1
|
Lv X, Zhang M, Ji K, Zhou C, Hua J. Evaluation of ginger straw as a forage source for goats: Effects on performance, ruminal fermentation, meat quality and immunity. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:1-10. [PMID: 40135171 PMCID: PMC11930580 DOI: 10.1016/j.aninu.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 03/27/2025]
Abstract
This study aimed to investigate the effects of ginger straw as a replacement of peanut straw on the growth, meat quality, rumen fermentation, and immunity of goats. In this study, 40 Huanghuai male goats, weighing 30 ± 0.5 kg at six months of age, were selected and randomly divided into four treatments: ginger straw 0% (G0), 5% (G5), 10% (G10) and 20% (G20) replacing peanut straw, with 10 goats in each treatment. Goat dry matter intake (DMI) improved as the proportion of peanut straws replaced with ginger straws increased (linear, P < 0.001, quadratic, P < 0.001). The highest average daily gain (ADG) and the lowest feed-to-gain ratio (F/G) were observed in G5 goats (P < 0.001). The digestibilities of neutral detergent fibre (NDF, P = 0.031) and acid detergent fibre (ADF, P = 0.014) were higher in the G5 group than in G10 and G20. With increasing ginger straw replacement, the plasma interleukin-10 (IL-10) levels increased (linear, P = 0.035, quadratic, P = 0.041). The microbial protein (MCP) increased as the proportion of ginger straw increased (linear, P = 0.034, quadratic, P = 0.041). The butyrate was increased (linear, P = 0.028, quadratic, P = 0.035) at all levels of ginger straw inclusion into the diet. A linear (P < 0.001) increase in the height of the jejunal mucosal villi was observed as the proportion of ginger straw in the diet increased. The tight junction protein 1 (TJP1) and claudin-1 mRNA expression in the jejunal mucosa were significantly higher in groups G5, G10, and G20 than in the G0 group (P < 0.001). In general, substituting peanut straw with ginger straw in goat diets promoted rumen fermentation and produced more volatile fatty acids and microbial proteins to meet the needs of goats for improved growth performance. Substituting ginger straw for peanut straw improved immunity and the intestinal barrier in goats and did not adversely affect meat quality. Replacing peanut straw with 5% ginger straw in the goat diet resulted in higher NDF digestibility and growth performance. Therefore, the replacement of peanut straw with 5% ginger straw in goat diets is recommended.
Collapse
Affiliation(s)
- Xiaokang Lv
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Min Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Ke Ji
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Chuanshe Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| |
Collapse
|
2
|
Zhou T, Zhang XQ, Qiao WH, Shao XD, Li XX, Dong JF, Shao LD, Hu WY, Zhang RP, Chen XL. Characterization and Isolation of Ginger Phenols from Zingiber officinale Rhizomes through in Silico-Based Reverse Annotation and Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11764-11779. [PMID: 40314166 DOI: 10.1021/acs.jafc.5c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Ginger is a rich source of ginger phenols with an anti-inflammatory property. Antineuroinflammatory pathways represent a promising therapeutic strategy for neurodegenerative diseases. Ginger was selected as our research object to discover bioactive constituents responsible for the antineuroinflammatory effect. An in silico-based reverse annotation strategy, in conjunction with molecular networking, was employed for the large-scale annotation of ginger phenols from ginger. A total of 174 ginger phenols and 235 ginger phenol dimers were annotated. Five new ginger phenols (1-5) and 18 known ginger phenols (6-23) were isolated following this proposed strategy, among which compound 1 was a new natural product and compounds 2-3 were novel ginger phenol dimers. Their structures were elucidated using extensive spectroscopic data and semisynthesis methods. Compounds 2, 8, 12, 18, and 19 exhibited a capacity to inhibit nitric oxide (NO) production and demonstrated antineuroinflammatory activity in lipopolysaccharide (LPS)-induced BV2 cells at the concentrations of 10, 20, and 40 μM. Enzyme-linked immunosorbent assay (ELISA) showed that compounds 2, 18, and 19 could significantly reduce the expression levels of cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β). In addition, compounds 2 and 18 displayed a certain inhibitory effect on the expressions of interleukin-10 (IL-10) and interleukin-6 (IL-6). The Western blot analysis revealed that compounds 18 and 19 effectively attenuated the expression of IL-1β, while only compound 2 inhibited the expression of phosphorylated nuclear factor kappa B (p-NF-κB) in BV2 cells. This study demonstrates the great potential and prospect of the proposed strategy in the utilization of ginger resources. Additionally, it reveals that ginger contains diverse ginger phenols with antineuroinflammation activity.
Collapse
Affiliation(s)
- Tang Zhou
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xiu-Qiong Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China
| | - Wen-Hao Qiao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xiao-Dan Shao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xing-Xi Li
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Jun-Fang Dong
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Li-Dong Shao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Wei-Yan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xing-Long Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Chen KL, Lu HI, Yen CY, Chen CY, Chien TM, Jeng JH, Chen BH, Chang HW. Antioral cancer effects of ginger derivative 3-HDM exert oxidative stress-associated apoptosis and DNA damage. Mol Biol Rep 2025; 52:414. [PMID: 40266430 DOI: 10.1007/s11033-025-10514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND 3-Hydroxy-1-(3',5'-dimethoxy-4'-hydroxy-phenyl)-hexan-5-one (3-HDM), a novel ginger Zingiber officinale-derived compound, lacks anti-cancer investigation, especially for oral cancer. This study addresses the antioral function and mechanism of 3-HDM against oral cancer cells (Ca9-22 and CAL 27). METHOD MTS, flow cytometry, and western blotting were used to determine cell viability and antioral function and mechanism. RESULTS 3-HDM inhibits oral cancer cell viability without normal cell (S-G) toxicity. This selective antiproliferation relies on oxidative stress validated by N-acetylcysteine (NAC), a reactive oxygen species (ROS) remover. 3-HDM upregulates subG1 and annexin V proportions, enhances caspases 3 and 8 activation to a greater extent in oral cancer than in normal cells, reverted by NAC. This process demonstrates the ROS-dependent selective apoptotic character of 3-HDM. 3-HDM also upregulates more ROS and mitochondrial superoxide and downregulates the mitochondrial membrane potential and glutathione in oral cancer than in normal cells in a ROS-dependent manner. Moreover, 3-HDM suppresses antioxidant signaling mRNA expressions such as NFE2L2, NQO1, and TXN and inhibits NFE2L2 phosphorylation in oral cancer cells compared to normal cells. NAC also downregulates the 3-HDM-induced γH2AX and 8-hydroxy-2-deoxyguanosine DNA damage markers. CONCLUSION 3-HDM shows selective antioral cancer effects and mechanisms without toxicity to normal cells via oxidative stress regulation.
Collapse
Affiliation(s)
- Kuan-Liang Chen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Hsin-I Lu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chung-Yi Chen
- School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, 820111, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research and Research Center for Molecular Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Zhang W, Liu Z, Luo L, Xu L, Ma Q, Huang S, Hong T. GC-MS- and LC-TOF-MS/MS-based ginger volatile oil serum analysis and the potential mechanism of the anticancer effect of serum component citral on MCF-7 breast cancer cells. J Pharm Pharmacol 2025; 77:532-549. [PMID: 39589181 DOI: 10.1093/jpp/rgae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND To explore the blood components of ginger volatile oil (GVO) after gastric perfusion in rats and its different metabolites from blank serum and the network pharmacological analysis and preliminary verification of the main components against breast cancer. METHODS A total of 20 male rats were randomly allocated to 10 control groups and 10 experimental groups. The administration group was given diluted GVO and the blank group was given the same amount of soybean oil (weigh 12 g of GVO diluted to 100 ml with soybean oil), the serum of rats in the given and blank groups was analyzed by gas chromatography-time-of-flight mass spectrometry, and the differential metabolites were screened and enriched, and the blood components were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). RESULTS A total of 34 different metabolites were screened, and 31 original components were identified. The content of citral in volatile oil and serum is high, and the pathway of action is also closely related to the results of network pharmacology. Cell experiments showed that both drug-containing serum and citral significantly inhibited the proliferation and lateral transfer ability of breast cancer MCF-7 cells in a concentration and time-dependent manner, flow cytometry was used to measure apoptosis, and the experimental results showed that the proportion of early and late apoptosis was significantly increased in each group compared with the control group, and the proportion of total apoptosis showed a certain concentration-dependent trend. CONCLUSIONS A combination of serum metabolism, network pharmacology, and experiments was employed; this study offers a significant contribution to the clarification of the material basis and molecular mechanism of GVO- medicated serum against breast cancer.
Collapse
Affiliation(s)
- Wenkai Zhang
- Experimental Animal Science and Technology Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Laboratory of Pathological Research on Experimental Animals of Nanchang, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhiyong Liu
- Experimental Animal Science and Technology Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
- Laboratory of Pathological Research on Experimental Animals of Nanchang, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Liming Luo
- Experimental Animal Science and Technology Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lei Xu
- Experimental Animal Science and Technology Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qiuting Ma
- Experimental Animal Science and Technology Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Shuai Huang
- Experimental Animal Science and Technology Center of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Tao Hong
- Clinical Medical College of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
5
|
Jia QQ, Li JX, Yang S, Su DD. Gas chromatography-ion mobility spectrometry-based fingerprint analysis of volatile flavor compounds in ginger cultivated under different conditions. Curr Res Food Sci 2025; 10:101041. [PMID: 40231314 PMCID: PMC11995100 DOI: 10.1016/j.crfs.2025.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Ginger is widely acclaimed for its pungent aroma, nutritional benefits, and unique pharmacological properties, making it essential in culinary and medicinal applications. This study investigates volatile flavor profile differences in ginger resulting from various cultivation practices. Gas chromatography-ion mobility spectrometry (GC-IMS) was utilized to isolate and identify volatile compounds. Subsequent analyses, including relative odor activity values (ROAV) and multivariate statistical analysis, precisely identified key flavor compounds differentiating organically cultivated ginger from conventional field-grown varieties. A total of fifty-six volatile compounds were identified, comprising 17 esters, 4 alcohols, 7 ketones, 18 terpenoids, 6 aldehydes, and 4 miscellaneous compounds, with esters and terpenoids constituting over 50 % of total volatiles. Compounds such as α-phellandrene, β-citronellal, butyl 2-propenoate, 2-heptanone-D, and 3-octanone predominantly contributed lemon, banana, and citronella notes in organically cultivated ginger. In contrast, citral dominated in conventional ginger. This research significantly advances our understanding of ginger's aroma under varied cultivation conditions and demonstrates GC-IMS's utility in effectively profiling ginger flavor, thereby guiding improved cultivation and management.
Collapse
Affiliation(s)
- Qian-qian Jia
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Jia-xing Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Sen Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| | - Ding-ding Su
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, 261325, China
| |
Collapse
|
6
|
Wei W, Wu X, Ren Y, Zhong Y, Wei L, Wei S, Yang G, Liu Y. Methyl jasmonate enabled maintained the postharvest flavor quality of ginger (Zingiber officinale roscoe) by reducing the loss of terpene volatile compounds. Food Chem 2025; 468:142413. [PMID: 39675275 DOI: 10.1016/j.foodchem.2024.142413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Ginger, as a globally vital medicinal and food homologous crop, plays an irreplaceable role in human diet and healthcare. However, during the storage of ginger, the decline of physical properties and degradation of volatile flavor quality have emerged as an industrial concern that severely restricts the market value of the product. MeJA plays an essential role in extending fruit shelf life and regulate the synthesis of volatiles in horticultural products, yet its application in ginger remains unreported. This study investigated whether MeJA could delay the deterioration of external quality and the loss of volatile compounds, thereby maintaining the flavor quality of ginger during storage. The results demonstrated that MeJA retarded weight loss, moisture reduction, texture softening, and color darkening in ginger rhizomes during storage. In addition, dynamic profiles of volatile compounds in the postharvest stage of ginger rhizomes were characterized via HS-SPME/GC-MS methodology. A total of 67 volatile components were identified and quantified precisely, which were divided into terpenes, alcohols, esters, aldehydes, ketones, and others. Terpenes represented by zingiberene, farnesene, β-sesquiphellandrene, α-curcumene, (E)-β-farnesene, and β-elemene, was the most abundant classification of compounds in ginger, comprising approximately 70 % of the total content. Compared with the control group, MeJA reduced the loss rate of total quantity and total content of volatiles, while effectively slowed the loss of various volatiles, especially after 35d of storage. Furthermore, 30 characteristic components with an odor activity values (OAVs) ≥ 1 were identified, predominantly exhibiting spicy, green, floral, fatty, and fruity fragrances. It is noteworthy that the most prominent scent of ginger is the spicy aroma, which can be significantly up-regulated by MeJA. Moreover, MeJA treatment was found to enhance the expression levels of terpene-related genes in ginger. This study clarified the patterns of variation in physical properties, volatile compounds, and aroma intensity during the storage of ginger, providing a theoretical basis for mitigating the deterioration of flavor quality in ginger rhizomes during postharvest storage. This research holds significant importance for promoting the comprehensive utilization and high-quality development of ginger.
Collapse
Affiliation(s)
- Weining Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiuqiao Wu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongzheng Ren
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yue Zhong
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Lijuan Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Shouhui Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Guo Yang
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Academy of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| | - Yiqing Liu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; College of Smart Agriculture /Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, Chongqing, China.
| |
Collapse
|
7
|
Che K, Wang C, Chen H. Advancing functional foods: a systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front Nutr 2025; 12:1544746. [PMID: 40115388 PMCID: PMC11924939 DOI: 10.3389/fnut.2025.1544746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs), emerging as novel bioactive agents, exhibit significant potential in food science and nutritional health. These nanoparticles, enriched with plant-specific biomolecules such as proteins, lipids, nucleic acids, and secondary metabolites, demonstrate unique cross-species regulatory capabilities, enabling interactions with mammalian cells and gut microbiota. PDENs enhance nutrient bioavailability by protecting sensitive compounds during digestion, modulate metabolic pathways through miRNA-mediated gene regulation, and exhibit anti-inflammatory and antioxidant properties. For instance, grape-derived PDENs reduce plasma triglycerides in high-fat diets, while ginger-derived nanoparticles alleviate colitis by downregulating pro-inflammatory cytokines. Additionally, PDENs serve as natural drug carriers, with applications in delivering therapeutic agents like doxorubicin and paclitaxel. Despite these advancements, challenges remain in standardizing extraction methods (ultracentrifugation, immunoaffinity), ensuring stability during food processing and storage, and evaluating long-term safety. Current research highlights the need for optimizing lyophilization techniques and understanding interactions between PDENs and food matrices. Furthermore, while PDENs show promise in functional food development-such as fortified beverages and probiotic formulations-their clinical translation requires rigorous pharmacokinetic studies and regulatory clarity. This review synthesizes existing knowledge on PDENs' composition, biological activities, and applications, while identifying gaps in scalability, stability, and safety assessments. Future directions emphasize interdisciplinary collaboration to harness PDENs' potential in combating metabolic disorders, enhancing food functionality, and advancing personalized nutrition strategies.
Collapse
Affiliation(s)
- Ke Che
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hao Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Yan L, Cao Y, Hou L, Luo T, Li M, Gao S, Wang L, Sheng K, Zheng L. Ginger exosome-like nanoparticle-derived miRNA therapeutics: A strategic inhibitor of intestinal inflammation. J Adv Res 2025; 69:1-15. [PMID: 38588850 PMCID: PMC11954804 DOI: 10.1016/j.jare.2024.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) involve in destabilising messenger RNA or repressing translation of target molecules. Ginger-derived exosome-like nanoparticles (GELNs) play a crucial role in modulating intestinal inflammation. Moreover, GELNs contain highly heterogeneous miRNA. However, the role of miRNAs derived from GELNs in immunomodulation remains unclear. OBJECTIVES This study aimed to elucidate the molecular basis of the unique biological effects mediated by miRNA derived from GELNs on macrophages. METHODS GELNs were isolated using a combination of commercial exosome isolation kits and the differential centrifugation method, and the lipid composition of GELNs was determined using liquid chromatography-mass spectrometry. Subsequently, PKH26 labelled GELNs were taken up by macrophages. Furthermore, the modulation of inflammatory and immune responses by GELNs or osa-miR164d was assessed through the RNA-seq, RT-qPCR, online databases, and dual luciferase reporter assays to explore the underlying mechanisms of osa-miR164d. Biomimetic exosomes loaded with osa-miR164d were prepared using a microfluidic mixing device and systematically characterized. The therapeutic effects of osa-miR164d on relieving colitis were evaluated. RESULTS We report for the first time that GELNs-derived osa-miR164d is a regulatory factor of reprogramming macrophage polarization, thereby inhibiting the intestinal inflammatory response. Mechanistically, osa-miR164d directly targets the 3'-UTRs of TAB1, which regulates macrophage polarization through the downregulation of NF-κB expression. In addition, We have designed a biomimetic exosome mimicking GELNs to deliver osa-miR164d (osa-miR164d-MGELNs). Notably, the osa-miR164d-MGELNs can efficiently reprogram macrophages to alleviate colitis-related symptoms. CONCLUSION Our findings enhance the systematic understanding of how GELNs-derived osa-miR164d mediates cross-kingdom communication and provide an original engineering paradigm for mimicking GELNs to transfer miRNA.
Collapse
Affiliation(s)
- Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaqi Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Linhai Hou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianyu Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meiqi Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengjie Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
9
|
Liu T, Asif IM, Bai C, Huang Y, Li B, Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders-current perspectives. Nutr Rev 2025; 83:e1158-e1171. [PMID: 38908001 DOI: 10.1093/nutrit/nuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) were highly prevalent and involve gastrointestinal discomfort characterized by non-organic abnormalities in the morphology and physiology of the gastrointestinal tract. According to the Rome IV criteria, irritable bowel syndrome and functional dyspepsia are the most common FGIDs. Complementary and alternative medicines are employed by increasing numbers of individuals around the world, and they include herbal and dietary supplements, acupuncture, and hypnosis. Of these, herbal and dietary supplements seem to have the greatest potential for relieving FGIDs, through multiple modes of action. However, despite the extensive application of natural extracts in alternative treatments for FGIDs, the safety and effectiveness of food and orally ingested food-derived extracts remain uncertain. Many randomized controlled trials have provided compelling evidence supporting their potential, as detailed in this review. The consumption of certain foods (eg, kiwifruit, mentha, ginger, etc) and food ingredients may contribute to the alleviation of symptoms associated with FGID,. However, it is crucial to emphasize that the short-term consumption of these components may not yield satisfactory efficacy. Physicians are advised to share both the benefits and potential risks of these alternative therapies with patients. Furthermore, larger randomized clinical trials with appropriate comparators are imperative.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Chengmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Yutian Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Priyadarshini S, Goyal K, R R, Gupta S, Roy A, Biswas R, Patra S, Chauhan P, Wadhwa K, Singh G, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Sinha JK, Bansal P, Rani B, Walia C, Sivaprasad GV, Ojha S, Nelson VK, Jha NK. Polypharmacology and Neuroprotective Effects of Gingerol in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-024-04484-y. [PMID: 39982688 DOI: 10.1007/s12035-024-04484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/22/2024] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that results in brain shrinkage and the death of brain cells. The search for new treatment agents with many targets is now crucial due to the insufficient effectiveness, and adverse effects, including pharmacokinetic issues of traditional AD medications. Although phytochemicals have anti-disease characteristics and thus are widely used and accepted by people, researchers have also determined some of their most beneficial functions. Sesquiterpenes, volatile oils, and aromatic ketones (gingerols) are abundant in ginger. The most pharmacologically active components of ginger are considered to be gingerols. These gingerols are the compounds that impart spicy characteristics to the plant. Besides, gingerols readily undergo dehydration and produce another class of compounds, shogaols. These gingerols, shogaols, and other compounds, like zingerone, are mainly responsible for their distinctive aroma and pharmacological effects. This review aims to delineate the therapeutic potentials of gingerol in different AD models by assessing available literature reporting its effect on various cellular and molecular pathways. Although ginger is well recognized as a non-toxic nutraceutical, existing clinical research lacks robust evidence to support its efficacy in treating NDs, including AD. Clinical studies did not provide sufficient data that supports its use in treating various NDs including AD. Therefore, further research is essential to establish the safety and effectiveness of ginger and its constituents, ultimately paving the way for its development as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Sakthi Priyadarshini
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Keshav Goyal
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Uttar Pradesh, Mathura, India
| | - Aatreyi Roy
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Ritabrata Biswas
- Faculty of Biology, Ludwig Maximilian University, Großhaderner Straße 2-4, 82152, Planegg Martinsried, Munich, Germany
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Marg, New Delhi, 110021, India
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana, 124001, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | | | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Vinod Kumar Nelson
- Department of Natural Products and Drug Discovery, Centre for global health research, Saveetha medical college and Hospital, Saveetha institute of medical and technical sciences, Chennai, Tamil Nadu, India.
| | - Niraj Kumar Jha
- Department of Biotechnology & Bioengineering, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
11
|
Lu Q, Wang J, Tang Y, Li W, Li C. Phytochemical analysis of dried ginger extract and its inhibitory effect and mechanism on Helicobacter pylori and associated ureases. Food Funct 2025; 16:1100-1115. [PMID: 39831446 DOI: 10.1039/d4fo04991h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Helicobacter pylori (H. pylori), one of the most common infectious pathogens in the world, can cause gastritis, digestive ulcers, and even gastric cancer. H. pylori urease (HPU) is a distinctive virulence factor of H. pylori that allows it to be distinguished from other pathogens. Dried ginger is a famous edible and medicinal herb that is commonly used to prevent and treat gastrointestinal tract-related diseases. In this study, phytochemical analysis of the aqueous extract of dried ginger (DGE) and the inhibition of DGE on H. pylori was investigated. Subsequently, we evaluated the inhibitory activity of DGE against enzymes including HPU and jack bean urease (JBU) and determined its potential mechanism of action. UPLC-ESI-MS/MS analysis indicated that a total of 63 compounds including seven glycosides, nine terpenoids, two esters, seven phenols, eight lignans, five phenylpropanoids, and four phenolic acids were identified in DGE. DGE was observed to inhibit the growth of four H. pylori strains (ATCC 43504, NCTC 26695, SS1, and ICDC 111001) with minimum inhibitory concentration (MIC) values spanning the range of 0.05 to 1.50 mg mL-1. Moreover, DGE has higher enzyme inhibitory activity on HPU (IC50 = 0.49 ± 0.01 mg mL-1) than on JBU (IC50 = 0.54 ± 0.01 mg mL-1). Enzyme inhibitory kinetic analysis revealed that the inhibition type of DGE against HPU was slow-binding and anti-competitive, whereas it was slow-binding and mixed type on JBU. A further mechanism study indicated that the protective effect of sulfhydryl-containing compounds on enzyme activity was significantly better than that of inorganic compounds, indicating that the action site of DGE inhibition of enzyme was the sulfhydryl residue. The results of DTT reactivation experiments showed that the DGE-urease complex was reversible. Furthermore, molecular docking investigation showed that the main components of DGE interacted with sulfhydryl groups and Ni2+. In conclusion, DGE effectively inhibited the growth of H. pylori and the activity of its key virulence factor urease. And the in-depth study of the kinetic characteristics and the mechanism of action showed that the active site sulfhydryl group and Ni2+ might be the targets of urease inhibition by DGE. Our study may provide experimental evidence for the traditional application of dried ginger in the treatment of H. pylori-associated gastric diseases.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| | - Wenna Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| |
Collapse
|
12
|
Sulejmanović M, Panić M, Redovniković IR, Milić N, Drljača J, Damjanović A, Vidović S. Sustainable isolation of ginger (Zingiber officinale) herbal dust bioactive compounds with favorable toxicological profile employing natural deep eutectic solvents (NADES). Food Chem 2025; 464:141545. [PMID: 39395331 DOI: 10.1016/j.foodchem.2024.141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
The usage of ginger (Zingiber officinale) has increased in recent years due to its positive effect on human health affiliated with its richness in gingerols and shogaols. This study optimized the Ultrasound-assisted extraction (UAE) for better phenolic compounds isolation from ginger herbal dust (GHD), a filter tea industry by-product. The extraction was performed using raw and defatted GHD-previously processed by Supercritical fluid extraction - CO2. An additional advantage was using COSMOtherm software for 71 natural deep eutectic solvents (NADES) screening, to select the optimal one for GHD 6-gingerol recovery. As an optimal NADES, Malic acid:Glucose (MA:Glc) in the 1:1 ratio was determined. The optimal MA: Glc-based extract with a 6-gingerol content of 1.90±0.05 mg/g, an antioxidant activity of 321.28±5.09 μmol TE/g, and a favorable toxicological profile was obtained in 2 min of UAE under the sonication amplitude of 20 %, approving the benefits and the sustainability of the present study.
Collapse
Affiliation(s)
- Mirjana Sulejmanović
- Department of Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Boulevard Cara Lazara 1, 21000 Novi Sad, Serbia; Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Manuela Panić
- Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Ivana Radojčić Redovniković
- Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia.
| | - Anja Damjanović
- Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia.
| | - Senka Vidović
- Department of Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Boulevard Cara Lazara 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
13
|
Wang Z, Wang Y, Dong C, Miao K, Jiang B, Zhou D, Dong K, Wang Y, Zhang Z. Po-Ge-Jiu-Xin decoction alleviate sepsis-induced cardiomyopathy via regulating phosphatase and tensin homolog-induced putative kinase 1 /parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118952. [PMID: 39426573 DOI: 10.1016/j.jep.2024.118952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis is a life-threatening systemic syndrome usually accompanied by myocardial dysfunction. Po-Ge-Jiu-Xin decoction (PGJXD), a traditional Chinese prescription medicine, has been used clinically to treat cardiovascular disease including heart failure, sepsis-induced cardiomyopathy (SIC) and even septic shock. Previous clinical studies suggested PGJXD has shown promising results in improving cardiac function and treating heart failure in sepsis. However, more research is needed to elucidate the mechanisms underlying PGJXD's therapeutic effects in sepsis-induced cardiomyopathy. MATERIALS AND METHODS Initially, we identified the major compounds of PGJXD through ultra-performance liquid chromatography-mass spectrometry technology analysis. We established in a SIC rat model using cecal ligation and puncture(CLP) and treated by PGJXD and levosimendan. We evaluated pathological damage by hematoxylin and eosin staining and measured serum myocardial injury biomarkers. Myocardial apoptosis was detected by Tunel staining and quantifying specific biomarker protein levels. Subsequently, we evaluated myocardium mitochondrial quality using Transmission electron microscope (TEM), antioxidant stress indexes and tissue adenosine triphosphate(ATP) content. We detected the expression of phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), parkin, LC3, and p62 using Western blotting and Quantitative real time polymerase chain reaction(qRT-PCR). (Lipopolysaccharides, LPS)-induced H9c2 cell model was established to further explore the mechanism of PGJXD on SIC. In addition to measuring cell viability, we measured mitochondrial membrane potential using JC-1 staining. Additionally, Parkin-siRNA transfected into H9c2 cells to validate whether PGJXD conducted protective effects against SIC through PINK1/Parkin-mediated mitophagy. RESULTS It has been demonstrated that PGJXD reduced mortality in septic rat, contributed to ameliorating myocardium injury, suppressed inflammatory response and ameliorated the myocardial apoptosis. PGJXD could also alleviate mitochondrial structural abnormality, mitigated oxidative stress injury and promoted energy synthesis in CLP models. Western blotting and qRT-PCR have further confirmed that PGJXD can activate PINK1/parkin pathway-mediated mitophagy, resulting in preserving mitochondrial quality in the myocardium. Furthermore, Parkin siRNA partially reversed the beneficial effect of PGJXD on mitochondrial fission/fusion and mitophagy in vitro. Therefore, the cardioprotective effect of PGJXD is achieved by inducing PINK1/Parkin-mediated mitophagy in maintaining mitochondrial homeostasis. CONCLUSIONS These results suggest that the potential therapeutic effect of PGJXD on cardiac dysfunction during sepsis and support its mechanism of targeted induction of PINK1-Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Zheng Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China; Department of Critical Care, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Yu Wang
- Department of Critical Care, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Chen Dong
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Kaihui Miao
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Dan Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Kang Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Yanjun Wang
- Department of Critical Care, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Key Laboratory of Cardiovascular Diseases of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Hafezizadeh M, Salehcheh M, Mohtadi S, Mansouri E, Khodayar MJ. Zingerone effects on arsenic-induced glucose intolerance and hepatotoxicity in mice via suppression of oxidative stress-mediated hepatic inflammation and apoptosis. J Trace Elem Med Biol 2024; 86:127562. [PMID: 39531827 DOI: 10.1016/j.jtemb.2024.127562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Arsenic (As), a poisonous metalloid, is widely distributed in air, water, and soil and has been associated with the occurrence of diabetes and liver toxicity. Zingerone (ZNG), one of the active compounds in ginger, has several pharmacological benefits such as antioxidant and anti-inflammatory characteristics. The objective of this research was to assess the protective role of ZNG against arsenic (As)-induced glucose intolerance (GI) and hepatotoxicity in mice. METHODS Male NMRI mice were treated with ZNG (25, 50, and 100 mg/kg, oral gavage for 29 days) before As administration (10 mg/kg, oral gavage for 29 days). On the 29th day, fasting blood glucose (FBG) and glucose tolerance test were measured. The animals were euthanized (day 30), and samples from blood and tissue (liver and pancreas) were gathered for further evaluations. RESULTS Administration of ZNG inhibited As-induced elevation of FBG and GI. Moreover, hepatic tissue damage and decreased Langerhans islets' diameter caused by As administration were improved by ZNG treatment. Pretreatment with ZNG attenuated the elevation of serum liver enzymes induced by As (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase). Also, the reduction in total thiol content, as well as the decline in antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) and the increase in lipid peroxidation marker (thiobarbituric acid reactive substances) in the liver tissue of As-exposed mice were reversed in ZNG-treated mice. Furthermore, ZNG prevented the increase of hepatic inflammatory markers (nitric oxide and tumor necrosis factor-alpha levels, and protein expression of nuclear factor-kappa B) and apoptosis-related marker (caspase-3 protein expression) in As-treated mice. CONCLUSIONS This study has provided evidence indicating that ZNG can act as a beneficial agent in preventing As-induced hepatotoxicity and diabetes.
Collapse
Affiliation(s)
- Mobina Hafezizadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Salehcheh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Shahsavari S, Sharifi I, Salarkia E, Keyhani A, Sharifi F, Babaei Z. In silico and experimental potentials of 6-shogaol and meglumine antimoniate on Leishmania major: multiple synergistic combinations through modulation of biological properties. Immunol Res 2024; 72:1313-1326. [PMID: 39155331 DOI: 10.1007/s12026-024-09530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Conventional therapeutic agents are no longer adequate against leishmaniasis. This complex condition continues to have a high mortality rate and public health impact. The present study aimed to explore an extensive array of experiments to monitor the biological activities of 6-shogaol, a major component of ginger, and meglumine antimoniate (MA or Glucantime®). The binding affinity of 6-shogaol and inducible nitric oxide synthase (iNOS), a major enzyme catalyzing nitric oxide (NO) from L-arginine was the source for the docking outline. The inhibitory effects of 6-shogaol, MA, and mixture were assessed using colorimetric and macrophage assays. Antioxidant activity was inferred by UV-visible spectrophotometry. Variably expressed genes were measured by quantifiable real-time polymerase chain reaction. Apoptotic and cell cycle profiles were analyzed by flow cytometry. Moreover, a DNA fragmentation assay was performed by electrophoresis and antioxidant metabolites include superoxide dismutase (SOD), catalase (CAT), and also nitric oxide (NO) by enzyme-linked immunosorbent assay. 6-shogaol and MA exhibited multiple synergistic mechanisms of action. These included a remarkable leishmanicidal effect, potent antioxidative activity, a high safety index, upregulation of M1 macrophages/Th1-associated cytokines (including, γ-interferon, interleukin-12p40, tumor necrotizing factor-alpha, and associated iNOS), significant cell division capture at the sub-G0/G1 phase, a high profile of apoptosis through DNA fragmentation of the nuclear components. In addition, the activity of NO was substantially elevated by treated intracellular amastigotes, while SOD and CAT activities were significantly diminished. This study is exclusive because no similar investigation has inclusively been conducted before. These comprehensive mechanistic actions form a logical foundation for additional advanced study.
Collapse
Affiliation(s)
- Saeid Shahsavari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Mustafa G, Arif MAR, Bakhsh M, Wajih Ul Hassan S. First report of aflatoxin and ochratoxin contamination in ginger collected from different agroclimatic zones from Punjab, Pakistan. Toxicon 2024; 251:108138. [PMID: 39433257 DOI: 10.1016/j.toxicon.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ginger, a fresh rhizome, an economically important spice with extensive nutraceutical activities finds itself in vegetable and therapeutic market. Aflatoxins (AFB1, AFB2, AFG1 and AFG2) along with ochratoxin A (OTA) are the most significant and the most toxic form of mycotoxins which are produced by various fungi. This study was initiated to assess the contamination of AFs and OTA in raw and dried ginger products, collected from different agro-climatic zones in Punjab, Pakistan employing the high performance liquid chromatography. We found all (raw ginger samples commercial ginger powders) samples contaminated with AFB1 (range: 29.88-1060.12 μg/kg). AFB2 contamination was much lower (range: 0-17.54 μg/kg). Variable contamination of AFG1 was also observed (range: 0-170.58 μg/kg) whereas AFG2 contamination was found in only three (range: 0-21.88 μg/kg) out of 19 raw ginger samples. OTA contamination ranged from 0.05 to 3.42 μg/kg. Ginger samples from lower altitudes (<1000 m) were more contaminated with AFB1 sub type mycotoxin. Keeping in view that the toxicity of AFs is in the order of B1>G1> B2>G2, it was alarming to find that 100% of the samples were contaminated with AFB1 way beyond the permissible limits. Our very first report about the contamination of ginger with AFs presents a grave health issue because of wide use of ginger. We conclude that ginger production in Pakistan needs to be carefully crafted and due diligence is needed during ginger cultivation, harvest and post-harvest operations because the amount of aflatoxins detected in this study are very much above the permissible limits. In this regard, ginger storage in cooler environments such as refrigerator should be encouraged to contain the AFs proliferation.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Mian Abdur Rehman Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| | - Murad Bakhsh
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Syed Wajih Ul Hassan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| |
Collapse
|
17
|
Okonkwo CE, Onyeaka H, Olaniran AF, Isaac-Bamgboye FJ, Nwaiwu O, Ukwuru M, Adeyanju AA, Nwonuma CO, Alejolowo OO, Inyinbor AA, Akinsemolu A, Zhou C. Changes in flavor profile of vegetable seasonings by innovative drying technologies: A review. J Food Sci 2024; 89:6818-6838. [PMID: 39349974 DOI: 10.1111/1750-3841.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 11/13/2024]
Abstract
Seasonings like garlic, ginger, and scallion provide spicy and masking flavor or aroma in vegetables. However, the method or technique used for drying these spices can affect the flavor profile. Therefore, this review focuses on vegetable seasonings like ginger, garlic, and scallion, the characteristic flavor of fresh and dehydrated vegetable seasoning, and how drying methods (freeze-drying [FD], convective hot air drying [HAD], infrared drying, microwave drying [MW]), and other recent dryers (swirling fluidized bed [SFB], pulsed-vacuum dryer, relative humidity-convective dryer, etc.) affect the flavor profile of the common vegetable seasonings. HAD increases α-zingiberene, reduces gingerol, and forms β-citral and citral in fresh ginger. FD increased sesquiterpenes, retained terpenoids, sulfides, and other volatiles in fresh ginger, and did not produce new volatile compounds (VOCs) in garlic. SFB drying better preserves 6-gingerol than FD and HAD. MW increases trisulfides and cyclic sulfur compounds in garlic. In general, drying, especially thermal drying reduces the VOCs in fresh garlic, ginger, and scallion and causes the formation of new VOCs.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | - Ogueri Nwaiwu
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Ukwuru
- Department of Food Science and Technology, Federal Polytechnic Idah, Idah, Nigeria
| | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Tiani KA, Arenaz CM, Spill MK, Foster MJ, Davis JS, Bailey RL, Field MS, Stover PJ, MacFarlane AJ. The Use of Ginger Bioactive Compounds in Pregnancy: An Evidence Scan and Umbrella Review of Existing Meta-Analyses. Adv Nutr 2024; 15:100308. [PMID: 39343171 PMCID: PMC11536023 DOI: 10.1016/j.advnut.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Ginger is a commonly used nonpharmacological treatment of pregnancy-related symptoms including nausea and vomiting, inflammation, and gastrointestinal dysfunction. Determining the efficacy of ginger is particularly important during pregnancy and lactation when maternal and neonatal detrimental effects may be a concern. This evidence scan and umbrella review aimed to assess the extent and quality of the evidence regarding the effectiveness and safety of using dietary preparations of ginger during pregnancy and lactation. We searched MEDLINE, Embase, CAB Abstracts, and International Pharmaceutical Abstracts up to 20 December, 2023, to identify maternal and neonatal outcomes associated with ginger use during pregnancy or lactation compared to placebo or conventional medicines. Outcomes for which a meta-analysis (MA) of intervention studies was identified were synthesized in an umbrella review. The AMSTAR-2 (A MeaSurement Tool to Assess systematic Reviews-2) tool was used to critically appraise the reviews. The percent overlap in primary studies was calculated overall and pairwise for each included MA. Data extracted from each MA included the summary estimate of the effect of ginger, the formulation of the ginger treatment, gestational timepoint at intervention, population enrolled in the study, type of intervention, comparator intervention, and number of study participants. The evidence scan identified 90 articles relevant to ginger use during pregnancy and lactation. Seven MAs of ginger use for treating nausea and vomiting of pregnancy reported 22 independent studies with a 49% study overlap overall. The majority of the MAs found a significant positive effect of ginger on the improvement of nausea in pregnancy compared with placebo, or equivalence to conventional treatments, and no evidence of significant adverse effects. The quality of the MAs ranged from critically low to low. The evidence suggests that ginger is effective at reducing nausea in pregnancy; however, the included studies contained substantial heterogeneity and were of low quality.
Collapse
Affiliation(s)
- Kendra A Tiani
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, United States
| | - Cristina M Arenaz
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, United States
| | - Maureen K Spill
- Texas A&M Agriculture, Food and Nutrition Evidence Center, Fort Worth, TX, United States
| | - Margaret J Foster
- Center for Systematic Reviews and Evidence Syntheses, Texas A&M University, College Station, TX, United States
| | - Julie S Davis
- Texas A&M Agriculture, Food and Nutrition Evidence Center, Fort Worth, TX, United States
| | - Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, United States; Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Patrick J Stover
- Department of Nutrition, Texas A&M University, College Station, TX, United States; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Amanda J MacFarlane
- Texas A&M Agriculture, Food and Nutrition Evidence Center, Fort Worth, TX, United States; Department of Nutrition, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
19
|
Schumacher JC, Mueller V, Sousa C, Peres KK, da Mata IR, Menezes RCR, Dal Bosco SM. The effect of oral supplementation of ginger on glycemic control of patients with type 2 diabetes mellitus - A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 63:615-622. [PMID: 39053695 DOI: 10.1016/j.clnesp.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/07/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Ginger, a root originating in Southeast Asia, has several therapeutic benefits to human health, including antioxidant activity. Currently, there are discussions regarding the hypoglycemic properties of dietary supplements derived from its phenolic compounds in the management of chronic diseases. Diabetes mellitus is a chronic and complex disease that requires continuous treatment, with glycemic control being decisive in the management of hyperglycemia. AIM This systematic review and meta-analysis aimed to identify the effects of oral supplementation of ginger in the treatment of type 2 diabetes mellitus (T2DM) in patients undergoing randomized clinical trial studies. METHODS Across the PubMed, Scopus, and Web of Science databases, randomized controlled trials that examined the role of ginger in T2DM until January 2022 were systematically researched. The parameters used to assess T2DM treatment control were Fasting Blood Glucose (FBS) and glycated hemoglobin (HbA1c). Bias risk assessment of the studies was performed using the RoB 2.0 tool. Meta-analysis was performed considering data compatibility. RESULTS Five studies were included in the analysis. Capsules containing Zingiber officinale powder were supplemented twice a day. The dose ranged from 1.2 to 2g/day, and the intervention period ranged from 4 to 12 weeks. Meta-analysis results indicated no significant effect of ginger supplementation on FBS or HbA1c. However, individual studies reported mixed results, with two studies showing a significant reduction in FBS. This suggests that while ginger may have potential as an adjuvant therapy, its overall impact on glycemic control in T2DM is not statistically significant when results are pooled. CONCLUSION Currently published articles are still limited, requiring further studies of high methodological quality to verify the effectiveness of ginger supplementation on T2DM parameters control.
Collapse
Affiliation(s)
- Juliana Crystal Schumacher
- Undergraduate Nutrition Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Vanessa Mueller
- Undergraduate Nutrition Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Camila Sousa
- Undergraduate Nutrition Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Kathleen Krüger Peres
- Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Isabella Rosa da Mata
- Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Rafaella Camara Rocha Menezes
- Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Simone Morelo Dal Bosco
- Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| |
Collapse
|
20
|
Ongtanasup T, Tawanwongsri W, Manaspon C, Srisang S, Eawsakul K. Comprehensive investigation of niosomal red palm wax gel encapsulating ginger (Zingiber officinale Roscoe): Network pharmacology, molecular docking, In vitro studies and phase 1 clinical trials. Int J Biol Macromol 2024; 277:134334. [PMID: 39094890 DOI: 10.1016/j.ijbiomac.2024.134334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriwan Srisang
- Energy Engineering Division, Department of Engineering, King Mongkut's Institute of Technology Lad-krabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
21
|
Schumacher JC, Mueller V, Sousa C, Peres KK, da Mata IR, Menezes RCR, Dal Bosco SM. The effect of oral supplementation of ginger on glycemic control of patients with type 2 diabetes mellitus - A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 63:615-622. [DOI: doi.org/10.1016/j.clnesp.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2024]
|
22
|
Schumacher JC, Mueller V, Sousa C, Peres KK, da Mata IR, Menezes RCR, Dal Bosco SM. The effect of oral supplementation of ginger on glycemic control of patients with type 2 diabetes mellitus - A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 63:615-622. [DOI: https:/doi.org/10.1016/j.clnesp.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2024]
|
23
|
Ovcharenko D, Mukhin D, Ovcharenko G. Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology. Pharmaceutics 2024; 16:1237. [PMID: 39339273 PMCID: PMC11435428 DOI: 10.3390/pharmaceutics16091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval. The complex relationship between patent protection and pharmaceutical innovation complicates cancer drug development and contributes to high mortality rates. Adjusting patent criteria for alternative cancer therapeutics could stimulate innovation, enhance treatment options, and ultimately improve outcomes for cancer patients. This article explores the potential of alternative cancer therapeutics, chemopreventive agents, natural products, off-patent drugs, generic unpatentable chemicals, and repurposed drugs in cancer treatment, emphasizing the mechanisms and therapeutic potential of these unconventional compounds as combinatorial cancer therapies. The biological pathways, therapeutic effects, and potential to enhance existing therapies are reviewed, demonstrating their cost-effective and accessible options as adjuvant cancer therapies.
Collapse
Affiliation(s)
| | - Dmitry Mukhin
- Altogen Labs, 11200 Menchaca Road, Austin, TX 78748, USA
| | | |
Collapse
|
24
|
Zhang MM, Dang M, Wu X, Ou L, Li M, Zhao CB, Wei PF, Dong TW, Li Y, Wu CJ. Da-Jian-Zhong decoction alleviates diarrhea-predominant irritable bowel syndrome via modulation of gut microbiota and Th17/Treg balance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118275. [PMID: 38729534 DOI: 10.1016/j.jep.2024.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Jian-Zhong decoction (DJZD) is a herbal formula clinically used for abdominal pain and diarrhea induced by spleen-Yang deficiency syndrome. Recently, treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) with DJZD has received increasing attention, but the underlying mechanism of action remains elusive. AIM OF THE STUDY We aimed to evaluate the therapeutic effect of DJZD on IBS-D rats and to elucidate the underlying mechanisms. MATERIALS AND METHODS An IBS-D rats model was constructed using a two-factor superposition method of neonatal maternal separation and Senna folium aqueous extract lavage. Moreover, the effect of DJZD was evaluated based on the body weight, rectal temperature, abdominal withdrawal reflex (AWR), and Bristol stool scale score (BSS). The factors that regulate the DJZD effects on IBS-D were estimated using whole microbial genome, transcriptome sequencing (RNA-Seq), flow cytometry, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analyses. RESULTS We found that DJZD alleviated the symptoms of IBS-D rats, with the low-dose (2.4 g/kg) as the better ones, as shown by the higher body weight and lower AWR score and BSS. At the phylum level, the relative abundance of Bacteroidetes was obviously increased, and at the genus level, Lactobacillus and Parabacteroides were increased, while that of Firmicutes_bacterium_424 and Ruminococcus gnavus was decreased in DJZD group. Furthermore, the significantly enriched GO terms after treatment with DJZD mainly included the immune response, positive regulation of activated T cell proliferation, and positive regulation of interleukin-17 (IL-17) production. Importantly, flow cytometry analysis further revealed that the T helper cell type 17/regulatory T cell (Th17/Treg) balance contributed to the DJZD-induced alleviation of IBS-D symptoms, as DJZD downregulated Th17/Treg ratio and Th17 cell-related cytokines IL-17 and IL-6 levels in the colon. CONCLUSIONS These results demonstrated that DJZD has a good therapeutic effect on IBS-D rats, probably by maintaining the homeostasis of gut microbiota and regulating Th17/Treg balance and its related inflammatory factors.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Ming Dang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Chong-Bo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Pei-Feng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Tai-Wei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yao Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 61137, PR China.
| |
Collapse
|
25
|
Kanai T, Shirahata T, Nakamori S, Koizumi Y, Kodaira E, Sato N, Fuchino H, Kawano N, Kawahara N, Hoshino T, Yoshimatsu K, Kobayashi Y. Development of a determination method for quality control markers utilizing metabolic profiling and its application on processed Zingiber officinale Roscoe rhizome. J Nat Med 2024; 78:952-969. [PMID: 39096421 PMCID: PMC11937189 DOI: 10.1007/s11418-024-01837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
This study established an Orthogonal Partial Least Squares (OPLS) model combining 1H-NMR and GC-MS data to identify characteristic metabolites in complex extracts. Both in metabolomics studies, and natural product chemistry, the reliable identification of marker metabolites usually requires laborious isolation and purification steps, which remains a bottleneck in many studies. Both ginger (GR) and processed ginger (PGR) are listed in the Japanese pharmacopeia. The plant of origin, the rhizome of Zingiber officinale Roscoe, is differently processed for these crude drugs. Notably, the quality of crude drugs is affected by genetic and environmental factors, making it difficult to maintain a certain quality standard. Therefore, characteristic markers for the quality control of GR and PGR are required. Metabolomic analysis using 1H-NMR was able to discriminate between GR and PGR, but there were unidentified signals that were difficult to distinguish based on NMR data alone. Therefore, we combined 1H-NMR and GC-MS analytical data to identify them by OPLS. As a result, αr-curcumene was found to be a useful marker for these identifications. This new approach enabled rapid identification of characteristic marker compounds and reduced the labor involved in the isolation process.
Collapse
Affiliation(s)
- Tomohisa Kanai
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Shunsuke Nakamori
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yota Koizumi
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Eiichi Kodaira
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Noriaki Kawano
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
- The Kochi Prefectural Makino Botanical Garden, Godaisan, Kochi, 781-8125, Japan
| | - Takayuki Hoshino
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
- Oriental Medicine Therapy Center, Kitasato Institute Hospital, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
26
|
Gao Q, Zhang Q, Wang C, Geng X, Hua M, Li N, Dai Y, Zhang Y, Zhou Q. HS-GC-IMS Analysis of Volatile Organic Compounds in Six Spicy Spices and Their Effects on Ulcerative Colitis. Molecules 2024; 29:3764. [PMID: 39202844 PMCID: PMC11357326 DOI: 10.3390/molecules29163764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The volatile organic compounds of six spices, including black pepper, dried ginger, cinnamon, fennel, clove, and zanthoxylum, were analyzed by gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with principal component analysis (PCA) and Euclidean distance. In further analyses, the effects of volatile oils in six spices on ulcerative colitis were assayed in a zebrafish model induced by 3-nitrobenzenesulfonic acid. A total of 120 kinds of volatile organic compounds were detected and 80 among them were identified, which included 10 common components and 3 to 24 characteristic components belonging to different spices. The major VOCs in six spices were estimated to be terpenes with the contents of 45.02%, 56.87%, 36.68%, 58.19%, 68.68%, and 30.62%, respectively. Meanwhile, the volatile components of fennel, dried ginger, black pepper, and cinnamon are quite similar, but differ from clove and zanthoxylum. The volatile oils in six spices presented efficient activity to improve ulcerative colitis which can decrease the number of neutrophils, restore the structure of intestinal epithelial and the morphology of the epithelial cells. Our study achieved rapid analysis of the volatile organic compounds and flavors in six spices and further revealed the potential health benefits of their volatile oils on ulcerative colitis, especially for clove and zanthoxylum. This study is expected to provide certain data support for the quality evaluation and the potential use in functional foods of six spices.
Collapse
Affiliation(s)
- Qi Gao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Qiang Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | | | - Xue Geng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Min Hua
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Nianhong Li
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Yanpeng Dai
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| | - Yan Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
| | - Qian Zhou
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (Q.G.); (Q.Z.); (M.H.); (N.L.); (Y.D.); (Y.Z.)
- Shandong Modern Research and Development Engineering Center of Traditional Chinese Medicine Aromatherap, Jinan 250014, China
| |
Collapse
|
27
|
Alav I, Pordelkhaki P, Rodriguez-Navarro J, Neo O, Kessler C, Awodipe RJ, Cliffe P, Pulavan N, Marton HL, Gibbons S, Buckner MMC. Natural products from food sources can alter the spread of antimicrobial resistance plasmids in Enterobacterales. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001496. [PMID: 39190025 PMCID: PMC11541548 DOI: 10.1099/mic.0.001496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global public health. Notably, resistance to carbapenem and extended-spectrum β-lactam antibiotics in Gram-negative bacteria is a major impediment to treating infections. Genes responsible for antibiotic resistance are frequently carried on plasmids, which can transfer between bacteria. Therefore, exploring strategies to prevent this transfer and the prevalence of AMR plasmids is timely and pertinent. Here, we show that certain natural product extracts and associated pure compounds can reduce the conjugation of AMR plasmids into new bacterial hosts. Using our established high-throughput fluorescence-based flow cytometry assay, we found that the natural products were more active in reducing transmission of the IncK extended-spectrum β-lactamase-encoding plasmid pCT in Escherichia coli EC958c, compared to Klebsiella pneumoniae Ecl8 carrying the IncFII carbapenemase-encoding plasmid pKpQIL. The exception was the natural product rottlerin, also active in K. pneumoniae. In classical conjugation assays, rottlerin also reduced the conjugation frequency of the IncFII bla NDM-1 carrying plasmid pCPE16_3 from a clinical K. pneumoniae isolate. Our data indicate that the natural products tested here, in their current molecular structure, reduced conjugation by a small amount, which is unlikely to achieve a large-scale reduction in AMR in bacterial populations. However, certain natural products like rottlerin could provide a foundation for further research into compounds with effective anti-plasmid activity.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Parisa Pordelkhaki
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Judith Rodriguez-Navarro
- Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintıí 89, E-08041 Barcelona, Spain
| | - Onalenna Neo
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Celia Kessler
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Poppy Cliffe
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nivethanaa Pulavan
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Huba L. Marton
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Aijaz SM, Ruan Z, Leija C, Lytwak LA, Waddell S, Kuszak AJ, Wise SA, Sreenivasan U. Development of Certified Reference Material Solutions for Phytochemicals in Ginger and Kava. J AOAC Int 2024; 107:663-678. [PMID: 38530970 PMCID: PMC12102604 DOI: 10.1093/jaoacint/qsae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Dietary supplements derived from botanicals are commonly consumed and investigated in biomedical studies for their potential health benefits. Accurate identification and quantification of key chemical constituents from botanical ingredients is necessary for consistent product preparations and reproducible research results. Manufacturers need quantitative reference materials of the chemical constituents of interest to verify the content of ingredients and products. The rigor and reproducibility of biomedical research is enhanced through thorough characterization of the interventions used in mechanistic, clinical, and safety investigations. Quantitative reference materials enable reliable product quality assessments and reproducible research results. OBJECTIVE Solution-based certified reference material (CRM) mixes were developed as calibrants for phytochemicals in ginger and kava. The kava CRM contained yangonin, desmethoxyyangonin, dihydrokavain, DL-kavain, methysticin, dihydromethysticin, flavokawain A, flavokawain B, and flavokawain C. The ginger CRM contained 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, and 10-shogaol. METHODS Each phytochemical was sourced as an isolated compound and assigned a purity factor by a mass balance approach accounting for residual impurities. The solution standard mixes were formulated by gravimetric addition of each phytochemical incorporating the purity factor and diluting with acetonitrile to the target concentrations of 500 µg/mL for the gingerols and shogaols, 250 µg/mL for the kavalactones, and 25 µg/mL for the flavokawains. RESULTS The concentration accuracy of each component in the solution mixes was analytically verified by ultra high performance liquid chromatography with ultraviolet detection (UHPLC-UV) assay comparison to an independently prepared calibration solution. Each component in the ginger and kava CRMs were within 5 and 7% of the target concentrations, respectively. CONCLUSION Homogeneous kava and ginger phytochemical solution mixes were produced with accurate constituent concentrations and demonstrated good stability over 2 years. These solution mixes were launched as commercially available CRMs. HIGHLIGHTS These mixes can be used as accurate concentration stock solutions to prepare calibrators and controls for botanical dietary supplement product testing and standardization.
Collapse
Affiliation(s)
- Sarah M Aijaz
- MilliporeSigma, 811 Paloma Drive Suite A, Round Rock, TX 78665-2402, United States
| | - Zoe Ruan
- MilliporeSigma, 811 Paloma Drive Suite A, Round Rock, TX 78665-2402, United States
| | - Christopher Leija
- MilliporeSigma, 811 Paloma Drive Suite A, Round Rock, TX 78665-2402, United States
| | - Lauren A Lytwak
- MilliporeSigma, 811 Paloma Drive Suite A, Round Rock, TX 78665-2402, United States
| | - Shelby Waddell
- MilliporeSigma, 811 Paloma Drive Suite A, Round Rock, TX 78665-2402, United States
| | - Adam J Kuszak
- U.S. Department of Health and Human Services, National Institutes of Health, Office of Dietary Supplements, 6705 Rockledge Drive, Bethesda, MD 20817, United States
| | - Stephen A Wise
- U.S. Department of Health and Human Services, National Institutes of Health, Office of Dietary Supplements, 6705 Rockledge Drive, Bethesda, MD 20817, United States
| | - Uma Sreenivasan
- MilliporeSigma, 811 Paloma Drive Suite A, Round Rock, TX 78665-2402, United States
| |
Collapse
|
29
|
Li W, Zhang Y, Wang Q, Wang Y, Fan Y, Shang E, Jiang S, Duan J. 6-Gingerol ameliorates ulcerative colitis by inhibiting ferroptosis based on the integrative analysis of plasma metabolomics and network pharmacology. Food Funct 2024; 15:6054-6067. [PMID: 38753306 DOI: 10.1039/d4fo00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
6-Gingerol (6-G), an active ingredient of ginger with anti-inflammation and anti-oxidation properties, can treat ulcerative colitis (UC). However, its underlying mechanism is still unclear. In this study, the pharmacodynamic evaluation of 6-G for treating UC was performed, and the mechanism of 6-G in ameliorating UC was excavated by plasma metabolomics and network pharmacology analysis, which was further validated by experimental and molecular docking. The results showed that 6-G could notably reduce diarrhea, weight loss, colonic pathological damage, and inflammation in UC mice. Plasma metabolomic results indicated that 6-G could regulate 19 differential metabolites, and its metabolic pathways mainly involved linoleic acid metabolism and arachidonic acid metabolism, which were closely associated with ferroptosis. Moreover, 60 potential targets for 6-G intervention on ferroptosis in UC were identified by network pharmacology, and enrichment analysis revealed that 6-G suppressed ferroptosis by modulating lipid peroxidation. Besides, the integration of metabolomics and network pharmacology showed that the regulation of 6-G on ferroptosis focused on 3 key targets, including ALOX5, ALOX15, and PTGS2. Further investigation indicated that 6-G significantly inhibited ferroptosis by decreasing iron load and malondialdehyde (MDA), and enhanced antioxidant capacity by reducing the content of glutathione disulfide (GSSG) and increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in UC mice and RSL3-induced Caco-2 cells. Furthermore, molecular docking showed the high affinity of 6-G with the identified 3 key targets. Collectively, this study elucidated the potential of 6-G in ameliorating UC by inhibiting ferroptosis. The integrated strategy also provided a theoretical basis for 6-G in treating UC.
Collapse
Affiliation(s)
- Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
30
|
Yahyazadeh R, Baradaran Rahimi V, Ahmad Mohajeri S, Iranshahy M, Hasanpour M, Askari VR. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats. Saudi Pharm J 2024; 32:102092. [PMID: 38737808 PMCID: PMC11087237 DOI: 10.1016/j.jsps.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Post-operative peritoneal adhesions (PA) are a common and important clinical problem. In this study, we focused on the ameliorative efficacy of ginger and gingerol compounds on surgical-induced peritoneal adhesion, and their strategies that disrupted the PA formation pathways to suppress their incidence. First, liquid chromatography-mass spectrometry (LC-MS) was established to separate and identify several chemical groups of ginger rhizome extract. In the next steps, male Wistar albino rats were randomly selected and divided into various groups, namely sham, control, ginger extract (0.6, 1.8, 5 %w/v), and gingerol (0.05, 0.1, 0.3, and 1 %w/v). Finally, we investigated the macroscopic parameters such as wound healing, body weight as well as spleen height and weight. In addition, visual peritoneal adhesion assessment was performed via Nair et al and Adhesion Scoring Scheme. Moreover, the microscopic parameters and biological assessment was performed via and immunoassays. The present findings revealed significant improvement in wound healing and reduction of the adhesion range, as Nair et al. and Adhesion Scoring Scheme scoring, in both the ginger and gingerol groups compared to the PA group (P < 0.05). Whereas, gingerol (0.3 % w/v) was able to increase the body weight in rats (P < 0.0001) at end stage of experiment. Also, inflammation, angiogenesis, and fibrosis were significantly decreased due to the downregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), respectively, in the ginger and gingerol groups compared to the PA group (P < 0.05). In contrast, the levels of IL-10 were increased in the ginger and gingerol groups compared to the control group (P < 0.01). Our results proved that ginger rhizome and gingerol, as novel therapeutic compounds, could be used to prevent PA for their beneficial anti-inflammatory as well as anti-fibrosis properties in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger and gingerol.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Lan Z, Yang R, Wang H, Xue X, Sun Y, Wang S, Zhang Y, Meng J. Rapid identifying of COX-2 inhibitors from turmeric (Curcuma longa) by bioaffinity ultrafiltration coupled with UPLC-Q Exactive-Orbitrap-MS and zebrafish-based in vivo validation. Bioorg Chem 2024; 147:107357. [PMID: 38604020 DOI: 10.1016/j.bioorg.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Turmeric (Curcuma longa), a typical source with recognized anti-inflammatory activity, is one such medicine-food homology source, yet its anti-inflammatory mechanisms and specific component combinations remain unclear. In this study, a net fishing method combining bio-affinity ultrafiltration and ultra-high performance liquid chromatography-mass spectrometry (AUF-LC/MS) was employed and 13 potential COX-2 inhibitors were screened out from C. longa. 5 of them (C1, 17, 20, 22, 25) were accurately isolated and identified. Initially, their IC50 values were measured (IC50 of C1, 17, 20, 22 and 25 is 55.08, 48.26, 29.13, 111.28 and 150.48 μM, respectively), and their downregulation of COX-2 under safe concentrations (400, 40, 120, 50 and 400 μM for C1, 17, 20, 22 and 25, respectively) was confirmed on RAW 264.7 cells. Further, in transgenic zebrafish (Danio rerio), significant anti-inflammatory activity at safe concentrations (15, 3, 1.5, 1.5 and 3 μg/mL for C1, 17, 20, 22 and 25, respectively) were observed in a dose-dependent manner. More importantly, molecular docking analysis further revealed the mode of interaction between them and the key active site residues of COX-2. This study screened out and verified unreported COX-2 ligands, potentially accelerating the discovery of new bioactive compounds in other functional foods.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China; School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rui Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hu Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Xingyang Xue
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510000, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM)/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| |
Collapse
|
32
|
Mahmoud EI, Yousif MA, Arbab AH. Attitude and Practice of Pharmacy Students Toward Traditional Herbal Medicines, Sudan. INTEGRATED PHARMACY RESEARCH AND PRACTICE 2024; 13:61-68. [PMID: 38827648 PMCID: PMC11143999 DOI: 10.2147/iprp.s465056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Purpose Traditional herbal medicines (THMs) are widely used in Sudan, but there is scarcity of research on pharmacy students' attitudes and utilization of THMs. This study aims to assess the attitudes and practices of pharmacy students toward THM. Methods A descriptive cross-sectional study was conducted among randomly selected undergraduate pharmacy students at the University of Khartoum (Sudan). Data were collected using a validated self-administered questionnaire adapted from previous studies. A statistical package for the social sciences was used for data analysis. Results Among the 264 respondents, the average age was 21.8 years, and 84.8% of them were females. Nearly 85% of respondents were residents of Khartoum. The overall respondent's attitudes towards THMs were positive, it ranged from high (19.7%), moderate (79.9%). About 87.8% of respondents are interested in learning more about THMs. In addition, 36.4%, and 50.4% of respondents strongly agreed or agreed that THMs should be officially licensed and controlled. A 17.8% and 63.3% of respondents, respectively, reported using traditional herbal remedies either always or occasionally. Supermarkets (35.2%) and friends/family (36.4%) were the main sources of THMs for the participants, and oral administration was the most used route (87.1%). More than 90% of respondents said they would suggest THMs to others, and the most common justifications for doing so were their accessibility (46.6%) and affordability (16.3%). The most widely used herbs were Mentha spicata, Zingiber officinale, Acacia nilotica, Hibiscus sabdariffa, and Syzygium aromaticum. Data revealed a significant association between attitude levels and respondents' gender (p=0.046), year of study (p=0.000), and residence (p=0.017). Conclusion Most undergraduate pharmacy students had a positive attitude and utilized THMs. Development of effective educational initiatives, research, and regulations are recommended to ensure the appropriate utilization of traditional herbal remedies.
Collapse
Affiliation(s)
- Ebaa I Mahmoud
- Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
| | - Mariam A Yousif
- Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
| | - Ahmed H Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, 11111, Sudan
| |
Collapse
|
33
|
Chen M, Lin E, Xiao R, Li Z, Liu B, Wang J. Structural Characteristic, Strong Antioxidant, and Anti-Gastric Cancer Investigations on an Oleoresin from Ginger ( Zingiber officinale var. roscoe). Foods 2024; 13:1498. [PMID: 38790798 PMCID: PMC11119446 DOI: 10.3390/foods13101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
It is known that ginger oleoresin contains various active components and possesses bioactivities. In this study, ginger oleoresin from Chinese ginger (Zingiber officinale var. roscoe) was extracted using a CO2 supercritical fluid extraction method with a 0.52% yield (g/g), based on dry weights. Zingiberene with a content of 51.6 mg/g was the main volatile in the ginger oleoresin. In total, 17 phenolic compounds were identified, and their contents were calculated as 587.54 mg/g. Among them, a new gingertriol was detected in the Z. officinale. Antioxidant activity tests showed that the ginger oleoresin and six gingerols exhibited strong scavenging free radical activities, and the zingerone exhibited the strongest antioxidant activity, with IC50 values of 11.3 µg/mL for the 2, 2'-diphenyl-1-picrylhydrazyl radical and 19.0 µg/mL for the 2, 2'-amino-di (2-ethyl-benzothiazoline sulphonic acid-6) ammonium salt radical cation, comparable to vitamin C. Ginger oleoresin inhibits HGC-27 human gastric cancer cell proliferation at a rate of 4.05~41.69% and induces cell apoptosis at a rate of 10.4~20.9%. The Western blot result demonstrated that the AKT signaling pathway has the potential mechanism of ginger oleoresin acting on HGC-27 cells. The anticancer potential of the gingerol standards on HGC-27 cells followed the order of 8-gingerol > 6-gingerol > 10-gingerol > zingerone. The different antioxidant and anticancer potentials of the ginger phenolic compounds could be attributed to the presence of hydroxyl groups in the unbranched 1-alkyl chain and the length of carbon side chain. Consequently, ginger oleoresin shows substantial antioxidant and anticancer therapeutic potential and can be used for novel food-drug development.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (M.C.); (E.L.); (R.X.); (B.L.)
| | - Enquan Lin
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (M.C.); (E.L.); (R.X.); (B.L.)
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (M.C.); (E.L.); (R.X.); (B.L.)
| | - Zuliang Li
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (M.C.); (E.L.); (R.X.); (B.L.)
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (M.C.); (E.L.); (R.X.); (B.L.)
| |
Collapse
|
34
|
Liu C, Fisher D, Pronyuk K, Musabaev E, Thu Hien NT, Dang Y, Zhao L. Therapeutic potential of natural products in schistosomiasis-associated liver fibrosis. Front Pharmacol 2024; 15:1332027. [PMID: 38770001 PMCID: PMC11102961 DOI: 10.3389/fphar.2024.1332027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease that endangers human health and social development. The granulomatous reaction of Schistosoma eggs in the liver is the main cause of hepatosplenomegaly and fibrotic lesions. Anti liver fibrosis therapy is crucial for patients with chronic schistosomiasis. Although Praziquantel is the only clinical drug used, it is limited in insecticide treatment and has a long-term large-scale use, which is forcing the search for cost-effective alternatives. Previous research has demonstrated that plant metabolites and extracts have effective therapeutic effects on liver fibrosis associated with schistosomiasis. This paper summarizes the mechanisms of action of metabolites and some plant extracts in alleviating schistosomiasis-associated liver fibrosis. The analysis was conducted using databases such as PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI) databases. Some plant metabolites and extracts ameliorate liver fibrosis by targeting multiple signaling pathways, including reducing inflammatory infiltration, oxidative stress, inhibiting alternate macrophage activation, suppressing hepatic stellate cell activation, and reducing worm egg load. Natural products improve liver fibrosis associated with schistosomiasis, but further research is needed to elucidate the effectiveness of natural products in treating liver fibrosis caused by schistosomiasis, as there is no reported data from clinical trials in the literature.
Collapse
Affiliation(s)
- Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | | | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers (Basel) 2024; 16:1611. [PMID: 38672692 PMCID: PMC11049028 DOI: 10.3390/cancers16081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.
Collapse
Affiliation(s)
- Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Łukasz Bryliński
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Olga Komar
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Justyna Michalczyk
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Agata Miłosz
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Jan Biłogras
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| |
Collapse
|
36
|
Basharat Z, Murtaza Z, Siddiqa A, Alnasser SM, Meshal A. Therapeutic target mapping from the genome of Kingella negevensis and biophysical inhibition assessment through PNP synthase binding with traditional medicinal compounds. Mol Divers 2024; 28:581-594. [PMID: 36645537 PMCID: PMC9842218 DOI: 10.1007/s11030-023-10604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Kingella negevensis belongs to the Neisseriaceae family. It is implied that it has significant virulence potential due to RTX toxin production, which can cause hemolysis. It usually colonizes the orophayrynx of pediatric population, along with Kingella kingae but has also been isolated from vagina. Todate no report on its drug targets is present, therefore putative therapeutic targets were identified from its genomic sequence data. Traditional Chinese (n > 36,000) and Indian medicinal compounds (n > 2000) were then screened against its pyridoxine 5'-phosphate synthase, a vital therapeutic target. Prioritized TCM compounds included ZINC02525131, ZINC33833737 and ZINC85486932, and Cadiyenol, 9,11,13-Octadecatrienoic acid and 6-Gingerol from Indian medicinal library. Molecular dynamics simulation of top compounds revealed ZINC02525131 as having best stability for 100 ns, compared to Cadiyenol. ADMET profiling was then done, along with physiologically based pharmacokinetic simulation of these compounds in a population of 200 individuals, for 12 h to see fate of the ingested compound. Additionally, the impact of these compounds in a population with cirrhosis and renal impairment was also simulated. We imply in light of all the studied parameters of safety and bioavailability, etc., that 6-Gingerol from Zingiber officinalis rhizome must be proceeded further for in vitro and in vivo testing for inhibition of K. negevensis.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Zainab Murtaza
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aisha Siddiqa
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| |
Collapse
|
37
|
Lee YG, Lee SR, Baek HJ, Kwon JE, Baek NI, Kang TH, Kim H, Kang SC. The Effects of Body Fat Reduction through the Metabolic Control of Steam-Processed Ginger Extract in High-Fat-Diet-Fed Mice. Int J Mol Sci 2024; 25:2982. [PMID: 38474229 DOI: 10.3390/ijms25052982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 μg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- BioMedical Research Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hyun Jin Baek
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jeong Eun Kwon
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- BioMedical Research Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Nam-In Baek
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- BioMedical Research Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
38
|
Fang HB, Si YY, Niu HY, Yan YM, Feng WS, Cheng YX, Wang YZ. Dimeric diarylheptanoids with anti-inflammatory activity from Zingiber officinale. PHYTOCHEMISTRY 2024; 219:113975. [PMID: 38215811 DOI: 10.1016/j.phytochem.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Two previously undescribed chain diarylheptanoid derivatives (2-3), five previously undescribed dimeric diarylheptanoids (4-8), together with one known cyclic diarylheptanoid (1) were isolated from Zingiber officinale. Their structures were elucidated by extensive spectroscopic analyses (HR-ESI-MS, IR, UV, 1D and 2D NMR) and ECD calculations. Biological evaluation of compounds 1-8 revealed that compounds 2, 3 and 4 could inhibit nitrite oxide and IL-6 production in lipopolysaccharide induced RAW264.7 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Hong-Bin Fang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Ying Si
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hui-Ying Niu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yan-Zhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China.
| |
Collapse
|
39
|
Li Z, Wu J, Song J, Wen Y. Ginger for treating nausea and vomiting: an overview of systematic reviews and meta-analyses. Int J Food Sci Nutr 2024; 75:122-133. [PMID: 38072785 DOI: 10.1080/09637486.2023.2284647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/13/2023] [Indexed: 03/28/2024]
Abstract
Ginger may be a potential remedy for nausea and vomiting. This review aimed to assess the reporting and methodological quality, and integrate the evidence in this field. A total of fifteen meta-analyses were analysed and met the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2009 guidelines, providing a relatively complete statement. However, methodological quality, assessed using the Assessment of Multiple Systematic Reviews-2 checklist, was deemed critically low to low. Our review's findings support ginger's effectiveness in managing chemotherapy-induced nausea and vomiting in cancer patients. It also reduces postoperative nausea and vomiting severity, decreasing the need for rescue antiemetics. Furthermore, ginger shows promise in alleviating pregnancy-related nausea and vomiting symptoms. The pooled evidence suggests ginger as a safe botanical option for managing nausea and vomiting, but it is important to improve the scientific quality of published meta-analyses in the future.
Collapse
Affiliation(s)
- Zhongyu Li
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiao Wu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinjie Song
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Crichton M, Marshall S, Isenring E, Lohning A, McCarthy AL, Molassiotis A, Bird R, Shannon C, Koh A, McPherson I, Marx W. Effect of a Standardized Ginger Root Powder Regimen on Chemotherapy-Induced Nausea and Vomiting: A Multicenter, Double-Blind, Placebo-Controlled Randomized Trial. J Acad Nutr Diet 2024; 124:313-330.e6. [PMID: 37699474 DOI: 10.1016/j.jand.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND There is substantial interest in the role of ginger as an adjuvant therapy for chemotherapy-induced nausea and vomiting (CINV). However, available evidence lacks robust methodology. OBJECTIVE To assess the effect of adjuvant ginger compared with placebo on chemotherapy-induced nausea-related quality of life (QoL) and CINV-related outcomes. DESIGN A parallel, double-blind, placebo-controlled randomized trial with 1:1 allocation was conducted. PARTICIPANTS/SETTING One hundred three chemotherapy-naïve adults scheduled to receive moderately to highly emetogenic chemotherapy at two hospitals in Australia were enrolled and analyzed. INTERVENTION Four standardized ginger capsules (totaling 84 mg/day active gingerols/shogaols), or placebo, were administered commencing the day of chemotherapy and continuing for 5 days for chemotherapy cycles 1 through 3. MAIN OUTCOME MEASURES The primary outcome was chemotherapy-induced nausea-related QoL. Secondary outcomes were vomiting- and CINV-related QoL; anticipatory, acute, and delayed nausea and vomiting; fatigue; nutritional status; depression and anxiety; health-related QoL; and adverse events. STATISTICAL ANALYSES PERFORMED Intention-to-treat analysis was performed. Mixed analysis of variance with repeated measures determined differences between groups. The null hypothesis was no difference between groups. After applying a Bonferroni multiple testing correction, evidence against the null hypothesis was considered at P= 0.003. RESULTS One hundred three participants (ginger: n = 52; placebo: n = 51) were enrolled and analyzed. There was clinically relevant evidence against the null hypothesis, favoring ginger, in change scores for nausea-related QoL (F[df] = 9.34[1,101]; P = 0.003; partial η2 = 0.09), overall CINV-related QoL (F[df] = 12.26[1,101]; P < 0.001; partial η2 = 0.11), delayed nausea severity (F[df] = 9.46[1,101]; P = 0.003; partial η2 = 0.09), and fatigue (F[df] = 10.11[1,101]; P = 0.002; partial η2 = 0.09). There was a clinically meaningful lower incidence of delayed nausea and vomiting in the ginger group at Cycle 2 (53% vs 75%; P = 0.020 and 4% vs 27%; P = 0.001, respectively) and Cycle 3 (49% vs 79%; P = 0.002 and 2% vs 23%; P = 0.001, respectively). There was a clinically meaningful lower incidence of malnutrition in the ginger group at Cycle 3 (18% vs. 41%; P = 0.032) and in change scores for Patient-Generated Subjective Global Assessment (F[df)] = 4.32[1,100]; P = 0.040; partial η2 = 0.04). Change scores between groups favored ginger for vomiting-related QoL and number of vomiting episodes; however, findings were not clinically meaningful. There was no effect of ginger on anticipatory or acute CINV, health-related QoL, anxiety, or depression. No serious adverse events were reported. CONCLUSIONS Ginger supplementation was a safe adjuvant to antiemetic medications for CINV that enhanced QoL during chemotherapy treatment. Future trials are needed to examine dose-dependent responses to verify optimal dosing regimens.
Collapse
Affiliation(s)
- Megan Crichton
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Cancer and Palliative Care Outcomes Centre, School of Nursing, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Skye Marshall
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Cancer and Palliative Care Outcomes Centre, School of Nursing, Queensland University of Technology, Brisbane, Queensland, Australia; Research Institute for Future Health, Gold Coast, Queensland, Australia
| | - Elizabeth Isenring
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Cancer and Palliative Care Outcomes Centre, School of Nursing, Queensland University of Technology, Brisbane, Queensland, Australia; Research Institute for Future Health, Gold Coast, Queensland, Australia
| | - Anna Lohning
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Alexandra L McCarthy
- School of Nursing, Midwifery, and Social Work, University of Queensland, and Mater Research Institute, Brisbane, Queensland, Australia
| | - Alex Molassiotis
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong; College of Arts, Humanities and Education, Universtiy of Derby, Derby, UK
| | - Robert Bird
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Catherine Shannon
- Oncology Department, Mater Cancer Care Centre, South Brisbane, Queensland, Australia
| | - Andy Koh
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia; Department of Legal Medicine, Faculty of Medicine, KINDAI Univeristy, Osaka, Japan
| | - Ian McPherson
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Wolfgang Marx
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Deakin University Institute for Mental and Physical Health and Clinical Translation, Food and Mood Centre, Geelong, Victoria, Australia
| |
Collapse
|
41
|
Yusufali Z, Follett P, Wall M, Sun X. Physiochemical and Sensory Properties of a Turmeric, Ginger, and Pineapple Functional Beverage with Effects of Pulp Content. Foods 2024; 13:718. [PMID: 38472831 DOI: 10.3390/foods13050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Beverage mixtures based on pineapple juice (80-100%), with varying concentrations of turmeric (0-20%) and ginger (0-20%) juice were developed. The pineapple juice alone exhibited a total soluble solid (TSS) content of 15.90-16.03 °Brix. The total polyphenols content (TPC) varied between 0.32 and 1.79 mg GAE/mL, and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition was between 40.56% and 86.19% and correlated with the TPC and curcumin and other curcuminoids. The formulations with a high pulp content showed a significantly higher TPC and greater DPPH inhibition than those with a low pulp content. Turmeric and ginger with a high amount of pulp had a higher abundance of volatile compounds. Significant differences were observed by the panelists in the taste and mouthfeel attributes and the low-pulp juices were associated with increased palatability due to the better mouthfeel, higher sweetness, and decreased bitterness, pepperiness, pulpiness, and spiciness. The pineapple juice mixtures with 10% turmeric juice and 10% or less ginger juice were most preferred by sensory panelists.
Collapse
Affiliation(s)
- Zahra Yusufali
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Peter Follett
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Marisa Wall
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Xiuxiu Sun
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| |
Collapse
|
42
|
Ongtanasup T, Kamdenlek P, Manaspon C, Eawsakul K. Green-synthesized silver nanoparticles from Zingiber officinale extract: antioxidant potential, biocompatibility, anti-LOX properties, and in silico analysis. BMC Complement Med Ther 2024; 24:84. [PMID: 38350963 PMCID: PMC10863109 DOI: 10.1186/s12906-024-04381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Zingiber officinale extract has emerged as a compelling candidate for green synthesis of nanoparticles, offering diverse applications across medicine, cosmetics, and nutrition. This study delves into the investigation of in vitro toxicity and explores the biomedical utility of green-synthesized silver nanoparticles derived from ginger extract (GE-AgNPs). METHODS We employed established protocols to evaluate in vitro aspects such as antioxidant capacity, anti-inflammatory potential, and biocompatibility of GE-AgNPs. Additionally, molecular docking was employed to assess their anti-lipoxygenase (anti-LOX) activity. RESULTS Our findings highlight that the extraction of ginger extract at a pH of 6, utilizing a cosolvent blend of ethanol and ethyl acetate in a 1:1 ratio, yields heightened antioxidant capacity attributed to its rich phenolic and flavonoid content. In the context of silver nanoparticle synthesis, pH 6 extraction yields the highest quantity of nanoparticles, characterized by an average size of 32.64 ± 1.65 nm. Of particular significance, GE-AgNPs (at pH 6) demonstrated remarkable efficacy in scavenging free radicals, as evidenced by an IC50 value of 6.83 ± 0.47 µg/mL. The results from the anti-LOX experiment indicate that GE-AgNPs, at a concentration of 10 µg/mL, can inhibit LOX activity by 25%, outperforming ginger extract which inhibits LOX by 17-18%. Notably, clionasterol exhibited higher binding energy and enhanced stability (-8.9 kcal/mol) compared to nordihydroguaiaretic acid. Furthermore, a cell viability study confirmed the safety of GE-AgNPs at a concentration of 17.52 ± 7.00 µg/mL against the L929 cell line. CONCLUSION These comprehensive findings underscore the significant biomedical advantages of GE-AgNPs and emphasize their potential incorporation into cosmetic products at a maximum concentration of 10 µg/mL.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Patipat Kamdenlek
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komgrit Eawsakul
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
43
|
Wu Y, Li BH, Chen MM, Liu B, Jiang LL. Research progress on ginger polysaccharides: extraction, purification and structure-bioactivity relationship. Food Funct 2023; 14:10651-10666. [PMID: 37975522 DOI: 10.1039/d3fo03552b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Ginger is a widespread source of herbal medicine and traditional spices. Among its various bioactive components, ginger polysaccharides (GPs) have attracted the attention of researchers worldwide because of their significant bioactivity. Recent studies have demonstrated the antioxidant, antitumour, anti-inflammatory, immunomodulatory, hypoglycaemic, cough suppressant and thrombotic anticoagulant effects of GPs. However, the structure-bioactivity relationship of GPs has yet to be comprehensively investigated. This review aims to explore all the current published studies on GPs. It further examines various aspects, including the extraction and purification methods, structure, bioactivity, application and structure-bioactivity relationship of GPs. Thus, this review intends to provide a reference for future GP-related research and development.
Collapse
Affiliation(s)
- Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Bing-Hang Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Liang-Liang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
44
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
45
|
Anh Nga NT, Sathiyavimal S, A Al-Humaid L, Al-Dahmash ND, Lee J, Barathi S, Jhanani GK. Deciphering the anticancer, anti-inflammatory and antioxidant potential of Ti nanoparticles fabricated using Zingiber officinale. ENVIRONMENTAL RESEARCH 2023; 236:116748. [PMID: 37500041 DOI: 10.1016/j.envres.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Rapid and sustainable green technology was implemented in the current study to fabricated Ti nanoparticles. The vegetable ginger with the scientific name Zingiber officinale was employed as a biological source in the fabrication process of nanoparticles. The optical, structural, morphological, and particle size of the fabricated Ti nanoparticles were characterized with the help of UV-visible absorption spectrum, FTIR (Fourier Transform Infrared) spectrum, SEM (Scanning Electron Microscope) analysis, DLS (Dynamic Light Scattering) technique and XRD (X-ray powder diffraction) crystallography technique. The presence of spherical-shaped Ti nanoparticles with an average particle size of 93 nm was confirmed based on these characterization techniques. The anti-cancer properties of the Z. officinale mediated Ti nanoparticles were analyzed through MTT assay against cell lines MCF-7 (Human breast adenocarcinoma cell line) and concentration-dependent anti-cancer properties were observed. The anti-inflammatory capacity of the Z. officinale mediated Ti nanoparticles were examined through protein denaturation and nitric oxide scavenging assay. The antioxidant capacity of the Z. officinale mediated Ti nanoparticles were examined through DPPH assay, hydrogen peroxide radical scavenging assay, hydroxyl radical scavenging assay, and FRAP (Ferric Reducing Antioxidant Power) analysis. The fabricated Ti nanoparticles exhibited anti-inflammatory and antioxidant capacity in a concentration-dependent pattern.
Collapse
Affiliation(s)
- Nguyen Thi Anh Nga
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Selvam Sathiyavimal
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - G K Jhanani
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
46
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
47
|
Crichton M, Marshall S, Marx W, Isenring E, Lohning A. Therapeutic health effects of ginger (Zingiber officinale): updated narrative review exploring the mechanisms of action. Nutr Rev 2023; 81:1213-1224. [PMID: 36688554 DOI: 10.1093/nutrit/nuac115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ginger (Zingiber officinale) has been investigated for its potentially therapeutic effect on a range of chronic conditions and symptoms in humans. However, a simplified and easily understandable examination of the mechanisms behind these effects is lacking and, in turn, hinders interpretation and translation to practice, and contributes to overall clinical heterogeneity confounding the results. Therefore, drawing on data from nonhuman trials, the objective for this narrative review was to comprehensively describe the current knowledge on the proposed mechanisms of action of ginger on conferring therapeutic health effects in humans. Mechanistic studies support the findings from human clinical trials that ginger may assist in improving symptoms and biomarkers of pain, metabolic chronic disease, and gastrointestinal conditions. Bioactive ginger compounds reduce inflammation, which contributes to pain; promote vasodilation, which lowers blood pressure; obstruct cholesterol production, which regulates blood lipid profile; translocate glucose transporter type 4 molecules to plasma membranes to assist in glycemic control; stimulate fatty acid breakdown to aid weight management; and inhibit serotonin, muscarinic, and histaminergic receptor activation to reduce nausea and vomiting. Additional human trials are required to confirm the antimicrobial, neuroprotective, antineoplastic, and liver- and kidney-protecting effects of ginger. Interpretation of the mechanisms of action will help clinicians and researchers better understand how and for whom ginger may render therapeutic effects and highlight priority areas for future research.
Collapse
Affiliation(s)
- Megan Crichton
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Centre for Healthcare Transformation, School of Nursing, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Skye Marshall
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Department of Science, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Wolfgang Marx
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Impact (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Elizabeth Isenring
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| | - Anna Lohning
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| |
Collapse
|
48
|
Mohd Sahardi NFN, Makpol S. Suppression of Inflamm-Aging by Moringa oleifera and Zingiber officinale Roscoe in the Prevention of Degenerative Diseases: A Review of Current Evidence. Molecules 2023; 28:5867. [PMID: 37570837 PMCID: PMC10421196 DOI: 10.3390/molecules28155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
49
|
Zhou M, Li T, Zeng C, Pan DB, Li HB, Yu Y. Two new diterpenoids from the rhizomes of Zingiber officinale. Nat Prod Res 2023; 37:2255-2262. [PMID: 35184622 DOI: 10.1080/14786419.2022.2038595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Two undescribed labdane diterpenoids (5S,8S,9R,10S,11E)-8,17-epoxy-13,14-dinorlabd-11-en-13-one (1) and (5S,9R,10S,12E)-17-hydroxy-labd-7,12-dien-15(16)-olide (2), together with seven known sesquiterpenoids (3-9) and two known monoterpenoids (10-11) were isolated from the dried rhizome of Zingiber officinale. Their structures were elucidated by detailed spectroscopic data (IR, UV, HR-ESI-MS, 1D and 2D NMR), X-ray crystallographic and ECD analysis. Moreover, all the 11 compounds were tested for α-glucosidase inhibitory effects and 9 was found to exhibit stronger inhibitory effects at IC50 = 4.8 μM against a positive control acarbose with IC50 = 414.6 μM.
Collapse
Affiliation(s)
- Mi Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Chen Zeng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Da-Bo Pan
- Department of Medical Technology, Qiandongnan Vocational & Technical College for Nationalities, Kaili, Guizhou, P.R. China
| | - Hai-Bo Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Kanion Pharmaceutical Co. Ltd., Lianyungang, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Hafeez J, Naeem M, Ali T, Sultan B, Hussain F, Ur Rashid H, Nadeem M, Shirzad I. Comparative Study of Antioxidant, Antidiabetic, Cytotoxic Potentials, and Phytochemicals of Fenugreek (Trigonella foenum-graecum) and Ginger (Zingiber officinale). J CHEM-NY 2023. [DOI: 10.1155/2023/3469727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Trigonella foenum-graecum and Zingiber officinale are used as traditional medicinal plants for the treatment of infectious and inflammatory diseases. However, a comparative analysis and bioactivities of T. foenum-graecum and Z. officinale lack some necessary information for therapeutic purposes. This study was designed to evaluate the biochemical characterizations and biological efficacy of T. foenum-graecum and Z. officinale as antioxidant, antidiabetic, antiamnesic, and cytotoxic agents. Antioxidant activity was determined by DPPH free radical scavenging assay. Antidiabetic potentials were evaluated by glycation, alpha-amylase, and acetylcholinesterase inhibition assays. We performed biochemical characterization through analyses of high-performance liquid chromatography (HPLC) and FTIR (Fourier transform infrared spectroscopy). Results revealed that total phenolic contents (TPCs) (g GAE/100 g) of T. foenum-graecum and Z. officinale were 5.74 ± 0.81 g and 6.15 ± 0.06 g, respectively, and total flavonoid contents (TFCs) varied from 1.51 ± 0.58 g CE/100 g to 17.54 ± 0.58. DPPH scavenging potentials of T. foenum-graecum and Z. officinale extract were 50.27% and 88.82%, respectively. Antiglycation potentials of T. foenum-graecum and Z. officinale showed a maximum activity at 16–29% and 96%. Alpha-amylase and alpha-glucosidase inhibition ranged from 9.43–24.95 and 10.52–27.89 and 54.97%, respectively. All the test samples of T. foenum-graecum and Z. officinale showed acetylcholinesterase inhibition potential at 0.37–46.88%. HPLC analysis of T. foenum-graecum revealed the presence of quercetin, gallic acid, caffeic acid, vanillic acid, syringic acid, and cumeric acid, while Z. officinale revealed the quercetin, gallic acid, vanillic acid, benzoic acid, chlorogenic acid, p.Coumaric acid, ferulic acid, and cinnamic acid. FTIR analysis revealed the presence of aldehydes, ketones, aromatic compounds, amines, and carbonyl groups in T. foenum-graecum, while alcohol, alkane, alkene, ketone, amine, and ether are bioactives present in the methanolic extract of Z. officinale. It was concluded that a comparative analysis of T. foenum-graecum and Z. officinale showed that Z. officinale showed higher therapeutic effects.
Collapse
Affiliation(s)
- Javaria Hafeez
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Bushra Sultan
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Haroon Ur Rashid
- Department of Computer Science and Information Technology, University of Lahore, Sargodha, Pakistan
| | - Muhammad Nadeem
- Department of Management Sciences, National University of Modern Languages, Multan, Pakistan
| | - Ibrahim Shirzad
- Quality Control Laboratories, Food and Drug Authority, Kabul, Afghanistan
| |
Collapse
|