1
|
Surico PL, Barone V, Singh RB, Coassin M, Blanco T, Dohlman TH, Basu S, Chauhan SK, Dana R, Di Zazzo A. Potential applications of mesenchymal stem cells in ocular surface immune-mediated disorders. Surv Ophthalmol 2025; 70:467-479. [PMID: 39097173 DOI: 10.1016/j.survophthal.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We explore the interaction between corneal immunity and mesenchymal stem/stromal cells (MSCs) and their potential in treating corneal and ocular surface disorders. We outline the cornea's immune privilege mechanisms and the immunomodulatory substances involved. In this realm, MSCs are characterized by their immunomodulatory properties and regenerative potential, making them promising for therapeutic application. Therefore, we focus on the role of MSCs in immune-mediated corneal diseases such as dry eye disease, corneal transplantation rejection, limbal stem cell deficiency, and ocular graft-versus-host disease. Preclinical and clinical studies demonstrate MSCs' efficacy in promoting corneal healing and reducing inflammation in these conditions. Overall, we emphasize the potential of MSCs as innovative therapies in ophthalmology, offering promising solutions for managing various ocular surface pathologies.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sayan Basu
- Brien Holden Eye Research Centre (BHERC), L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy.
| |
Collapse
|
2
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kittipibul T, Dalin CP, Masoudi A, Zheng J, Deng SX. Advances in the Diagnosis and Management of Limbal Stem Cell Deficiency. Cornea 2025; 44:405-411. [PMID: 39729420 PMCID: PMC11875906 DOI: 10.1097/ico.0000000000003775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 12/29/2024]
Abstract
ABSTRACT This concise review focuses on the latest advancements in the diagnosis and management of limbal stem cell deficiency (LSCD). Ensuring the standard of care for individuals affected by LSCD involves the crucial task for physicians to meticulously and accurately diagnose the condition and determine its specific stage. A standardized diagnostic approach forms the foundation for formulating and delivering customized therapeutic interventions to maximize treatment outcomes for each patient. In this review, we introduce a systematic diagnostic algorithm to guide the assessment of LSCD. In addition, the current management algorithm and emerging therapies for LSCD are summarized.
Collapse
Affiliation(s)
- Thanachaporn Kittipibul
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Ophthalmology, Excellence Center for Cornea and Stem Cell Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chea Piseth Dalin
- Ophthalmology Unit, Calmette Hospital, Phnom Penh, Kingdom of Cambodia
| | - Ali Masoudi
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jie Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sophie X Deng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, CA
| |
Collapse
|
4
|
Chen Y, Gu J, Cui Z, Sun X, Liang Y, Duan C, Li X, Su Z, Zhang B, Chen J, Wang Z. Efficient Fabrication of Human Corneal Stromal Cell Spheroids and Promoting Cell Stemness Based on 3D-Printed Derived PDMS Microwell Platform. Biomolecules 2025; 15:438. [PMID: 40149974 PMCID: PMC11940411 DOI: 10.3390/biom15030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Spherical culture could promote the plasticity and stemness of human corneal stromal cells (hCSCs). Here, we introduce a novel three-dimensional (3D) cell culture system based on a polydimethylsiloxane (PDMS) microwell platform composed of many V-bottom microcavities to generate human corneal stromal cell spheroids and promote cell stemness. We isolated hCSCs from SMILE-derived lenticules and maintained their physiological phenotype by culturing them in a medium supplemented with human corneal stromal extract (hCSE). Utilizing a PDMS microwell platform fabricated through 3D printing technology, we successfully generated 3D corneal stromal cell spheroids (3D-CSC) with uniform size and stable structure, exhibiting increased expression of pluripotency factors, including OCT4, NANOG, SOX2, KLF4, and PAX6. Furthermore, the iPS supernatant of E8-conditioned medium (E8-CM) significantly enhanced the stemness properties of these cells. RNA sequencing and proteomics analyses revealed that 3D-CSCs exhibited superior proliferation, differentiation, cell adhesion, migration, and neurogenesis compared to traditional monolayer cultures, underscoring the role of biophysical cues in promoting hCSCs stemness. In summary, this study presents an effective 3D cell culture platform that mimics the in vivo microenvironment, facilitating the enhancement of stemness properties and providing valuable insights into corneal tissue engineering and regenerative medicine, particularly for treating corneal opacities and diseases.
Collapse
Affiliation(s)
- Yuexi Chen
- The First Clinical Medical College, Jinan University, Guangzhou 510632, China
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Jianing Gu
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Zekai Cui
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Xihao Sun
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Yuqin Liang
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Chunwen Duan
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Xiaoxue Li
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Zhanyu Su
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Bo Zhang
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
| | - Jiansu Chen
- The First Clinical Medical College, Jinan University, Guangzhou 510632, China
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zheng Wang
- The First Clinical Medical College, Jinan University, Guangzhou 510632, China
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| |
Collapse
|
5
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
7
|
Kawasumi R, Kawamura T, Yamashita K, Tominaga Y, Harada A, Ito E, Takeda M, Kita S, Shimomura I, Miyagawa S. Systemic administration of induced pluripotent stem cell-derived mesenchymal stem cells improves cardiac function through extracellular vesicle-mediated tissue repair in a rat model of ischemic cardiomyopathy. Regen Ther 2025; 28:253-261. [PMID: 39834593 PMCID: PMC11745812 DOI: 10.1016/j.reth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Systemic administration of induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) has a therapeutic effect on myocardial ischemia. However, the therapeutic mechanism underlying systemic iPS-MSC-based therapy for ischemic cardiomyopathy (ICM) remains unclear. We investigated the therapeutic effects of iPS-MSCs through extracellular vesicle (EV)-mediated tissue repair in a rat model of ICM. Methods A rat ICM model was created by left anterior descending coronary artery ligation. iPS-MSCs were administered intravenously every week for four weeks in the iPS-MSC group, whereas saline was administered to the control group. Alix, a protein involved in the biogenesis of EVs, was knocked down, and Alix-knockdown iPS-MSCs were administered to the siAlix group. We analyzed sequential cardiac function using echocardiography, histological analysis, cell tracking analysis with fluorescent dyes, and comprehensive RNA sequencing of the border zone of the myocardium after treatment. Results Left ventricular ejection fraction (LVEF) was significantly improved in the iPS-MSC group compared with that in the control group. In the siAlix group, LVEF was significantly lower than that in the iPS-MSC group. Histological analysis showed a significant decrease in fibrosis area and significant increase in microvascular density in the iPS-MSC group. A cell-tracking assay revealed iPS-MSC accumulation in the border zone of the myocardium during the acute phase. Comprehensive microRNA sequencing analysis revealed that EVs from iPS-MSCs contained miRNAs associated with anti-fibrosis and angiogenesis. Gene ontology analysis of differentially expressed genes in myocardial tissue also showed upregulation of pathways related to antifibrosis and neovascularization and downregulation of pathways linked to inflammation and T-cell differentiation. Conclusions Systemic administration of iPS-MSCs improved cardiac function through EV-mediated angiogenetic and antifibrotic effects in an ICM, suggesting the clinical possibility of treating chronic heart failure.
Collapse
Affiliation(s)
- Ryo Kawasumi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kizuku Yamashita
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Tominaga
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
8
|
Alio Del Barrio JL, Parafita-Fernandez A, Gomez Plaza D, Fernandez ME, Alio JL. Intrastromal autologous implantation of adipose derived adult stem cells for the management of established corneal scars. Am J Ophthalmol Case Rep 2025; 37:102270. [PMID: 40104277 PMCID: PMC11916819 DOI: 10.1016/j.ajoc.2025.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/18/2024] [Accepted: 02/01/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose To describe a case of well-documented corneal stroma transparency improvement following the intrastromal implantation of autologous adipose-derived mesenchymal stem cells (ADASC) in a keratoconic patient with established stromal scars. Observations ADASC were isolated by elective liposuction, and a solution composed of 3x106 ADASC contained in 1mL saline was used to soak a corneal intrastromal pocket created with femtosecond laser at mid-depth. No signs of inflammation or rejection were observed. One year after surgery, we observed a complete restoration of the pre-existing corneal stroma scars, observed both clinically and by anterior segment OCT. The rest of the visual and topographic parameters did not show relevant changes except for the patient's refractive sphere. OCT showed a thin new layer of neocollagen deposited at the surgical plane. Total stroma optical density (OD) improved from 51.5 to 41.2 GSU, anterior stroma OD improved from 55.9 to 42.8 GSU, and posterior stroma OD improved from 46.9 to 39.6 GSU. Conclusions and importance This clinical case provides new clinical evidence supporting the use of intrastromal mesenchymal stem cell implantation to solve or alleviate established corneal scars.
Collapse
Affiliation(s)
- Jorge L Alio Del Barrio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Grupo Miranza), Alicante, Spain
- Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain
| | - Alberto Parafita-Fernandez
- Ophthalmology Department, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
- Clínica Oftalmológica Dr Parafita, Ribeira, A Coruña, Spain
| | - Daniel Gomez Plaza
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Grupo Miranza), Alicante, Spain
- Instituto de Microcirugía Ocular (IMO), Barcelona, Spain
| | | | - Jorge L Alio
- Cornea, Cataract and Refractive Surgery Unit, Vissum (Grupo Miranza), Alicante, Spain
- Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
9
|
Huang L, Luo Y. AZD6738 Attenuates LPS-Induced Corneal Inflammation and Fibrosis by Modulating Macrophage Function and Polarization. Inflammation 2025:10.1007/s10753-025-02251-2. [PMID: 39903421 DOI: 10.1007/s10753-025-02251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
This study aimed to evaluate the therapeutic potential of AZD6738, an ATR inhibitor, in LPS-induced bacterial keratitis (BK) by targeting macrophage function and polarization. A murine model of LPS-induced BK was established, with AZD6738 (100 µM) administered subconjunctivally and topically. Corneal opacity, edema, and inflammation were assessed using slit-lamp microscopy and histological analysis. Macrophage infiltration and fibrosis were evaluated via immunofluorescence, qPCR, and Western blotting. In vitro, RAW264.7 cells were treated with 2.5 µM AZD6738 to examine its effects on cell viability, oxidative stress, and inflammation-related gene expression. AZD6738 significantly reduced corneal opacity, thickness, and neovascularization in LPS-treated mice. It suppressed macrophage infiltration, collagen deposition, and pro-inflammatory cytokine expression. In RAW264.7 cells, AZD6738 induced cell death, elevated ROS production, and downregulated inflammatory markers. ATR inhibition mitigated NF-κB activation and modulated macrophage polarization, attenuating M1 pro-inflammatory responses. AZD6738 effectively alleviates LPS-induced corneal inflammation and fibrosis by regulating macrophage function and polarization via the NF-κB signaling pathway. ATR inhibition represents a promising therapeutic strategy for the treatment of corneal inflammation.
Collapse
Affiliation(s)
- Longxiang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Youfang Luo
- Department of Rehabilitation, Fuzhou Second General Hospital, Fuzhou, China
| |
Collapse
|
10
|
Cheng L, Feng B, Xie C, Chen C, Guo L. BMSCs Downregulate CXCL12 by Secreting Exosomal miR-20a-5p to Promote Macrophage M2 Polarization and Alleviate the Development of Sepsis. Immunol Invest 2025; 54:250-270. [PMID: 39624875 DOI: 10.1080/08820139.2024.2434049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
OBJECTIVE Sepsis is a syndrome of the systemic inflammatory response caused by infection that can endanger a patient's life. The aim of this study was to explore the molecular mechanism by which bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exo) carrying miR-20a-5p regulate the progression of sepsis. METHODS Clinical samples from sepsis patients were collected. Mouse and cell models of sepsis were induced by lipopolysaccharide (LPS). The levels of related genes and proteins were determined by RT‒qPCR, Western blotting and ELISA. CCK-8 and flow cytometry assays were used to assess cell viability, apoptosis, and markers of macrophage polarization. RESULTS In septic patients, miR-20a-5p levels were significantly lower and CXCL12 expression was significantly increased. After LPS induction, M2 polarization of macrophages was significantly reduced, the level of inflammatory factors was increased, and apoptosis was increased. The addition of BMSCs-exo increased the miR-20a-5p level and decreased the expression of CXCL12 in macrophages, thereby promoting macrophage M2 polarization and reducing the levels of inflammatory factors. CONCLUSION This study demonstrated for the first time that BMSCs-exo promoted the polarization of M2 macrophages through the miR-20a-5p/CXCL12 axis, thus alleviating the development of sepsis. These findings provide a new theoretical basis for the targeted treatment of sepsis with exosomes or miR-20a-5p.
Collapse
Affiliation(s)
- Liming Cheng
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Bo Feng
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Chao Xie
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Chunyan Chen
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Linghui Guo
- Department of Anesthesia, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
11
|
De Miguel MP, Cadenas-Martin M, Stokking M, Martin-Gonzalez AI. Biomedical Application of MSCs in Corneal Regeneration and Repair. Int J Mol Sci 2025; 26:695. [PMID: 39859409 PMCID: PMC11766311 DOI: 10.3390/ijms26020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply. Lamellar keratoplasty (transplantation replacement of only one of the three layers of the cornea) is partially solving the problem of cornea undersupply. Obviously, cell therapy applied to every one of these layers will expand current therapeutic options, reducing the cost of ophthalmological interventions and increasing the effectiveness of surgery. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity for self-renewal and differentiation into different cell lineages. They can be obtained from many human tissues, such as bone marrow, umbilical cord, adipose tissue, dental pulp, skin, and cornea. Their ease of collection and advantages over embryonic stem cells or induced pluripotent stem cells make them a very practical source for experimental and potential clinical applications. In this review, we focus on recent advances using MSCs from different sources to replace the damaged cells of the three corneal layers, at both the preclinical and clinical levels for specific corneal diseases.
Collapse
Affiliation(s)
- Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (M.C.-M.); (M.S.); (A.I.M.-G.)
| | | | | | | |
Collapse
|
12
|
Moujane F, Zhang C, Knight R, Lee JY, Deng SX, Zheng JJ. Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork. Transl Vis Sci Technol 2025; 14:21. [PMID: 39847376 PMCID: PMC11759583 DOI: 10.1167/tvst.14.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells. Methods Human TM cell lines were isolated and cultured from donor corneoscleral rims. EVs were purified from imCSSC conditioned media (CM) using size exclusion chromatography and characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM), and ExoView technology. TM cells were treated with either Dex alone or with EVs for 5 days. Quantitative polymerase chain reaction (PCR) was carried out to quantify the mRNA level of MYOC and ANGPTL7. Results A notable increase in the expression levels of MYOC and ANGPTL7 genes was observed compared with untreated TM cells (control). Furthermore, upon comparing Dex-treated TM cells with those receiving both Dex and EV treatments, a statistically significant reduction in ANGPTL7 expression (P < 0.05) was detected. Conclusions The present study demonstrates that imCSSCs-derived EVs can effectively decrease the expression of ANGPLT7, a gene associated with fibrosis and implicated in the abnormal elevation of IOP in patients with glaucoma. Translational Relevance Our study shows that imCSSC-derived EVs can specifically target ANGPTL7 expression, making them a promising preclinical therapy for glaucoma.
Collapse
Affiliation(s)
- Faycal Moujane
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Ophthalmology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Chi Zhang
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Robert Knight
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - John Y. Lee
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sophie X. Deng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Santra M, Geary ML, Funderburgh ML, Yam GHF. Isolation, Culture, and Quality Assessment of Clinical-Grade Corneal Stromal Stem Cells. Methods Mol Biol 2025; 2848:3-23. [PMID: 39240513 DOI: 10.1007/978-1-0716-4087-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The challenge of treating corneal scarring through keratoplasties lies in the limited availability of donor tissue. Various studies have shown the therapeutic use of cultivated corneal stromal stem cells (CSSCs) to mitigate tissue inflammation and suppress fibrosis and scar tissue formation in preclinical corneal wound models. To develop CSSC therapy for clinical trials on patients with corneal scarring, it is necessary to generate clinical-grade CSSCs in compliant to Good Manufacturing Practice (GMP) regulations. This chapter elucidates human CSSC isolation, culture, and cryopreservation under GMP-compliant conditions. It underscores quality assessment encompassing morphological traits, expression of stemness markers, anti-inflammatory activity, and keratocyte differentiation potency.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moira L Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martha L Funderburgh
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary H F Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Namdari M, McDonnell FS. Extracellular vesicles as emerging players in glaucoma: Mechanisms, biomarkers, and therapeutic targets. Vision Res 2025; 226:108522. [PMID: 39581065 PMCID: PMC11640964 DOI: 10.1016/j.visres.2024.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant scientific interest due to their widespread distribution, their potential as disease biomarkers, and their promising applications in therapy. Encapsulated by lipid bilayers these nanovesicles include small extracellular vesicles (sEV) (30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies (100-5000 nm) and are essential for cellular communication, immune responses, biomolecular transport, and physiological regulation. As they reflect the condition and functionality of their originating cells, EVs play critical roles in numerous physiological processes and diseases. Therefore, EVs offer valuable opportunities for uncovering disease mechanisms, enhancing drug delivery systems, and identifying novel biomarkers. In the context of glaucoma, a leading cause of irreversible blindness, the specific roles of EVs are still largely unexplored. This review examines the emerging role of EVs in the pathogenesis of glaucoma, with a focus on their potential as diagnostic biomarkers and therapeutic agents. Through a thorough analysis of current literature, we summarize key advancements in EV research and identify areas where further investigation is needed to fully understand their function in glaucoma.
Collapse
Affiliation(s)
- Maral Namdari
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Al Monla R, Daien V, Michon F. Advanced bioengineering strategies broaden the therapeutic landscape for corneal failure. Front Bioeng Biotechnol 2024; 12:1480772. [PMID: 39605752 PMCID: PMC11598527 DOI: 10.3389/fbioe.2024.1480772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The cornea acts as the eye foremost protective layer and is essential for its focusing power. Corneal blindness may arise from physical trauma or conditions like dystrophies, keratitis, keratoconus, or ulceration. While conventional treatments involve medical therapies and donor allografts-sometimes supplemented with keratoprostheses-these options are not suitable for all corneal defects. Consequently, the development of bioartificial corneal tissue has emerged as a critical research area, aiming to address the global shortage of human cornea donors. Bioengineered corneas hold considerable promise as substitutes, with the potential to replace either specific layers or the entire thickness of damaged corneas. This review first delves into the structural anatomy of the human cornea, identifying key attributes necessary for successful corneal tissue bioengineering. It then examines various corneal pathologies, current treatments, and their limitations. Finally, the review outlines the primary approaches in corneal tissue engineering, exploring cell-free, cell-based, and scaffold-based options as three emerging strategies to address corneal failure.
Collapse
Affiliation(s)
- Reem Al Monla
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
- Sydney Medical School, The Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
16
|
Robbins BT, Montreuil KA, Kundu N, Kumar P, Agrahari V. Corneal Treatment, Repair, and Regeneration: Exosomes at Rescue. Pharmaceutics 2024; 16:1424. [PMID: 39598547 PMCID: PMC11597686 DOI: 10.3390/pharmaceutics16111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Exosomes are extracellular vesicles within the nanosized range that play roles in intercellular communication and thus have certain biological activities. The secretory signaling communication mechanism is an efficient way of exchanging information between cells and has been investigated as nature's therapeutic drug carriers. This review will summarize the potential of exosomes as therapeutic tools and drug delivery vehicles for corneal pathologies. The cornea is an avascular ocular tissue, and its healing is a complex process including cell death and migration, cell proliferation and differentiation, and extracellular matrix remodeling. Here, we discussed the structure, barrier, phases, and healing cascade of cornea. We briefly reviewed the immunogenicity and toxicity of exosomes and role of exosomes in preserving cornea. Additionally, we provided combining exosome strategies with hydrogels, gene and stem cells therapy focused on corneal treatment, repair, and regeneration.
Collapse
Affiliation(s)
- Brooke T. Robbins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Kate A. Montreuil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Neloy Kundu
- Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Prashant Kumar
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA;
| | - Vibhuti Agrahari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
17
|
Jaffet J, Singh V, Schrader S, Mertsch S. The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Curr Eye Res 2024:1-14. [PMID: 39508276 DOI: 10.1080/02713683.2024.2424265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dry eye disease (DED), a multifactorial disease of the lacrimal system, manifests itself in patients with various symptoms such as itching, inflammation, discomfort and visual impairment. In its most severe forms, it results in the breakdown of the vital tissues of lacrimal functional unit and carries the risk of vision loss. Despite the frequency of occurrence of the disease, there are no effective curative treatment options available to date. Treatment using stem cells and its secreted factors could be a promising approach in the regeneration of damaged tissues of ocular surface. The treatment using secreted factors as well as extracellular vesicles has been demonstrated beneficial effects in various ocular surface diseases. This review provides insights on the usage of stem cell derived exosomes as a promising therapy against LG dysfunction induced ADDE for ocular surface repair. METHODS In order to gain an overview of the existing research in this field, literature search was carried out using the PubMed, Medline, Scopus and Web of Science databases. This review is based on 164 publications until June 2024 and the literature search was carried out using the key words "exosomes", "lacrimal gland regeneration", "exosomes in lacrimal dysfunction". RESULTS The literature and studies till date suggest that exosomes and other secreted factors from stem cells have demonstrated beneficial effects on damaged ocular tissues in various ocular surface diseases. Exosomal cargo plays a crucial role in regenerating tissues by promoting homeostasis in the lacrimal system, which is often compromised in severe cases of dry eye disease. Exosome therapy shows promise as a regenerative therapy, potentially addressing the lack of effective curative treatments available for patients with dry eye disease. CONCLUSION Stem cell-derived exosomes represent a promising, innovative approach as a new treatment option for ADDE. By targeting lacrimal gland dysfunction and enhancing ocular surface repair, exosome therapy offers potential for significant advances in dry eye disease management. Future research is needed to refine the application of this therapy, optimize delivery methods, and fully understand its long-term efficacy in restoring ocular health.
Collapse
Affiliation(s)
- Jilu Jaffet
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vivek Singh
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
18
|
Jafari K, Seyed-Safi A, Ahmad S. Extracellular vesicles for corneal regeneration: the new frontier. Regen Med 2024; 19:519-522. [PMID: 39422318 PMCID: PMC11633439 DOI: 10.1080/17460751.2024.2412510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
| | | | - Sajjad Ahmad
- Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College, London, UK
- Moorfields NIHR Biomedical Research Centre, London, UK
| |
Collapse
|
19
|
Saraf N, Ramachandran RA, Cao M, Lemoff A, Baniasadi H, Robertson DM. Serum-derived extracellular vesicles for the treatment of severe ocular surface disease. Ocul Surf 2024; 34:317-325. [PMID: 39159888 DOI: 10.1016/j.jtos.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE Autologous serum is widely used for the treatment of severe ocular surface disease with mixed efficacy. Extracellular vesicles (EVs) are small membrane bound structures present in all body fluids, including serum. This study compared the proteomic, metabolomic, and inflammatory cytokine composition of serum-derived EVs (SDEVs) to that of the soluble free protein fraction and the subsequent capacity of SDEVs to induce corneal epithelial cell migration and inflammation. METHODS SDEVs were isolated from human serum using size exclusion chromatography. SDEVs were analyzed using nanoparticle tracking analysis, transmission electron microscopy, and western blotting. The effects of SDEVs on corneal epithelial cell migration were tested using a standard scratch assay. Inflammatory cytokines in SDEVs and the free protein fraction were quantified using a microarray. A mutli-omics approach was further used to define SDEV cargo. The ability of SDEVs to modulate inflammation in corneal epithelial cells was quantified using ELISAs. RESULTS Western blot and TEM confirmed the presence of SDEVs. Proinflammatory cytokines, along with complement proteins and TGF-β, were decreased in SDEVs compared to serum. Metabolites present in SDEVs were mostly involved in amino acid biosynthesis, the TCA cycle and oxidative phosphorylation. SDEVs exhibited pro-migratory effects similar to serum however, SDEVs did not induce secretion of IL-6 or IL-8. CONCLUSIONS SDEVs exhibit reduced levels of pro-inflammatory cytokines while retaining the beneficial wound healing properties of serum. Unlike serum, SDEVs do not induce inflammation. SDEVs may represent an alternative option for patients with severe ocular surface disease where traditional autologous serum has failed.
Collapse
Affiliation(s)
- Namita Saraf
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Mou Cao
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hamid Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
20
|
Santra M, Hsu YMS, Khadem S, Radencic S, Funderburgh ML, Sawant OB, Dhaliwal DK, Jhanji V, Yam GH. A Full Good Manufacturing Practice-Compliant Protocol for Corneal Stromal Stem Cell Cultivation. Bio Protoc 2024; 14:e5074. [PMID: 39346761 PMCID: PMC11427334 DOI: 10.21769/bioprotoc.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Corneal scarring, a significant cause of global blindness, results from various insults, including trauma, infections, and genetic disorders. The conventional treatment to replace scarred corneal tissues includes partial or full-thickness corneal transplantation using healthy donor corneas. However, only 1 in 70 individuals with treatable corneal scarring can undergo surgery, due to the limited supply of transplantable donor tissue. Our research focuses on cell-based strategies, specifically ex vivo-expanded corneal stromal stem cells (CSSCs), to address corneal scarring. Preclinical studies have demonstrated the efficacy of CSSC treatment in reducing corneal inflammation and fibrosis, inhibiting scar formation, and regenerating native stromal tissue. Mechanisms include CSSC differentiation into stromal keratocytes and the expression of regenerative cytokines. Here, we present a good manufacturing practice (GMP)-compliant protocol to isolate and expand human CSSCs. This method paves the way to produce clinical-grade CSSCs for transplantation and clinical trials. Key features • This protocol utilizes surgical skills to dissect human corneal tissues for CSSC isolation. • The yield and features of CSSCs rely on donor tissue quality (freshness) and have donor-to-donor variability. • Up to 0.5 billion CSSCs can be generated from a single cornea specimen, and cells at passage 3 are suitable for treatment uses.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen-Michael S. Hsu
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Cell and Gene Therapy, Gift of Life Marrow Registry, Boca Raton, FL, USA
| | - Shaheen Khadem
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney Radencic
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martha L. Funderburgh
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Onkar B. Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, USA
| | - Deepinder K. Dhaliwal
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary H.F. Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Meshko B, Volatier TLA, Mann J, Kluth MA, Ganss C, Frank MH, Frank NY, Ksander BR, Cursiefen C, Notara M. Anti-Inflammatory and Anti-(Lymph)angiogenic Properties of an ABCB5+ Limbal Mesenchymal Stem Cell Population. Int J Mol Sci 2024; 25:9702. [PMID: 39273646 PMCID: PMC11395824 DOI: 10.3390/ijms25179702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5- cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues.
Collapse
Affiliation(s)
- Berbang Meshko
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
| | - Thomas L. A. Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
| | - Johanna Mann
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
| | - Mark A. Kluth
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany; (M.A.K.); (C.G.)
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany; (M.A.K.); (C.G.)
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA;
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA;
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA;
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Bruce R. Ksander
- Massachusetts Eye & Ear Infirmary, Schepens Eye Research Institute, Boston, MA 02114, USA;
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (T.L.A.V.); (J.M.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
22
|
Kumar R, Tripathi R, Sinha NR, Mohan RR. RNA-Seq Analysis Unraveling Novel Genes and Pathways Influencing Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39240550 PMCID: PMC11383191 DOI: 10.1167/iovs.65.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Purpose Transdifferentiation of corneal fibroblasts to myofibroblasts in the stroma is a central mechanistic event in corneal wound healing. This study sought to characterize genes and pathways influencing transdifferentiation of human corneal fibroblasts (hCSFs) to human corneal myofibroblasts (hCMFs) using RNA sequencing (RNA-seq) to develop comprehensive mechanistic information and identify newer targets for corneal fibrosis management. Methods Primary hCSFs were derived from donor human corneas. hCMFs were generated by treating primary hCSFs with transforming growth factor β1 (TGFβ1; 5 ng/mL) for 72 hours under serum-free conditions. RNA was extracted using the RNeasy Plus Mini Kit and subjected to RNA-seq analysis after quality control testing. Differential gene expression, pathway enrichment, and protein-protein network analyses were performed using DESeq2, GSEA/PANTHER/Reactome, and Cytoscape/cytoHubba, respectively. Results RNA-seq analysis of hCMFs and hCSFs identified 3843 differentially expressed genes and transcripts (adjusted P < 0.05). The log(fold change) ≥ ±1.5 filter showed 816 upregulated and 739 downregulated genes between two cell types. Pathway enrichment analysis showed the highest normalized enrichment score for epithelial-to-mesenchymal transition (5.569), followed by mTORC1 signaling (2.949), angiogenesis (2.176), and TGFβ signaling (2.008). Protein-protein interaction network analysis identified the top 20 nodes influencing corneal myofibroblast development. The expression of a novel MXRA5 in corneal stroma and its association with corneal fibrosis was verified by real-time quantitative reverse transcription PCR and immunofluorescence. RNA-seq and gene count files were submitted to the NCBI Gene Expression Omnibus (GSE260476). Conclusions This study identified several novel genes involved in myofibroblast development, offering potential targets for developing newer therapeutic strategies for corneal fibrosis.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
23
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
24
|
Su Y, Chen M, Xu W, Gu P, Fan X. Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases. ACS NANO 2024; 18:22793-22828. [PMID: 39141830 PMCID: PMC11363148 DOI: 10.1021/acsnano.4c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles of various sizes that can be secreted by most cells. EVs contain a diverse array of cargo, including RNAs, lipids, proteins, and other molecules with functions of intercellular communication, immune modulation, and regulation of physiological and pathological processes. The biofluids in the eye, including tears, aqueous humor, and vitreous humor, are important sources for EV-based diagnosis of ocular disease. Because the molecular cargos may reflect the biology of their parental cells, EVs in these biofluids, as well as in the blood, have been recognized as promising candidates as biomarkers for early diagnosis of ocular disease. Moreover, EVs have also been used as therapeutics and targeted drug delivery nanocarriers in many ocular disorders because of their low immunogenicity and superior biocompatibility in nature. In this review, we provide an overview of the recent advances in the field of EV-based studies on the diagnosis and therapeutics of ocular disease. We summarized the origins of EVs applied in ocular disease, assessed different methods for EV isolation from ocular biofluid samples, highlighted bioengineering strategies of EVs as drug delivery systems, introduced the latest applications in the diagnosis and treatment of ocular disease, and presented their potential in the current clinical trials. Finally, we briefly discussed the challenges of EV-based studies in ocular disease and some issues of concern for better focusing on clinical translational studies of EVs in the future.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Moxin Chen
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Wei Xu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
25
|
Riau AK, Look Z, Yam GHF, Boote C, Ma Q, Han EJY, Binte M Yusoff NZ, Ong HS, Goh TW, Binte Halim NSH, Mehta JS. Impact of keratocyte differentiation on corneal opacity resolution and visual function recovery in male rats. Nat Commun 2024; 15:4959. [PMID: 38862465 PMCID: PMC11166667 DOI: 10.1038/s41467-024-49008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Intrastromal cell therapy utilizing quiescent corneal stromal keratocytes (qCSKs) from human donor corneas emerges as a promising treatment for corneal opacities, aiming to overcome limitations of traditional surgeries by reducing procedural complexity and donor dependency. This investigation demonstrates the therapeutic efficacy of qCSKs in a male rat model of corneal stromal opacity, underscoring the significance of cell-delivery quality and keratocyte differentiation in mediating corneal opacity resolution and visual function recovery. Quiescent CSKs-treated rats display improvements in escape latency and efficiency compared to wounded, non-treated rats in a Morris water maze, demonstrating improved visual acuity, while stromal fibroblasts-treated rats do not. Advanced imaging, including multiphoton microscopy, small-angle X-ray scattering, and transmission electron microscopy, revealed that qCSK therapy replicates the native cornea's collagen fibril morphometry, matrix order, and ultrastructural architecture. These findings, supported by the expression of keratan sulfate proteoglycans, validate qCSKs as a potential therapeutic solution for corneal opacities.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Zhuojian Look
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Gary H F Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Craig Boote
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Qian Ma
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Evelina J Y Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Nur Zahirah Binte M Yusoff
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | | | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, 168751, Singapore.
| |
Collapse
|
26
|
Wei S, Lu C, Li S, Zhang Q, Cheng R, Pan S, Wu Q, Zhao X, Tian X, Zeng X, Liu Y. Efficacy and safety of mesenchymal stem cell-derived microvesicles in mouse inflammatory arthritis. Int Immunopharmacol 2024; 131:111845. [PMID: 38531171 DOI: 10.1016/j.intimp.2024.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To determine the effective and safe intravenous doses of mesenchymal stem cells (MSCs)-derived microvesicles (MVs) and to elucidate the possible causes of death in mice receiving high-dose MVs. METHODS MVs were isolated from human MSCs by gradient centrifugation. Mice with collagen-induced arthritis were treated with different doses of intravenous MVs or MSCs. Arthritis severity, white blood cell count, and serum C-reactive protein levels were measured. To assess the safety profile of MSCs and MVs, mice were treated with different doses of MSCs and MVs, and LD50 was calculated. Mouse lungs and heart were assessed by live fluorescence imaging, histopathological measurements, and immunohistochemistry to explore the possible causes of death. Serum concentrations of cTnT, cTnI, and CK-MB were determined by ELISA. With the H9C2 cardiomyocyte cell line, cellular uptake of MVs was observed using confocal microscopy and cell toxicity was assessed by CCK-8 and flow cytometry. RESULTS Intravenous treatment with MSCs and MVs alleviated inflammatory arthritis, while high doses of MSCs and MVs were lethal. Mice receiving a maximum dose of MSCs (0.1 mL of MSCs at 109/mL) died immediately, while mice receiving a maximum dose of MVs (0.1 mL of MVs at 1012/mL) exhibited tears, drooling, tachycardia, shortness of breath, unbalanced rollover, bouncing, circular crawling, mania, and death. Some mice died after exhibiting convulsions and other symptoms. All mice died shortly after injecting the maximum dose of MSCs. Histologically, mice receiving high doses of MSCs frequently developed pulmonary embolism, while those receiving high doses of MVs died of myocardial infarction. Consistently, the serum levels of cTnT, cTnI, and CK-MB were significantly increased in the MVs-treated group (P < 0.05). The LD50 of intravenous MVs was 1.60 × 1012/kg. Further, MVs could enter the cell. High doses of MVs induced cell apoptosis, though low concentrations of MVs induced cell proliferation. CONCLUSIONS Appropriate dosages of MVs and MSCs are effective treatments for inflammatory arthritis while MVs and MSCs overdose is unsafe by causing cardiopulmonary complications.
Collapse
Affiliation(s)
- Shixiong Wei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuai Fu Yuan, Wang Fu Jing street, Beijing 100730, China; Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - Chenyang Lu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Sujia Li
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - Qiuping Zhang
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - Ruijuan Cheng
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - ShuYue Pan
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - QiuHong Wu
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - Xueting Zhao
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuai Fu Yuan, Wang Fu Jing street, Beijing 100730, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuai Fu Yuan, Wang Fu Jing street, Beijing 100730, China.
| | - Yi Liu
- Department of Rheumatology & Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue xiang Wuhou District, Chengdu City, Sichuan Province 610041, China.
| |
Collapse
|
27
|
Meissner JM, Chmielińska A, Ofri R, Cisło-Sankowska A, Marycz K. Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs). Curr Issues Mol Biol 2024; 46:3251-3277. [PMID: 38666934 PMCID: PMC11048834 DOI: 10.3390/cimb46040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory miRNA-146a-5p, compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (PERK, IRE1, ATF6, and XBP1), increased the number of mitochondria, and reduced the expression of Fis-1 and Parkin, thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.
Collapse
Affiliation(s)
- Justyna M. Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
| | - Aleksandra Chmielińska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel;
| | - Anna Cisło-Sankowska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
28
|
Song M, Ma L, Zhu Y, Gao H, Hu R. Umbilical cord mesenchymal stem cell-derived exosomes inhibits fibrosis in human endometrial stromal cells via miR-140-3p/FOXP1/Smad axis. Sci Rep 2024; 14:8321. [PMID: 38594471 PMCID: PMC11004014 DOI: 10.1038/s41598-024-59093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
Endometrial fibrosis is the histologic appearance of intrauterine adhesion (IUA). Emerging evidences demonstrated umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exo) could alleviate endometrial fibrosis. But the specific mechanism is not clear. In this study, we explored the effect of UCMSC-exo on endometrial fibrosis, and investigated the possible role of miR-140-3p/FOXP1/Smad axis in anti-fibrotic properties of UCMSC-exo. UCMSC-exo were isolated and identified. Transforming growth factor-β (TGF-β) was used to induce human endometrial stromal cell (HESC) fibrosis. Dual luciferase assay was performed to verify the relationship between miR-140-3p and FOXP1. The expressions of fibrotic markers, SIP1, and p-Smad2/p-Smad3 in HESCs stimulated with UCMSC-exo were detected by western blot. In addition, the effects of miR-140-3p mimic, miR-140-3p inhibitor and FOXP1 over-expression on endometrial fibrosis were assessed. The isolated UCMSC-exo had a typical cup-shaped morphology and could be internalized into HESCs. The expressions of fibrotic markers were significantly increased by TGF-β, which was reversed by UCMSC-exo. MiR-140-3p in UCMSC-exo ameliorated TGf-β-induced HESCs fibrosis. FOXP1 was identified as the direct target of miR-140-3p, which could inversely regulate miR-140-3p's function on HESCs fibrosis. Furthermore, we demonstrated that miR-140-3p in UCMSC-exo regulated Smad signal pathway to exert the anti-fibrotic effect in HESCs. The anti-fibrotic effect of UCMSC-derived exosomes against HESC fibrosis was at least partially achieved by miR-140-3p/FOXP1/Smad axis.
Collapse
Affiliation(s)
- Mengling Song
- Department of Reproductive Medicine, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 804 Shengli Street, Xingqing Square, Yinchuan, 750004, Ningxia, China.
| | - Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yongzhao Zhu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Huimin Gao
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Department of Reproductive Medicine, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 804 Shengli Street, Xingqing Square, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
29
|
Kistenmacher S, Schwämmle M, Martin G, Ulrich E, Tholen S, Schilling O, Gießl A, Schlötzer-Schrehardt U, Bucher F, Schlunck G, Nazarenko I, Reinhard T, Polisetti N. Enrichment, Characterization, and Proteomic Profiling of Small Extracellular Vesicles Derived from Human Limbal Mesenchymal Stromal Cells and Melanocytes. Cells 2024; 13:623. [PMID: 38607062 PMCID: PMC11011788 DOI: 10.3390/cells13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.
Collapse
Affiliation(s)
- Sebastian Kistenmacher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D–79104 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Eva Ulrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Freiburg, Medical Center, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlan-gen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
30
|
Arora S, Verma N. Exosomal microRNAs as potential biomarkers and therapeutic targets in corneal diseases. Mol Vis 2024; 30:92-106. [PMID: 38601014 PMCID: PMC11006010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicle (EV) that are released and found in almost all body fluids. Exosomes consist of and carry a variety of bioactive molecules, including genetic information in the form of microRNAs (miRNAs). miRNA, a type of small non-coding RNA, plays a key role in regulating genes by suppressing their translation. miRNAs are often disrupted in the pathophysiology of different conditions, including eye disease. The stability and easy detectability of exosomal miRNAs in body fluids make them promising biomarkers for the diagnosis of different diseases. Additionally, due to the natural delivery capabilities of exosomes, they can be modified to transport therapeutic miRNAs to specific recipient cells. Most exosome research has primarily focused on cancer, so there is limited research highlighting the importance of exosomes in ocular biology, particularly in cornea-associated pathologies. This review provides an overview of the existing evidence regarding the primary functions of exosomal miRNAs and their potential role in diagnostic and therapeutic applications in the human cornea.
Collapse
Affiliation(s)
- Swati Arora
- Pharma Services Group, Patheon/Thermo Fisher Scientific, Florence, SC
| | - Nagendra Verma
- Eye Program, Cedars Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
31
|
Chandran C, Santra M, Rubin E, Geary ML, Yam GHF. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines 2024; 12:649. [PMID: 38540264 PMCID: PMC10967722 DOI: 10.3390/biomedicines12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The cornea is a transparent and vitally multifaceted component of the eye, playing a pivotal role in vision and ocular health. It has primary refractive and protective functions. Typical corneal dysfunctions include opacities and deformities that result from injuries, infections, or other medical conditions. These can significantly impair vision. The conventional challenges in managing corneal ailments include the limited regenerative capacity (except corneal epithelium), immune response after donor tissue transplantation, a risk of long-term graft rejection, and the global shortage of transplantable donor materials. This review delves into the intricate composition of the cornea, the landscape of corneal regeneration, and the multifaceted repercussions of scar-related pathologies. It will elucidate the etiology and types of dysfunctions, assess current treatments and their limitations, and explore the potential of regenerative therapy that has emerged in both in vivo and clinical trials. This review will shed light on existing gaps in corneal disorder management and discuss the feasibility and challenges of advancing regenerative therapies for corneal stromal scarring.
Collapse
Affiliation(s)
- Christine Chandran
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Elizabeth Rubin
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Moira L. Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
32
|
Volatier T, Cursiefen C, Notara M. Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells 2024; 13:163. [PMID: 38247854 PMCID: PMC10814767 DOI: 10.3390/cells13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
33
|
Santra M, Geary ML, Rubin E, Hsu MYS, Funderburgh ML, Chandran C, Du Y, Dhaliwal DK, Jhanji V, Yam GHF. Good manufacturing practice production of human corneal limbus-derived stromal stem cells and in vitro quality screening for therapeutic inhibition of corneal scarring. Stem Cell Res Ther 2024; 15:11. [PMID: 38185673 PMCID: PMC10773078 DOI: 10.1186/s13287-023-03626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells in the adult corneal stroma (named corneal stromal stem cells, CSSCs) inhibit corneal inflammation and scarring and restore corneal clarity in pre-clinical corneal injury models. This cell therapy could alleviate the heavy reliance on donor materials for corneal transplantation to treat corneal opacities. Herein, we established Good Manufacturing Practice (GMP) protocols for CSSC isolation, propagation, and cryostorage, and developed in vitro quality control (QC) metric for in vivo anti-scarring potency of CSSCs in treating corneal opacities. METHODS A total of 24 donor corneal rims with informed consent were used-18 were processed for the GMP optimization of CSSC culture and QC assay development, while CSSCs from the remaining 6 were raised under GMP-optimized conditions and used for QC validation. The cell viability, growth, substrate adhesion, stem cell phenotypes, and differentiation into stromal keratocytes were assayed by monitoring the electric impedance changes using xCELLigence real-time cell analyzer, quantitative PCR, and immunofluorescence. CSSC's conditioned media were tested for the anti-inflammatory activity using an osteoclastogenesis assay with mouse macrophage RAW264.7 cells. In vivo scar inhibitory outcomes were verified using a mouse model of anterior stromal injury caused by mechanical ablation using an Algerbrush burring. RESULTS By comparatively assessing various GMP-compliant reagents with the corresponding non-GMP research-grade chemicals used in the laboratory-based protocols, we finalized GMP protocols covering donor limbal stromal tissue processing, enzymatic digestion, primary CSSC culture, and cryopreservation. In establishing the in vitro QC metric, two parameters-stemness stability of ABCG2 and nestin and anti-inflammatory ability (rate of inflammation)-were factored into a novel formula to calculate a Scarring Index (SI) for each CSSC batch. Correlating with the in vivo scar inhibitory outcomes, the CSSC batches with SI < 10 had a predicted 50% scar reduction potency, whereas cells with SI > 10 were ineffective to inhibit scarring. CONCLUSIONS We established a full GMP-compliant protocol for donor CSSC cultivation, which is essential toward clinical-grade cell manufacturing. A novel in vitro QC-in vivo potency correlation was developed to predict the anti-scarring efficacy of donor CSSCs in treating corneal opacities. This method is applicable to other cell-based therapies and pharmacological treatments.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moira L Geary
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Rubin
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Y S Hsu
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martha L Funderburgh
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christine Chandran
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Deepinder K Dhaliwal
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Hin-Fai Yam
- Corneal Regeneration Lab, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh, 1622 Locust Street, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
34
|
Manai F, Smedowski A, Kaarniranta K, Comincini S, Amadio M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J Control Release 2024; 365:448-468. [PMID: 38013069 DOI: 10.1016/j.jconrel.2023.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/03/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Nanoscale extracellular vesicles (EVs), consisting of exomers, exosomes and microvesicles/ectosomes, have been extensively investigated in the last 20 years, although their biological role is still something of a mystery. EVs are involved in the transfer of lipids, nucleic acids and proteins from donor to recipient cells or distant organs as well as regulating cell-cell communication and signaling. Thus, EVs are important in intercellular communication and this is not limited to sister cells, but may also mediate the crosstalk between different cell types even over long distances. EVs play crucial functions in both cellular homeostasis and the pathogenesis of diseases, and since their contents reflect the status of the donor cell, they represent an additional valuable source of information for characterizing complex biological processes. Recent advances in isolation and analytical methods have led to substantial improvements in both characterizing and engineering EVs, leading to their use either as novel biomarkers for disease diagnosis/prognosis or even as novel therapies. Due to their capacity to carry biomolecules, various EV-based therapeutic applications have been devised for several pathological conditions, including eye diseases. In the eye, EVs have been detected in the retina, aqueous humor, vitreous body and also in tears. Experiences with other forms of intraocular drug applications have opened new ways to use EVs in the treatment of retinal diseases. We here provide a comprehensive summary of the main in vitro, in vivo, and ex vivo literature-based studies on EVs' role in ocular physiological and pathological conditions. We have focused on age-related macular degeneration, diabetic retinopathy, glaucoma, which are common eye diseases leading to permanent blindness, if not treated properly. In addition, the putative use of EVs in retinitis pigmentosa and other retinopathies is discussed. Finally, we have reviewed the potential of EVs as therapeutic tools and/or biomarkers in the above-mentioned retinal disorders. Evidence emerging from experimental disease models and human material strongly suggests future diagnostic and/or therapeutic exploitation of these biological agents in various ocular disorders with a good possibility to improve the patient's quality of life.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland; GlaucoTech Co., Katowice, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
35
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Chung HS, Ye EA, Lee H, Kim JY. Current Advances in Regenerative Strategies for Dry Eye Diseases: A Comprehensive Review. Bioengineering (Basel) 2023; 11:39. [PMID: 38247916 PMCID: PMC10813666 DOI: 10.3390/bioengineering11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Dry eye disease (DED) is an emerging health issue affecting millions of individuals annually. Ocular surface disorders, such as DED, are characterized by inflammation triggered by various factors. This condition can lead to tear deficiencies, resulting in the desiccation of the ocular surface, corneal ulceration/perforation, increased susceptibility to infections, and a higher risk of severe visual impairment and blindness. Currently, the clinical management of DED primarily relies on supportive and palliative measures, including the frequent and lifelong use of different lubricating agents. While some advancements like punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts have been attempted, they have shown limited effectiveness. Recently, there have been promising developments in the treatment of DED, including biomaterials such as nano-systems, hydrogels, and contact lenses for drug delivery, cell-based therapies, biological approaches, and tissue-based regenerative therapy. This article specifically explores the different strategies reported so far for treating DED. The aim is to discuss their potential as long-term cures for DED while also considering the factors that limit their feasibility and effectiveness. These advancements offer hope for more effective and sustainable treatment options in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.B.); (S.-H.O.); (C.-M.K.); (Y.-J.Y.); (H.-S.C.); (E.-A.Y.); (H.L.)
| |
Collapse
|
36
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
37
|
Li SJ, Cheng RJ, Wei SX, Xia ZJ, Pu YY, Liu Y. Advances in mesenchymal stem cell-derived extracellular vesicles therapy for Sjogren's syndrome-related dry eye disease. Exp Eye Res 2023; 237:109716. [PMID: 37951337 DOI: 10.1016/j.exer.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disorder that affects exocrine glands, particularly lacrimal glands, leading to dry eye disease (DED). DED is a common ocular surface disease that affects millions of people worldwide, causing discomfort, visual impairment, and even blindness in severe cases. However, there is no definitive cure for DED, and existing treatments primarily relieve symptoms. Consequently, there is an urgent need for innovative therapeutic strategies based on the pathophysiology of DED. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic tool for various autoimmune disorders, including SS-related DED (SS-DED). A particularly intriguing facet of MSCs is their ability to produce extracellular vesicles (EVs), which contain various bioactive components such as proteins, lipids, and nucleic acids. These molecules play a key role in facilitating communication between cells and modulating a wide range of biological processes. Importantly, MSC-derived EVs (MSC-EVs) have therapeutic properties similar to those of their parent cells, including immunomodulatory, anti-inflammatory, and regenerative properties. In addition, MSC-EVs offer several notable advantages over intact MSCs, including lower immunogenicity, reduced risk of tumorigenicity, and greater convenience in terms of storage and transport. In this review, we elucidate the underlying mechanisms of SS-DED and discuss the relevant mechanisms and targets of MSC-EVs in treating SS-DED. In addition, we comprehensively review the broader landscape of EV application in autoimmune and corneal diseases. This review focuses on the efficacy of MSC-EVs in treating SS-DED, a field of study that holds considerable appeal due to its multifaceted regulation of immune responses and regenerative functions.
Collapse
Affiliation(s)
- Su-Jia Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Rheumatology and Immunology, Yantai Yuhuangding Hospital, Yantai, Shandong, 264099, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Shi-Xiong Wei
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zi-Jing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yao-Yu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
38
|
Shadmani A, Jarin T, Meng XQ, Rajaendran Y, Uzun S, Wu AY. Evaluation of the Algerbrush II rotating burr as a tool for inducing ocular surface failure in a mouse model. Mol Vis 2023; 29:256-265. [PMID: 38222449 PMCID: PMC10784216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose The Algerbrush II has been widely used to induce corneal and limbal injuries in animal models. The extent of injury varies with the duration of exposure, pressure from the placement of the burr, and the size of the burr. However, no study has explored the correlation between the duration of exposure and the severity of injury in mouse model with corneal and limbal stem cell deficiency (LSCD) induced using the Algerbrush II. Therefore, this study aimed to evaluate the variations in the severity of corneal and limbal injury with different durations of the Algerbrush II application. Methods The entire cornea and limbus of C57BL/6 mice were injured for 30-45 s, 60-75 s, 90-120 s, and 3-4 min. Photography and slit-lamp examination was performed on days 0, 2, 4, and 7, followed by hematoxylin & eosin, periodic acid-Schiff, and immunohistochemical staining. Statistical analysis was performed using one way ANOVA analysis. Results A duration of 30-45 s of injury was found to be sufficient to induce superficial corneal and limbal epithelial debridement and re-epithelialization was completed in all eyes by day 7; however, clinical signs of LSCD were not observed in all mice. Increasing the exposure time to 90-120 s resulted in central 2+ corneal opacity with limbal and paracentral corneal neovascularization. All eyes injured for 3-4 min displayed clinical signs of LSCD, such as persistent epithelial defects on day 7 after the injury, central corneal neovascularization, and 2.2+ diffuse corneal opacity. Histological signs of LSCD, including goblet cell metaplasia and K13 expression on the corneal surface, were observed in all injured eyes. Conclusions Our findings suggest that the duration of injury is an important factor influencing the severity of LSCD in a murine model of injury. A 1-mm rotating burr was found to be more effective for keratectomy and pigment release, whereas a 0.5-mm burr was more suitable for corneal epithelial debridement.
Collapse
Affiliation(s)
- Athar Shadmani
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA
| | - Trent Jarin
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA
| | - Xiang Qi Meng
- McGill University Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Yugendran Rajaendran
- Department of Bioengineering, Stanford University School of Engineering and School of Medicine, Stanford, CA
| | - Salih Uzun
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA
| | - Albert Y. Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
39
|
Lee BWH, Ip MH, Tat L, Chen H, Coroneo MT. Modified Limbal-Conjunctival Autograft Surgical Technique: Long-Term Results of Recurrence and Complications. Cornea 2023; 42:1320-1326. [PMID: 37433157 DOI: 10.1097/ico.0000000000003337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE The aim of this study was to report the recurrence and complication rates of a modified limbal-conjunctival autograft surgical technique for pterygium excision. METHODS This was a retrospective, single-surgeon, single-operating environment, consecutive case series of 176 eyes in 163 patients with a biopsy-proven diagnosis of pterygium. All patients underwent excision using a 23-gauge needle to "behead" the pterygium head, followed by a limbal-conjunctival autograft including ∼50% of the palisades of Vogt. Outcomes measured included recurrence, defined as any conjunctival fibrovascular growth, and complication rates. Correlations between preoperative patient characteristics, pterygium morphology, and intraoperative factors (width of corneal extension, conjunctival defect, and graft) with postoperative recurrence were examined using logistic regression models. RESULTS The median age was 59.5 years and 122 eyes (69.3%) had primary pterygium (type I: 17%, II: 37.5%, and III: 45.5%). Kaplan-Meier analysis demonstrated the median pterygium-free follow-up period to be 723 days (range 46-7230 days). Recurrence was observed in 3 eyes of 2 patients (1.7%). No postoperative graft-related complications were observed. Postoperative symptomatology was transient. Age demonstrated a negative correlation with recurrence (odds ratio 0.888, 95% CI, 0.789-0.998, P = 0.046). However, no other correlations with preoperative or intraoperative factors, including whether pterygium was primary or recurrent, were identified (all P > 0.05). CONCLUSIONS This modified limbal-conjunctival autograft technique represents an effective alternative that offers a very low recurrence rate and avoids extensive dissection or antimetabolites, with minimal complications and transient postoperative symptomatology, over a long-term follow-up period. This technique is relatively simple and successful for both primary and recurrent pterygia. Future comparative studies with other surgical techniques may determine which are superior.
Collapse
Affiliation(s)
- Brendon W H Lee
- Department of Ophthalmology, Prince of Wales Hospital, Randwick, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia; and
- Ophthalmic Surgeons, Randwick, Sydney, New South Wales, Australia
| | - Matthew H Ip
- Department of Ophthalmology, Prince of Wales Hospital, Randwick, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia; and
- Ophthalmic Surgeons, Randwick, Sydney, New South Wales, Australia
| | - Lien Tat
- Ophthalmic Surgeons, Randwick, Sydney, New South Wales, Australia
| | - Helen Chen
- Ophthalmic Surgeons, Randwick, Sydney, New South Wales, Australia
| | - Minas T Coroneo
- Department of Ophthalmology, Prince of Wales Hospital, Randwick, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia; and
- Ophthalmic Surgeons, Randwick, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
García-Posadas L, Romero-Castillo I, Brennan K, Mc Gee MM, Blanco-Fernández A, Diebold Y. Isolation and Characterization of Human Conjunctival Mesenchymal Stromal Cells and Their Extracellular Vesicles. Invest Ophthalmol Vis Sci 2023; 64:38. [PMID: 37747402 PMCID: PMC10528583 DOI: 10.1167/iovs.64.12.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose The purpose of this study was to isolate and culture human conjunctival mesenchymal stromal cells (Conj-MSCs) from cadaveric donor tissue, and to obtain and characterize their extracellular vesicles (EVs) and their effect on conjunctival epithelium. Methods Stromal cells isolated from cadaveric donor conjunctival tissues were cultured and analyzed to determine whether they could be defined as MSCs. Expression of MSC markers was analyzed by flow cytometry. Cells were cultured in adipogenic, osteogenic, and chondrocyte differentiation media, and stained with Oil Red, Von Kossa, and Toluidine Blue, respectively, to determine multipotent capacity. EVs were isolated from cultured Conj-MSCs by differential ultracentrifugation. EV morphology was evaluated by atomic force microscopy, size distribution analyzed by dynamic light scattering, and EVs were individually characterized by nanoflow cytometry. The effect of EVs on oxidative stress and viability was analyzed in in vitro models using the conjunctival epithelial cell line IM-HConEpiC. Results Cultured stromal cells fulfilled the criteria of MSCs: adherence to plastic; expression of CD90 (99.95 ± 0.03% positive cells), CD105 (99.04 ± 1.43%), CD73 (99.99 ± 0.19%), CD44 (99.93 ± 0.05%), and absence of CD34, CD11b, CD19, CD45 and HLA-DR (0.82 ± 0.91%); and in vitro differentiation into different lineages. Main Conj-MSC EV subpopulations were round, small EVs that expressed CD9, CD63, CD81, and CD147. Conj-MSC EVs significantly decreased the production of reactive oxygen species in IM-HConEpiCs exposed to H2O2 in similar levels than adipose tissue-MSC-derived EVs and ascorbic acid, used as controls. Conclusions It is possible to isolate human Conj-MSCs from cadaveric tissue, and to use these cells as a source of small EVs with antioxidant activity on conjunctival epithelial cells.
Collapse
Affiliation(s)
- Laura García-Posadas
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Ismael Romero-Castillo
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Kieran Brennan
- School of Biomolecular & Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Yolanda Diebold
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
42
|
Liu R, Wu S, Liu W, Wang L, Dong M, Niu W. microRNAs delivered by small extracellular vesicles in MSCs as an emerging tool for bone regeneration. Front Bioeng Biotechnol 2023; 11:1249860. [PMID: 37720323 PMCID: PMC10501734 DOI: 10.3389/fbioe.2023.1249860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Bone regeneration is a dynamic process that involves angiogenesis and the balance of osteogenesis and osteoclastogenesis. In bone tissue engineering, the transplantation of mesenchymal stem cells (MSCs) is a promising approach to restore bone homeostasis. MSCs, particularly their small extracellular vesicles (sEVs), exert therapeutic effects due to their paracrine capability. Increasing evidence indicates that microRNAs (miRNAs) delivered by sEVs from MSCs (MSCs-sEVs) can alter gene expression in recipient cells and enhance bone regeneration. As an ideal delivery vehicle of miRNAs, MSCs-sEVs combine the high bioavailability and stability of sEVs with osteogenic ability of miRNAs, which can effectively overcome the challenge of low delivery efficiency in miRNA therapy. In this review, we focus on the recent advancements in the use of miRNAs delivered by MSCs-sEVs for bone regeneration and disorders. Additionally, we summarize the changes in miRNA expression in osteogenic-related MSCs-sEVs under different microenvironments.
Collapse
Affiliation(s)
| | | | | | | | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Tian Y, Zhang T, Li J, Tao Y. Advances in development of exosomes for ophthalmic therapeutics. Adv Drug Deliv Rev 2023; 199:114899. [PMID: 37236425 DOI: 10.1016/j.addr.2023.114899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Exosomes contain multiple bioactive molecules and maintain the connection between cells. Recent advances in exosome-based therapeutics have witnessed unprecedented opportunities in treating ophthalmic diseases, including traumatic diseases, autoimmune diseases, chorioretinal diseases and others. Utilization of exosomes as delivery vectors to encapsulate both drugs and therapeutic genes could yield higher efficacy and avoid the unnecessary immune responses. However, exosome-based therapies also come with some potential ocular risks. In this review, we first present a general introduction to exosomes. Then we provide an overview of available applications and discuss their potential risks. Moreover, we review recently reported exosomes as delivery vectors for ophthalmic diseases. Finally, we put forward future perspectives to grapple with its translation and underlying issues.
Collapse
Affiliation(s)
- Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Tao Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
44
|
Siu MC, Voisey J, Zang T, Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen 2023; 31:439-453. [PMID: 37268303 DOI: 10.1111/wrr.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
MicroRNAs are small, non-coding RNAs that regulate gene expression, and consequently protein synthesis. Downregulation and upregulation of miRNAs and their corresponding genes can alter cell apoptosis, proliferation, migration and fibroproliferative responses following a thermal injury. This review summarises the evidence for altered human miRNA expression post-burn, and during wound healing and scarring. In addition, the most relevant miRNA targets and their roles in potential pathways are described. Previous studies using molecular techniques have identified 197 miRNAs associated with human wound healing, burn wound healing and scarring. Five miRNAs alter the expression of fibroproliferative markers, proliferation and migration of fibroblasts and keratinocytes post-burn: hsa-miR-21 and hsa-miR-31 are increased after wounding, and hsa-miR-23b, hsa-miR-200b and hsa-let-7c are decreased. Four of these five miRNAs are associated with the TGF-β pathway. In the future, large scale, in vivo, longitudinal human studies utilising a range of cell types, ethnicity and clinical healing outcomes are fundamental to identify burn wound healing and scarring specific markers. A comprehensive understanding of the underlying pathways will facilitate the development of clinical diagnostic or prognostic tools for better scar management and the identification of novel treatment targets for improved healing outcomes in burn patients.
Collapse
Affiliation(s)
- Man Ching Siu
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Tuo Zang
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
45
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
46
|
Son JP, Kim EH, Shin EK, Kim DH, Sung JH, Oh MJ, Cha JM, Chopp M, Bang OY. Mesenchymal Stem Cell-Extracellular Vesicle Therapy for Stroke: Scalable Production and Imaging Biomarker Studies. Stem Cells Transl Med 2023:szad034. [PMID: 37311045 DOI: 10.1093/stcltm/szad034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/15/2023] [Indexed: 06/15/2023] Open
Abstract
A major clinical hurdle to translate MSC-derived extracellular vesicles (EVs) is the lack of a method to scale-up the production of EVs with customized therapeutic properties. In this study, we tested whether EV production by a scalable 3D-bioprocessing method is feasible and improves neuroplasticity in animal models of stroke using MRI study. MSCs were cultured in a 3D-spheroid using a micro-patterned well. The EVs were isolated with filter and tangential flow filtration and characterized using electron microscopy, nanoparticle tracking analysis, and small RNA sequencing. Compared to conventional 2D culture, the production-reproduction of EVs (the number/size of particles and EV purity) obtained from 3D platform were more consistent among different lots from the same donor and among different donors. Several microRNAs with molecular functions associated with neurogenesis were upregulated in EVs obtained from 3D platform. EVs induced both neurogenesis and neuritogenesis via microRNAs (especially, miR-27a-3p and miR-132-3p)-mediated actions. EV therapy improved functional recovery on behavioral tests and reduced infarct volume on MRI in stroke models. The dose of MSC-EVs of 1/30 cell dose had similar therapeutic effects. In addition, the EV group had better anatomical and functional connectivity on diffusion tensor imaging and resting-state functional MRI in a mouse stroke model. This study shows that clinical-scale MSC-EV therapeutics are feasible, cost-effective, and improve functional recovery following experimental stroke, with a likely contribution from enhanced neurogenesis and neuroplasticity.
Collapse
Affiliation(s)
- Jeong Pyo Son
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- Accelerator Radioisotope Research Section, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, South Korea
| | - Eun Hee Kim
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Eun Kyoung Shin
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Dong Hee Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ji Hee Sung
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
| | - Mi Jeong Oh
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Jae Min Cha
- 3D Stem Cell Bioprocessing Laboratory, Department of Mechatronics, Incheon National University, Incheon, South Korea
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Oh Young Bang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- R&D Division, S&E bio Co., Ltd., Seoul, South Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, South Korea
| |
Collapse
|
47
|
Soleimani M, Momenaei B, Baradaran-Rafii A, Cheraqpour K, An S, Ashraf MJ, Abedi F, Javadi MA, Djalilian AR. Mustard Gas-Induced Ocular Surface Disorders: An Update on the Pathogenesis, Clinical Manifestations, and Management. Cornea 2023; 42:776-786. [PMID: 36729713 PMCID: PMC10164045 DOI: 10.1097/ico.0000000000003182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Mustard gas (MG) is a potent blistering and alkylating agent that has been used for military and terrorism purposes. Ocular surface injuries are common after exposure to MG. This review provides an update on the pathophysiology, ocular surface complications, and treatment options for MG-related ocular injuries. METHODS Required information was obtained by reviewing various databases such as Cochrane Library, Google Scholar, and PubMed until March 2022. Data were collected by using keywords: "mustard gas" OR "sulfur mustard" AND "eye" OR "cornea" OR "ocular complication" OR "keratitis" OR "keratopathy" OR "limbal stem cell deficiency" OR "dry eye." RESULTS Chronic intracellular toxicity, inflammation, and ischemia have been shown to play an essential role in the pathogenesis of MG injury. Ocular surface injuries can have acute, chronic, and most distinctly a delayed-onset presentation leading to various degrees of limbal stem cell deficiency. To date, no treatment has been agreed on as the standard treatment for chronic/delayed-onset MG keratopathy. Based on the authors' experience, we propose a management algorithm for MG-related ocular surface injuries involving optimization of ocular health, anti-inflammatory therapy, and if needed surgical interventions. The management of chronic and delayed-onset presentation remains challenging. CONCLUSIONS MG keratopathy is a unique form of chemical injury which can lead to a range of ocular surface pathologies. Long-term anti-inflammatory therapy even in patients with seemingly mild disease may potentially reduce the likelihood of the development of more severe delayed-onset disease.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mohammad Ali Javadi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
48
|
Takeda M, Akamatsu S, Kita Y, Goto T, Kobayashi T. The Roles of Extracellular Vesicles in the Progression of Renal Cell Carcinoma and Their Potential for Future Clinical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101611. [PMID: 37242027 DOI: 10.3390/nano13101611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and is thought to originate from renal tubular epithelial cells. Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are secreted into extracellular spaces by nearly all cell types, including cancer cells and non-cancerous cells. EVs are involved in multiple steps of RCC progression, such as local invasion, host immune modulation, drug resistance, and metastasis. Therefore, EVs secreted from RCC are attracting rapidly increasing attention from researchers. In this review, we highlight the mechanism by which RCC-derived EVs lead to disease progression as well as the potential and challenges related to the clinical implications of EV-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Masashi Takeda
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
49
|
Lee JY, Knight RJ, Deng SX. Future regenerative therapies for corneal disease. Curr Opin Ophthalmol 2023; 34:267-272. [PMID: 36602407 DOI: 10.1097/icu.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW To highlight the progress and future direction of stem-cell based regenerative therapies for the treatment of corneal disease. RECENT FINDINGS Corneal stem cell-based therapies, such as limbal stem cell transplantation, corneal stromal stem cell transplantation, endothelial stem cell transplantation, and stem cell-derived extracellular vesicles have demonstrated promising results in the laboratory. Although most are still in preclinical development or early phase clinical trials, these stem cell-based therapies hold potential to facilitate tissue regeneration, restore native function, and inhibit pathologic disease processes such as fibrosis, inflammation, and neovascularization. SUMMARY Stem cell-based therapy offers a promising therapeutic option that can circumvent several of the challenges and limitations of traditional surgical treatment. This concise review summarizes the progress in stem-cell based therapies for corneal diseases along with their history, underlying mechanisms, limitations, and future areas for development.
Collapse
Affiliation(s)
- John Y Lee
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine
| | - Robert J Knight
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
50
|
Sahoo A, Damala M, Jaffet J, Prasad D, Basu S, Singh V. Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 2023; 14:89. [PMID: 37061739 PMCID: PMC10105964 DOI: 10.1186/s13287-023-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been proven to prevent and clear corneal scarring and limbal stem cell deficiency. However, using animal-derived serum in a culture medium raises the ethical and regulatory bar. This study aims to expand and characterize human limbus-derived stromal/mesenchymal stem cells (hLMSCs) for the first time in vitro in the xeno-free medium. METHODS Limbal tissue was obtained from therapeutic grade corneoscleral rims and subjected to explant culture till tertiary passage in media with and without serum (STEM MACS XF; SM), to obtain pure hLMSCs. Population doubling time, cell proliferation, expression of phenotypic markers, tri-lineage differentiation, colony-forming potential and gene expression analysis were carried out to assess the retention of phenotypic and genotypic characteristics of hLMSCs. RESULTS The serum-free medium supported the growth of hLMSCs, retaining similar morphology but a significantly lower doubling time of 23 h (*p < 0.01) compared to the control medium. FACS analysis demonstrated ≥ 90% hLMSCs were positive for CD90+, CD73+, CD105+, and ≤ 6% were positive for CD45-, CD34- and HLA-DR-. Immunofluorescence analysis confirmed similar expression of Pax6+, COL IV+, ABCG2+, ABCB5+, VIM+, CD90+, CD105+, CD73+, HLA-DR- and CD45-, αSMA- in both the media. Tri-lineage differentiation potential and gene expression of hLMSCs were retained similarly to that of the control medium. CONCLUSION The findings of this study demonstrate successful isolation, characterization and culture optimization of hLMSCs for the first time in vitro in a serum-free environment. This will help in the future pre-clinical and clinical applications of MSCs in translational research.
Collapse
Affiliation(s)
- Abhishek Sahoo
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mukesh Damala
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|