1
|
Zhang X, Wang Y, E Q, Naveed M, Wang X, Liu Y, Li M. The biological activity and potential of probiotics-derived extracellular vesicles as postbiotics in modulating microbiota-host communication. J Nanobiotechnology 2025; 23:349. [PMID: 40380331 PMCID: PMC12082936 DOI: 10.1186/s12951-025-03435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025] Open
Abstract
Probiotics such as Lactobacillus and Bifidobacterium spp. have been shown to be critical for maintaining host homeostasis. In recent years, key compounds of postbiotics derived from probiotic metabolism and cellular secretion have been identified for their role in maintaining organ immunity and regulating intestinal inflammation. In particular, probiotic-derived extracellular vesicles (PEVs) can act as postbiotics, maintaining almost the same functional activity as probiotics. They also have strong biocompatibility and loading capacity to carry exogenous or parental active molecules to reach distal organs to play their roles. This provides a new direction for understanding the intrinsic microbiota-host communication mechanism. However, most current studies on PEVs are limited to their functional effects/benefits, and their specific physicochemical properties, composition, intrinsic mechanisms for maintaining host homeostasis, and possible threats remain to be explored. Here, we review and summarize the unique physicochemical properties of PEVs and their bioactivities and mechanisms in mediating microbiota-host communication, and elucidate the limitations of the current research on PEVs and their potential application as postbiotics.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ye Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Qiyu E
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Muhammad Naveed
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Yadav P, Debnath N, Pradhan D, Mehta PK, Kumar A, Yadav ML, Yadav AK. Probiotic Lactobacillus-Derived Extracellular Vesicles: Insights Into Disease Prevention and Management. Mol Nutr Food Res 2025:e70013. [PMID: 40200671 DOI: 10.1002/mnfr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as versatile and promising tools for therapeutic interventions across a spectrum of medical applications. Among these, Lactobacillus-derived extracellular vesicles (LDEVs) have garnered significant attention due to their diverse physiological functions and applications in health advancement. These LDEVs modulate host cell signaling pathways through the delivery of bioactive molecules, including nucleic acids and proteins. The immunomodulatory properties of LDEVs are important, as they have been shown to regulate the balance between pro-inflammatory and anti-inflammatory responses in various diseases. These LDEVs play a crucial role in maintaining gut homeostasis by modulating the composition and function of the gut microbiota, which has implications for health conditions, including inflammatory bowel diseases, metabolic disorders, and neurological disorders. Furthermore, LDEVs hold potential to deliver therapeutic payloads to specific tissues or organs. Engineered LDEVs can be loaded with therapeutic agents such as antimicrobial peptides or nucleic acid-based therapies to treat various diseases. By leveraging the unique properties of LDEVs, researchers can develop innovative strategies for disease prevention, treatment, and overall well-being. Thus, this review aims to provide a comprehensive overview of the therapeutic benefits of LDEVs and their implications for promoting overall well-being.
Collapse
Affiliation(s)
- Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Diwas Pradhan
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Praveen Kumar Mehta
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Munna Lal Yadav
- Discovery Research Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, Jammu & Kashmir, India
- Department of Zoology, Central University of Jammu, Jammu, Jammu & Kashmir, India
| |
Collapse
|
3
|
Huang B, Xiao F, Chen Z, Hu T, Qiu R, Wang W, You W, Su X, Hu W, Wang Z. Coaxial electrospun nanofiber accelerates infected wound healing via engineered probiotic biofilm. Int J Biol Macromol 2024; 279:135100. [PMID: 39197632 DOI: 10.1016/j.ijbiomac.2024.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Bacterial infection is the primary cause of delayed wound healing. Infected wounds suffer from a series of harmful factors in the harsh wound microenvironment (WME), greatly damaging their potential for tissue regeneration. Herein, a novel probiotic biofilm-based antibacterial strategy is proposed through experimentation. Firstly, a series of coaxial polycaprolactone (PCL) / silk fibroin (SF) nanofiber films (termed as PSN-n, n = 0.5, 1.0, 1.5, and 2.0, respectively) are prepared by coaxial electrospinning and their physiochemical properties are comprehensively characterized. Afterward, the PSN-1.5 is selected and co-cultured with L. paracasei to allow the formation of probiotic biofilm. The probiotic biofilm-loaded PSN-1.5 nanofiber film (termed as PSNL-1.5) exhibits relatively good broad-spectrum antibacterial activity, biocompatibility, and enhanced pro-regenerative capability by immunoregulation of M2 macrophage. A wound healing assay is performed using an S. aureus-infected skin defect model. The application effect of PSNL-1.5 is significantly better than that of a commercial nano‑silver burn & scald dressing (Anson®), revealing huge potential for clinical translation. This study is of significant novelty in demonstrating the antibacterial and pro-regenerative abilities of probiotic biofilms. The product of this study will be extensively used for treating infected wounds or other wounds.
Collapse
Affiliation(s)
- Bohan Huang
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Feng Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ruiyang Qiu
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wang Wang
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenjie You
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinjun Su
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Weikang Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zijian Wang
- Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Xu Y, Gan Y, Qi F, Lu X, Zhang X, Zhang J, Wang H, Li Y, Zhou Z, Wang X, Zeng D, Lu F, Zhang C, Cheng B, Hu Z, Wang G. Innate lymphoid cell-based immunomodulatory hydrogel microspheres containing Cutibacterium acnes extracellular vesicles for the treatment of psoriasis. Acta Biomater 2024; 184:296-312. [PMID: 38871203 DOI: 10.1016/j.actbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 h post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However,bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.
Collapse
Affiliation(s)
- Yujie Xu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaofei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhiyang Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunhua Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
5
|
Kuhn T, Aljohmani A, Frank N, Zielke L, Mehanny M, Laschke MW, Koch M, Hoppstädter J, Kiemer AK, Yildiz D, Fuhrmann G. A cell-free, biomimetic hydrogel based on probiotic membrane vesicles ameliorates wound healing. J Control Release 2024; 365:969-980. [PMID: 38070602 DOI: 10.1016/j.jconrel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Probiotic bacteria, such as Lactobacilli, have been shown to elicit beneficial effects in various tissue regeneration applications. However, their formulation as living bacteria is challenging, and their therapeutic use as proliferating microorganisms is especially limited in immunocompromised patients. Here, we propose a new therapeutic avenue to circumvent these shortcomings by developing a bacteriomimetic hydrogel based on membrane vesicles (MVs) produced by Lactobacilli. We coupled MVs from Lactobacillus plantarum and Lactobacillus casei, respectively, to the surface of synthetic microparticles, and embedded those bacteriomimetics into a pharmaceutically applicable hydrogel matrix. The wound microenvironment changes during the wound healing process, including adaptions of the pH and changes of the oxygen supply. We thus performed proteomic characterization of the MVs harvested under different culture conditions and identified characteristic proteins related to the biological effect of the probiotics in every culture state. In addition, we highlight a number of unique proteins expressed and sorted into the MVs for every culture condition. Using different in vitro models, we demonstrated that increased cell migration and anti-inflammatory effects of the bacteriomimetic microparticles were dependent on the culture condition of the secreting bacteria. Finally, we demonstrated the bacteriomimetic hydrogel's ability to improve healing in an in vivo mouse full-thickness wound model. Our results create a solid basis for the future application of probiotic-derived vesicles in the treatment of inflammatory dispositions and stimulates the initiation of further preclinical trials.
Collapse
Affiliation(s)
- Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Lina Zielke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany
| | - Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
Fuhrmann G, Mehanny M. Spray Drying of Bacterial Membrane Vesicles for Vaccine Delivery. Methods Mol Biol 2024; 2843:163-175. [PMID: 39141300 DOI: 10.1007/978-1-0716-4055-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Extracellular vesicles are nanosized lipid-bilayered spheres secreted from every living cell and they serve physiological and pathophysiological functions. Bacterial membrane vesicles are shed from both Gram-negative and Gram-positive bacteria and harbor many virulence factors, nuclear material, polysaccharides, proteins, and antigenic determinants, which are essential for immune recognition and evasion. Hence, bacterial membrane vesicles are very promising vaccine candidates. Spray drying is a well-established pharmaceutical technique to produce inhalable dry powders with enhanced stability for formulations of vaccines. In this chapter, we illustrate general guidelines for spray drying of bacterial extracellular vesicles to improve their stability without compromising their immunogenic protective effect. We discuss some of the most important experiments to characterize the generated spray-dried bacterial membrane vesicle powder vaccine.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- FAU NeW-Research Center New Bioactive Compounds, Erlangen, Germany.
| | - Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Lu S, Xu J, Zhao Z, Guo Y, Zhang H, Jurutka PW, Huang D, Cao C, Cheng S. Dietary Lactobacillus rhamnosus GG extracellular vesicles enhance antiprogrammed cell death 1 (anti-PD-1) immunotherapy efficacy against colorectal cancer. Food Funct 2023; 14:10314-10328. [PMID: 37916395 DOI: 10.1039/d3fo02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Shun Lu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jing Xu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Zihao Zhao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hanwen Zhang
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, AZ 85306, USA
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
9
|
Bierwagen J, Wiegand M, Laakmann K, Danov O, Limburg H, Herbel SM, Heimerl T, Dorna J, Jonigk D, Preußer C, Bertrams W, Braun A, Sewald K, Schulte LN, Bauer S, Pogge von Strandmann E, Böttcher-Friebertshäuser E, Schmeck B, Jung AL. Bacterial vesicles block viral replication in macrophages via TLR4-TRIF-axis. Cell Commun Signal 2023; 21:65. [PMID: 36978183 PMCID: PMC10045439 DOI: 10.1186/s12964-023-01086-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.
Collapse
Affiliation(s)
- Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Muriel Herbel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Jens Dorna
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | | | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
10
|
Heinrich E, Hartwig O, Walt C, Kardani A, Koch M, Jahromi LP, Hoppstädter J, Kiemer AK, Loretz B, Lehr CM, Fuhrmann G. Cell-Derived Vesicles for Antibiotic Delivery-Understanding the Challenges of a Biogenic Carrier System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207479. [PMID: 36938700 DOI: 10.1002/smll.202207479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs' technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro-in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.
Collapse
Affiliation(s)
- Eilien Heinrich
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine Walt
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Arefeh Kardani
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Leila Pourtalebi Jahromi
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
11
|
Deng Q, Zhang L, Liu X, Kang L, Yi J, Ren J, Qu X. COF-based artificial probiotic for modulation of gut microbiota and immune microenvironment in inflammatory bowel disease. Chem Sci 2023; 14:1598-1605. [PMID: 36794177 PMCID: PMC9906670 DOI: 10.1039/d2sc04984h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Conventional strategies for treating inflammatory bowel disease merely relieve inflammation and excessive immune response, but fail to solve the underlying causes of IBD, such as disrupted gut microbiota and intestinal barrier. Recently, natural probiotics have shown tremendous potential for the treatment of IBD. However, probiotics are not recommended for IBD patients, as they may cause bacteremia or sepsis. Herein, for the first time, we constructed artificial probiotics (Aprobiotics) based on artificial enzyme-dispersed covalent organic frameworks (COFs) as the "organelle" and a yeast shell as the membrane of the Aprobiotics to manage IBD. The COF-based artificial probiotics, with the function of natural probiotics, could markedly relieve IBD by modulating the gut microbiota, suppressing intestinal inflammation, protecting the intestinal epithelial cells, and regulating immunity. This nature-inspired approach may aid in the design of more artificial systems for the treatment of various incurable diseases, such as multidrug-resistant bacterial infection, cancer, and others.
Collapse
Affiliation(s)
- Qingqing Deng
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuemeng Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Lihua Kang
- Cancer Center, First Affiliated Hospital, Jilin UniversityChangchunJilin130061P. R China
| | - Jiadai Yi
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
12
|
Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics 2023; 15:522. [PMID: 36839844 PMCID: PMC9967243 DOI: 10.3390/pharmaceutics15020522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
For many decades, the proper functioning of the human body has become a leading scientific topic. In the course of numerous experiments, a striking impact of probiotics on the human body has been documented, including maintaining the physiological balance of endogenous microorganisms, regulating the functioning of the immune system, enhancing the digestive properties of the host, and preventing or alleviating the course of many diseases. Recent research, especially from the last decade, shows that this health-benefiting activity of probiotics is largely conditioned by the production of extracellular vesicles. Although the importance of extracellular vesicles in the virulence of many live-threatening pathogens is widely described in the literature, much less is known with respect to the health-promoting effect of extracellular vesicles secreted by non-pathogenic microorganisms, including probiotics. Based on this, in the current review article, we decided to collect the latest literature data on the health-inducing properties of extracellular vesicles secreted by probiotics. The characteristics of probiotics' extracellular vesicles will be extended by the description of their physicochemical properties and the proteome in connection with the biological activities exhibited by these structures.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “Gabriele d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Irene Vitale
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
13
|
Fuhrmann G. Drug delivery as a sustainable avenue to future therapies. J Control Release 2023; 354:746-754. [PMID: 36690037 DOI: 10.1016/j.jconrel.2023.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Climate change and the need for sustainable, technological developments are the greatest challenges facing humanity in the coming decades. To address these issues, in 2015 the United Nations have established 17 Sustainable Development Goals. Anthropogenic climate change will not only affect everyone personally in the coming years, it will also reinforce the need to become more sustainable within drug delivery research. In 2021, I was appointed professor for pharmaceutical biology at the Friedrich-Alexander-University Erlangen-Nürnberg. Our research is at the interface between developing biogenic therapies and understanding of bacterial infections. In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I would like to underline the need for future sustainable approaches in our research area, by highlighting selected examples from the fields of infection research, natural product characterisation and extracellular vesicles. My aim is to put into perspective current issues for these research topics, but also encourage our current student-training framework to contribute to education for sustainable development. This contribution is a personal statement to increase the overall awareness for sustainability challenges in drug delivery and beyond.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
14
|
Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-Inspired Nanomedicine Restores Intestinal Homeostasis in Colitis by Regulating Redox Balance, Immune Responses, and the Gut Microbiome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207890. [PMID: 36341495 DOI: 10.1002/adma.202207890] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Microbiota-based therapeutics offer innovative strategies to treat inflammatory bowel diseases (IBDs). However, the poor clinical outcome so far and the limited flexibility of the bacterial approach call for improvement. Inspired by the health benefits of probiotics in alleviating symptoms of bowel diseases, bioartificial probiotics are designed to restore the intestinal microenvironment in colitis by regulating redox balance, immune responses, and the gut microbiome. The bioartificial probiotic comprises two components: an E. coli Nissle 1917-derived membrane (EM) as the surface and the biodegradable diselenide-bridged mesoporous silica nanoparticles (SeM) as the core. When orally administered, the probiotic-inspired nanomedicine (SeM@EM) adheres strongly to the mucus layer and restored intestinal redox balance and immune regulation homeostasis in a murine model of acute colitis induced by dextran sodium sulfate. In addition, the respective properties of the EM and SeM synergistically alter the gut microbiome to a favorable state by increasing the bacterial diversity and shifting the microbiome profile to an anti-inflammatory phenotype. This work suggests a safe and effective nanomedicine that can restore intestinal homeostasis for IBDs therapy.
Collapse
Affiliation(s)
- Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yinlong Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Chen Y, Yang B, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Exploiting lactic acid bacteria for colorectal cancer: a recent update. Crit Rev Food Sci Nutr 2022; 64:5433-5449. [PMID: 36530047 DOI: 10.1080/10408398.2022.2154742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. Currently, chemotherapy and radiotherapy used to treat CRC exhibit many side effects, hence, it is an urgent need to design effective therapies to prevent and treat CRC. Lactic acid bacteria (LAB) can regulate gut microbiota, intestinal immunity, and intestinal mechanical barrier, which is becoming a hot product for the prevention and treatment of CRC, whereas comprehensive reviews of their anti-CRC mechanisms are limited. This review systematically reveals the latest incidence, mortality, risk factors, and molecular mechanisms of CRC, then summarizes the roles of probiotics in alleviating CRC in animal and clinical studies and critically reviews the possible mechanisms by which these interventions exert their activities. It then shows the limitations in mechanisms and clinical studies, and the suggestions for future research are also put forward, which will play an important role in guiding and promoting the basic and clinical research of remising CRC by LAB and the development of LAB products.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Srivastava P, Kim KS. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022; 14:2370. [PMID: 36365188 PMCID: PMC9692612 DOI: 10.3390/pharmaceutics14112370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant (MDR) superbugs can breach the blood-brain barrier (BBB), leading to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibiotics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline) and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these infections. However, new therapeutic platforms with a broad impact that do not exert off-target deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints. Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas editing and, thus, represent a novel platform for conferring protection against infections breaching the BBB. Here, we discuss the latest scientific research related to gut microbiota- and probiotic-derived bEVs, and their therapeutic modifications, in terms of regulating neurotransmitters and inhibiting quorum sensing, for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. We also emphasize the benefits of probiotic-derived bEVs to human health and propose a novel direction for the development of innovative heterologous expression systems to combat BBB-crossing pathogens.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
17
|
Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23. mBio 2022; 13:e0237522. [PMID: 36200778 PMCID: PMC9600169 DOI: 10.1128/mbio.02375-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions. To date, no information on the production of vesicles by the lactobacilli family has been reported. Here, we aimed to characterize the MVs released by the Gram-positive bacteria Lacticaseibacillus casei BL23 and also investigated the mechanisms involved in vesicle formation. Using electron microscopy, we established that the size of the majority of L. casei BL23 vesicles ranged from 50 to 100 nm. Furthermore, we showed that the vesicles were released consistently throughout the growth of the bacteria in standard culture conditions. The protein composition of the vesicles released in the supernatant was identified and a significant number of prophage proteins was detected. Moreover, using a mutant strain harboring a defective PLE2 prophage, we were able to show that the spontaneous and mitomycin-triggered induction of the prophage PLE2 contribute to the production of MVs by L. casei BL23. Finally, we also demonstrated the influence of prophages on the membrane integrity of bacteria. Overall, our results suggest a key role of the prophage PLE2 in the production of MVs by L. casei BL23 in the absence or presence of genotoxic stress.
Collapse
|
18
|
Song M, Cui M, Fang Z, Liu K. Advanced research on extracellular vesicles based oral drug delivery systems. J Control Release 2022; 351:560-572. [PMID: 36179765 DOI: 10.1016/j.jconrel.2022.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
The oral route is the most convenient and simplest mode of administration. Nevertheless, orally administration of some commonly used therapeutic drugs, such as polypeptides, therapeutic proteins, small-molecule drugs, and nucleic acids, remains a major challenge due to the harsh gastrointestinal environment and the limited oral bioavailability. Extracellular vesicles (EVs) are diverse, nanoscale phospholipid vesicles that are actively released by cells and play crucial roles in intercellular communications. Some EVs have been shown to survive with the gastrointestinal tract (GIT) and can cross biological barriers. The potential of EVs to cross the GIT barrier makes them promising natural delivery carriers for orally administered drugs. Here, we introduce the uniqueness of EVs and their feasibility as oral drug delivery vehicles (ODDVs). Then we provide a general description of the different cellular EVs based oral drug delivery systems (ODDSs) currently under study and emphasize the contribution of endogenous features and multifunctional properties of EVs to the delivery performance. The current obstacles of moving EVs based ODDSs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Mengdi Song
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
19
|
Bitto NJ, Kaparakis-Liaskos M. Methods of Bacterial Membrane Vesicle Production, Purification, Quantification, and Examination of Their Immunogenic Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2523:43-61. [PMID: 35759190 DOI: 10.1007/978-1-0716-2449-4_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bacterial membrane vesicles (BMVs) released by Gram-negative and Gram-positive bacteria are a bona fide secretion system that enable the dissemination of bacterial effector molecules, and can trigger a range of responses in the host. The study of BMV production, composition, and functions can give insights into their roles in mediating bacterial survival, pathogenesis, and disease. Furthermore, BMVs can be harnessed to develop cutting-edge nano-therapeutics including targeted chemotherapy delivery, antimicrobials, and novel vaccines. Here we describe routine methods that can be used for small- or large-scale production, isolation, and purification of outer membrane vesicles produced by Gram-negative bacteria, and membrane vesicles produced by Gram-positive bacteria, which we collectively refer to as BMVs. We discuss methods that can be used to visualize BMVs by electron microscopy, and to quantify their DNA, RNA, and protein cargo. We outline a method for the fluorescent labeling of BMVs that can be applied to examine their ability to interact with and enter host cells using a range of in vitro and in vivo biological assays. Finally, we provide a cell culture-based method that can be used to examine a range of immunogenic properties of BMVs, including their cytotoxicity, ability to activate pathogen-recognition receptors (PRRs), induce autophagy and cytokine responses, and modulate cellular pathways.
Collapse
Affiliation(s)
- Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.,Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia. .,Research Centre for Extracellular Vesicles, School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Spray-dried Pneumococcal Membrane Vesicles are Promising Candidates for Pulmonary Immunization. Int J Pharm 2022; 621:121794. [PMID: 35525468 DOI: 10.1016/j.ijpharm.2022.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Pneumococcal infections represent a global health threat, which requires novel vaccine developments. Extracellular vesicles are secreted from most cells, including prokaryotes, and harbor virulence factors and antigens. Hence, bacterial membrane vesicles (MVs) may induce a protective immune response. For the first time, we formulate spray-dried gram-positive pneumococcal MVs-loaded vaccine microparticles using lactose/leucine as inert carriers to enhance their stability and delivery for pulmonary immunization. The optimized vaccine microparticles showed a mean particle size of 1-2µm, corrugated surface, and nanocrystalline nature. Their aerodynamic diameter of 2.34µm, average percentage emitted dose of 88.8%, and fine powder fraction 79.7%, demonstrated optimal flow properties for deep alveolar delivery using a next-generation impactor. Furthermore, confocal microscopy confirmed the successful encapsulation of pneumococcal MVs within the prepared microparticles. Human macrophage-like THP-1 cells displayed excellent viability, negligible cytotoxicity, and a rapid uptake around 60% of fluorescently labeled MVs after incubation with vaccine microparticles. Moreover, vaccine microparticles increased the release of pro-inflammatory cytokines tumor necrosis factor and interleukin-6 from primary human peripheral blood mononuclear cells. Vaccine microparticles exhibited excellent properties as promising vaccine candidates for pulmonary immunization and are optimal for further animal testing, scale-up and clinical translation.
Collapse
|
21
|
Díez-Sainz E, Milagro FI, Riezu-Boj JI, Lorente-Cebrián S. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem 2022; 78:485-499. [PMID: 34472032 PMCID: PMC8410452 DOI: 10.1007/s13105-021-00837-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
Obesity and diabetes incidence rates are increasing dramatically, reaching pandemic proportions. Therefore, there is an urgent need to unravel the mechanisms underlying their pathophysiology. Of particular interest is the close interconnection between gut microbiota dysbiosis and obesity and diabetes progression. Hence, microbiota manipulation through diet has been postulated as a promising therapeutic target. In this regard, secretion of gut microbiota-derived extracellular vesicles is gaining special attention, standing out as key factors that could mediate gut microbiota-host communication. Extracellular vesicles (EVs) derived from gut microbiota and probiotic bacteria allow to encapsulate a wide range of bioactive molecules (such as/or including proteins and nucleic acids) that could travel short and long distances to modulate important biological functions with the overall impact on the host health. EV-derived from specific bacteria induce differential physiological responses. For example, a high-fat diet-induced increase of the proteobacterium Pseudomonas panacis-derived EV is closely associated with the progression of metabolic dysfunction in mice. In contrast, Akkermansia muciniphila EV are linked with the alleviation of high-fat diet-induced obesity and diabetes in mice. Here, we review the newest pieces of evidence concerning the potential role of gut microbiota and probiotic-derived EV on obesity and diabetes onset, progression, and management, through the modulation of inflammation, metabolism, and gut permeability. In addition, we discuss the role of certain dietary patterns on gut microbiota-derived EV profile and the clinical implication that dietary habits could have on metabolic diseases progression through the shaping of gut microbiota-derived EV.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology/Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), Zaragoza, Spain
| |
Collapse
|
22
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
23
|
Mehanny M, Kroniger T, Koch M, Hoppstädter J, Becher D, Kiemer AK, Lehr C, Fuhrmann G. Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase. Adv Healthc Mater 2022; 11:e2101151. [PMID: 34724354 PMCID: PMC11469037 DOI: 10.1002/adhm.202101151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Streptococcus pneumoniae infections are a leading cause of death worldwide. Bacterial membrane vesicles (MVs) are promising vaccine candidates because of the antigenic components of their parent microorganisms. Pneumococcal MVs exhibit low toxicity towards several cell lines, but their clinical translation requires a high yield and strong immunogenic effects without compromising immune cell viability. MVs are isolated during either the stationary phase (24 h) or death phase (48 h), and their yields, immunogenicity and cytotoxicity in human primary macrophages and dendritic cells have been investigated. Death-phase vesicles showed higher yields than stationary-phase vesicles. Both vesicle types displayed acceptable compatibility with primary immune cells and several cell lines. Both vesicle types showed comparable uptake and enhanced release of the inflammatory cytokines, tumor necrosis factor and interleukin-6, from human primary immune cells. Proteomic analysis revealed similarities in vesicular immunogenic proteins such as pneumolysin, pneumococcal surface protein A, and IgA1 protease in both vesicle types, but stationary-phase MVs showed significantly lower autolysin levels than death-phase MVs. Although death-phase vesicles produced higher yields, they lacked superiority to stationary-phase vesicles as vaccine candidates owing to their similar antigenic protein cargo and comparable uptake into primary human immune cells.
Collapse
Affiliation(s)
- Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research SaarlandBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbrücken66123Germany
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyAin Shams UniversityCairo11566Egypt
| | - Tobias Kroniger
- Center for Functional Genomics of MicrobesDepartment of Microbial ProteomicsInstitute of MicrobiologyUniversity GreifswaldGreifswald17489Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
| | - Jessica Hoppstädter
- Department of PharmacyPharmaceutical BiologySaarland UniversitySaarbrücken66123Germany
| | - Dörte Becher
- Center for Functional Genomics of MicrobesDepartment of Microbial ProteomicsInstitute of MicrobiologyUniversity GreifswaldGreifswald17489Germany
| | - Alexandra K. Kiemer
- Department of PharmacyPharmaceutical BiologySaarland UniversitySaarbrücken66123Germany
| | - Claus‐Michael Lehr
- Department of PharmacySaarland UniversityCampus E8.1Saarbrücken66123Germany
- Helmholtz Institute for Pharmaceutical Research SaarlandDrug Delivery DepartmentCampus E8.1Saarbrücken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research SaarlandBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbrücken66123Germany
- Friedrich‐Alexander‐University Erlangen‐NürnbergPharmaceutical BiologyDepartment BiologyStaudtstr. 5Erlangen91058Germany
| |
Collapse
|
24
|
Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2100538. [PMID: 34310074 PMCID: PMC11468620 DOI: 10.1002/adhm.202100538] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EV) are an emerging technology as immune therapeutics and drug delivery vehicles. However, EVs are usually stored at -80 °C which limits potential clinical applicability. Freeze-drying of EVs striving for long-term stable formulations is therefore studied. The most appropriate formulation parameters are identified in freeze-thawing studies with two different EV types. After a freeze-drying feasibility study, four lyophilized EV formulations are tested for storage stability for up to 6 months. Freeze-thawing studies revealed improved colloidal EV stability in presence of sucrose or potassium phosphate buffer instead of sodium phosphate buffer or phosphate-buffered saline. Less aggregation and/or vesicle fusion occurred at neutral pH compared to slightly acidic or alkaline pH. EVs colloidal stability can be most effectively preserved by addition of low amounts of poloxamer 188. Polyvinyl pyrrolidone failed to preserve EVs upon freeze-drying. Particle size and concentration of EVs are retained over 6 months at 40 °C in lyophilizates containing 10 mm K- or Na-phosphate buffer, 0.02% poloxamer 188, and 5% sucrose. The biological activity of associated beta-glucuronidase is maintained for 1 month, but decreased after 6 months. Here optimized parameters for lyophilization of EVs that contribute to generate long-term stable EV formulations are presented.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| | - Maximilian Richter
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Eilien Heinrich
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbruecken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| |
Collapse
|
25
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
26
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Xie Y, Song L, Yang J, Tao T, Yu J, Shi J, Jin X. Small intestinal flora graft alters fecal flora, stool, cytokines and mood status in healthy mice. Life Sci Alliance 2021; 4:4/9/e202101039. [PMID: 34301806 PMCID: PMC8321674 DOI: 10.26508/lsa.202101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
Transplantation of microbiota from small intestine, not large intestine, of healthy mice exerts obvious effects on healthy recipients, bringing a new perspective on gut flora transplantation. Fecal microbiota transplantation is widely used. Large intestinal microbiota (LIM) is more similar to fecal microbiota than small intestinal microbiota (SIM). The SIM communities are very different from those of LIM. Therefore, SIM transplantation (SIMT) and LIM transplantation (LIMT) might exert different influences. Here, healthy adult male C57Bl/6 mice received intragastric SIMT, LIMT, or sterile PBS administration. Microbiota graft samples were collected from small/large intestine of healthy mice of the same age, sex, and strain background. Compared with PBS treatment, SIMT increased pellet number, stool wet weight, and stool water percentage; induced a fecal microbiota profile shift toward the microbial composition of the SIM graft; induced a systemic anti-inflammatory cytokines profile; and ameliorated depressive-like behaviors in recipients. LIMT, however, induced merely a slight alteration in fecal microbial composition and no significant influence on the other aspects. In sum, SIMT, rather than LIMT, affected defecation features, fecal microbial composition, cytokines profile, and depressive-like behaviors in healthy mice. This study reveals the different effects of SIMT and LIMT, providing an interesting clue for further researches involving gut microbial composition change.
Collapse
Affiliation(s)
- Yinyin Xie
- Class 3, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Linyang Song
- Department of Anatomy, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Junhua Yang
- Department of Anatomy, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China .,Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Taoqi Tao
- Class 3, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Jing Yu
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Jingrong Shi
- Department of Data Mining and Analysis, Guangzhou Tianpeng Technology Co., Ltd, Guangzhou, PR China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| |
Collapse
|
28
|
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. NATURE NANOTECHNOLOGY 2021; 16:748-759. [PMID: 34211166 DOI: 10.1038/s41565-021-00931-2] [Citation(s) in RCA: 1076] [Impact Index Per Article: 269.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
Extracellular-vesicle-based cell-to-cell communication is conserved across all kingdoms of life. There is compelling evidence that extracellular vesicles are involved in major (patho)physiological processes, including cellular homoeostasis, infection propagation, cancer development and cardiovascular diseases. Various studies suggest that extracellular vesicles have several advantages over conventional synthetic carriers, opening new frontiers for modern drug delivery. Despite extensive research, clinical translation of extracellular-vesicle-based therapies remains challenging. Here, we discuss the uniqueness of extracellular vesicles along with critical design and development steps required to utilize their full potential as drug carriers, including loading methods, in-depth characterization and large-scale manufacturing. We compare the prospects of extracellular vesicles with those of the well established liposomes and provide guidelines to direct the process of developing vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Inge Katrin Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| | - Matthew John Andrew Wood
- Department of Paediatrics and Oxford Harrington Rare Disease Centre, University of Oxford, Oxford, UK
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.
- Chair for Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, Erlangen, Germany.
| |
Collapse
|
29
|
Bacterial extracellular vesicles: Understanding biology promotes applications as nanopharmaceuticals. Adv Drug Deliv Rev 2021; 173:125-140. [PMID: 33774113 DOI: 10.1016/j.addr.2021.03.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicle (EV)-mediated communication between proximal and distant cells is a highly conserved characteristic in all of the life domains, including bacteria. These vesicles that contain a variety of biomolecules, such as proteins, lipids, nucleic acids, and small-molecule metabolites play a key role in the biology of bacteria. They are one of the key underlying mechanisms behind harmful or beneficial effects of many pathogenic, symbiont, and probiotic bacteria. These nanoscale EVs mediate extensive crosstalk with mammalian cells and deliver their cargos to the host. They are stable in physiological condition, can encapsulate diverse biomolecules and nanoparticles, and their surface could be engineered with available technologies. Based on favorable characteristics of bacterial vesicles, they can be harnessed for designing a diverse range of therapeutics and diagnostics for treatment of disorders including tumors and resistant infections. However, technical limitations for their production, purification, and characterization must be addressed in future studies.
Collapse
|
30
|
Mehanny M, Lehr CM, Fuhrmann G. Extracellular vesicles as antigen carriers for novel vaccination avenues. Adv Drug Deliv Rev 2021; 173:164-180. [PMID: 33775707 DOI: 10.1016/j.addr.2021.03.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Antigen delivery has always been a challenge in scientific practice of vaccine formulation. Yet, mammalian extracellular vesicles (EVs) or bacterial membrane vesicles (MVs) provide an innovative avenue for safe and effective delivery of antigenic material. They include intrinsically loaded antigens from EV-secreting cells or extrinsically loaded antigens onto pre-formed vesicles. Interestingly, many studies shed light on potential novel anti-cancer vaccination immunotherapy for therapeutic applications from mammalian cell host-derived EVs, as well as conventional vaccination for prophylactic applications using bacterial cell-derived MVs against infectious diseases. Here, we discuss the rationale, status quo and potential for both vaccine applications using EVs.
Collapse
|
31
|
Müller L, Kuhn T, Koch M, Fuhrmann G. Stimulation of Probiotic Bacteria Induces Release of Membrane Vesicles with Augmented Anti-inflammatory Activity. ACS APPLIED BIO MATERIALS 2021; 4:3739-3748. [PMID: 35006804 DOI: 10.1021/acsabm.0c01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During infection, inflammation is an important contributor to tissue regeneration and healing, but it may also negatively affect these processes should chronic overstimulation take place. Similar issues arise in chronic inflammatory gastrointestinal diseases such as inflammatory bowel diseases or celiac disease, which show increasing incidences worldwide. For these dispositions, probiotic microorganisms, including lactobacilli, are studied as an adjuvant therapy to counterbalance gut dysbiosis. However, not all who are affected can benefit from the probiotic treatment, as immunosuppressed or hospitalized patients can suffer from bacteremia or sepsis when living microorganisms are administered. A promising alternative is the treatment with bacteria-derived membrane vesicles that confer similar beneficial effects as the progenitor strains themselves. Membrane vesicles from lactobacilli have shown anti-inflammatory therapeutic effects, but it remains unclear whether the stimulation of probiotics induces vesicles that are more efficient. Here, the influence of culture conditions on the anti-inflammatory characteristics of Lactobacillus membrane vesicles was investigated. We reveal that the culture conditions of two Lactobacillus strains, namely, L. casei and L. plantarum, can be optimized to increase the anti-inflammatory effect of their vesicles. Five different cultivation conditions were tested, including pH manipulation, agitation rate, and oxygen supply, and the produced membrane vesicles were characterized physico-chemically regarding size, yield, and zeta potential. We furthermore analyzed the anti-inflammatory effect of the purified vesicles in macrophage inflammation models. Compared to standard cultivation conditions, vesicles obtained from L. casei cultured at pH 6.5 and agitation induced the strongest interleukin-10 release and tumor necrosis factor-α reduction. For L. plantarum, medium adjusted to pH 5 had the most pronounced effect on the anti-inflammatory activity of their vesicles. Our results reveal that the anti-inflammatory effect of probiotic vesicles may be potentiated by expanding different cultivation conditions for lactobacilli. This study creates an important base for the utilization of probiotic membrane vesicles to treat inflammation.
Collapse
Affiliation(s)
- Lisann Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
32
|
Shi A, Li J, Qiu X, Sabbah M, Boroumand S, Huang TCT, Zhao C, Terzic A, Behfar A, Moran SL. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021; 11:6616-6631. [PMID: 33995680 PMCID: PMC8120220 DOI: 10.7150/thno.57701] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Rationale: With over seven million infections and $25 billion treatment cost, chronic ischemic wounds are one of the most serious complications in the United States. The controlled release of bioactive factor enriched exosome from finbrin gel was a promising strategy to promote wound healing. Methods: To address this unsolved problem, we developed clinical-grade platelets exosome product (PEP), which was incorporate with injectable surgical fibrin sealant (TISSEEL), to promote chronic wound healing and complete skin regeneration. The PEP characterization stimulated cellular activities and in vivo rabbit ischemic wound healing capacity of TISSEEL-PEP were performed and analyzed. Results: PEP, enriched with transforming growth factor beta (TGF-β), possessed exosomal characteristics including exosome size, morphology, and typical markers including CD63, CD9, and ALG-2-interacting protein X (Alix). In vitro, PEP significantly promoted cell proliferation, migration, tube formation, as well as skin organoid formation. Topical treatment of ischemic wounds with TISSEEL-PEP promoted full-thickness healing with the reacquisition of hair follicles and sebaceous glands. Superior to untreated and TISSEEL-only treated controls, TISSEEL-PEP drove cutaneous healing associated with collagen synthesis and restoration of dermal architecture. Furthermore, PEP promoted epithelial and vascular cell activity enhancing angiogenesis to restore blood flow and mature skin function. Transcriptome deconvolution of TISSEEL-PEP versus TISSEEL-only treated wounds prioritized regenerative pathways encompassing neovascularization, matrix remodeling and tissue growth. Conclusion: This room-temperature stable, lyophilized exosome product is thus capable of delivering a bioactive transforming growth factor beta to drive regenerative events.
Collapse
Affiliation(s)
- Ao Shi
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN, USA
| | - Jialun Li
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Michael Sabbah
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Soulmaz Boroumand
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Steven L Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Liu C, Wu H, Fan H. Progress in understanding of mechanism of dietary therapy for ulcerative colitis with regard to intestinal microbiota. Shijie Huaren Xiaohua Zazhi 2021; 29:146-151. [DOI: 10.11569/wcjd.v29.i3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of ulcerative colitis is closely related to the complex interaction between heredity, environment, and intestinal microbiota. Intestinal dysbiosis is not only the cause of ulcerative colitis, but also the pathological result of ulcerative colitis. Dietary therapies have been found to modulate the microbiota to alter the effects of environmental factors on ulcerative colitis. Dietary pattern is related to the pathogenesis, development, and prognosis of ulcerative colitis, and the role of diet in ulcerative colitis has attracted more and more attention. This article reviews the mechanisms by which dietary therapy treats ulcerative colitis with regard to regulating the brain-gut functional axis, regulating the immune function, and protecting the intestinal mucosal barrier by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Chang Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|