1
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
3
|
Wang G, Han S, Lu Y. From Structure to Application: The Evolutionary Trajectory of Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310026. [PMID: 38860348 DOI: 10.1002/smll.202310026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Collapse
Affiliation(s)
- Guijia Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Wang W, Wang W, Chen Y, Lin M, Chen YR, Zeng R, He T, Shen Z, Wu ZS. Superlarge, Rigidified DNA Tetrahedron with a Y-Shaped Backbone for Organizing Biomolecules Spatially and Maintaining Their Full Bioactivity. ACS NANO 2024; 18:18257-18281. [PMID: 38973121 DOI: 10.1021/acsnano.3c13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A major impediment to the clinical translation of DNA tiling nanostructures is a technical bottleneck for the programmable assembly of DNA architectures with well-defined local geometry due to the inability to achieve both sufficient structural rigidity and a large framework. In this work, a Y-backbone was inserted into each face to construct a superlarge, sufficiently rigidified tetrahedral DNA nanostructure (called RDT) with extremely high efficiency. In RDT, the spatial size increased by 6.86-fold, and the structural rigidity was enhanced at least 4-fold, contributing to an ∼350-fold improvement in the resistance to nucleolytic degradation even without a protective coating. RDT can be mounted onto an artificial lipid-bilayer membrane with molecular-level precision and well-defined spatial orientation that can be validated using the fluorescence resonance energy transfer (FRET) assay. The spatial orientation of Y-shaped backbone-rigidified RDT is unachievable for conventional DNA polyhedrons and ensures a high level of precision in the geometric positioning of diverse biomolecules with an approximately homogeneous environment. In tests of RDT, surface-confined horseradish peroxidase (HRP) exhibited nearly 100% catalytic activity and targeting aptamer-immobilized gold nanoparticles showed 5.3-fold enhanced cellular internalization. Significantly, RDT exhibited a 27.5-fold enhanced structural stability in a bodily environment and did not induce detectable systemic toxicity.
Collapse
Affiliation(s)
- Weijun Wang
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mengling Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yan-Ru Chen
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruijin Zeng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tenghang He
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Hwang J, Dittmar JW, Kang J, Ocampo T, Evangelopoulos M, Han Z, Kudruk S, Lorch J, Mirkin CA. DNA Anchoring Strength Directly Correlates with Spherical Nucleic Acid-Based HPV E7 Cancer Vaccine Potency. NANO LETTERS 2024; 24:7629-7636. [PMID: 38874796 PMCID: PMC11540143 DOI: 10.1021/acs.nanolett.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Vaccination for cancers arising from human papillomavirus (HPV) infection holds immense potential, yet clinical success has been elusive. Herein, we describe vaccination studies involving spherical nucleic acids (SNAs) incorporating a CpG adjuvant and a peptide antigen (E711-19) from the HPV-E7 oncoprotein. Administering the vaccine to humanized mice induced immunity-dependent on the oligonucleotide anchor chemistry (cholesterol vs (C12)9). SNAs containing a (C12)9-anchor enhanced IFN-γ production >200-fold, doubled memory CD8+ T-cell formation, and delivered more than twice the amount of oligonucleotide to lymph nodes in vivo compared to a simple admixture. Importantly, the analogous construct with a weaker cholesterol anchor performed similar to admix. Moreover, (C12)9-SNAs activated 50% more dendritic cells and generated T-cells cytotoxic toward an HPV+ cancer cell line, UM-SCC-104, with near 2-fold greater efficiency. These observations highlight the pivotal role of structural design, and specifically oligonucleotide anchoring strength (which correlates with overall construct stability), in developing efficacious therapeutic vaccines.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
- These authors contributed equally to this work
| | - Jasper Wilson Dittmar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
- These authors contributed equally to this work
| | - Janice Kang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Tonatiuh Ocampo
- Department of Interdisciplinary Biological Sciences, Northwestern University, 2 Sheridan Road, Evanston, IL 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Zhenyu Han
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Sergej Kudruk
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Jochen Lorch
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| |
Collapse
|
6
|
Wang C, Lan X, Zhu L, Wang Y, Gao X, Li J, Tian H, Liang Z, Xu W. Construction Strategy of Functionalized Liposomes and Multidimensional Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309031. [PMID: 38258399 DOI: 10.1002/smll.202309031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Liposomes are widely used in the biological field due to their good biocompatibility and surface modification properties. With the development of biochemistry and material science, many liposome structures and their surface functional components have been modified and optimized one by one, pushing the liposome platform from traditional to functionalized and intelligent, which will better satisfy and expand the needs of scientific research. However, a main limiting factor effecting the efficiency of liposomes is the complicated environmental conditions in the living body. Currently, in order to overcome the above problem, functionalized liposomes have become a very promising strategy. In this paper, binding strategies of liposomes with four main functional elements, namely nucleic acids, antibodies, peptides, and stimuli-responsive motif have been summarized for the first time. In addition, based on the construction characteristics of functionalized liposomes, such as drug-carrying, targeting, long-circulating, and stimulus-responsive properties, a comprehensive overview of their features and respective research progress are presented. Finally, the paper critically presents the limitations of these functionalized liposomes in the current applications and also prospectively suggests the future development directions, aiming to accelerate realization of their industrialization.
Collapse
Affiliation(s)
- Chengyun Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yanhui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinru Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Jie Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
7
|
Sharma R, Narum S, Liu S, Dong Y, Baek KI, Jo H, Salaita K. Nanodiscoidal Nucleic Acids for Gene Regulation. ACS Chem Biol 2023; 18:2349-2367. [PMID: 37910400 PMCID: PMC10660333 DOI: 10.1021/acschembio.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.
Collapse
Affiliation(s)
- Radhika Sharma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Steven Narum
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Shuhong Liu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Yixiao Dong
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
| | - Kyung In Baek
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Hanjoong Jo
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30332, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Paranandi KS, Lee A, Stanic N, Mirkin CA. Cellular Export Fate of Liposomal Spherical Nucleic Acids. ACS NANO 2023; 17:19000-19010. [PMID: 37738539 PMCID: PMC10801820 DOI: 10.1021/acsnano.3c04608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Liposomal spherical nucleic acids (LSNAs) are useful structures for oligonucleotide-based cell modulation because of their biocompatibility and ability to readily enter cells without transfection agents. Understanding LSNA trafficking is key to developing applications, but while much is understood about LSNA cell uptake, little is known about their export fate. Here, we study LSNA export through pulse-chase studies with fluorophore-labeled LSNAs. Our findings show that the components of LSNAs are differentially exported by cells, with the phospholipids showing 90-100% export and the oligonucleotides showing 30-45% export over 24 h in RAW264.7 macrophages. Despite the increase in the level of uptake of LSNAs, these percentages are not significantly influenced by whether the materials are taken up as LSNAs or as the individual components. The exported oligonucleotide material consists of a full-length oligonucleotide with the phospholipid anchor modified by loss of a fatty acid. The exported liposome-derived phospholipids also had a fatty acid removed. Moreover, the exported oligonucleotide-lysophospholipid conjugates retain immunostimulatory potential. These findings indicate that after cellular entry LSNAs are degraded into lysophospholipids, something to which they are susceptible due to the presence of hydrolyzable ester bonds. The export percentage of the resultant materials over 24 h is independent of the amount imported, such that greater initial import leads to a similar fold increase in exported material. This work therefore reveals an intracellular feature of LSNAs and shows that the enhanced uptake achieved with LSNAs can be exploited to maximize the amount of material subsequently exported, suggesting avenues for leveraging pharmacologic effects from exported LSNA components.
Collapse
Affiliation(s)
- Krishna S. Paranandi
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrew Lee
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nikola Stanic
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
10
|
Dittmar JW, Teplensky MH, Evangelopoulos M, Qin L, Zhang B, Mirkin CA. Tuning DNA Dissociation from Spherical Nucleic Acids for Enhanced Immunostimulation. ACS NANO 2023; 17:17996-18007. [PMID: 37713675 PMCID: PMC10801821 DOI: 10.1021/acsnano.3c04333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The stability of the core can significantly impact the therapeutic effectiveness of liposome-based drugs. While the spherical nucleic acid (SNA) architecture has elevated liposomal stability to increase therapeutic efficacy, the chemistry used to anchor the DNA to the liposome core is an underexplored design parameter with a potentially widespread biological impact. Herein, we explore the impact of SNA anchoring chemistry on immunotherapeutic function by systematically studying the importance of hydrophobic dodecane anchoring groups in attaching DNA strands to the liposome core. By deliberately modulating the size of the oligomer that defines the anchor, a library of structures has been established. These structures, combined with in vitro and in vivo immune stimulation analyses, elucidate the relationships between and importance of anchoring strength and dissociation of DNA from the SNA shell on its biological properties. Importantly, the most stable dodecane anchor, (C12)9, is superior to the n = 4-8 and 10 structures and quadruples immune stimulation compared to conventional cholesterol-anchored SNAs. When the OVA1 peptide antigen is encapsulated by the (C12)9 SNA and used as a therapeutic vaccine in an E.G7-OVA tumor model, 50% of the mice survived the initial tumor, and all of those survived tumor rechallenge. Importantly, the strong innate immune stimulation does not cause a cytokine storm compared to linear immunostimulatory DNA. Moreover, a (C12)9 SNA that encapsulates a peptide targeting SARS-CoV-2 generates a robust T cell response; T cells raised from SNA treatment kill >40% of target cells pulsed with the same peptide and ca. 45% of target cells expressing the entire spike protein. This work highlights the importance of using anchor chemistry to elevate SNA stability to achieve more potent and safer immunotherapeutics in the context of both cancer and infectious disease.
Collapse
Affiliation(s)
- Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lei Qin
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, 420 E Superior Street, Chicago, Illinois 60611, United States
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University, 420 E Superior Street, Chicago, Illinois 60611, United States
| | - Chad A Mirkin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Vasher MK, Evangelopoulos M, Mirkin CA. Transforming Hairpin-like siRNA-Based Spherical Nucleic Acids into Biocompatible Constructs. ACS APPLIED BIO MATERIALS 2023; 6:3912-3918. [PMID: 37567247 PMCID: PMC10797607 DOI: 10.1021/acsabm.3c00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The design and synthesis of hairpin-like small interfering RNA spherical nucleic acids (siRNA-SNAs) based upon biocompatible liposome nanoparticle cores are described. The constructs were characterized by gel electrophoresis, dynamic light scattering, and OliGreen-based oligonucleotide quantification. These siRNA-SNA nanoconstructs enter cells 20-times more efficiently than linear siRNA in as little as 4 h, while exhibiting a 4-fold reduction in cytotoxicity compared with conventional siRNA-SNAs composed of gold nanoparticle cores. Importantly, these siRNA-SNA constructs effectively inhibit angiogenesis in vitro by silencing vascular endothelial growth factor, a key mediator of angiogenesis in a multitude of diseases, in human umbilical vein endothelial cells. This work shows how hairpin architectures can be chemically incorporated into biocompatible SNAs in a way that retains advantageous SNA properties and maximizes gene regulation capabilities.
Collapse
Affiliation(s)
- Matthew K. Vasher
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Shen P, Qu X, Ge Q, Huang T, Sun Q, Lu Z. Magnetic Bead Spherical Nucleic Acid Microstructure for Reliable DNA Preservation and Repeated DNA Reading. ACS Synth Biol 2023; 12:2393-2402. [PMID: 37470286 DOI: 10.1021/acssynbio.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
DNA is an attractive medium for long-term data storage because of its density, ease of copying, sustainability, and longevity. Recent advances have focused on the development of new encoding algorithms, automation, and sequencing technologies. Despite progress in these subareas, the most challenging hurdle in the deployment of DNA storage remains the reliability of preservation and the repeatability of reading. Herein, we report the construction of a magnetic bead spherical nucleic acid (MB-SNA) composite microstructure and its use as a cost-effective platform for reliable DNA preservation and repeated reading. MB-SNA has an inner core of silica@γ-Fe2O3@silica microbeads and an outer spherical shell of double-stranded DNA (dsDNA) with a density as high as 34 pmol/cm2. For MB-SNA, each strand of dsDNA stored a piece of data, and the high-density packing of dsDNA achieved high-capacity storage. MB-SNA was advantageous in terms of reliable preservation over free DNA. By accelerated aging tests, the data of MB-SNA is demonstrated to be readable after 0.23 million years of preservation at -18 °C and 50% relative humidity. Moreover, MB-SNA facilitated repeated reading by facile PCR-magnetic separation. After 10 cycles of PCR access, the retention rate of dsDNA for MB-SNA is demonstrated to be as high as 93%, and the accuracy of sequencing is more than 98%. In addition, MB-SNA makes cost-effective DNA storage feasible. By serial dilution, the physical limit for MB-SNA to achieve accurate reading is probed to be as low as two microstructures.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaojun Qu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Huang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
13
|
Kaviani S, Fakih HH, Asohan J, Katolik A, Damha MJ, Sleiman HF. Sequence-Controlled Spherical Nucleic Acids: Gene Silencing, Encapsulation, and Cellular Uptake. Nucleic Acid Ther 2023; 33:265-276. [PMID: 37196168 DOI: 10.1089/nat.2022.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Antisense oligonucleotides (ASOs) can predictably alter RNA processing and control protein expression; however, challenges in the delivery of these therapeutics to specific tissues, poor cellular uptake, and endosomal escape have impeded progress in translating these agents into the clinic. Spherical nucleic acids (SNAs) are nanoparticles with a DNA external shell and a hydrophobic core that arise from the self-assembly of ASO strands conjugated to hydrophobic polymers. SNAs have recently shown significant promise as vehicles for improving the efficacy of ASO cellular uptake and gene silencing. However, to date, no studies have investigated the effect of the hydrophobic polymer sequence on the biological properties of SNAs. In this study, we created a library of ASO conjugates by covalently attaching polymers with linear or branched [dodecanediol phosphate] units and systematically varying polymer sequence and composition. We show that these parameters can significantly impact encapsulation efficiency, gene silencing activity, SNA stability, and cellular uptake, thus outlining optimized polymer architectures for gene silencing.
Collapse
Affiliation(s)
- Sepideh Kaviani
- Department of Chemistry, McGill University, Montreal, Canada
| | - Hassan H Fakih
- Department of Chemistry, McGill University, Montreal, Canada
| | - Jathavan Asohan
- Department of Chemistry, McGill University, Montreal, Canada
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | | |
Collapse
|
14
|
Teplensky MH, Evangelopoulos M, Dittmar JW, Forsyth CM, Sinegra AJ, Wang S, Mirkin CA. Multi-antigen spherical nucleic acid cancer vaccines. Nat Biomed Eng 2023; 7:911-927. [PMID: 36717738 PMCID: PMC10424220 DOI: 10.1038/s41551-022-01000-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
Cancer vaccines must activate multiple immune cell types to be effective against aggressive tumours. Here we report the impact of the structural presentation of two antigenic peptides on immune responses at the transcriptomic, cellular and organismal levels. We used spherical nucleic acid (SNA) nanoparticles to investigate how the spatial distribution and placement of two antigen classes affect antigen processing, cytokine production and the induction of memory. Compared with single-antigen SNAs, a single dual-antigen SNA elicited a 30% increase in antigen-specific T cell activation and a two-fold increase in T cell proliferation. Antigen placement within dual-antigen SNAs altered the gene expression of T cells and tumour growth. Specifically, dual-antigen SNAs encapsulating antigens targeting helper T cells and with externally conjugated antigens targeting cytotoxic T cells elevated antitumour genetic pathways, stalling lymphoma tumours in mice. Additionally, when combined with the checkpoint inhibitor anti-programmed-cell-death protein-1 in a mouse model of melanoma, a specific antigen arrangement within dual-antigen SNAs suppressed tumour growth and increased the levels of circulating memory T cells. The structural design of multi-antigen vaccines substantially impacts their efficacy.
Collapse
Affiliation(s)
- Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | | | - Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Connor M Forsyth
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Andrew J Sinegra
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Shuya Wang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
15
|
Hincapie R, Bhattacharya S, Keshavarz-Joud P, Chapman AP, Crooke SN, Finn MG. Preparation and Biological Properties of Oligonucleotide-Functionalized Virus-like Particles. Biomacromolecules 2023. [PMID: 37257068 DOI: 10.1021/acs.biomac.3c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oligonucleotides are powerful molecules for programming function and assembly. When arrayed on nanoparticle scaffolds in high density, the resulting molecules, spherical nucleic acids (SNAs), become imbued with unique properties. We used the copper-catalyzed azide-alkyne cycloaddition to graft oligonucleotides on Qβ virus-like particles to see if such structures also gain SNA-like behavior. Copper-binding ligands were shown to promote the click reaction without degrading oligonucleotide substrates. Reactions were first optimized with a small-molecule fluorogenic reporter and were then applied to the more challenging synthesis of polyvalent protein nanoparticle-oligonucleotide conjugates. The resulting particles exhibited the enhanced cellular uptake and protection from nuclease-mediated oligonucleotide cleavage characteristic of SNAs, had similar residence time in the liver relative to unmodified particles, and were somewhat shielded from immune recognition, resulting in nearly 10-fold lower antibody titers relative to unmodified particles. Oligonucleotide-functionalized virus-like particles thus provide an interesting option for protein nanoparticle-mediated delivery of functional molecules.
Collapse
|
16
|
Gui Y, Zeng Y, Chen B, Yang Y, Ma J, Li C. A smart pathogen detector engineered from intracellular hydrogelation of DNA-decorated macrophages. Nat Commun 2023; 14:2927. [PMID: 37217531 DOI: 10.1038/s41467-023-38733-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
Bacterial infection is a major threat to global public health, which urgently requires useful tools to rapidly analyze pathogens in the early stages of infection. Herein, we develop a smart macrophage (Mø)-based bacteria detector, which can recognize, capture, enrich and detect different bacteria and their secreted exotoxins. We transform the fragile native Møs into robust gelated cell particles (GMøs) using photo-activated crosslinking chemistry, which retains membrane integrity and recognition capacity for different microbes. Meanwhile, these GMøs equipped with magnetic nanoparticles and DNA sensing elements can not only respond to an external magnet for facile bacteria collection, but allow the detection of multiple types of bacteria in a single assay. Additionally, we design a propidium iodide-based staining assay to rapidly detect pathogen-associated exotoxins at ultralow concentrations. Overall, these nanoengineered cell particles have broad applicability in the analysis of bacteria, and could potentially be used for the management and diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Yueyue Gui
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China
| | - Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, 210023, Nanjing, P. R. China
| | - Binrui Chen
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China
| | - Yueping Yang
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China
| | - Jiehua Ma
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, Shanghai, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, P. R. China.
| |
Collapse
|
17
|
Pont I, Galiana-Roselló C, Sabater-Arcis M, Bargiela A, Frías JC, Albelda MT, González-García J, García-España E. Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes. Org Biomol Chem 2023; 21:1000-1007. [PMID: 36541358 DOI: 10.1039/d2ob01911f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two new ligands (TPB3P and TPB3Py) showing a strong stabilisation effect and good selectivity for G4 over duplex DNAs have been synthesised. The ligands hold three analogous polyamine pendant arms (TPA3P and TPA3Py) but differ in the central aromatic core, which is a triphenylbenzene moiety instead of a triphenylamine moiety. Both TPB3P and TPB3Py exhibit high cytotoxicity in MCF-7, LN229 and HeLa cancer cells in contrast to TPA-based ligands, which exhibit no significant cytotoxicity. Moreover, the most potent G4 binders have been encapsulated in liposomes and AS1411 aptamer-targeted liposomes reaching nanomolar IC50 values for the most cytotoxic systems.
Collapse
Affiliation(s)
- Isabel Pont
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Ariadna Bargiela
- Neuromuscular Research Unit, Neurology Department, Hospital La Fe, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Juan Carlos Frías
- Department of Biomedical Sciences, CEU Cardenal Herrera University, Ramón y Cajal s/n, 46115 Alfara del Patriarca, Spain
| | - M Teresa Albelda
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Jorge González-García
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
18
|
Abstract
A foundational principle of rational vaccinology is that vaccine structure plays a critical role in determining therapeutic efficacy, but in order to establish fundamental, effective, and translatable vaccine design parameters, a highly modular and well-defined platform is required. Herein, we report a DNA dendron vaccine, a molecular nanostructure that consists of an adjuvant DNA strand that splits into multiple DNA branches with a varied number of conjugated peptide antigens that is capable of dendritic cell uptake, immune activation, and potent cancer killing. We leveraged the well-defined architecture and chemical modularity of the DNA dendron to study structure-function relationships that dictate molecular vaccine efficacy, particularly regarding the delivery of immune-activating DNA sequences and antigenic peptides on a single chemical construct. We investigated how adjuvant and antigen placement and number impact dendron cellular uptake and immune activation, in vitro. These parameters also played a significant role in raising a potent and specific immune response against target cancer cells. By gaining this structural understanding of molecular vaccines, DNA dendrons successfully treated a mouse cervical human papillomavirus TC-1 cancer model, in vivo, where the vaccine structure defined its efficacy; the top-performing design effectively reduced tumor burden (<150 mm3 through day 30) and maintained 100% survival through 44 d after tumor inoculation.
Collapse
|
19
|
Kalinova R, Mladenova K, Petrova S, Doumanov J, Dimitrov I. Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8917. [PMID: 36556721 PMCID: PMC9786340 DOI: 10.3390/ma15248917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Spherical nucleic acids (SNAs) have gained significant attention due to their unique properties allowing them to overcome the challenges that face current nanocarriers used for gene therapies. The aim of this study is to synthesize and characterize polymer-oligonucleotide conjugates of different architecture and to evaluate the possibility of forming SNAs with biodegradable cores. Initially, two types of azide (multi)functional polyester-based (co)polymers were successfully synthesized and characterized. In the next step, short oligonucleotide strands were attached to the polymer chains applying the highly efficient and metal-free "click" reaction, thus forming conjugates with block or graft architecture. Both conjugates spontaneously self-assembled in aqueous media forming nanosized SNAs with a biodegradable polyester core and a surface of oligonucleotide chains as evidenced from dynamic and electrophoretic light scattering measurements. The nano-assemblies were in vitro evaluated for potential cytotoxicity. Furthermore, the interactions of the newly synthesized SNAs with membrane lipids were studied. The preliminary results indicate that both types of polymer-based SNAs are good candidates for potential application in gene therapy and that it is worth to be further evaluated.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Kirilka Mladenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Svetla Petrova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Jordan Doumanov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
20
|
Wang W, Gao Y, Chen Y, Wang W, Li Q, Huang Z, Zhang J, Xiang Q, Wu Z. Outward Movement of Targeting Ligands from a Built-In Reserve Pool in Nuclease-Resistant 3D Hierarchical DNA Nanocluster for in Vivo High-Precision Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203698. [PMID: 36253152 PMCID: PMC9685459 DOI: 10.1002/advs.202203698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Nanostructures made entirely of DNAs display great potential as chemotherapeutic drug carriers but so far cannot achieve sufficient clinic therapy outcomes due to off-target toxicity. In this contribution, an aptamer-embedded hierarchical DNA nanocluster (Apt-eNC) is constructed as an intelligent carrier for cancer-targeted drug delivery. Specifically, Apt-eNC is designed to have a built-in reserve pool in the interior cavity from which aptamers may move outward to function as needed. When surface aptamers are degraded, ones in reserve pool can move outward to offer the compensation, thereby magically preserving tumor-targeting performance in vivo. Even if withstanding extensive aptamer depletion, Apt-eNC displays a 115-fold enhanced cell targeting compared with traditional counterparts and at least 60-fold improved tumor accumulation. Moreover, one Apt-eNC accommodates 5670 chemotherapeutic agents. As such, when systemically administrated into HeLa tumor-bearing BALB/c nude mouse model, drug-loaded Apt-eNC significantly inhibits tumor growth without systemic toxicity, holding great promise for high precision therapy.
Collapse
Affiliation(s)
- Weijun Wang
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yansha Gao
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Qian Li
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhiyi Huang
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Jingjing Zhang
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Qi Xiang
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medicine GeneticsSchool of Laboratory Medicine and Life SciencesInstitute of Functional Nucleic Acids and Personalized Cancer TheranosticsWenzhou Medical UniversityWenzhou325035China
| | - Zai‐Sheng Wu
- Cancer Metastasis Alert and Prevention CenterFujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and ChemotherapyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| |
Collapse
|
21
|
Kusmierz CD, Callmann CE, Kudruk S, Distler ME, Mirkin CA. Transferrin Aptamers Increase the In Vivo Blood-Brain Barrier Targeting of Protein Spherical Nucleic Acids. Bioconjug Chem 2022; 33:1803-1810. [PMID: 36194889 PMCID: PMC10424462 DOI: 10.1021/acs.bioconjchem.2c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The systemic delivery of exogenous proteins to cells within the brain and central nervous system (CNS) is challenging due to the selective impermeability of the blood-brain barrier (BBB). Herein, we hypothesized that protein delivery to the brain could be improved via functionalization with DNA aptamers designed to bind transferrin (TfR) receptors present on the endothelial cells that line the BBB. Using β-galactosidase (β-Gal) as a model protein, we synthesized protein spherical nucleic acids (ProSNAs) comprised of β-Gal decorated with TfR aptamers (Transferrin-ProSNAs). The TfR aptamer motif significantly increases the accumulation of β-Gal in brain tissue in vivo following intravenous injection over both the native protein and ProSNAs containing nontargeting DNA sequences. Furthermore, the widespread distribution of β-Gal throughout the brain is only observed for Transferrin-ProSNAs. Together, this work shows that the SNA architecture can be used to selectively deliver protein cargo to the brain and CNS if the appropriate aptamer sequence is employed as the DNA shell. Moreover, this highlights the importance of DNA sequence design and provides a potential new avenue for designing highly targeted protein delivery systems by combining the power of DNA aptamers together with the SNA platform.
Collapse
Affiliation(s)
- Caroline D. Kusmierz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sergej Kudruk
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Max E. Distler
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Bai L, Ye T, Zhu D, Sun D, Zhang S, Lu Y, Yuan M, Cao H, Hao L, Wu X, Yin F, Xu F. Spherical Nucleic Acids with Tailored DNA Conformation via Bromide Backfilling for the Detection of Kanamycin. LUMINESCENCE 2022; 37:1964-1971. [PMID: 36063361 DOI: 10.1002/bio.4380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Improper conformation of oligonucleotides on gold nanoparticles surface caused by unintended base adsorption, which hinders DNA hybridization and lowers colloidal stability. In this work, we treated spherical nucleic acids with Br- , which serves as an efficient backfilling agent, to adjust the DNA conformation by displacing bases from gold surface. To investigate the effect of DNA conformation on interfacial recognition, a kanamycin fluorescent aptasensor was constructed with bromide backfilling treated spherical nucleic acids. In the presence of kanamycin, the anchored aptamer binding with target and the partially complementary reporter strand is dissociated from the surface of gold nanoparticles, resulting the fluorescence recovery of labelled fluorophore on the reporter strand. Under the optimum condition, the apparent binding affinity of the aptasensor with bromide backfilling was 2.2-fold than that of without backfilled one. The proposed aptasensor exhibited a good liner relationship between the concentration of kanamycin and fluorescence intensity change in the range of 200 nM to 10 μM and the limit of detection was calculated to be 71.53 nM. Moreover, this aptasensor was also successfully applied in spiked milk sample assay and the satisfactory recoveries was obtained in the range of 96.94-101.57%, which demonstrate its potential in practical application.
Collapse
Affiliation(s)
- Long Bai
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tai Ye
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongdong Zhu
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Donghao Sun
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuyi Zhang
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yujie Lu
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Cao
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liling Hao
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiuxiu Wu
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fengqin Yin
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xu
- Shanghai Engineering Research Center of Food Rapid Detection, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:692-704. [PMID: 35756370 PMCID: PMC9228553 DOI: 10.1021/acscentsci.2c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.
Collapse
Affiliation(s)
- Ziyin Huang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuya Wang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew K. Vasher
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Yu Y, Wang Z, Wu S, Zhu C, Meng X, Li C, Cheng S, Tao W, Wang F. Glutathione-Sensitive Nanoglue Platform with Effective Nucleic Acids Gluing onto Liposomes for Photo-Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25126-25134. [PMID: 35608168 DOI: 10.1021/acsami.2c04022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liposomal spherical nucleic acids possess a high density of nucleic acids, e.g., DNA, on a liposomal core. There are two approaches to conjugate DNA onto the zwitterionic liposomes, i.e., covalent and noncovalent conjugation, otherwise using cationic liposomes. However, complex and expensive DNA chemical modification methods need to seek a novel and easy-operating approach to decorating DNA onto liposomes. Inspired by the nanoparticle solution as nanoglues for gels and biological tissues, we use MnO2 nanosheets to "glue" DNA onto liposomes without DNA modification. In tumor cells with a high glutathione concentration, MnO2-based nanoglues are degraded, generating water-soluble Mn2+ ions, further "unglue" DNA (i.e., DNAzyme), and liposomes. Using the intelligent liposomal nanoglue (DNAzyme/MnO2/Lip) combining glutathione-sensitive MnO2 nanosheets, gene silencing agent DNAzyme, and photosensitizer Chlorin e6 (Ce6) in liposomes, effective photo-gene therapy was demonstrated.
Collapse
Affiliation(s)
- Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Zhenfeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Sichen Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Chunmeng Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xianshe Meng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Wei Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
26
|
Teplensky MH, Distler ME, Kusmierz CD, Evangelopoulos M, Gula H, Elli D, Tomatsidou A, Nicolaescu V, Gelarden I, Yeldandi A, Batlle D, Missiakas D, Mirkin CA. Spherical nucleic acids as an infectious disease vaccine platform. Proc Natl Acad Sci U S A 2022; 119:e2119093119. [PMID: 35312341 PMCID: PMC9168922 DOI: 10.1073/pnas.2119093119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceUsing SARS-CoV-2 as a relevant case study for infectious disease, we investigate the structure-function relationships that dictate antiviral spherical nucleic acid (SNA) vaccine efficacy. We show that the SNA architecture can be rapidly employed to target COVID-19 through incorporation of the receptor-binding domain, and that the resulting vaccine potently activates human cells in vitro and mice in vivo. Furthermore, when challenged with a lethal viral infection, only mice treated with the SNA vaccine survived. Taken together, this work underscores the importance of rational vaccine design for infectious disease to yield vaccines that elicit more potent immune responses to effectively fight disease.
Collapse
Affiliation(s)
- Michelle H. Teplensky
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | - Max E. Distler
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | - Caroline D. Kusmierz
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | | | - Haley Gula
- Howard T. Ricketts Laboratory, Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Derek Elli
- Howard T. Ricketts Laboratory, Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Anastasia Tomatsidou
- Howard T. Ricketts Laboratory, Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Vlad Nicolaescu
- Howard T. Ricketts Laboratory, Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Ian Gelarden
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dominique Missiakas
- Howard T. Ricketts Laboratory, Department of Microbiology, University of Chicago, Chicago, IL 60637
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
27
|
Mahajan AS, Stegh AH. Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14071615. [PMID: 35406387 PMCID: PMC8996871 DOI: 10.3390/cancers14071615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Spherical Nucleic Acids (SNAs) emerged as a new class of nanotherapeutics consisting of a nanoparticle core densely functionalized with a shell of radially oriented synthetic oligonucleotides. The unique three-dimensional architecture of SNAs protects the oligonucleotides from nuclease-mediated degradation, increases oligonucleotide bioavailability, and in the absence of auxiliary transfection agents, enables robust uptake into tumor and immune cells through polyvalent association with cell surface pattern recognition receptors. When composed of gene-regulatory small interfering (si)RNA or immunostimulatory DNA or RNA oligonucleotides, SNAs silence gene expression and induce immune responses superior to those raised by the oligonucleotides in their "free" form. Early phase clinical trials of gene-regulatory siRNA-based SNAs in glioblastoma (NCT03020017) and immunostimulatory Toll-like receptor 9 (TLR9)-agonistic SNAs carrying unmethylated CpG-rich oligonucleotides in solid tumors (NCT03086278) have shown that SNAs represent a safe, brain-penetrant therapy for inhibiting oncogene expression and stimulating immune responses against tumors. This review focuses on the application of SNAs as precision cancer therapeutics, summarizes the findings from first-in-human clinical trials of SNAs in solid tumors, describes the most recent preclinical efforts to rationally design next-generation multimodal SNA architectures, and provides an outlook on future efforts to maximize the anti-neoplastic activity of the SNA platform.
Collapse
Affiliation(s)
- Akanksha S. Mahajan
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The International Institute for Nanotechnology, The Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA;
- Department of Neurological Surgery, The Brain Tumor Center, Washington University School of Medicine, Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
28
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
29
|
Sharma R, Dong Y, Hu Y, Ma VPY, Salaita K. Gene Regulation Using Nanodiscs Modified with HIF-1-α Antisense Oligonucleotides. Bioconjug Chem 2022; 33:279-293. [PMID: 35080855 PMCID: PMC9884500 DOI: 10.1021/acs.bioconjchem.1c00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Delivery of nucleic acids can be hindered by multiple factors including nuclease susceptibility, endosome trapping, and clearance. Multiple nanotechnology scaffolds have offered promising solutions, and among these, lipid-based systems are advantageous because of their high biocompatibility and low toxicity. However, many lipid nanoparticle systems still have issues regarding stability, rapid clearance, and cargo leakage. Herein, we demonstrate the use of a synthetic nanodisc (ND) scaffold functionalized with an anti-HIF-1-α antisense oligonucleotide (ASO) to reduce HIF-1-α mRNA transcript levels. We prepared ND conjugates by using a mixture of phosphoglycerolipids with phosphocholine and phosphothioethanol headgroups that self-assemble into a ∼13 × 5 nm discoidal structure upon addition of a 22-amino-acid ApoA1 mimetic peptide. Optimized reaction conditions yield 15 copies of the anti-HIF-1-α ASO DNA covalently conjugated to the thiolated phospholipids using maleimide-thiol chemistry. We show that DNA-ND conjugates are active, nuclease resistant, and rapidly internalized into cells to regulate HIF-1-α mRNA levels without the use of transfection agents. DNA-ND uptake is partially mediated through Scavenger Receptor B1 and the ND conjugates show enhanced knockdown of HIF-1-α compared to that of the soluble ASOs in multiple cell lines. Our results demonstrate that covalently functionalized NDs may offer an improved platform for ASO therapeutics.
Collapse
|
30
|
Song Y, Song W, Lan X, Cai W, Jiang D. Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e120. [PMID: 35386748 PMCID: PMC8982904 DOI: 10.1002/agt2.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spherical nucleic acids (SNAs) are composed of a nanoparticle core and a layer of densely arranged oligonucleotide shells. After the first report of SNA by Mirkin and coworkers in 1996, it has created a significant interest by offering new possibilities in the field of gene and drug delivery. The controlled aggregation of oligonucleotides on the surface of organic/inorganic nanoparticles improves the delivery of genes and nucleic acid-based drugs and alters and regulates the biological profiles of the nanoparticle core within living organisms. Here in this review, we present an overview of the recent progress of SNAs that has speeded up their biomedical application and their potential transition to clinical use. We start with introducing the concept and characteristics of SNAs as drug/gene delivery systems and highlight recent efforts of bioengineering SNA by imaging and treatmenting various diseases. Finally, we discuss potential challenges and opportunities of SNAs, their ongoing clinical trials, and future translation, and how they may affect the current landscape of clinical practices. We hope that this review will update our current understanding of SNA, organized oligonucleotide aggregates, for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
31
|
Guo Y, Cao X, Zheng X, Abbas SJ, Li J, Tan W. Construction of nanocarriers based on nucleic acids and their application in nanobiology delivery systems. Natl Sci Rev 2022; 9:nwac006. [PMID: 35668748 PMCID: PMC9162387 DOI: 10.1093/nsr/nwac006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
In recent years, nanocarriers based on nucleic acids (NCNAs) have emerged as powerful and novel nanocarriers that are able to meet the demand for cancer cell-specific targeting. Functional dynamics analysis revealed good biocompatibility, low toxicity, and programmable structures, and their advantages include controllable size and modifiability. The development of novel hybrids has focused on the distinct roles of biosensing, drug and gene delivery, vaccine transport, photosensitization, counteracting drug resistance and functioning as carriers and logic gates. This review is divided into three parts: (1) DNA nanocarriers, (2) RNA nanocarriers, and (3) DNA/RNA hybrid nanocarriers and their biological applications. We also provide perspectives on possible future directions for growth in this field.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiuping Cao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Xiaofei Zheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| |
Collapse
|
32
|
Du Y, Song T, Wu J, Gao XD, Ma G, Liu Y, Xia Y. Engineering mannosylated pickering emulsions for the targeted delivery of multicomponent vaccines. Biomaterials 2021; 280:121313. [PMID: 34894583 DOI: 10.1016/j.biomaterials.2021.121313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
While research on cancer vaccines has made great strides in the field of immunotherapy, the targeted delivery of multiple effective components (rational-tailored antigens and adjuvants) remains a challenge. Here, we utilized the unique hierarchical structures of Pickering emulsions (particles, oil core, and water-oil interface) to develop mannosylated (M) Pickering emulsions (PE) that target antigen presenting cells and synergistically deliver antigenic peptides and the TLR9 agonist CpG (C) as an enhanced cancer vaccine (MPE-C). We chemically linked mannose residues to PLGA/PLAG-PEG nanoparticles and produced a dense array of mannose on the nanopatterned surface of Pickering emulsions, allowing for increased cellular targeting. Together with the inherent deformability of the oily core, MPE-C increased the droplet-cellular contact area and provoked the cellular recognition of mannose and CpG for enhanced immune activation. We found that MPE-C attracted a large number of APCs to the local site of administration, evidently increasing cellular uptake and activation. Additionally, we observed increased antigen-specific cellular immune responses, with potent anti-tumor effects against both E.G7-OVA and B16-MUCI tumors. Furthermore, MPE-C combined with PD-1 antibodies produced a significant tumor regression, resulting in synergistic increases in anti-tumor effects. Thus, through the strategic loading of mannose, antigens, and CpG, Pickering emulsions could serve as a targeted delivery platform for enhanced multicomponent cancer vaccines.
Collapse
Affiliation(s)
- Yiqun Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuchen Liu
- Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
33
|
Zhang W, Callmann CE, Mirkin CA. Controlling the Biological Fate of Liposomal Spherical Nucleic Acids Using Tunable Polyethylene Glycol Shells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46325-46333. [PMID: 34547202 PMCID: PMC8590845 DOI: 10.1021/acsami.1c12852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liposomal spherical nucleic acids (LSNAs) modified with polyethylene glycol (PEG) units are studied in an attempt to understand how the circulation time and biodistribution of the constructs can be manipulated. Specifically, the effect of (1) PEG molecular weight, (2) PEG shell stability, and (3) PEG modification method (PEG in both the core and shell versus PEG in the shell only) on LSNA blood circulation, biodistribution, and in vivo cell internalization in a syngeneic, orthotopic triple-negative breast cancer mouse model is studied. Generally, high PEG molecular weight extends blood circulation lifetime, and a more lipophilic anchor stabilizes the PEG shell and improves circulation and tumor accumulation but at the cost of cell uptake efficiency. The PEGylation strategy has a minor effect on in vitro properties of LSNAs but significantly alters in vivo cell uptake. For example, surface-only PEG in one design contributed to higher in vivo cell internalization than its counterpart with PEG both in the shell and core. Taken together, this work provides guidelines for designing LSNAs that exhibit maximal in vivo cancer cell uptake characteristics in the context of a breast cancer model.
Collapse
Affiliation(s)
- Wuliang Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra E Callmann
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
34
|
Lee S, Kim MS, Patel KD, Choi H, Thangam R, Yoon J, Koo TM, Jung HJ, Min S, Bae G, Kim Y, Han SB, Kang N, Kim M, Li N, Fu HE, Jeon YS, Song JJ, Kim DH, Park S, Choi JW, Paulmurugan R, Kang YC, Lee H, Wei Q, Dravid VP, Lee KB, Kim YK, Kang H. Magnetic Control and Real-Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102892. [PMID: 34515417 DOI: 10.1002/smll.202102892] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3 O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3 O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myeong Soo Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Kapil D Patel
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minjin Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Evanston, IL, 60208, USA
- NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
35
|
Callmann C, Kusmierz CD, Dittmar JW, Broger L, Mirkin CA. Impact of Liposomal Spherical Nucleic Acid Structure on Immunotherapeutic Function. ACS CENTRAL SCIENCE 2021; 7:892-899. [PMID: 34079904 PMCID: PMC8161491 DOI: 10.1021/acscentsci.1c00181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 05/05/2023]
Abstract
Liposomal spherical nucleic acids (L-SNAs) show significant promise as cancer immunotherapeutics. L-SNAs are highly modular nanoscale assemblies defined by a dense, upright radial arrangement of oligonucleotides around a liposomal core. Herein, we establish a set of L-SNA design rules by studying the biological and immunological properties of L-SNAs as a function of liposome composition. To achieve this, we synthesized liposomes where the lipid phosphatidylcholine headgroup was held constant, while the diacyl lipid tail chain length and degree of saturation were varied, using either 1,2-dioleylphosphatidylcholine (DOPC), 1,2-dimyristoyl-phosphatidylcholine (DMPC), 1,2-dipalmitoylphosphatidylcholine (DPPC), or 1,2-distearoyl-phosphatidylcholine (DSPC). These studies show that the identity of the constituent lipid dictates the DNA loading, cellular uptake, serum stability, in vitro immunostimulatory activity, and in vivo lymph node accumulation of the L-SNA. Furthermore, in the 4T1 mouse model of triple-negative breast cancer (TNBC), the subcutaneous administration of immunostimulatory L-SNAs synthesized with DPPC significantly decreases the production of lung metastases and delays tumor growth as compared to L-SNAs synthesized using DOPC, due to the enhanced stability of L-SNAs synthesized with DPPC over those synthesized with DOPC. Moreover, the inclusion of cell lysates derived from Py8119 TNBC cells as antigen sources in L-SNAs leads to a significant increase in antitumor efficacy in the Py8119 model when lysates are encapsulated in the cores of L-SNAs synthesized with DPPC rather than DOPC, presumably due to increased codelivery of adjuvant and antigen to dendritic cells in vivo. This difference is further amplified when using lysates from oxidized Py8119 cells as a more potent antigen source, revealing synergy between the lysate preparation method and liposome composition in synthesizing immunotherapeutic L-SNAs. Together, this work shows that the biological properties and immunomodulatory activity of L-SNAs can be modulated by exchanging liposome components, providing another handle for the rational design of nanoscale immunotherapeutics.
Collapse
Affiliation(s)
- Cassandra
E. Callmann
- Department
of Chemistry, International Institute for Nanotechnology, Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Caroline D. Kusmierz
- Department
of Chemistry, International Institute for Nanotechnology, Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jasper W. Dittmar
- Department
of Chemistry, International Institute for Nanotechnology, Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Leah Broger
- Department
of Chemistry, International Institute for Nanotechnology, Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Chemistry, International Institute for Nanotechnology, Department of Biomedical
Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Jia Y, Chen L, Liu J, Li W, Gu H. DNA-catalyzed efficient production of single-stranded DNA nanostructures. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Zhu M, Wang S. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Min Zhu
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| | - Shan Wang
- Department of Pharmaceutical Engineering College of Chemistry and Chemical Engineering Central South University No. 932 South Lushan Rd Changsha Hunan 410083 P. R. China
| |
Collapse
|
38
|
Holmes TR, Paller AS. Gene Regulation Using Spherical Nucleic Acids to Treat Skin Disorders. Pharmaceuticals (Basel) 2020; 13:E360. [PMID: 33147737 PMCID: PMC7693734 DOI: 10.3390/ph13110360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022] Open
Abstract
Spherical nucleic acids (SNAs) are nanostructures consisting of nucleic acids in a spherical configuration, often around a nanoparticle core. SNAs are advantageous as gene-regulating agents compared to conventional gene therapy owing to their low toxicity, enhanced stability, uptake by virtually any cell, and ability to penetrate the epidermal barrier. In this review we: (i) describe the production, structure and properties of SNAs; (ii) detail the mechanism of SNA uptake in keratinocytes, regulated by scavenger receptors; and (iii) report how SNAs have been topically applied and intralesionally injected for skin disorders. Specialized SNAs called nanoflares can be topically applied for gene-based diagnosis (scar vs. normal tissue). Topical SNAs directed against TNFα and interleukin-17A receptor reversed psoriasis-like disease in mouse models and have been tested in Phase 1 human trials. Furthermore, SNAs targeting ganglioside GM3 synthase accelerate wound healing in diabetic mouse models. Most recently, SNAs targeting toll-like receptor 9 are being used in Phase 2 human trials via intratumoral injection to induce immune responses in Merkel cell and cutaneous squamous cell carcinoma. Overall, SNAs are a valuable tool in bench-top and clinical research, and their advantageous properties, including penetration into the epidermis after topical delivery, provide new opportunities for targeted therapies.
Collapse
Affiliation(s)
| | - Amy S. Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| |
Collapse
|
39
|
Pavlova AS, Dovydenko IS, Kupryushkin MS, Grigor’eva AE, Pyshnaya IA, Pyshnyi DV. Amphiphilic "Like-a-Brush" Oligonucleotide Conjugates with Three Dodecyl Chains: Self-Assembly Features of Novel Scaffold Compounds for Nucleic Acids Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1948. [PMID: 33003636 PMCID: PMC7600535 DOI: 10.3390/nano10101948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
The conjugation of lipophilic groups to oligonucleotides is a promising approach for improving nucleic acid-based therapeutics' intracellular delivery. Lipid oligonucleotide conjugates can self-aggregate in aqueous solution, which gains much attention due to the formation of micellar particles suitable for cell endocytosis. Here, we describe self-association features of novel "like-a-brush" oligonucleotide conjugates bearing three dodecyl chains. The self-assembly of the conjugates into 30-170 nm micellar particles with a high tendency to aggregate was shown using dynamic light scattering (DLS), atomic force (AFM), and transmission electron (TEM) microscopies. Fluorescently labeled conjugates demonstrated significant quenching of fluorescence intensity (up to 90%) under micelle formation conditions. The conjugates possess increased binding affinity to serum albumin as compared with free oligonucleotides. The dodecyl oligonucleotide conjugate and its duplex efficiently internalized and accumulated into HepG2 cells' cytoplasm without any transfection agent. It was shown that the addition of serum albumin or fetal bovine serum to the medium decreased oligonucleotide uptake efficacy (by 22.5-36%) but did not completely inhibit cell penetration. The obtained results allow considering dodecyl-containing oligonucleotides as scaffold compounds for engineering nucleic acid delivery vehicles.
Collapse
Affiliation(s)
| | | | | | | | | | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.S.P.); (I.S.D.); (M.S.K.); (A.E.G.); (I.A.P.)
| |
Collapse
|
40
|
Callmann CE, Cole LE, Kusmierz CD, Huang Z, Horiuchi D, Mirkin CA. Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proc Natl Acad Sci U S A 2020; 117:17543-17550. [PMID: 32669433 PMCID: PMC7395518 DOI: 10.1073/pnas.2005794117] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Highly heterogenous cancers, such as triple-negative breast cancer (TNBC), remain challenging immunotherapeutic targets. Herein, we describe the synthesis and evaluation of immunotherapeutic liposomal spherical nucleic acids (SNAs) for TNBC therapy. The SNAs comprise immunostimulatory oligonucleotides (CpG-1826) as adjuvants and encapsulate lysates derived from TNBC cell lines as antigens. The resulting nanostructures (Lys-SNAs) enhance the codelivery of adjuvant and antigen to immune cells when compared to simple mixtures of lysates with linear oligonucleotides both in vitro and in vivo, and reduce tumor growth relative to simple mixtures of lysate and CpG-1826 (Lys-Mix) in both Py230 and Py8119 orthotopic syngeneic mouse models of TNBC. Furthermore, oxidizing TNBC cells prior to lysis and incorporation into SNAs (OxLys-SNAs) significantly increases the activation of dendritic cells relative to their nonoxidized counterparts. When administered peritumorally in vivo in the EMT6 mouse mammary carcinoma model, OxLys-SNAs significantly increase the population of cytotoxic CD8+ T cells and simultaneously decrease the population of myeloid derived suppressor cells (MDSCs) within the tumor microenvironment, when compared with Lys-SNAs and simple mixtures of oxidized lysates with CpG-1826. Importantly, animals administered OxLys-SNAs exhibit significant antitumor activity and prolonged survival relative to all other treatment groups, and resist tumor rechallenge. Together, these results show that the way lysates are processed and packaged has a profound impact on their immunogenicity and therapeutic efficacy. Moreover, this work points toward the potential of oxidized tumor cell lysate-loaded SNAs as a potent class of immunotherapeutics for cancers lacking common therapeutic targets.
Collapse
Affiliation(s)
- Cassandra E Callmann
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | - Lisa E Cole
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | - Caroline D Kusmierz
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| | - Ziyin Huang
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Dai Horiuchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL 60208;
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| |
Collapse
|
41
|
Kusmierz C, Bujold KE, Callmann CE, Mirkin CA. Defining the Design Parameters for in Vivo Enzyme Delivery Through Protein Spherical Nucleic Acids. ACS CENTRAL SCIENCE 2020; 6:815-822. [PMID: 32490197 PMCID: PMC7256953 DOI: 10.1021/acscentsci.0c00313] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 05/19/2023]
Abstract
The translation of proteins as effective intracellular drug candidates is limited by the challenge of cellular entry and their vulnerability to degradation. To advance their therapeutic potential, cell-impermeable proteins can be readily transformed into protein spherical nucleic acids (ProSNAs) by densely functionalizing their surfaces with DNA, yielding structures that are efficiently taken up by cells. Because small structural changes in the chemical makeup of a conjugated ligand can affect the bioactivity of the associated protein, structure-activity relationships of the linker bridging the DNA and the protein surface and the DNA sequence itself are investigated on the ProSNA system. In terms of attachment chemistry, DNA-based linkers promote a sevenfold increase in cellular uptake while maintaining enzymatic activity in vitro as opposed to hexaethylene glycol (HEG, Spacer18) linkers. Additionally, the employment of G-quadruplex-forming sequences increases cellular uptake in vitro up to fourfold. When translating to murine models, the ProSNA with a DNA-only shell exhibits increased blood circulation times and higher accumulation in major organs, including lung, kidney, and spleen, regardless of sequence. Importantly, ProSNAs with an all-oligonucleotide shell retain their enzymatic activity in tissue, whereas the native protein loses all function. Taken together, these results highlight the value of structural design in guiding ProSNA biological fate and activity and represent a significant step forward in the development of intracellular protein-based therapeutics.
Collapse
Affiliation(s)
- Caroline
D. Kusmierz
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Katherine E. Bujold
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Shen P, Zhao G, Liu Y, Ge Q, Sun Q. Liposomal Spherical Nucleic Acid Scaffolded Site-Selective Hybridization of Nanoparticles for Visual Detection of MicroRNAs. ACS APPLIED BIO MATERIALS 2020; 3:1656-1665. [PMID: 35021656 DOI: 10.1021/acsabm.9b01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, the advanced liposomal spherical nucleic acid (L-SNA) is exploited for the first time to establish a spherical, three-dimensional biosensing platform by hybridizing with a set of nanoparticles. By hydrophilic and hydrophobic interactions as well as programmable base-pairing, red-emission quantum dots (QDs), green-emission QDs, and gold nanoparticles (AuNPs) are encapsulated into the internal aqueous core, the intermediate lipid bilayer, and the outer SNA shell, respectively, producing an L-SNA-nanoparticle hybrid. As a result of the site-selective encapsulation, the hybrid constitutes a liposomal fluorescent "core-resonance energy transfer" system surrounded by a SNA shell, as is imaged at the single-particle resolution by confocal microscopy. With the outer SNA shell as three-dimensional substrate for duplex-specific nuclease target recycling reaction, the hybrid is capable of amplified detection of microRNAs, featuring one target to many AuNP-manipulated, dual-emission QD-based ratiometric fluorescence. More importantly, the ratiometric fluorescence facilitates the hybrid to visualize microRNAs with remarkably high resolution, which is exemplified by traffic light-type transition in fluorescence color for diagnosing circulating microRNAs in clinical serum samples. Substantially, the controllable hybridization with functional nanoparticles opens an avenue for the exciting biomedical applications of liposomal spherical nucleic acids.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guihong Zhao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqian Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Ferrer JR, Sinegra AJ, Ivancic D, Yeap XY, Qiu L, Wang JJ, Zhang ZJ, Wertheim JA, Mirkin CA. Structure-Dependent Biodistribution of Liposomal Spherical Nucleic Acids. ACS NANO 2020; 14:1682-1693. [PMID: 31951368 PMCID: PMC7119368 DOI: 10.1021/acsnano.9b07254] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Spherical nucleic acids (SNAs) are a class of nanomaterials with a structure defined by a radial distribution of densely packed, short DNA or RNA sequences around a nanoparticle core. This structure allows SNAs to rapidly enter mammalian cells, protects the displayed oligonucleotides from nuclease degradation, and enables co-delivery of other drug cargoes. Here, we investigate the biodistribution of liposomal spherical nucleic acid (LSNA) conjugates, SNA architectures formed from liposome templates and DNA modified with hydrophobic end groups (tails). We compared linear DNA with two types of LSNAs that differ only by the affinity of the modified DNA sequence for the liposome template. We use single-stranded DNA (ssDNA) terminated with either a low-affinity cholesterol tail (CHOL-LSNA) or a high-affinity diacylglycerol lipid tail (DPPE-LSNA). Both LSNA formulations, independent of DNA conjugation, reduce the inflammatory cytokine response to intravenously administered DNA. The difference in the affinity for the liposome template significantly affects DNA biodistribution. DNA from CHOL-LSNAs accumulates in greater amounts in the lungs than DNA from DPPE-LSNAs. In contrast, DNA from DPPE-LSNAs exhibits greater accumulation in the kidneys. Flow cytometry and fluorescence microscopy of tissue sections indicate that different cell populations-immune and nonimmune-sequester the DNA depending upon the chemical makeup of the LSNA. Taken together, these data suggest that the chemical structure of the LSNAs represents an opportunity to direct the biodistribution of nucleic acids to major tissues outside of the liver.
Collapse
Affiliation(s)
- Jennifer R Ferrer
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
- International Institute for Nanotechnology , Northwestern University , Evanston , Illinois 60208 , United States
| | - Andrew J Sinegra
- Department of Biomedical Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute for Nanotechnology , Northwestern University , Evanston , Illinois 60208 , United States
| | - David Ivancic
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Xin Yi Yeap
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Longhui Qiu
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Jiao-Jing Wang
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
| | - Jason A Wertheim
- Comprehensive Transplant Center and Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , Illinois 60611 , United States
- Department of Surgery , Jesse Brown VA Medical Center , Chicago , Illinois 60612 , United States
- International Institute for Nanotechnology , Northwestern University , Evanston , Illinois 60208 , United States
| | - Chad A Mirkin
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute for Nanotechnology , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
44
|
Chi Q, Yang Z, Xu K, Wang C, Liang H. DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Front Pharmacol 2020; 10:1585. [PMID: 32063844 PMCID: PMC6997790 DOI: 10.3389/fphar.2019.01585] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has received increasing attention due to its low potential side effects and high specificity. For instance, cancer immunotherapy has achieved great success. CpG is a well-known and commonly used immunotherapeutic and vaccine adjuvant, but it has the disadvantage of being unstable and low in efficacy and needs to be transported through an effective nanocarrier. With perfect structural programmability, permeability, and biocompatibility, DNA nanostructures are one of the most promising candidates to deliver immune components to realize immunotherapy. However, the instability and low capability of the payload of ordinary DNA assemblies limit the relevant applications. Consequently, DNA nanostructure with a firm structure, high drug payloads is highly desirable. In the paper, the latest progress of biostable, high-payload DNA nanoassemblies of various structures, including cage-like DNA nanostructure, DNA particles, DNA polypods, and DNA hydrogel, are reviewed. Cage-like DNA structures hold drug molecules firmly inside the structure and leave a large space within the cavity. These DNA nanostructures use their unique structure to carry abundant CpG, and their biocompatibility and size advantages to enter immune cells to achieve immunotherapy for various diseases. Part of the DNA nanostructures can also achieve more effective treatment in conjunction with other functional components such as aPD1, RNA, TLR ligands.
Collapse
Affiliation(s)
- Qingjia Chi
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Zichang Yang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Wang
- “111” Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Huang ZN, Cole LE, Callmann CE, Wang S, Mirkin CA. Sequence Multiplicity within Spherical Nucleic Acids. ACS NANO 2020; 14:1084-1092. [PMID: 31917535 PMCID: PMC7027983 DOI: 10.1021/acsnano.9b08750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The synthesis and evaluation of spherical nucleic acids (SNAs) incorporating two physically and chemically distinct classes of oligonucleotides (ODNs) at programmed ratios are described. These SNAs are single entity agents that enter the same target cell at defined stoichiometries, and as such allow one to control important cell signaling and regulatory processes. To study the effect of sequence multiplicity within such structures, we synthesized SNAs consisting of a mixture of class A CpG and class B CpG, immunostimulatory ODNs that activate two different toll-like receptor 9 signaling pathways, each in a sequence-specific fashion. These dual-CpG SNAs exhibit high cellular uptake and codelivery of the two ODNs, relative to mixtures of the linear ODN counterparts, and remain highly associated inside the cell over time. Furthermore, the dual-CpG SNAs augment dendritic cell maturation, compared to the same amounts of oligonucleotides delivered in linear or SNA form but not conjugated to one another. Consequently, these structures constitute a platform for designing oligonucleotide-based combination therapeutics with highly tailorable activities.
Collapse
|
46
|
Wang L, Pan Y, Liu Y, Sun Z, Huang Y, Li J, Yang J, Xiang Y, Li G. Fabrication of an Aptamer-Coated Liposome Complex for the Detection and Profiling of Exosomes Based on Terminal Deoxynucleotidyl Transferase-Mediated Signal Amplification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:322-329. [PMID: 31840492 DOI: 10.1021/acsami.9b18869] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The exosome is a promising biomarker carrying many kinds of membrane proteins with huge heterogeneity, so the sensitive and multiplex analysis of exosomes is very significant for disease diagnosis and exploration of their biological functions. Herein, we propose an efficient method for highly sensitive detection and heterogeneity identification of exosomes based on the design and fabrication of an aptamer-coated liposome complex coupled with terminal deoxynucleotidyl transferase (TdT)-mediated polymerization. Specifically, in the presence of target exosomes, the aptamers immobilized on the surface of 1,2-dioleoyl-3-trimethylammonium-propane liposomes prefer to bind with exosomal membrane proteins due to the high affinity. The resulting aptamer-exosome complex will be accessible to TdT to switch on the polymerization reaction for signal amplification, achieving highly sensitive detection of exosomes. Furthermore, the proposed method can be employed to profile different exosomal membrane proteins by making use of a cluster of corresponding aptamers and obtain a fingerprint map of various cancer cell-derived exosomes. Thus, our approach may provide a highly sensitive and robust strategy for the identification of exosome heterogeneity with advantages of being label-free and having no separation, potentially enabling the precise subpopulation of exosomes with practical value in clinical applications.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yunfei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing , Nanjing University of Chinese Medicine , Nanjing 210003 , P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
47
|
Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems. Trends Mol Med 2019; 25:1066-1079. [DOI: 10.1016/j.molmed.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|
48
|
Mognetti BM, Cicuta P, Di Michele L. Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116601. [PMID: 31370052 DOI: 10.1088/1361-6633/ab37ca] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, multivalent interactions mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.
Collapse
Affiliation(s)
- Bortolo Matteo Mognetti
- Université libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
49
|
Yerneni SS, Lathwal S, Shrestha P, Shirwan H, Matyjaszewski K, Weiss L, Yolcu ES, Campbell PG, Das SR. Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. ACS NANO 2019; 13:10555-10565. [PMID: 31436946 PMCID: PMC6800810 DOI: 10.1021/acsnano.9b04651] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exosomes show potential as ideal vehicles for drug delivery because of their natural role in transferring biological cargo between cells. However, current methods to engineer exosomes without negatively impacting their function remain challenging. Manipulating exosome-secreting cells is complex and time-consuming, while direct functionalization of exosome surface proteins suffers from low specificity and low efficiency. We demonstrate a rapid, versatile, and scalable method with oligonucleotide tethers to enable diverse surface functionalization on both human and murine exosomes. These exosome surface modifiers, which range from reactive functional groups and small molecules to aptamers and large proteins, can readily and efficiently enhance native exosome properties. We show that cellular uptake of exosomes can be specifically altered with a tethered AS1411 aptamer, and targeting specificity can be altered with a tethered protein. We functionalize exosomes with an immunomodulatory protein, FasL, and demonstrate their biological activity both in vitro and in vivo. FasL-functionalized exosomes, when bioprinted on a collagen matrix, allows spatial induction of apoptosis in tumor cells and, when injected in mice, suppresses proliferation of alloreactive T cells. This oligonucleotide tethering strategy is independent of the exosome source and further circumvents the need to genetically modify exosome-secreting cells.
Collapse
Affiliation(s)
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | | | - Lee Weiss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Esma S. Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Phil G. Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Subha R. Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Abstract
Early researchers focussed on developing stimuli-responsive liposomes in order to manipulate drug release at the site of action or under certain conditions. In recent times, a great deal of efforts has been made to modify the surface of liposomes with ligands for the purpose of achieving targeted drug delivery. Due to the morphology of liposomes, their surfaces can be engineered by attaching molecules such as oligosaccharides, peptides, antibodies, antigens and oligonucleotides to the bilayer structure. Over the years, a number of techniques including the use of covalent and non-covalent linkages have been utilised in designing ligand-liposome conjugates. In this review, various strategies for the functionalisation of liposomes as well as the different types of ligand-liposome conjugates have been discussed. Finally, the pros and cons of conjugation in liposomes are concisely summarised.
Collapse
Affiliation(s)
- İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Mamudu İbrahim
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|