1
|
Juarez MG, O'Rourke SM, Dzimianski JV, Gagnon D, Penunuri G, Serrão VHB, Corbett-Detig RB, Kauvar LM, DuBois RM. Structures of respiratory syncytial virus G bound to broadly reactive antibodies provide insights into vaccine design. Sci Rep 2025; 15:8666. [PMID: 40082629 PMCID: PMC11906780 DOI: 10.1038/s41598-025-92886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in infants and older adults. The attachment glycoprotein (RSV G) binds to the chemokine receptor CX3CR1 to promote viral entry and modulate host immunity. Antibodies against RSV G are a known correlate of protection. Previously, several broadly reactive, high-affinity anti-RSV G human monoclonal antibodies were isolated from RSV-exposed individuals and were shown to be protective in vitro and in vivo. Here, we determined the structures of three of these antibodies in complex with RSV G and defined distinct conformational epitopes comprised of highly conserved RSV G residues. Binding competition and structural studies demonstrated that this highly conserved region displays two non-overlapping antigenic sites. Analyses of anti-RSV G antibody sequences reveal that antigenic site flexibility may promote the elicitation of diverse antibody germlines. Together, these findings provide a foundation for next-generation RSV prophylactics, and they expand concepts in vaccine design for the elicitation of germline lineage-diverse, broadly reactive, high-affinity antibodies.
Collapse
Affiliation(s)
- Maria G Juarez
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sara M O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John V Dzimianski
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Delia Gagnon
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Gabriel Penunuri
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Vitor H B Serrão
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
- Biomolecular Cryo-Electron Microscopy Facility, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Ahmad A, Majaz S, Saeed A, Noreen S, Abbas M, Khan B, Rahman HU, Nouroz F, Xie Y, Rashid A, Rehman AU. Microevolution and phylogenomic study of Respiratory Syncytial Virus type A. PLoS One 2025; 20:e0319437. [PMID: 39999081 PMCID: PMC11856557 DOI: 10.1371/journal.pone.0319437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Communal respiratory syncytial virus (RSV) causes mild to severe illnesses, predominantly in older adults, or people with certain chronic medical conditions, and in children. Symptoms may include rhinorrhea, cough, fever, and dyspnea. In most cases, the infection is mild and resolves on its own, but in some cases, it can lead to more serious illness such as bronchiolitis or pneumonia. The RSV genome codes for ten proteins, NS1, NS2, N, P, M, SH, G, F, M2 and L. We aimed to identify the RSV geographical transmission pattern based on parsimony and investigate hotspot regions across the complete RSV genomes. We employed Viral Evolutionary Network Analysis System on full-length available RSV genomes and with HyPhy for elucidating type of selection pressure. These results indicated that RSV strains circulating in South and North America are not mixed to the European samples, however, genomes reported from Australia are the direct decedents of European samples. Samples reported from the United Kingdom exhibited significant diversity, spanning almost every cluster. This report provides a complete mutational analysis of all the individual RSV genes, and particularly the 31 hotspot substituting regions circulating across the globe in RSV type A samples. Further, protein G and L displayed higher level of codons experienced positive selection. This analysis of RSV type A highlights mutational frequencies across the whole genome, offering valuable insights for epidemiological control and drug development.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Saeed
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Shumaila Noreen
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Abbas
- Department of Urology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Bilal Khan
- Department of Pediatrics, Tehsil Headquarter Hospital (THQ), Dargai, Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Hamid Ur Rahman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Faculty of Natural and Computational Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Abdur Rashid
- Government Degree College Ara Khel, F.R Kohat, Higher Education Department, Government of Khyber Pakhtunkhwa, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Atta Ur Rehman
- Department of Zoology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Duan Y, Liu Z, Zang N, Cong B, Shi Y, Xu L, Jiang M, Wang P, Zou J, Zhang H, Feng Z, Feng L, Ren L, Liu E, Li Y, Zhang Y, Xie Z. Landscape of respiratory syncytial virus. Chin Med J (Engl) 2024; 137:2953-2978. [PMID: 39501814 PMCID: PMC11706595 DOI: 10.1097/cm9.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is an enveloped, negative-sense, single-stranded RNA virus of the Orthopneumovirus genus of the Pneumoviridae family in the order Mononegavirales. RSV can cause acute upper and lower respiratory tract infections, sometimes with extrapulmonary complications. The disease burden of RSV infection is enormous, mainly affecting infants and older adults aged 75 years or above. Currently, treatment options for RSV are largely supportive. Prevention strategies remain a critical focus, with efforts centered on vaccine development and the use of prophylactic monoclonal antibodies. To date, three RSV vaccines have been approved for active immunization among individuals aged 60 years and above. For children who are not eligible for these vaccines, passive immunization is recommended. A newly approved prophylactic monoclonal antibody, Nirsevimab, which offers enhanced neutralizing activity and an extended half-life, provides exceptional protection for high-risk infants and young children. This review provides a comprehensive and detailed exploration of RSV's virology, immunology, pathogenesis, epidemiology, clinical manifestations, treatment options, and prevention strategies.
Collapse
Affiliation(s)
- Yuping Duan
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Zimeng Liu
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Na Zang
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - Bingbing Cong
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuqing Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Mingyue Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Peixin Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Jing Zou
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Han Zhang
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lili Ren
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
- National Health Commission Key Laboratory of Systems Biology of Pathogen, Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Enmei Liu
- Department of Respiratory Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Key Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing 400014, China
| | - You Li
- Department of Epidemiology, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
- Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences (2019RU016), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health,Beijing 100045, China
| |
Collapse
|
4
|
Li Q, Li H, Li Z, Wang Y. Vaccine and therapeutic agents against the respiratory syncytial virus: resolved and unresolved issue. MedComm (Beijing) 2024; 5:e70016. [PMID: 39575302 PMCID: PMC11581781 DOI: 10.1002/mco2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a predominant pathogen responsible for respiratory tract infections among infants, the elderly, and immunocompromised individuals. In recent years, significant progress has been made in innovative vaccines and therapeutic agents targeting RSV. Nevertheless, numerous challenges and bottlenecks persist in the prevention and treatment of RSV infections. This review will provide an overview of the resolved and unresolved issues surrounding the development of vaccines and therapeutic agents against RSV. As of September 2024, three RSV vaccines against acute lower respiratory infections (ALRI) have been approved globally. Additionally, there have been notable progress in the realm of passive immunoprophylactic antibodies, with the monoclonal antibody nirsevimab receiving regulatory approval for the prevention of RSV infections in infants. Furthermore, a variety of RSV therapeutic agents are currently under clinical investigation, with the potential to yield breakthrough advancements in the foreseeable future. This review delineates the advancements and challenges faced in vaccines and therapeutic agents targeting RSV. It aims to provide insights that will guide the development of effective preventive and control measures for RSV.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Huan Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Zhihua Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Youchun Wang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| |
Collapse
|
5
|
Riccò M, Abu-Raya B, Icardi G, Spoulou V, Greenberg D, Pecurariu OF, Hung IFN, Osterhaus A, Sambri V, Esposito S. Respiratory Syncytial Virus: A WAidid Consensus Document on New Preventive Options. Vaccines (Basel) 2024; 12:1317. [PMID: 39771979 PMCID: PMC11679680 DOI: 10.3390/vaccines12121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Respiratory syncytial virus (RSV) is a leading cause of respiratory infections, particularly affecting young infants, older adults, and individuals with comorbidities. Methods: This document, developed as a consensus by an international group of experts affiliated with the World Association of Infectious Diseases and Immunological Disorders (WAidid), focuses on recent advancements in RSV prevention, highlighting the introduction of monoclonal antibodies (mAbs) and vaccines. Results: Historically, RSV treatment options were limited to supportive care and the monoclonal antibody palivizumab, which required multiple doses. Recent innovations have led to the development of long-acting mAbs, such as nirsevimab, which provide season-long protection with a single dose. Nirsevimab has shown high efficacy in preventing severe RSV-related lower respiratory tract infections (LRTIs) in infants, reducing hospitalizations and ICU admissions. Additionally, new vaccines, such as RSVpreF and RSVpreF3, target older adults and have demonstrated significant efficacy in preventing LRTIs in clinical trials. Maternal vaccination strategies also show promise in providing passive immunity to newborns, protecting them during the most vulnerable early months of life. This document further discusses the global burden of RSV, its economic impact, and the challenges of implementing these preventative strategies in different healthcare settings. Conclusions: The evidence supports the integration of both passive (mAbs) and active (vaccines) immunization approaches as effective tools to mitigate the public health impact of RSV. The combined use of these interventions could substantially reduce RSV-related morbidity and mortality across various age groups and populations, emphasizing the importance of widespread immunization efforts.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy;
| | - Bahaa Abu-Raya
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority, Halifax, NS B3K 6R8, Canada;
- Departments of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Giancarlo Icardi
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, Athens Medical School, 11527 Athens, Greece;
| | - David Greenberg
- Pediatric Infectious Diseases Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Oana Falup Pecurariu
- Children’s Clinical Hospital Brasov, 500063 Brasov, Romania;
- Faculty of Medicine Brasov, Transilvania University, 500019 Brasov, Romania
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR 999077, China;
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Vittorio Sambri
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
6
|
Evans D, Kunerth H, Mumm E, Namugenyi S, Plumb M, Bistodeau S, Cunningham SA, Schmitt B, Martin K, Como-Sabetti K, Lynfield R, Wang X. Genomic Epidemiology of Human Respiratory Syncytial Virus, Minnesota, USA, July 2023-February 2024. Emerg Infect Dis 2024; 30:2414-2418. [PMID: 39447178 PMCID: PMC11521169 DOI: 10.3201/eid3011.241000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
We recently expanded the viral genomic surveillance program in Minnesota, USA, to include human respiratory syncytial virus. We performed whole-genome sequencing of 575 specimens collected at Minnesota healthcare facilities during July 2023-February 2024. Subgroups A and B differed in their genomic landscapes, and we identified 23 clusters of genetically identical genomes.
Collapse
|
7
|
Piliper EA, Reed JC, Greninger AL. Clinical validation of an RSV neutralization assay and analysis of cross-sectional sera associated with 2021-2023 RSV outbreaks to investigate the immunity debt hypothesis. Microbiol Spectr 2024; 12:e0211524. [PMID: 39470275 PMCID: PMC11619414 DOI: 10.1128/spectrum.02115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infections and hospitalization in infants and the elderly. Newly approved vaccines and the prophylactic antibody nirsevimab have heightened interest in RSV immunologic surveillance, necessitating the development of high-throughput assays assessing anti-RSV neutralizing activity. Quantitative viral neutralization remains the best correlate of protection for RSV infection and the gold standard for RSV immunological testing. Here, we developed a high-throughput RSV strain A2 focus-reduction neutralization test validated to Clinical Laboratory Improvement Amendments (CLIA)/ Good Clinical Laboratory Practices (GCLP) standards using both clinical specimens and commercially available reference sera. The assay is highly accurate, generating reference serum neutralizing titers within twofold of established assays, with an analytical measurement range between 8 and 1,798 international units per mL (IU/mL). Neutralizing activity measured by the assay strongly correlated with antibody titer determined via indirect enzyme-linked immunosorbent assay (ELISA) (ρ = 1.0, P = 0.0014). Individuals recently having tested positive via quantitative reverse transcription polymerase chain reaction (RT-qPCR) for RSV had a 9.1-fold higher geometric mean neutralizing titer relative to RSV PCR negatives (P-value = 0.09). The validated assay was then used to investigate the immunity debt hypothesis for resurgent RSV outbreaks in the 2022-2023 season, using adult clinical remnant sera sent for herpes simplex virus (HSV)-1/2 antibody testing. There was no difference in geometric mean anti-RSV neutralizing titers between sera sampled before and after the 2022-2023 RSV outbreak (P = 0.68). These data are consistent with limited changes in RSV-neutralizing antibody levels in adults across the 2022-23 RSV outbreak. IMPORTANCE Population surveillance studies of serum-neutralizing activity against RSV are crucial for evaluating RSV vaccine efficacy and vulnerabilities to new strains. Here, we designed and validated a high-throughput assay for assessing anti-RSV neutralizing activity, standardized its measurements for comparison with other methodologies, and demonstrated its applicability to real-world samples. Our assay is precise, linear, and yields measurements consistent with other standardized assays, offering a methodology useful for large-scale studies of RSV immunity. We also find no significant difference in neutralizing titers among adults between those taken before and after large RSV outbreaks associated with the latter stages of the coronavirus disease of 2019 (COVID-19) public health emergency, underlining the need for a greater understanding of the dynamics of serological responses to RSV infection.
Collapse
Affiliation(s)
- Eli A. Piliper
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Jonathan C. Reed
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
8
|
Allen DM, Reyne MI, Allingham P, Levickas A, Bell SH, Lock J, Coey JD, Carson S, Lee AJ, McSparron C, Nejad BF, McKenna J, Shannon M, Li K, Curran T, Broadbent LJ, Downey DG, Power UF, Groves HE, McKinley JM, McGrath JW, Bamford CGG, Gilpin DF. Genomic Analysis and Surveillance of Respiratory Syncytial Virus Using Wastewater-Based Epidemiology. J Infect Dis 2024; 230:e895-e904. [PMID: 38636496 PMCID: PMC11481326 DOI: 10.1093/infdis/jiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/08/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes severe infections in infants, immunocompromised or elderly individuals resulting in annual epidemics of respiratory disease. Currently, limited clinical surveillance and the lack of predictable seasonal dynamics limit the public health response. Wastewater-based epidemiology (WBE) has recently been used globally as a key metric in determining prevalence of severe acute respiratory syndrome coronavirus 2 in the community, but its application to other respiratory viruses is limited. In this study, we present an integrated genomic WBE approach, applying reverse-transcription quantitative polymerase chain reaction and partial G-gene sequencing to track RSV levels and variants in the community. We report increasing detection of RSV in wastewater concomitant with increasing numbers of positive clinical cases. Analysis of wastewater-derived RSV sequences permitted identification of distinct circulating lineages within and between seasons. Altogether, our genomic WBE platform has the potential to complement ongoing global surveillance and aid the management of RSV by informing the timely deployment of pharmaceutical and nonpharmaceutical interventions.
Collapse
Affiliation(s)
- Danielle M Allen
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Marina I Reyne
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Pearce Allingham
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ashley Levickas
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Stephen H Bell
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Jonathan Lock
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Jonathon D Coey
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Stephen Carson
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew J Lee
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Cormac McSparron
- Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, United Kingdom
| | - Behnam Firoozi Nejad
- Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, United Kingdom
| | - James McKenna
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Mark Shannon
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Kathy Li
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Tanya Curran
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Lindsay J Broadbent
- Section of Virology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Damian G Downey
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast, United Kingdom
| | - Ultan F Power
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast, United Kingdom
| | - Helen E Groves
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer M McKinley
- Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, United Kingdom
| | - John W McGrath
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Connor G G Bamford
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F Gilpin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Fu Y, Li F, Zhu Y, Huang L, Li Q, Zhang H, Zhong L, Zhang H, Luo ZX, Lu G, Deng J, Cao L, Wu Y, Jin R, Li L, Xu L, Chen X, Xie Z. A multi-center study on genetic variations in the fusion protein of respiratory syncytial virus from children with Acute Lower Respiratory Tract Infections in China during 2017-2021. Virol Sin 2024; 39:727-736. [PMID: 39265703 PMCID: PMC11738779 DOI: 10.1016/j.virs.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infection (ALRTI) in children under five years of age. Between 2017 and 2021, 396 complete sequences of the RSV F gene were obtained from 500 RSV-positive throat swabs collected from ten hospitals across nine provinces in China. In addition, 151 sequences from China were sourced from GenBank and GISAID, making a total of 549 RSV F gene sequences subjected to analysis. Phylogenetic and genetic diversity analyses revealed that the RSV F genes circulating in China from 2017 to 2021 have remained relatively conserved, although some amino acids (AAs) have undergone changes. AA mutations with frequencies ≥ 10% were identified at six sites and the p27 region: V384I (site I), N276S (site II), R213S (site Ø), and K124N (p27) for RSV A; F45L (site I), M152I/L172Q/S173 L/I185V/K191R (site V), and R202Q/I206M/Q209R (site Ø) for RSV B. Comparing mutational frequencies in RSV-F before and after 2020 revealed minor changes for RSV A, while the K191R, I206M, and Q209R frequencies increased by over 10% in RSV B. Notably, the nirsevimab-resistant mutation, S211N in RSV B, increased in frequency from 0% to 1.15%. Both representative strains aligned with the predicted RSV-F structures of their respective prototypes exhibited similar conformations, with low root-mean-square deviation values. These results could provide foundational data from China for the development of RSV mAbs and vaccines.
Collapse
Affiliation(s)
- Yiliang Fu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Fei Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Luci Huang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Qiuping Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Hanwen Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Lili Zhong
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Hailin Zhang
- Department of Children's Respiration Disease, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zheng-Xiu Luo
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Gen Lu
- Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Jikui Deng
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ying Wu
- Department of Clinical Laboratory Medicine, National Children's Medical Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Rong Jin
- Guiyang Maternal and Child Health Hospital, Guiyang 550003, China
| | - Lei Li
- Yinchuan Maternal and Child Health Care Hospital, Yinchuan 750001, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
10
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
11
|
Musa AO, Faber SR, Forrest K, Smith KP, Sengupta S, López CB. Identification of distinct genotypes in circulating RSV A strains based on variants in the virus replication-associated genes. J Virol 2024; 98:e0099024. [PMID: 39007617 PMCID: PMC11334426 DOI: 10.1128/jvi.00990-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroups, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the United States. In-depth analysis and annotation of variants in the replication-associated proteins identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. Similar associations were seen among sequences of the related human metapneumovirus. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates.IMPORTANCEGiven the historical heterogeneity of respiratory syncytial virus (RSV) and the disease it causes, there is a need to understand the properties of the circulating RSV strains each season. This information would benefit from an informative and consensus method of genotyping the virus. Here, we carried out a variant analysis that shows a pattern of specific variations among the replication-associated genes of RSV A across different seasons. Interestingly, these variation patterns, which were also seen in human metapneumovirus sequences, point to previously defined interactions of domains within these genes, suggesting co-variation in the replication-associated genes. Our results also suggest a genotyping strategy that can prove to be particularly important in understanding the genotype-phenotype correlation in the era of RSV vaccination, where selective pressure on the virus to evolve is anticipated. More importantly, the categorization of pneumoviruses based on these patterns may be of prognostic value.
Collapse
Affiliation(s)
- Abdulafiz O. Musa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sydney R. Faber
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kaitlyn Forrest
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
12
|
Pierangeli A, Midulla F, Piralla A, Ferrari G, Nenna R, Pitrolo AMG, Licari A, Marseglia GL, Abruzzese D, Pellegrinelli L, Galli C, Binda S, Cereda D, Fracella M, Oliveto G, Campagna R, Petrarca L, Pariani E, Antonelli G, Baldanti F. Sequence analysis of respiratory syncytial virus cases reveals a novel subgroup -B strain circulating in north-central Italy after pandemic restrictions. J Clin Virol 2024; 173:105681. [PMID: 38733664 DOI: 10.1016/j.jcv.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/08/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Following the pandemic restrictions, the epidemiology of respiratory syncytial virus (RSV) has changed, leading to intense hospitalization peaks. OBJECTIVES This study, conducted at multiple sites in Italy, aimed to describe the temporal dynamics of two post-COVID-19 RSV epidemics. Additionally, the circulating RSV-A and -B lineages were characterized and compared to those found in 2018 and 2019. STUDY DESIGN Respiratory specimens and data were collected from RSV-positive patients, both inpatients, and outpatients, of all ages at three sites in north-central Italy. To analyze these samples, roughly one-sixth were sequenced in the attachment glycoprotein G gene and subjected to phylogenetic and mutational analyses, including pre-pandemic sequences from north-central Italy. RESULTS The first post-pandemic surge of RSV cases was quite intense, occurring from October 2021 to early January 2022. The subsequent RSV epidemic (from November 2022 to early March 2023) also had a high impact, characterized by a rise in elderly patient cases. Post-pandemic cases of RSV-A were caused by various strains present in Italy prior to COVID-19. In contrast, a distinct RSV-B lineage, which was concurrently spreading in other countries, was identified as the main cause of the surge in 2022-2023 but remained undetected in Italy before the pandemic. CONCLUSIONS This study describes the temporal dynamics of post-pandemic RSV subgroups and uncovers a lineage of RSV-B with high genetic divergence that may have increased the impact of decreased population immunity.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy.
| | - Fabio Midulla
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University, V.le Regina Elena, 299, 00161, Rome, Italy
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, 27100 Pavia, Italy
| | - Guglielmo Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, 27100 Pavia, Italy
| | - Raffaella Nenna
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University, V.le Regina Elena, 299, 00161, Rome, Italy
| | | | - Amelia Licari
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, via S. da Nuova, 65, 27100 Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, 27100 Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, via S. da Nuova, 65, 27100 Pavia, Italy; Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, 27100 Pavia, Italy
| | - Dario Abruzzese
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, 27100 Pavia, Italy
| | - Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, via C. Pascal, 36, 20133 Milan, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, via C. Pascal, 36, 20133 Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, via C. Pascal, 36, 20133 Milan, Italy
| | - Danilo Cereda
- DG Welfare, Regione Lombardia, Piazza Città di Lombardia, 1, 20124, Milan, Italy
| | - Matteo Fracella
- Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy
| | - Giuseppe Oliveto
- Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy
| | - Roberta Campagna
- Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy
| | - Laura Petrarca
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University, V.le Regina Elena, 299, 00161, Rome, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, via C. Pascal, 36, 20133 Milan, Italy
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular Medicine, Sapienza University, V.le Porta Tiburtina, 28, 00185 Rome, Italy; University Hospital Policlinico Umberto I, Sapienza University, V.le del Policlinico 155, 00161 Rome, Italy
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, 27100 Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, via S. da Nuova, 65, 27100 Pavia, Italy
| |
Collapse
|
13
|
Yunker M, Fall A, Norton JM, Abdullah O, Villafuerte DA, Pekosz A, Klein E, Mostafa HH. Genomic Evolution and Surveillance of Respiratory Syncytial Virus during the 2023-2024 Season. Viruses 2024; 16:1122. [PMID: 39066284 PMCID: PMC11281595 DOI: 10.3390/v16071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of morbidity, particularly in infants. This study describes RSV genomic diversity and disease outcomes during the 2023-2024 season in the Johns Hopkins Hospital System (JHHS). Between August and December 2023, 406 patient samples were sequenced, showing that RSV-B GB5.0.5a was the dominant genotype detected. RSV-A genotype GA2.3.5 was detected less frequently. Metadata analysis of patient data revealed that, although RSV-B was more commonly detected, patients with RSV-A infections were more frequently hospitalized. Analysis of both the G- and F-genes revealed multiple amino acid substitutions in both RSV-A and RSV-B, with some positions within the F-protein that could be associated with evasion of antibody responses. Phylogenetic analysis revealed the genetic diversity of circulating GB5.0.5a and GA2.3.5 genotypes. This study serves as an important baseline for genomic surveillance of RSV within the JHHS and will assist in characterizing the impact of the newly approved RSV vaccines on RSV genomic evolution and the emergence of escape mutations.
Collapse
Affiliation(s)
- Madeline Yunker
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Julie M. Norton
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - David A. Villafuerte
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| | - Andrew Pekosz
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (A.P.); (E.K.)
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (A.P.); (E.K.)
- Center for Disease Dynamics, Economics, and Policy, Washington, DC 20005, USA
| | - Heba H. Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Meyer B-121F, 600 N. Wolfe St., Baltimore, MD 21287, USA; (M.Y.); (A.F.); (J.M.N.); (O.A.); (D.A.V.)
| |
Collapse
|
14
|
Mojarrad S, Tavakoli Movaghar N, Edalat F, Letafati A, Kargar Jahromi Z, Moattari A. Epidemiological and phylogenetic assessment of human respiratory syncytial virus among pediatric patients presenting acute respiratory infections in Shiraz, Iran during 2015-2016. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:411-420. [PMID: 39005603 PMCID: PMC11245347 DOI: 10.18502/ijm.v16i3.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background and Objectives The pediatric population worldwide bears a significant morbidity and death burden due to acute respiratory infections (ARIs). Human Orthopneumovirus, sometimes referred to as the Human Respiratory Syncytial Virus (HRSV), is one of the main causes of ARIs in infants. The main goal of this study was to identify the genetic diversity of HRSV strains that were circulating in the Iranian population at a certain time of year. Materials and Methods Two hundred youngsters less than 12 years old with acute respiratory infections had samples taken from their throat and pharynx secretions. Then, external and hemi-nested PCR were employed, using specific primers targeting the G gene region to detect HRSV. Subsequently, nine randomly selected positive samples were subjected to sequencing. The results were then compared with reference strains cataloged in GeneBank, and phylogenetic tree was constructed using Chromes and MEGA7. Results Out of 200 samples, 34 were identified as containing HRSV. Subgroup A was predominant, accounting for 61.76% of cases, followed by subgroup BA (35.29%) and subgroup B (2.94%). Phylogenetic analysis revealed five samples associated with subtype B and four with genotype A. Genomic analysis showed three samples under the GA2 subgroup and one under GA1 for subtype A, and four samples in subgroup BA and one in GB2 for subtype B. Conclusion In this study, subgroup A strains, particularly genotype GA2, exhibited a higher prevalence compared to subgroup B strains during the specific period under investigation, shedding light on the genetic landscape of HRSV in this region.
Collapse
Affiliation(s)
- Saber Mojarrad
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Tavakoli Movaghar
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Amjad MN, Wang J, Ashraf MA, Shen B, Din GU, Raza MA, Shoaib M, Yue L, Chen L, Xu H, Dong W, Hu Y. Evolutionary trends of respiratory syncytial viruses: Insights from large-scale surveillance and molecular dynamics of G glycoprotein. Heliyon 2024; 10:e30886. [PMID: 38784562 PMCID: PMC11112325 DOI: 10.1016/j.heliyon.2024.e30886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Human respiratory syncytial virus (RSV) is an underlying cause of lower respiratory illnesses in children, elderly and immunocompromised adults. RSV contains multiple structural and non-structural proteins with two major glycoproteins that control the initial phase of infection, fusion glycoprotein and the attachment (G) glycoprotein. G protein attaches to the ciliated cells of airways initiating the infection. The hypervariable G protein plays a vital role in evolution of RSV strains. We employed multiple bioinformatics tools on systematically accessed large-scale data to evaluate mutations, evolutionary history, and phylodynamics of RSV. Mutational analysis of central conserved region (CCR) on G protein-coding sequences between 163 and 189 positions revealed frequent mutations at site 178 in human RSV (hRSV) A while arginine to glutamine substitutions at site 180 positions in hRSV B, remained prevalent from 2009 to 2014. Phylogenetic analysis indicates multiple signature mutations within G protein responsible for diversification of clades. The USA and China have highest number of surveillance records, followed by Kenya. Markov Chain Monte Carlo Bayesian skyline plot revealed that RSV A evolved steadily from 1990 to 2000, and rapidly between 2003 and 2005. Evolution of RSV B continued from 2003 to 2022, with a high evolution stage from 2016 to 2020. Throughout evolution, cysteine residues maintained their strict conserved states while CCR has an entropy value of 0.0039(±0.0005). This study concludes the notion that RSV G glycoprotein is continuously evolving while the CCR region of G protein maintains its conserved state providing an opportunity for CCR-specific monoclonal antibodys (mAbs) and inhibitors as potential candidates for immunoprophylaxis.
Collapse
Affiliation(s)
- Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
| | - Ghayyas ud Din
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, 201802, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, 201802, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
17
|
Piñana M, González-Sánchez A, Andrés C, Vila J, Creus-Costa A, Prats-Méndez I, Arnedo-Muñoz M, Saubi N, Esperalba J, Rando A, Nadal-Baron P, Quer J, González-López JJ, Soler-Palacín P, Martínez-Urtaza J, Larrosa N, Pumarola T, Antón A. Genomic evolution of human respiratory syncytial virus during a decade (2013-2023): bridging the path to monoclonal antibody surveillance. J Infect 2024; 88:106153. [PMID: 38588960 DOI: 10.1016/j.jinf.2024.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES This study investigated the prevalence, genetic diversity, and evolution of human respiratory syncytial virus (HRSV) in Barcelona from 2013 to 2023. METHODS Respiratory specimens from patients with RTI suspicion at Hospital Universitari Vall d'Hebron were collected from October 2013 to May 2023 for laboratory-confirmation of respiratory viruses. Next-generation sequencing was performed in randomly-selected samples with Illumina technology. Phylogenetic analyses of whole genome sequences were performed with BEAST v1.10.4. Signals of selection and evolutionary pressures were inferred by population dynamics and evolutionary analyses. Mutations in major surface proteins were genetic and structurally characterised, emphasizing those within antigenic epitopes. RESULTS Analyzing 139,625 samples, 5.3% were HRSV-positive (3008 HRSV-A, 3882 HRSV-B, 56 HRSV-A and -B, and 495 unsubtyped HRSV), with a higher prevalence observed in the paediatric population. Pandemic-related shifts in seasonal patterns returned to normal in 2022-2023. A total of 198 whole-genome sequences were obtained for HRSV-A (6.6% of the HRSV-A positive samples) belonging to GA2.3.5 lineage. For HRSV-B, 167 samples were sequenced (4.3% of the HRSV-B positive samples), belonging to GB5.0.2, GB5.0.4a and GB5.0.5a. HRSV-B exhibited a higher evolution rate. Post-SARS-CoV-2 pandemic, both subtypes showed increased evolutionary rates and decreased effective population size initially, followed by a sharp increase. Analyses indicated negative selective pressure on HRSV. Mutations in antigenic epitopes, including S276N and M274I in palivizumab-targeted site II, and I206M, Q209R, and S211N in nirsevimab-targeted site Ø, were identified. DISCUSSION Particularly in the context of the large-scale use in 2023-2024 season of nirsevimab, continuous epidemiological and genomic surveillance is crucial.
Collapse
Affiliation(s)
- Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorgina Vila
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain; Infection and Immunity Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Catalonia, Spain; Paediatric Hospitalization Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Anna Creus-Costa
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Ignasi Prats-Méndez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Arnedo-Muñoz
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana Esperalba
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Rando
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Nadal-Baron
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Juan José González-López
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Infection and Immunity Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Catalonia, Spain; Paediatric Hospitalization Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain; Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jaime Martínez-Urtaza
- Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Nieves Larrosa
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Musa AO, Faber SR, Forrest K, Smith KP, Sengupta S, López CB. Identification of distinct genotypes in circulating RSV A strains based on variants on the virus replication-associated genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590570. [PMID: 38712045 PMCID: PMC11071361 DOI: 10.1101/2024.04.22.590570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Respiratory syncytial virus is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroup, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the US. In-depth analysis and annotation of the protein variants in L and the other replication-associated proteins N, P, M2-1, and M2-2 identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates.
Collapse
Affiliation(s)
- Abdulafiz O. Musa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sydney R. Faber
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kaitlyn Forrest
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
19
|
Rios-Guzman E, Simons LM, Dean TJ, Agnes F, Pawlowski A, Alisoltanidehkordi A, Nam HH, Ison MG, Ozer EA, Lorenzo-Redondo R, Hultquist JF. Deviations in RSV epidemiological patterns and population structures in the United States following the COVID-19 pandemic. Nat Commun 2024; 15:3374. [PMID: 38643200 PMCID: PMC11032338 DOI: 10.1038/s41467-024-47757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with the greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially in the United States (US) following the implementation of COVID-19-related non-pharmaceutical interventions but later rebounded with abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study from 2009 to 2023 in Chicago, Illinois, US, we examined RSV epidemiology, clinical severity, and genetic diversity. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings post-2020 and that hospitalized adults infected with RSV-A were at higher risk of intensive care admission than those with RSV-B. While population structures of RSV-A remained unchanged, RSV-B exhibited a genetic shift into geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Estefany Rios-Guzman
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Taylor J Dean
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Francesca Agnes
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arghavan Alisoltanidehkordi
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Hannah H Nam
- Department of Infectious Diseases, University of California - Irvine, Orange, CA, 92868, USA
| | - Michael G Ison
- Division of Microbiology and Infectious Diseases (DMID), National Institute of Health, Rockville, MD, 20852, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Riccò M, Parisi S, Corrado S, Marchesi F, Bottazzoli M, Gori D. Respiratory Syncytial Virus Infections in Recipients of Bone Marrow Transplants: A Systematic Review and Meta-Analysis. Infect Dis Rep 2024; 16:317-355. [PMID: 38667752 PMCID: PMC11050314 DOI: 10.3390/idr16020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human Respiratory Syncytial Virus (RSV) is a common cause of respiratory tract infections. Usually associated with infants and children, an increasing amount of evidence suggests that RSV can cause substantial morbidity and mortality in immunocompromised individuals, including recipients of bone marrow transplantation (BMT). The present systematic review was therefore designed in accordance with the PRISMA guidelines to collect available evidence about RSV infections in BMT recipients. Three medical databases (PubMed, Embase, and MedRxiv) were therefore searched for eligible observational studies published up to 30 September 2023 and collected cases were pooled in a random-effects model. Heterogeneity was assessed using I2 statistics. Reporting bias was assessed by means of funnel plots and regression analysis. Overall, 30 studies were retrieved, including 20,067 BMT cases and 821 RSV infection episodes. Of them, 351 were lower respiratory tract infections, and a total of 78 RSV-related deaths were collected. A pooled attack rate of 5.40% (95% confidence interval [95%CI] 3.81 to 7.60) was identified, with a corresponding incidence rate of 14.77 cases per 1000 person-years (95%CI 9.43 to 20.11), and a case fatality ratio (CFR) of 7.28% (95%CI 4.94 to 10.60). Attack rates were higher in adults (8.49%, 95%CI 5.16 to 13.67) than in children (4.79%, 95%CI 3.05 to 7.45), with similar CFR (5.99%, 95%CI 2.31 to 14.63 vs. 5.85%, 95%CI 3.35 to 10.02). By assuming RSV attack rates as a reference group, influenza (RR 0.518; 95%CI 0.446 to 0.601), adenovirus (RR 0.679, 95%CI 0.553 to 0.830), and human metapneumovirus (RR 0.536, 95%CI 0.438 to 0.655) were associated with a substantially reduced risk for developing corresponding respiratory infection. Despite the heterogeneous settings and the uneven proportion of adult and pediatric cases, our study has identified high attack rates and a substantial CFR of RSV in recipients of BMT, stressing the importance of specifically tailored preventive strategies and the need for effective treatment options.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | | | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Milan, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
21
|
Hultquist J, Rios-Guzman E, Simons L, Dean T, Agnes F, Pawlowski A, Alisoltanidehkordi A, Nam H, Ison M, Ozer E, Lorenzo-Redondo R. Altered RSV Epidemiology and Genetic Diversity Following the COVID-19 Pandemic. RESEARCH SQUARE 2023:rs.3.rs-3712859. [PMID: 38168164 PMCID: PMC10760306 DOI: 10.21203/rs.3.rs-3712859/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially following the implementation of non-pharmaceutical interventions to mitigate the COVID-19 pandemic but later rebounded with initially abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study, we examined RSV epidemiology, clinical severity, and genetic diversity in the years surrounding the COVID-19 pandemic. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings after 2020 and that hospitalized adults with RSV-A were at higher risk of needing intensive care than those with RSV-B. While the population structure of RSV-A remained unchanged, the population structure of RSV-B shifted in geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.
Collapse
|
22
|
Pronyk PM, de Alwis R, Rockett R, Basile K, Boucher YF, Pang V, Sessions O, Getchell M, Golubchik T, Lam C, Lin R, Mak TM, Marais B, Twee-Hee Ong R, Clapham HE, Wang L, Cahyorini Y, Polotan FGM, Rukminiati Y, Sim E, Suster C, Smith GJD, Sintchenko V. Advancing pathogen genomics in resource-limited settings. CELL GENOMICS 2023; 3:100443. [PMID: 38116115 PMCID: PMC10726422 DOI: 10.1016/j.xgen.2023.100443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Genomic sequencing has emerged as a powerful tool to enhance early pathogen detection and characterization with implications for public health and clinical decision making. Although widely available in developed countries, the application of pathogen genomics among low-resource, high-disease burden settings remains at an early stage. In these contexts, tailored approaches for integrating pathogen genomics within infectious disease control programs will be essential to optimize cost efficiency and public health impact. We propose a framework for embedding pathogen genomics within national surveillance plans across a spectrum of surveillance and laboratory capacities. We adopt a public health approach to genomics and examine its application to high-priority diseases relevant in resource-limited settings. For each grouping, we assess the value proposition for genomics to inform public health and clinical decision-making, alongside its contribution toward research and development of novel diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul Michael Pronyk
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Ruklanthi de Alwis
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore; Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rebecca Rockett
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Yann Felix Boucher
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117549, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117549, Singapore; Nanyang Technological University, Singapore 639798, Singapore
| | - Vincent Pang
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore
| | - October Sessions
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Marya Getchell
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tanya Golubchik
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia; Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Connie Lam
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Raymond Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Tze-Minn Mak
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore
| | - Ben Marais
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Hannah Eleanor Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Linfa Wang
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Programme for Research in Epidemic Preparedness and Response (PREPARE), Ministry of Health, Singapore 169854, Singapore
| | - Yorin Cahyorini
- Center for Health Resilience and Resource Policy, Ministry of Health, Jakarta 12950, Indonesia
| | - Francisco Gerardo M Polotan
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Metro Manila, Philippines
| | - Yuni Rukminiati
- Center for Health Resilience and Resource Policy, Ministry of Health, Jakarta 12950, Indonesia
| | - Eby Sim
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Carl Suster
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Gavin J D Smith
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vitali Sintchenko
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| |
Collapse
|
23
|
Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8:138. [PMID: 37749081 PMCID: PMC10519952 DOI: 10.1038/s41541-023-00734-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
After decades of work, several interventions to prevent severe respiratory syncytial virus (RSV) disease in high-risk infant and older adult populations have finally been approved. There were many setbacks along the road to victory. In this review, I will discuss the impact of RSV on human health and how structure-based vaccine design set the stage for numerous RSV countermeasures to advance through late phase clinical evaluation. While there are still many RSV countermeasures in preclinical and early-stage clinical trials, this review will focus on products yielding long-awaited efficacy results. Finally, I will discuss some challenges and next steps needed to declare a global victory against RSV.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Sacconnay L, De Smedt J, Rocha-Perugini V, Ong E, Mascolo R, Atas A, Vanden Abeele C, de Heusch M, De Schrevel N, David MP, Bouzya B, Stobbelaar K, Vanloubbeeck Y, Delputte PL, Mallett CP, Dezutter N, Warter L. The RSVPreF3-AS01 vaccine elicits broad neutralization of contemporary and antigenically distant respiratory syncytial virus strains. Sci Transl Med 2023; 15:eadg6050. [PMID: 37611082 DOI: 10.1126/scitranslmed.adg6050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
The RSVPreF3-AS01 vaccine, containing the respiratory syncytial virus (RSV) prefusion F protein and the AS01 adjuvant, was previously shown to boost neutralization responses against historical RSV strains and to be efficacious in preventing RSV-associated lower respiratory tract diseases in older adults. Although RSV F is highly conserved, variation does exist between strains. Here, we characterized variations in the major viral antigenic sites among contemporary RSV sequences when compared with RSVPreF3 and showed that, in older adults, RSVPreF3-AS01 broadly boosts neutralization responses against currently dominant and antigenically distant RSV strains. RSV-neutralizing responses are thought to play a central role in preventing RSV infection. Therefore, the breadth of RSVPreF3-AS01-elicited neutralization responses may contribute to vaccine efficacy against contemporary RSV strains and those that may emerge in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kim Stobbelaar
- Department of Biomedical Sciences and Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Peter L Delputte
- Department of Biomedical Sciences and Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | | |
Collapse
|
25
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
26
|
Percze K, Tolnai ZJ, Eleveld M, Ou L, Du H, Olia AS, Kwong PD, de Jonge MI, Mészáros T. Tryptophan-like side chain holding aptamers inhibit respiratory syncytial virus infection of lung epithelial cells. Sci Rep 2023; 13:9403. [PMID: 37296186 PMCID: PMC10251311 DOI: 10.1038/s41598-023-36428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of serious and even fatal acute lower respiratory tract infections in infants and in the elderly. Potent RSV neutralization has been achieved by antibodies that selectively bind the prefusion form of the viral fusion (F) protein. We hypothesised that similar potent neutralization could be achieved using F protein targeting aptamers. Aptamers have yet to reach their translational potential for therapeutics or diagnostics due to their short half-life and limited range of target-aptamer interactions; these shortcomings can, however, be ameliorated by application of amino acid-like side chain holding nucleotides. In this study, a stabilized version of the prefusion RSV F protein was targeted by aptamer selection using an oligonucleotide library holding a tryptophan-like side chain. This process resulted in aptamers that bound the F protein with high affinity and differentiated between its pre- and postfusion conformation. Identified aptamers inhibited viral infection of lung epithelial cells. Moreover, introduction of modified nucleotides extended aptamer half-lives. Our results suggest that targeting aptamers to the surface of viruses could yield effective drug candidates, which could keep pace with the continuously evolving pathogens.
Collapse
Affiliation(s)
- Krisztina Percze
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zoltán János Tolnai
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Marc Eleveld
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamás Mészáros
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
27
|
Aljabali AAA, Obeid MA, El-Tanani M, Tambuwala MM. Respiratory Syncytial Virus: An Overview. Future Virol 2023; 18:595-609. [DOI: 10.2217/fvl-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/26/2023] [Indexed: 01/11/2025]
Affiliation(s)
- Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, UK
| |
Collapse
|
28
|
Panatto D, Domnich A, Lai PL, Ogliastro M, Bruzzone B, Galli C, Stefanelli F, Pariani E, Orsi A, Icardi G. Epidemiology and molecular characteristics of respiratory syncytial virus (RSV) among italian community-dwelling adults, 2021/22 season. BMC Infect Dis 2023; 23:134. [PMID: 36882698 PMCID: PMC9990006 DOI: 10.1186/s12879-023-08100-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infections worldwide. While historically RSV research has been focused on children, data on RSV infection in adults are limited. The goal of this study was to establish the prevalence of RSV in community-dwelling Italian adults and analyze its genetic variability during the 2021/22 winter season. METHODS In this cross-sectional study, a random sample of naso-/oropharyngeal specimens from symptomatic adults seeking for SARS-CoV-2 molecular testing between December 2021 and March 2022 were tested for RSV and other respiratory pathogens by means of reverse-transcription polymerase chain reaction. RSV-positive samples were further molecularly characterized by sequence analysis. RESULTS Of 1,213 samples tested, 1.6% (95% CI: 0.9-2.4%) were positive for RSV and subgroups A (44.4%) and B (55.6%) were identified in similar proportions. The epidemic peak occurred in December 2021, when the RSV prevalence was as high as 4.6% (95% CI: 2.2-8.3%). The prevalence of RSV detection was similar (p = 0.64) to that of influenza virus (1.9%). All RSV A and B strains belonged to the ON1 and BA genotypes, respectively. Most (72.2%) RSV-positive samples were also positive for other pathogens being SARS-CoV-2, Streptococcus pneumoniae and rhinovirus the most frequent. RSV load was significantly higher among mono-detections than co-detections. CONCLUSION During the 2021/22 winter season, characterized by the predominant circulation of SARS-CoV-2 and some non-pharmaceutical containment measures still in place, a substantial proportion of Italian adults tested positive for genetically diversified strains of both RSV subtypes. In view of the upcoming registration of vaccines, establishment of the National RSV surveillance system is urgently needed.
Collapse
Affiliation(s)
- Donatella Panatto
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy. .,Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Piero Luigi Lai
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| | - Matilde Ogliastro
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Federica Stefanelli
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Orsi
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy.,Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.,Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giancarlo Icardi
- Department of Health Sciences, University of Genoa, Via A. Pastore, 1, 16132, Genoa, Italy.,Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.,Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
29
|
Bergeron HC, Tripp RA. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022; 14:v14112396. [PMID: 36366494 PMCID: PMC9692685 DOI: 10.3390/v14112396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease. RSV studies have typically focused on using continuous cell lines and conventional RSV strains to establish vaccine development and various antiviral countermeasures. This review outlines how the RSV G protein influences viral features, including replication, transmission, and disease, and how understanding the role of the G protein can improve the understanding of preclinical studies.
Collapse
|
30
|
Esposito S, Abu Raya B, Baraldi E, Flanagan K, Martinon Torres F, Tsolia M, Zielen S. RSV Prevention in All Infants: Which Is the Most Preferable Strategy? Front Immunol 2022; 13:880368. [PMID: 35572550 PMCID: PMC9096079 DOI: 10.3389/fimmu.2022.880368] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes a spectrum of respiratory illnesses in infants and young children that may lead to hospitalizations and a substantial number of outpatient visits, which result in a huge economic and healthcare burden. Most hospitalizations happen in otherwise healthy infants, highlighting the need to protect all infants against RSV. Moreover, there is evidence on the association between early-life RSV respiratory illness and recurrent wheezing/asthma-like symptoms As such, RSV is considered a global health priority. However, despite this, the only prevention strategy currently available is palivizumab, a monoclonal antibody (mAb) indicated in a subset of preterm infants or those with comorbidities, hence leaving the majority of the infant population unprotected against this virus. Therefore, development of prevention strategies against RSV for all infants entering their first RSV season constitutes a large unmet medical need. The aim of this review is to explore different immunization approaches to protect all infants against RSV. Prevention strategies include maternal immunization, immunization of infants with vaccines, immunization of infants with licensed mAbs (palivizumab), and immunization of infants with long-acting mAbs (e.g., nirsevimab, MK-1654). Of these, palivizumab use is restricted to a small population of infants and does not offer a solution for all-infant protection, whereas vaccine development in infants has encountered various challenges, including the immaturity of the infant immune system, highlighting that future pediatric vaccines will most likely be used in older infants (>6 months of age) and children. Consequently, maternal immunization and immunization of infants with long-acting mAbs represent the two feasible strategies for protection of all infants against RSV. Here, we present considerations regarding these two strategies covering key areas which include mechanism of action, "consistency" of protection, RSV variability, duration of protection, flexibility and optimal timing of immunization, benefit for the mother, programmatic implementation, and acceptance of each strategy by key stakeholders. We conclude that, based on current data, immunization of infants with long-acting mAbs might represent the most effective approach for protecting all infants entering their first RSV season.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Parma, Italy
| | - Bahaa Abu Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman’s and Child’s Health, Padova University Hospital, Padova, Italy
| | - Katie Flanagan
- School of Medicine, Faculty of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
| | - Federico Martinon Torres
- Genetics, Vaccines, Infections and Pediatrics Research group (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens, “A&P Kyriakou” Children’s Hospital, Athens, Greece
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe-University Hospital, Frankfurt am Main, Germany
| |
Collapse
|