1
|
Punovuori K, Malaguti M, Lowell S. Cadherins in early neural development. Cell Mol Life Sci 2021; 78:4435-4450. [PMID: 33796894 PMCID: PMC8164589 DOI: 10.1007/s00018-021-03815-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since Conrad Waddington noted the remarkable "Constancy of the Wild Type" (Waddington in Nature 183: 1654-1655, 1959) yet we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested that cells make decisions as 'local cooperatives' rather than as individuals (Gurdon in Nature 336: 772-774, 1988; Lander in Cell 144: 955-969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
Collapse
Affiliation(s)
- Karolina Punovuori
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
2
|
Abdullah MAA, Amini N, Yang L, Paluh JL, Wang J. Multiplexed analysis of neural cytokine signaling by a novel neural cell-cell interaction microchip. LAB ON A CHIP 2020; 20:3980-3995. [PMID: 32945325 PMCID: PMC7606659 DOI: 10.1039/d0lc00401d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Multipotent neural stem cells (NSCs) are widely applied in pre-clinical and clinical trials as a cell source to promote tissue regeneration in neurodegenerative diseases. Frequently delivered as dissociated cells, aggregates or self-organized rosettes, it is unknown whether disruption of the NSC rosette morphology or method of formation affect signaling profiles of these cells that may impact uniformity of outcomes in cell therapies. Here we generate a neural cell-cell interaction microchip (NCCIM) as an in vitro platform to simultaneously track an informed panel of cytokines and co-evaluate cell morphology and biomarker expression coupled to a sandwich ELISA platform. We apply multiplex in situ tagging technology (MIST) to evaluate ten cytokines (PDGF-AA, GDNF, BDNF, IGF-1, FGF-2, IL-6, BMP-4, CNTF, β-NGF, NT-3) on microchips for EB-derived rosettes, single cell dissociated rosettes and reformed rosette neurospheres. Of the cytokines evaluated, EB-derived rosettes secrete PDGF-AA, GDNF and FGF-2 prominently, whereas this profile is temporarily lost upon dissociation to single cells and in reformed neurospheres two additional cytokines, BDNF and β-NGF, are also secreted. This study on NSC rosettes demonstrates the development, versatility and utility of the NCCIM as a sensitive multiplex detector of cytokine signaling in a high throughput and controlled microenvironment. The NCCIM is expected to provide important new information to refine cell source choices in therapies as well as to support development of informative 2D or 3D in vitro models including areas of neurodegeneration or neuroplasticity.
Collapse
Affiliation(s)
- Mohammed A. A. Abdullah
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222
| | - Nooshin Amini
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Janet L. Paluh
- Nanobioscience, State University of New York Polytechnic Institute, Albany, NY 12203
- Corresponding authors. ;
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Corresponding authors. ;
| |
Collapse
|
3
|
Punovuori K, Migueles RP, Malaguti M, Blin G, Macleod KG, Carragher NO, Pieters T, van Roy F, Stemmler MP, Lowell S. N-cadherin stabilises neural identity by dampening anti-neural signals. Development 2019; 146:dev.183269. [PMID: 31601548 PMCID: PMC6857587 DOI: 10.1242/dev.183269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Abstract
A switch from E- to N-cadherin regulates the transition from pluripotency to neural identity, but the mechanism by which cadherins regulate differentiation was previously unknown. Here, we show that the acquisition of N-cadherin stabilises neural identity by dampening anti-neural signals. We use quantitative image analysis to show that N-cadherin promotes neural differentiation independently of its effects on cell cohesiveness. We reveal that cadherin switching diminishes the level of nuclear β-catenin, and that N-cadherin also dampens FGF activity and consequently stabilises neural fate. Finally, we compare the timing of cadherin switching and differentiation in vivo and in vitro, and find that this process becomes dysregulated during in vitro differentiation. We propose that N-cadherin helps to propagate a stable neural identity throughout the emerging neuroepithelium, and that dysregulation of this process contributes to asynchronous differentiation in culture. Summary: As pluripotent cells undergo neural differentiation they swap E-cadherin for N-cadherin. This switch in adhesion molecules modulates signalling in order to facilitate the differentiation process.
Collapse
Affiliation(s)
- Karolina Punovuori
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosa P Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kenneth G Macleod
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Tim Pieters
- Department of Biomedical Molecular Biology, Ghent University; Inflammation Research Center, VIB; Center for Medical Genetics, Ghent University Hospital; Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University; Inflammation Research Center, VIB; Cancer Research Institute Ghent (CRIG), Ghent B-9000, Belgium
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
4
|
McClay DR, Miranda E, Feinberg SL. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 2018; 145:dev167742. [PMID: 30413529 PMCID: PMC6240313 DOI: 10.1242/dev.167742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Stacy L Feinberg
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Schliermann A, Nickel J. Unraveling the Connection between Fibroblast Growth Factor and Bone Morphogenetic Protein Signaling. Int J Mol Sci 2018; 19:ijms19103220. [PMID: 30340367 PMCID: PMC6214098 DOI: 10.3390/ijms19103220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.
Collapse
Affiliation(s)
- Anna Schliermann
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
| | - Joachim Nickel
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
- Fraunhofer Institut für Silicatforschung, Translationszentrum TLZ-RT, Röntgenring 11, 97222 Würzburg, Germany.
| |
Collapse
|
6
|
Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells. Sci Rep 2016; 6:31063. [PMID: 27507707 PMCID: PMC4978968 DOI: 10.1038/srep31063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022] Open
Abstract
Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells, but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications.
Collapse
|
7
|
Tang K, Peng G, Qiao Y, Song L, Jing N. Intrinsic regulations in neural fate commitment. Dev Growth Differ 2015; 57:109-20. [PMID: 25708399 DOI: 10.1111/dgd.12204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/21/2014] [Indexed: 12/22/2022]
Abstract
Neural fate commitment is an early embryonic event that a group of cells in ectoderm, which do not ingress through primitive streak, acquire a neural fate but not epidermal or mesodermal lineages. Several extracellular signaling pathways initiated by the secreted proteins bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), wingless/int class proteins (WNTs) and Nodal play essential roles in the specification of the neural plate. Accumulating evidence from the studies on mouse and pluripotent embryonic stem cells reveals that except for the extracellular signals, the intracellular molecules, including both transcriptional and epigenetic factors, participate in the modulation of neural fate commitment as well. In the review, we mainly focus on recent findings that the initiation of the nervous system is elaborately regulated by the intrinsic programs, which are mediated by transcriptional factors such as Sox2, Zfp521, Sip1 and Pou3f1, as well as epigenetic modifications, including histone methylation/demethylation, histone acetylation/deacetylation, and DNA methylation/demethylation. The discovery of the intrinsic regulatory machineries provides better understanding of the mechanisms by which the neural fate commitment is ensured by the cooperation between extracellular factors and intracellular molecules.
Collapse
Affiliation(s)
- Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | | | | | | | | |
Collapse
|
8
|
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, Martinez Arias A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2015; 141:4231-42. [PMID: 25371360 PMCID: PMC4302915 DOI: 10.1242/dev.113001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’.
Collapse
Affiliation(s)
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
9
|
Turner DA, Hayward PC, Baillie-Johnson P, Rué P, Broome R, Faunes F, Martinez Arias A. Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 2015; 141:4243-53. [PMID: 25371361 PMCID: PMC4302903 DOI: 10.1242/dev.112979] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of the central nervous system is known to result from two sequential events. First, an inductive event of the mesoderm on the overlying ectoderm that generates a neural plate that, after rolling into a neural tube, acts as the main source of neural progenitors. Second, the axial regionalization of the neural plate that will result in the specification of neurons with different anteroposterior identities. Although this description of the process applies with ease to amphibians and fish, it is more difficult to confirm in amniote embryos. Here, a specialized population of cells emerges at the end of gastrulation that, under the influence of Wnt and FGF signalling, expands and generates the spinal cord and the paraxial mesoderm. This population is known as the long-term neuromesodermal precursor (NMp). Here, we show that controlled increases of Wnt/β-catenin and FGF signalling during adherent culture differentiation of mouse embryonic stem cells (mESCs) generates a population with many of the properties of the NMp. A single-cell analysis of gene expression within this population reveals signatures that are characteristic of stem cell populations. Furthermore, when this activation is triggered in three-dimensional aggregates of mESCs, the population self-organizes macroscopically and undergoes growth and axial elongation that mimics some of the features of the embryonic spinal cord and paraxial mesoderm. We use both adherent and three-dimensional cultures of mESCs to probe the establishment and maintenance of NMps and their differentiation.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rebecca Broome
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Fernando Faunes
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
10
|
Turner DA, Trott J, Hayward P, Rué P, Martinez Arias A. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol Open 2014; 3:614-26. [PMID: 24950969 PMCID: PMC4154298 DOI: 10.1242/bio.20148409] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
| | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
11
|
Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 2014; 31:1511-22. [PMID: 23649667 PMCID: PMC4063271 DOI: 10.1002/stem.1426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 04/03/2013] [Indexed: 01/22/2023]
Abstract
Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522
Collapse
Affiliation(s)
- Xinzhi Zhou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|
13
|
Byun MR, Kim AR, Hwang JH, Kim KM, Hwang ES, Hong JH. FGF2 stimulates osteogenic differentiation through ERK induced TAZ expression. Bone 2014; 58:72-80. [PMID: 24125755 DOI: 10.1016/j.bone.2013.09.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 11/25/2022]
Abstract
TAZ (transcriptional coactivator with PDZ-binding motif) is a transcriptional modulator that regulates mesenchymal stem cell differentiation. It stimulates osteogenic differentiation while inhibiting adipocyte differentiation. FGFs (fibroblast growth factors) stimulate several signaling proteins to regulate their target genes, which are involved in cell proliferation, differentiation, and cell survival. Within this family, FGF2 stimulates osteoblast differentiation though a mechanism that is largely unknown. In this report, we show that TAZ mediates FGF2 signaling in osteogenesis. We observed that FGF2 increases TAZ expression by stimulating its mRNA expression. Depletion of TAZ using small hairpin RNA blocked FGF2-mediated osteogenic differentiation. FGF2 induced TAZ expression was stimulated by ERK (extracellular signal-regulated kinase) activation and the inhibition of ERK blocked TAZ expression. FGF2 increased nuclear localization of TAZ and, thus, facilitated the interaction of TAZ and Runx2, activating Runx2-mediated gene transcription. Taken together, these results suggest that TAZ is an important mediator of FGF2 signaling in osteoblast differentiation.
Collapse
Affiliation(s)
- Mi Ran Byun
- Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Malaguti M, Nistor PA, Blin G, Pegg A, Zhou X, Lowell S. Bone morphogenic protein signalling suppresses differentiation of pluripotent cells by maintaining expression of E-Cadherin. eLife 2013; 2:e01197. [PMID: 24347544 PMCID: PMC3865744 DOI: 10.7554/elife.01197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenic protein (BMP) signalling contributes towards maintenance of pluripotency and favours mesodermal over neural fates upon differentiation, but the mechanisms by which BMP controls differentiation are not well understood. We report that BMP regulates differentiation by blocking downregulation of Cdh1, an event that accompanies the earliest stages of neural and mesodermal differentiation. We find that loss of Cdh1 is a limiting requirement for differentiation of pluripotent cells, and that experimental suppression of Cdh1 activity rescues the BMP-imposed block to differentiation. We further show that BMP acts prior to and independently of Cdh1 to prime pluripotent cells for mesoderm differentiation, thus helping to reinforce the block to neural differentiation. We conclude that differentiation depends not only on exposure to appropriate extrinsic cues but also on morphogenetic events that control receptivity to those differentiation cues, and we explain how a key pluripotency signal, BMP, feeds into this control mechanism. DOI:http://dx.doi.org/10.7554/eLife.01197.001 The human body is made up of about 200 different types of cell, all of which are descended from a single fertilised egg. As an embryo develops, its cells divide and specialise into distinct lineages. Cells in each lineage go on to form a restricted number of cell types that are required to make a specific tissue. As such, during early development, cells switch from being ‘pluripotent’, with the potential to become the many different cell types, to committing to one particular cell lineage. Controlling this process involves a huge number of signalling proteins and pathways. One such protein is bone morphogenetic protein, or BMP for short, which has a number of different roles in embryo development: for example, it stops pluripotent cells turning into nerve tissue, and it also encourages embryonic stem cells to contribute to the ‘mesoderm’ of the early embryo (which goes on to form the muscles, connective tissues and some blood cells). How these two actions are linked, and whether they depend on similar signalling pathways, was unknown. BMP is also known to trigger the production of proteins known as ‘Id factors’—which stands for ‘inhibitor of differentiation’. Now, Malaguti et al. have investigated the roles of BMP and Id factors in controlling mouse embryo development and found, somewhat surprisingly, that these proteins needed help from a third protein to stop pluripotent cells turning into nerve tissue. This third protein, which is called E-Cadherin, normally helps cells to adhere to other cells. Malaguti et al. showed that losing this protein encourages cells to become either nerve or mesoderm tissues, and that a drop in E-Cadherin levels must occur before nerve tissue can form. Malaguti et al. also showed that encouraging cells to become part of the mesoderm requires BMP to activate another pathway, which does not require E-Cadherin. The two effects of BMP can be uncoupled by adjusting the levels of this protein. At low concentrations, BMP can keep cells pluripotent, but it cannot encourage cells to commit to a mesoderm fate. At higher doses, however, BMP ‘primes’ cells to respond to the signals that trigger their development into mesoderm tissue. The findings of Malaguti et al. suggest that manipulating both E-Cadherin and BMP signalling could improve our ability to generate useful cell types, such as neurons, from stem cells grown in laboratory cultures. DOI:http://dx.doi.org/10.7554/eLife.01197.002
Collapse
Affiliation(s)
- Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
16
|
Patel NS, Rhinn M, Semprich CI, Halley PA, Dollé P, Bickmore WA, Storey KG. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet 2013; 9:e1003614. [PMID: 23874217 PMCID: PMC3715432 DOI: 10.1371/journal.pgen.1003614] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/21/2013] [Indexed: 01/08/2023] Open
Abstract
Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF) signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR) signalling in Raldh2−/− embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that can direct chromatin compaction and nuclear organisation of gene loci. Changes in the position of genes within the nucleus and in their local organisation frequently correlate with whether or not genes are turned on. However, little is known about how such nuclear organisation is controlled and whether this can be separated from the mechanisms that promote transcription. We show here that central nuclear position and chromatin de-compaction correlate with onset of expression at key neural differentiation gene loci in the mouse embryo. Conversely, the locus of a gene that is down-regulated as neural differentiation commences exhibits a shift towards the nuclear periphery as this takes place. Importantly, we show that signalling through the fibroblast growth factor (FGF) pathway regulates changes at this level of nuclear organisation. FGF represses differentiation gene transcription and keeps differentiation gene loci compact and at the nuclear periphery. By blocking FGF signalling in a retinoid deficient embryo in which differentiation genes are not expressed, we further show that control of nuclear organisation by FGF is not just a consequence of gene transcription. These findings are the first to demonstrate that such higher order nuclear organisation is regulated in the developing embryo, that this takes place downstream of FGF signaling, and can be uncoupled from the machinery of gene transcription.
Collapse
Affiliation(s)
- Nishal S. Patel
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Claudia I. Semprich
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pamela A. Halley
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
- * E-mail: (WAB); (KGS)
| | - Kate G. Storey
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (WAB); (KGS)
| |
Collapse
|
17
|
Ozair MZ, Noggle S, Warmflash A, Krzyspiak JE, Brivanlou AH. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism. Stem Cells 2013; 31:35-47. [PMID: 23034881 DOI: 10.1002/stem.1246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However, dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here, we show that SMAD7, a cell-intrinsic inhibitor of transforming growth factor-β (TGFβ) signaling, is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time course gene expression revealed downregulation of MAPK components, and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. Fibroblast growth factor-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues, pluripotent cells simply revert to a program of neural conversion. Hence, the "primed" state of hESCs requires inhibition of the "default" state of neural fate acquisition. This has parallels in amphibians, suggesting an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Embryology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
18
|
Turco MY, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, Simeone A, Constam D, Faretta M, Lanfrancone L. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells 2013; 30:2423-36. [PMID: 22948967 PMCID: PMC3533801 DOI: 10.1002/stem.1217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Shc family of adaptor proteins are crucial mediators of a plethora of receptors such as the tyrosine kinase receptors, cytokine receptors, and integrins that drive signaling pathways governing proliferation, differentiation, and migration. Here, we report the role of the newly identified family member, ShcD/RaLP, whose expression in vitro and in vivo suggests a function in embryonic stem cell (ESC) to epiblast stem cells (EpiSCs) transition. The transition from the naïve (ESC) to the primed (EpiSC) pluripotent state is the initial important step for ESCs to commit to differentiation and the mechanisms underlying this process are still largely unknown. Using a novel approach to simultaneously assess pluripotency, apoptosis, and proliferation by multiparameter flow cytometry, we show that ESC to EpiSC transition is a process involving a tight coordination between the modulation of the Oct4 expression, cell cycle progression, and cell death. We also describe, by high-content immunofluorescence analysis and time-lapse microscopy, the emergence of cells expressing caudal-related homeobox 2 (Cdx2) transcription factor during ESC to EpiSC transition. The use of the ShcD knockout ESCs allowed the unmasking of this process as they presented deregulated Oct4 modulation and an enrichment in Oct4-negative Cdx2-positive cells with increased MAPK/extracellular-regulated kinases 1/2 activation, within the differentiating population. Collectively, our data reveal ShcD as an important modulator in the switch of key pathway(s) involved in determining EpiSC identity.
Collapse
Affiliation(s)
- Margherita Y Turco
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Reinhardt P, Glatza M, Hemmer K, Tsytsyura Y, Thiel CS, Höing S, Moritz S, Parga JA, Wagner L, Bruder JM, Wu G, Schmid B, Röpke A, Klingauf J, Schwamborn JC, Gasser T, Schöler HR, Sterneckert J. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 2013; 8:e59252. [PMID: 23533608 PMCID: PMC3606479 DOI: 10.1371/journal.pone.0059252] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.
Collapse
Affiliation(s)
- Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Michael Glatza
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Kathrin Hemmer
- Stem Cell Biology and Regeneration Group, Institute of Cell Biology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, North Rhine-Westphalia, Germany
| | - Yaroslav Tsytsyura
- Westfälische Wilhelms-Universität Münster, Institute for Medical Physics and Biophysics, Cellular Biophysics Group, Münster, North Rhine-Westphalia, Germany
| | - Cora S. Thiel
- Westfälische Wilhelms-Universität Münster, Institute for Medical Physics and Biophysics, Cellular Biophysics Group, Münster, North Rhine-Westphalia, Germany
| | - Susanne Höing
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Sören Moritz
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Juan A. Parga
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
- Center for Research in Molecular Medicine and Chronic Diseases at the University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lydia Wagner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Jan M. Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases, Tübingen, Baden-Württemburg, Germany
| | - Albrecht Röpke
- Institute for Human Genetics, University of Münster, Münster, North Rhine Westphalia, Germany
| | - Jürgen Klingauf
- Westfälische Wilhelms-Universität Münster, Institute for Medical Physics and Biophysics, Cellular Biophysics Group, Münster, North Rhine-Westphalia, Germany
| | - Jens C. Schwamborn
- Stem Cell Biology and Regeneration Group, Institute of Cell Biology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, North Rhine-Westphalia, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases, Tübingen, Baden-Württemburg, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
- Medical Faculty, University of Münster, Münster, North Rhine-Westphalia, Germany
- * E-mail: (HRS); (JS)
| | - Jared Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
- * E-mail: (HRS); (JS)
| |
Collapse
|
20
|
Kaye JA, Finkbeiner S. Modeling Huntington's disease with induced pluripotent stem cells. Mol Cell Neurosci 2013; 56:50-64. [PMID: 23459227 DOI: 10.1016/j.mcn.2013.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) causes severe motor dysfunction, behavioral abnormalities, cognitive impairment and death. Investigations into its molecular pathology have primarily relied on murine tissues; however, the recent discovery of induced pluripotent stem cells (iPSCs) has opened new possibilities to model neurodegenerative disease using cells derived directly from patients, and therefore may provide a human-cell-based platform for unique insights into the pathogenesis of HD. Here, we will examine the practical implementation of iPSCs to study HD, such as approaches to differentiate embryonic stem cells (ESCs) or iPSCs into medium spiny neurons, the cell type most susceptible in HD. We will explore the HD-related phenotypes identified in iPSCs and ESCs and review how brain development and neurogenesis may actually be altered early, before the onset of HD symptoms, which could inform the search for drugs that delay disease onset. Finally, we will speculate on the exciting possibility that ESCs or iPSCs might be used as therapeutics to restore or replace dying neurons in HD brains.
Collapse
Affiliation(s)
- Julia A Kaye
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, United States.
| | | |
Collapse
|
21
|
Velkey JM, O'Shea KS. Expression of Neurogenin 1 in mouse embryonic stem cells directs the differentiation of neuronal precursors and identifies unique patterns of down-stream gene expression. Dev Dyn 2013; 242:230-53. [PMID: 23288605 DOI: 10.1002/dvdy.23920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Delineating the cascades of growth and transcription factor expression that shape the developing nervous system will improve our understanding of its molecular histogenesis and suggest strategies for cell replacement therapies. In the current investigation, we examined the ability of the proneural gene, Neurogenin1 (Neurog1; also Ngn1, Neurod3), to drive differentiation of pluripotent embryonic stem cells (ESC). RESULTS Transient expression of Neurog1 in ESC was sufficient to initiate neuronal differentiation, and produced neuronal subtypes reflecting its expression pattern in vivo. To begin to address the molecular mechanisms involved, we used microarray analysis to identify potential down-stream targets of Neurog1 expressed at sequential stages of neuronal differentiation. CONCLUSIONS ESC expressing Neurogenin1 begin to withdraw from cycle and form precursors that differentiate exclusively into neurons. This work identifies unique patterns of gene expression following expression of Neurog1, including genes and signaling pathways involved in process outgrowth and cell migration, regional differentiation of the nervous system, and cell cycle.
Collapse
Affiliation(s)
- J Matthew Velkey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
22
|
Liang J, Wu S, Zhao H, Li SL, Liu ZX, Wu J, Zhou L. Human umbilical cord mesenchymal stem cells derived from Wharton's jelly differentiate into cholinergic-like neurons in vitro. Neurosci Lett 2013. [DOI: 10.1016/j.neulet.2012.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Ozair MZ, Kintner C, Brivanlou AH. Neural induction and early patterning in vertebrates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:479-98. [PMID: 24014419 DOI: 10.1002/wdev.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
24
|
Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715-37. [PMID: 22547091 PMCID: PMC3478512 DOI: 10.1007/s00018-012-0991-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
Abstract
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
25
|
Fischedick G, Klein DC, Wu G, Esch D, Höing S, Han DW, Reinhardt P, Hergarten K, Tapia N, Schöler HR, Sterneckert JL. Zfp296 is a novel, pluripotent-specific reprogramming factor. PLoS One 2012; 7:e34645. [PMID: 22485183 PMCID: PMC3317644 DOI: 10.1371/journal.pone.0034645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 03/05/2012] [Indexed: 01/25/2023] Open
Abstract
Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells with embryonic stem cells (ESCs), indicating that ESCs express additional factors that can enhance the efficiency of reprogramming. We had previously developed a method to detect and isolate early neural induction intermediates during the differentiation of mouse ESCs. Using the gene expression profiles of these intermediates, we identified 23 ESC-specific transcripts and tested each for the ability to enhance iPSC formation. Of the tested factors, zinc finger protein 296 (Zfp296) led to the largest increase in mouse iPSC formation. We confirmed that Zfp296 was specifically expressed in pluripotent stem cells and germ cells. Zfp296 in combination with OSKM induced iPSC formation earlier and more efficiently than OSKM alone. Through mouse chimera and teratoma formation, we demonstrated that the resultant iPSCs were pluripotent. We showed that Zfp296 activates transcription of the Oct4 gene via the germ cell–specific conserved region 4 (CR4), and when overexpressed in mouse ESCs leads to upregulation of Nanog expression and downregulation of the expression of differentiation markers, including Sox17, Eomes, and T, which is consistent with the observation that Zfp296 enhances the efficiency of reprogramming. In contrast, knockdown of Zfp296 in ESCs leads to the expression of differentiation markers. Finally, we demonstrated that expression of Zfp296 in ESCs inhibits, but does not block, differentiation into neural cells.
Collapse
Affiliation(s)
- Gerrit Fischedick
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Diana C. Klein
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniel Esch
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Höing
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kerstin Hergarten
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- University of Münster, Faculty of Medicine, Münster, Germany
- * E-mail:
| | - Jared L. Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
26
|
Bernemann C, Greber B, Ko K, Sterneckert J, Han DW, Araúzo-Bravo MJ, Schöler HR. Distinct developmental ground states of epiblast stem cell lines determine different pluripotency features. Stem Cells 2012; 29:1496-503. [PMID: 21898681 DOI: 10.1002/stem.709] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epiblast stem cells (EpiSCs) are pluripotent stem cells derived from mouse postimplantation embryos at embryonic day (E) 5.5-E7.5 at the onset of gastrulation, which makes them a valuable tool for studying mammalian postimplantation development in vitro. EpiSCs can also be reprogrammed into a mouse embryonic stem cell (mESC)-like state. Some reports have shown that the reversion of EpiSCs requires transcription factor overexpression, whereas others have suggested that use of stringent mESC culture conditions alone is sufficient for the reversion of EpiSCs. To clarify these discrepancies, we systematically compared a panel of independent EpiSC lines. We found that--regardless of the embryonic day of derivation--the different EpiSC lines shared a number of defining characteristics such as the ability to form teratomas. However, despite use of standard EpiSC culture conditions, some lines exhibited elevated expression of genes associated with mesendodermal differentiation. Pluripotency (Oct4) and mesodermal (Brachyury) marker genes were coexpressed in this subset of lines. Interestingly, the expression of mesendodermal marker genes was negatively correlated with the cells' ability to efficiently undergo neural induction. Moreover, these mesodermal marker gene-expressing cell lines could not be efficiently reverted to an mESC-like state by using stringent mESC culture conditions. Conversely, Brachyury overexpression diminished the reversion efficiency in otherwise Brachyury-negative lines. Overall, our data suggest that different EpiSC lines may undergo self-renewal into distinct developmental states, a finding with important implications for functional readouts such as reversion of EpiSCs to an mESC-like state as well as directed differentiation.
Collapse
Affiliation(s)
- Christof Bernemann
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Rogers CD, Ferzli GS, Casey ES. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module. BMC DEVELOPMENTAL BIOLOGY 2011; 11:74. [PMID: 22172147 PMCID: PMC3271986 DOI: 10.1186/1471-213x-11-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/15/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. RESULTS To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. CONCLUSIONS We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.
Collapse
Affiliation(s)
- Crystal D Rogers
- Department of Biology, Georgetown University, Washington DC, USA
| | - George S Ferzli
- Department of Biology, Georgetown University, Washington DC, USA
| | - Elena S Casey
- Department of Biology, Georgetown University, Washington DC, USA
| |
Collapse
|
28
|
Pickford CE, Holley RJ, Rushton G, Stavridis MP, Ward CM, Merry CLR. Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells 2011; 29:629-40. [PMID: 21308866 DOI: 10.1002/stem.610] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mouse embryonic stem (mES) cells express a low sulfated form of heparan sulfate (HS). HS chains displayed by ES cells and their progeny become more complex and more sulfated during progression from pluripotency to neuroectodermal precursors. Sulfated epitopes are important for recognition and binding of a variety of ligands including members of the fibroblast growth factor (FGF) family. We demonstrated previously that mES cells lacking HS cannot undergo neural specification but this activity can be recovered by adding soluble heparin, a highly sulfated glycosaminoglycan (GAG). Therefore, we hypothesized that soluble GAGs might be used to support neural differentiation of HS competent cells and that the mechanisms underlying this activity might provide useful information about the signaling pathways critical for loss of pluripotency and early lineage commitment. In this study, we demonstrate that specific HS/heparin polysaccharides support formation of Sox1(+) neural progenitor cells from wild-type ES cells. This effect is dependent on sulfation pattern, concentration, and length of saccharide. Using a selective inhibitor of FGF signal transduction, we show that heparin modulates signaling events regulating exit from pluripotency and commitment to primitive ectoderm and subsequently neuroectoderm. Interestingly, we were also able to demonstrate that multiple receptor tyrosine kinases were influenced by HS in this system. This suggests roles for additional factors, possibly in cell proliferation or protection from apoptosis, during the process of neural specification. Therefore, we conclude that soluble GAGs or synthetic mimics could be considered as suitable low-cost factors for addition to ES cell differentiation regimes.
Collapse
Affiliation(s)
- Claire E Pickford
- Stem Cell Glycobiology Group, School of Materials Science, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 2011; 145:875-89. [PMID: 21663792 DOI: 10.1016/j.cell.2011.05.017] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/03/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells.
Collapse
|
30
|
Li L, Jing N. Pluripotent stem cell studies elucidate the underlying mechanisms of early embryonic development. Genes (Basel) 2011; 2:298-312. [PMID: 24710192 PMCID: PMC3924820 DOI: 10.3390/genes2020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/08/2011] [Accepted: 03/21/2011] [Indexed: 01/02/2023] Open
Abstract
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.
Collapse
Affiliation(s)
- Lingyu Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Naihe Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|