused up-regulations of Caspase-3, Cleave Caspase-3, and a down-regulation of Bcl-2. The expression of autophagy-related protein LC3 II was significantly decreased after vitexin treatment. Moreover, western blot analysis presented that vitexin markedly up-regulated the levels of p-JNK and down-regulated the levels of p-Erk1/2 in SK-Hep1 cells and Hepa1-6 cells. Cotreatment with JNK inhibitor SP600125, we demonstrated that apoptosis induced by vitexin was suppressed, while the inhibition of autophagy by vitexin was reversed. The results of colony formation assay and mouse model confirmed the growth inhibition role of vitexin on HCC in vitro and in vivo. In conclusion, vitexin inhibits HCC growth by way of apoptosis induction and autophagy suppression, both of which are through JNK MAPK pathway. Therefore, vitexin could be regarded as a potent therapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Jin-Dan He
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Zhen Wang
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Shi-Peng Li
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of General Surgery, The People's Hospital of Jiaozuo City, Jiaozuo 454002, P.R. China
| | - Yan-Jie Xu
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Yao Yu
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Yi-Jie Ding
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
| | - Wen-Li Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Rong-Xin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hai-Ming Zhang
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of Liver Transplantation, Oriental Organ Transplant Center of Tianjin First Central Hospital, Key Laboratory of Organ Transplantation of Tianjin, Tianjin 300192, P.R. China
| | - Hong-Yin Du
- First Central Clinical College, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
30
|
A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016; 115:74-85. [DOI: 10.1016/j.fitote.2016.09.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
|
31
|
Aseervatham GSB, Suryakala U, Doulethunisha, Sundaram S, Bose PC, Sivasudha T. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomed Pharmacother 2016; 82:54-64. [PMID: 27470339 DOI: 10.1016/j.biopha.2016.04.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/09/2023] Open
Abstract
The present study was aimed to evaluate the effect of apigenin 8-C-glucoside (Vitexin) and chlorogenic acid on epileptic mice induced by pilocarpine and explored its possible mechanisms. Intraperitonial administration of pilocarpine (85mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p>0.05) reduced by apigenin 8-C-glucoside (AP8CG) (10mg/kg) and chlorogenic acid (CA) (5mg/kg), similar to diazepam. Seizure was accompanied by an imbalance in the levels of Gamma-aminobutyric acid (GABA) and glutamate in the pilocarpine administered group. Moreover, convulsion along with reduced acetylcholinesterase, increased monoamine oxidase and oxidative stress was observed in epileptic mice brain. AP8CG and CA significantly restored back to normal levels even at lower doses. Further, increased lipid peroxidation and nitrite content was also significantly attenuated by AP8CG and CA. However, CA was found to be more effective when compared to AP8CG. In addition, the mRNA expression of N-methyl-d-aspartate receptor (NMDAR), mGluR1 and mGlu5 was significantly (P≤0.05) inhibited by AP8CG and CA in a lower dose. The mRNA expression of GRIK1 did not differ significantly in any of the group and showed a similar pattern of expression. Our result shows that AP8CG and CA selectively inhibit NMDAR, mGluR1 and mGlu5 expression. Modification in the provoked NMDAR calcium response coupled with neuronal death. Hence, these findings underline that the polyphenolics, AP8CG and CA have exerted antiepileptic and neuroprotective activity by suppressing glutamate receptors.
Collapse
Affiliation(s)
- G Smilin Bell Aseervatham
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - U Suryakala
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Doulethunisha
- Central Inter-Disciplinary Research Facility, Mahatma Gandhi Medical College and Research Institute Campus, Pillayarkuppam, Puducherry 607 402, India
| | - S Sundaram
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - P Chandra Bose
- Department of Biotechnology, Anna University, Tiruchirappalli 620 024, Tamilnadu, India
| | - T Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India.
| |
Collapse
|
32
|
Liu M, Dong J, Lin Z, Niu Y, Zhang X, Jiang H, Guo N, Li W, Wang H, Chen S. Rapid screening of transferrin-binders in the flowers of Bauhinia blakeana Dunn by on-line high-performance liquid chromatography–diode-array detector–electrospray ionization–ion-trap–time-of-flight–mass spectrometry–transferrin–fluorescence detection system. J Chromatogr A 2016; 1450:17-28. [DOI: 10.1016/j.chroma.2016.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
33
|
Quantitative determination of vitexin in Passiflora foetida Linn. leaves using HPTLC. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Rosa SIG, Rios-Santos F, Balogun SO, Martins DTDO. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:9-17. [PMID: 26902402 DOI: 10.1016/j.phymed.2015.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/21/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Vitexin is a flavonoid found in plants of different genus such as Vitex spp. and Crataegus spp. Despite being an important molecule present in phytomedicines and nutraceuticals, the mechanisms supporting its use as anti-inflammatory remains unclear. PURPOSE To investigate the cellular and molecular mechanisms involved in acute anti-inflammatory effect of vitexin with regard to neutrophil recruitment and macrophages activation. METHODS Anti-inflammatory properties of vitexin were evaluated in four models of neutrophil recruitment. The regulation of inflammatory mediators release was assessed in vivo and in vitro. Vitexin (5, 15 and 30 mg/kg p.o) effects on leukocytes migration to peritoneal cavity induced by zymosan (ZY), carrageenan (CG), n-formyl-methionyl-leucyl-phenylalanine (fMLP) and lipopolysaccharide (LPS) were evaluated in Swiss-Webster mice and the effects on the levels of TNF-α, IL-1β and IL-10 cytokines, and NO concentration were in the LPS-peritonitis. RAW 264.7 macrophages viability were determined by Alamar Blue assay as well as the capacity of vitexin in directly reducing the concentrations of TNF-α, IL-1β, IL-10, NO and PGE2. Additionally, vitexin effects upon the transcriptional factors p-p38, p-ERK1/2 and p-JNK were evaluated by western blotting in cells activated with LPS. RESULTS Vitexin was not cytotoxic (IC50 > 200 µg/ml) in RAW 264.7 and at all doses tested it effectively reduced leukocyte migration in vivo, particularly neutrophils in the peritoneal lavage, independently of the inflammatory stimulus used. It also reduced TNF-α, IL-1β and NO releases in the peritoneal cavity of LPS-challenged mice. Vitexin had low cytotoxicity and was able to reduce the releases of TNF-α, IL-1β, NO, PGE2 and increase in IL-10 release by LPS activated RAW 264.7 cells. Vitexin was also able to regulate transcriptional factors for pro-inflammatory mediators, reducing the expression of p-p38, p-ERK1/2 and p-JNK in LPS-elicited cells. CONCLUSIONS Vitexin presented no in vitro cytotoxicity. Inhibition of neutrophil migration and pro-inflammatory mediators release contributes to the anti-inflammatory activity of vitexin. These effects are associated with the inactivation of important signaling pathways such as p38, ERK1/2 and JNK, which act on transcription factors for eliciting induction of inflammatory response.
Collapse
Affiliation(s)
- Suellen Iara Guirra Rosa
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Fabrício Rios-Santos
- Physiology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Sikiru Olaitan Balogun
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Pharmacology Area, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, UFMT, 78060-900 Cuiabá, MT, Brazil.
| |
Collapse
|
35
|
Zhu Q, Mao LN, Liu CP, Sun YH, Jiang B, Zhang W, Li JX. Antinociceptive effects of vitexin in a mouse model of postoperative pain. Sci Rep 2016; 6:19266. [PMID: 26763934 PMCID: PMC4817219 DOI: 10.1038/srep19266] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 11/09/2022] Open
Abstract
Vitexin, a C-glycosylated flavone present in several medicinal herbs, has showed various pharmacological activities including antinociception. The present study investigated the antinociceptive effects of vitexin in a mouse model of postoperative pain. This model was prepared by making a surgical incision on the right hindpaw and von Frey filament test was used to assess mechanical hyperalgesia. Isobolographical analysis method was used to examine the interaction between vitexin and acetaminophen. A reliable mechanical hyperalgesia was observed at 2 h post-surgery and lasted for 4 days. Acute vitexin administration (3–10 mg/kg, i.p.) dose-dependently relieved this hyperalgesia, which was also observed from 1 to 3 days post-surgery during repeated daily treatment. However, repeated vitexin administration prior to surgery had no preventive value. The 10 mg/kg vitexin-induced antinociception was blocked by the opioid receptor antagonist naltrexone or the GABAA receptor antagonist bicuculline. The doses of vitexin used did not significantly suppress the locomotor activity. In addition, the combination of vitexin and acetaminophen produced an infra-additive effect in postoperative pain. Together, though vitexin-acetaminophen combination may not be useful for treating postoperative pain, vitexin exerts behaviorally-specific antinociception against postoperative pain mediated through opioid receptors and GABAA receptors, suggesting that vitexin may be useful for the control of postoperative pain.
Collapse
Affiliation(s)
- Qing Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Li-Na Mao
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Cheng-Peng Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yue-Hua Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bo Jiang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| |
Collapse
|
36
|
Hou K, Chen F, Zu Y, Yang L. Ionic liquids–lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″- O -glucoside, vitexin-2″- O -rhamnoside and vitexin from Phyllostachys edulis leaves. J Chromatogr A 2016; 1431:17-26. [DOI: 10.1016/j.chroma.2015.12.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/05/2015] [Accepted: 12/25/2015] [Indexed: 01/08/2023]
|
37
|
Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 2015; 99:38-50. [PMID: 26187393 DOI: 10.1016/j.neuropharm.2015.07.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott & White Hospital, & Central Texas Veterans Health Care System, Temple, TX, USA
| | - Wen-Xian Huang
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Najeeb Bassam Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Wang XS, Hu XC, Chen GL, Yuan X, Yang RN, Liang S, Ren J, Sun JC, Kong GQ, Gao SG, Feng XS. Effects of Vitexin on the Pharmacokinetics and mRNA Expression of CYP Isozymes in Rats. Phytother Res 2014; 29:366-72. [PMID: 25447838 DOI: 10.1002/ptr.5260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/11/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Xin-shuai Wang
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Xiao-chen Hu
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Gui-ling Chen
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Xiang Yuan
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Rui-na Yang
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Shuo Liang
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Jing Ren
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Jia-chun Sun
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Guo-qiang Kong
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - She-gan Gao
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| | - Xiao-shan Feng
- Department of Oncology, Cancer Institute; The First Affiliated Hospital of Henan University of Science and Technology; Luoyang Henan 471003 China
| |
Collapse
|
39
|
Yeh YT, Yeh H, Su SH, Lin JS, Lee KJ, Shyu HW, Chen ZF, Huang SY, Su SJ. Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations. Free Radic Biol Med 2014; 74:1-13. [PMID: 24952138 DOI: 10.1016/j.freeradbiomed.2014.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM-Chk2-p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.
Collapse
Affiliation(s)
- Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Hua Yeh
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Shu-Hui Su
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jian-Sheng Lin
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Kuo-Jui Lee
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Huey-Wen Shyu
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Zi-Feng Chen
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Sheng-Yun Huang
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan
| | - Shu-Jem Su
- Department of Medical Laboratory Sciences and Biotechnology, School of Medicine and Health Sciences, Fooyin University, Kaohsiung City 83102, Taiwan.
| |
Collapse
|
40
|
Protective effect of vitexin compound B-1 against hypoxia/reoxygenation-induced injury in differentiated PC12 cells via NADPH oxidase inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2014; 387:861-71. [DOI: 10.1007/s00210-014-1006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
41
|
Yang L, Yang ZM, Zhang N, Tian Z, Liu SB, Zhao MG. Neuroprotective effects of vitexin by inhibition of NMDA receptors in primary cultures of mouse cerebral cortical neurons. Mol Cell Biochem 2013; 386:251-8. [PMID: 24141792 DOI: 10.1007/s11010-013-1862-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022]
Abstract
The accumulation of glutamate can excessively activate the N-methyl-D-aspartate (NMDA) receptors and cause excitotoxicity. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside, Vit) is a c-glycosylated flavone which was found in the several herbs, exhibiting potent hypotensive, anti-inflammatory, and neuroprotective properties. However, little is known about the neuroprotective effects of Vit on glutamate-induced excitotoxicity. In present study, primary cultured cortical neurons were treated with NMDA to induce the excitotoxicity. Pretreatment with Vit significantly prevented NMDA-induced neuronal cell loss and reduced the number of apoptotic neurons. Vit significantly inhibited the neuronal apoptosis induced by NMDA exposure by regulating balance of Bcl-2 and Bax expression and the cleavages of poly (ADP-ribose) polymerase and pro-caspase 3. Furthermore, pretreatment of Vit reversed the up-regulation of NR2B-containing NMDA receptors and the intracellular Ca(2+) overload induced by NMDA exposure. The neuroprotective effects of Vit are related to inhibiting the activities of NR2B-containing NMDA receptors and reducing the calcium influx in cultured cortical neurons.
Collapse
Affiliation(s)
- Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | |
Collapse
|
42
|
Iriti M, Varoni EM. Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutrients 2013; 5:2564-76. [PMID: 23857227 PMCID: PMC3738988 DOI: 10.3390/nu5072564] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/05/2013] [Accepted: 06/19/2013] [Indexed: 01/12/2023] Open
Abstract
Evidence available from nutritional epidemiology has indicated an inverse association between regular consumption of fruits and vegetables and the risk of developing certain types of cancer. In turn, preclinical studies have attributed the health-promoting effects of plant foods to some groups of phytochemicals, by virtue of their many biological activities. In this survey, we briefly examine the chemopreventive potential of flavonoids and flavonoid-rich foods in human oral carcinogenesis. Despite the paucity of data from clinical trials and epidemiological studies, in comparison to in vitro/in vivo investigations, a high level of evidence has been reported for epigallocatechin gallate (EGCG) and anthocyanins. These flavonoids, abundant in green tea and black raspberries, respectively, represent promising chemopreventive agents in human oral cancer.
Collapse
Affiliation(s)
- Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy
| | - Elena Maria Varoni
- Department of Mining and Materials Engineering, McGill University, University Street 3610, Montreal, QC H3A 2B2, Canada; E-Mail:
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan 20133, Italy
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, Novara 28100, Italy
| |
Collapse
|
43
|
Borghi SM, Carvalho TT, Staurengo-Ferrari L, Hohmann MSN, Pinge-Filho P, Casagrande R, Verri WA. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. JOURNAL OF NATURAL PRODUCTS 2013; 76:1141-1149. [PMID: 23742617 DOI: 10.1021/np400222v] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The flavonoid vitexin (1) is a flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside) present in several medicinal and other plants. Plant extracts containing 1 are reported to possess antinociceptive, anti-inflammatory, and antioxidant activities. However, the only evidence that 1 exhibits antinociceptive activity was demonstrated in the acetic acid-induced writhing model. Therefore, the analgesic effects and mechanisms of 1 were evaluated. In the present investigation, intraperitoneal treatment with 1 dose-dependently inhibited acetic acid-induced writhing. Furthermore, treatment with 1 also inhibited pain-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), capsaicin (an agonist of transient receptor potential vanilloid 1, TRPV1), and both phases of the formalin test. It was also observed that inhibition of carrageenan-, capsaicin-, and chronic CFA-induced mechanical and thermal hyperalgesia occurred. Regarding the antinociceptive mechanisms of 1, it prevented the decrease of reduced glutathione levels, ferric-reducing ability potential, and free-radical scavenger ability, inhibited the production of hyperalgesic cytokines such as TNF-α, IL-1β, IL-6, and IL-33, and up-regulated the levels of the anti-hyperalgesic cytokine IL-10. These results demonstrate that 1 exhibits an analgesic effect in a variety of inflammatory pain models by targeting TRPV1 and oxidative stress and by modulating cytokine production.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057970 Londrina, Brazil
| | | | | | | | | | | | | |
Collapse
|