1
|
Wang S, Wen X, Fan Z, Ding X, Wang Q, Liu Z, Yu W. Research advancements on nerve guide conduits for nerve injury repair. Rev Neurosci 2024; 35:627-637. [PMID: 38517315 DOI: 10.1515/revneuro-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/23/2024]
Abstract
Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.
Collapse
Affiliation(s)
- Shoushuai Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xinggui Wen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zheyuan Fan
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xiangdong Ding
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Qianqian Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zhongling Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| |
Collapse
|
2
|
Deng J, Yao Z, Wang S, Zhang X, Zhan L, Wang T, Yu W, Zeng J, Wu J, Fu S, Wu S, Ouyang Y, Huang C. Uni-directional release of ibuprofen from an asymmetric fibrous membrane enables effective peritendinous anti-adhesion. J Control Release 2024; 372:251-264. [PMID: 38908755 DOI: 10.1016/j.jconrel.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Drug-loaded porous membranes have been deemed to be effective physicochemical barriers to separate postoperative adhesion-prone tissues in tendon healing. However, cell viability and subsequent tissue regeneration might be severely interfered with the unrestricted release and the locally excessive concentration of anti-inflammatory drugs. Herein, we report a double-layered membrane with sustained and uni-directional drug delivery features to prevent peritendinous adhesion without hampering the healing outcome. A vortex-assisted electrospinning system in combination with ibuprofen (IBU)-in-water emulsion was utilized to fabricate IBU-loaded poly-ʟ-lactic-acid (PLLA) fiber bundle membrane (PFB-IBU) as the anti-adhesion layer. The resultant highly porous structure, oleophilic and hydrophobic nature of PLLA fibers enabled in situ loading of IBU with a concentration gradient across the membrane thickness. Aligned collagen nanofibers were further deposited at the low IBU concentration side of the membrane for regulating cell growth and achieving uni-directional release of IBU. Drug release kinetics showed that the release amount of IBU from the high concentration side reached 79.32% at 14 d, while it was only 0.35% at the collagen side. Therefore, fibroblast proliferation at the high concentration side was successfully inhibited without affecting the oriented growth of tendon-derived stem cells at the other side. In vivo evaluation of the rat Achilles adhesion model confirmed the successful peritendinous anti-adhesion of our double-layered membrane, in that the macrophage recruitment, the inflammatory factor secretion and the deposition of pathological adhesion markers such as α-SMA and COL-III were all inhibited, which greatly improved the peritendinous fibrosis and restored the motor function of tendon.
Collapse
Affiliation(s)
- Jixia Deng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhixiao Yao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Shikun Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xinyu Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lei Zhan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Tongyu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhua Yu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiamei Zeng
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jinglei Wu
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry and Chemical Engineering and Biological Engineering, Donghua University, Shanghai 201620, China
| | - Shaoju Fu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shihao Wu
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China.
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Chen Huang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Liu J, Tang R, Zhu X, Ma Q, Mo X, Wu J, Liu Z. Ibuprofen-loaded bilayer electrospun mesh modulates host response toward promoting full-thickness abdominal wall defect repair. J Biomed Mater Res A 2024; 112:941-955. [PMID: 38230575 DOI: 10.1002/jbm.a.37672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Pro-inflammatory response impairs the constructive repair of abdominal wall defects after mesh implantation. Electrospinning-aid functionalization has the potential to improve the highly orchestrated response by attenuating the over-activation of foreign body reactions. Herein, we combined poly(L-lactic acid-co-caprolactone) (PLLA-CL) with gelatin proportionally via electrospinning, with Ibuprofen (IBU) incorporation to fabricate a bilayer mesh for the repair improvement. The PLLA-CL/gelatin/IBU (PGI) mesh was characterized in vitro and implanted into the rat model with a full-thickness defect for a comprehensive evaluation in comparison to the PLLA-CL/gelatin (PG) and off-the-shelf small intestinal submucosa (SIS) meshes. The bilayer PGI mesh presented a sustained release of IBU over 21 days with degradation in vitro and developed less-intensive intraperitoneal adhesion along with a histologically weaker inflammatory response than the PG mesh after 28 days. It elicited an M2 macrophage-dominant foreign body reaction within the process, leading to a pro-remodeling response similar to the biological SIS mesh, which was superior to the PG mesh. The PGI mesh provided preponderant mechanical supports over the SIS mesh and the native abdominal wall with similar compliance. Collectively, the newly developed mesh advances the intraperitoneal applicability of electrospun meshes by guiding a pro-remodeling response and offers a feasible functionalization approach upon immunomodulation.
Collapse
Affiliation(s)
- Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Qiaolin Ma
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, People's Republic of China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
- Department of General Surgery, Shanghai East Hospital Ji'an Hospital, Ji'an, Jiangxi Province, People's Republic of China
| |
Collapse
|
4
|
Kellaway SC, Ullrich MM, Dziemidowicz K. Electrospun drug-loaded scaffolds for nervous system repair. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1965. [PMID: 38740385 DOI: 10.1002/wnan.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Nervous system injuries, encompassing peripheral nerve injury (PNI), spinal cord injury (SCI), and traumatic brain injury (TBI), present significant challenges to patients' wellbeing. Traditional treatment approaches have limitations in addressing the complexity of neural tissue regeneration and require innovative solutions. Among emerging strategies, implantable materials, particularly electrospun drug-loaded scaffolds, have gained attention for their potential to simultaneously provide structural support and controlled release of therapeutic agents. This review provides a thorough exploration of recent developments in the design and application of electrospun drug-loaded scaffolds for nervous system repair. The electrospinning process offers precise control over scaffold characteristics, including mechanical properties, biocompatibility, and topography, crucial for creating a conducive environment for neural tissue regeneration. The large surface area of the resulting fibrous networks enhances biomolecule attachment, influencing cellular behaviors such as adhesion, proliferation, and migration. Polymeric electrospun materials demonstrate versatility in accommodating a spectrum of therapeutics, from small molecules to proteins. This enables tailored interventions to accelerate neuroregeneration and mitigate inflammation at the injury site. A critical aspect of this review is the examination of the interplay between structural properties and pharmacological effects, emphasizing the importance of optimizing both aspects for enhanced therapeutic outcomes. Drawing upon the latest advancements in the field, we discuss the promising outcomes of preclinical studies using electrospun drug-loaded scaffolds for nervous system repair, as well as future perspectives and considerations for their design and implementation. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Simon C Kellaway
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Mathilde M Ullrich
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Karolina Dziemidowicz
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
5
|
Ramesh VH, Goudanavar P, Ramesh B, Naveen NR, Gowthami B. Pharmaceutical/Biomedical Applications of Electrospun Nanofibers - Comprehensive Review, Attentive to Process Parameters and Patent Landscape. Pharm Nanotechnol 2024; 12:412-427. [PMID: 37702161 DOI: 10.2174/2211738511666230911163249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology is a new science and business endeavour with worldwide economic benefits. Growing knowledge of nanomaterial fabrication techniques has increased the focus on nanomaterial preparation for various purposes. Nanofibers are one-dimensional nanomaterials having distinct physicochemical properties and characteristics. Nanofibers are nanomaterial types with a cross-sectional dimension of tens to hundreds of nanometres. They may create high porosity mesh networks with significant interconnections among pores, making them suitable for advanced applications. Electrospinning stands out for its ease of use, flexibility, low cost, and variety among the approaches described in the literature. The most common method for making nanofibers is electrospinning. This article extensively describes and summarizes the impact of various process variables on the fabrication of nanofibers. Special attention has been given to scientific and patent prospection to confirm the research interests in nanofibers.
Collapse
Affiliation(s)
- Varshini Hemmanahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Bevenahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, 516126, Andhra Pradesh, India
| |
Collapse
|
6
|
Chen S, Xiao M, Hou Z, Li Z, Hu J, Guo J, Chen J, Yang L, Na Q. Functionalized TMC and ε-CL elastomers with shape memory and self-healing properties. Front Bioeng Biotechnol 2023; 11:1298723. [PMID: 38033822 PMCID: PMC10687579 DOI: 10.3389/fbioe.2023.1298723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: Smart elastomers, which possess self-healing and shape memory capabilities, have immense potential in the field of biomedical applications. Polycarbonates and polyesters have gained widespread interest due to their remarkable biocompatibility over the last century. Nevertheless, the lack of functional versatility in conventional polyesters and polycarbonates means that they fall short of meeting the ever-evolving demands of the future. Methods: This paper introduced a new smart elastomer, named mPEG43-b-(PMBC-co-PCL)n, developed from polyester and polycarbonate blends, that possessed shape memory and self-heal capabilities via a physical crosslinking system. Results: The material demonstrated a significant tensile strength of 0.38 MPa and a tensile ratio of 1155.6%, highlighting its favorable mechanical properties. In addition, a conspicuous shape retrieval rate of 93% was showcased within 32.5 seconds at 37°C. Remarkably, the affected area could be repaired proficiently with no irritation experienced during 6h at room temperature, which was indicative of an admirable repair percentage of 87.6%. Furthermore, these features could be precisely modified by altering the proportion of MBC and ε-CL to suit individual constraints. Discussion: This innovative elastomer with exceptional shape memory and self-heal capabilities provides a solid basis and promising potential for the development of self-contracting intelligent surgical sutures in the biomedical field.
Collapse
Affiliation(s)
- Siwen Chen
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Miaomiao Xiao
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongcun Li
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
| | - Jing Guo
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Research Institute for Eugenic Birth and Fertility, China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Amna T, Hassan MS. Nanofibers and Nanotextured Materials: Design Insights, Bactericidal Mechanisms and Environmental Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2891. [PMID: 37947735 PMCID: PMC10647218 DOI: 10.3390/nano13212891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Antibiotic resistance is rising and poses a serious threat to human health on a worldwide scale. It can make it more difficult to cure common infections, raise medical expenditures, and increase mortality. In order to combat the development of biofilms and treat fatal bacterial infections, multifunctional polymeric nanofibers or nanotextured materials with specific structural features and special physiochemical capabilities have become a crucial tool. Due to the increased antibiotic resistance of many diseases, nanofibers with antibacterial activity are essential. Electrospinning is a flexible process able to produce fine fibers with specified properties by modifying variables such as the concentration of the solution, the feed flow, and the electric voltage. Substantial advancements have been made regarding the formation of nanofibers or nanotextured materials for a variety of applications, along with the development of electrospinning techniques in recent years. Using well-defined antimicrobial nanoparticles, encapsulating traditional therapeutic agents, plant-based bioactive agents, and pure compounds in polymer nanofibers has resulted in outstanding antimicrobial activity and has aided in curing deadly microbial infections. A plethora of studies have revealed that electrospinning is an effective technique for the production of antimicrobial fibers for the environmental, biomedical, pharmaceutical, and food sectors. Nevertheless, numerous studies have also demonstrated that the surface characteristics of substrates, such as holes, fibers, and ridges at the nanoscale, have an impact on cell proliferation, adhesion, and orientation.
Collapse
Affiliation(s)
- Touseef Amna
- Department of Biology, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| | - M. Shamshi Hassan
- Department of Chemistry, College of Science, Al-Baha University, Albaha 65799, Saudi Arabia
| |
Collapse
|
8
|
Serri C, Cruz-Maya I, Bonadies I, Rassu G, Giunchedi P, Gavini E, Guarino V. Green Routes for Bio-Fabrication in Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:1744. [PMID: 37376192 PMCID: PMC10300741 DOI: 10.3390/pharmaceutics15061744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
9
|
Rocha DN, Carvalho ED, Pires LR, Gardin C, Zanolla I, Szewczyk PK, Machado C, Fernandes R, Stachewicz U, Zavan B, Relvas JB, Pêgo AP. It takes two to remyelinate: A bioengineered platform to study astrocyte-oligodendrocyte crosstalk and potential therapeutic targets in remyelination. BIOMATERIALS ADVANCES 2023; 151:213429. [PMID: 37148597 DOI: 10.1016/j.bioadv.2023.213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The loss of the myelin sheath insulating axons is the hallmark of demyelinating diseases. These pathologies often lead to irreversible neurological impairment and patient disability. No effective therapies are currently available to promote remyelination. Several elements contribute to the inadequacy of remyelination, thus understanding the intricacies of the cellular and signaling microenvironment of the remyelination niche might help us to devise better strategies to enhance remyelination. Here, using a new in vitro rapid myelinating artificial axon system based on engineered microfibres, we investigated how reactive astrocytes influence oligodendrocyte (OL) differentiation and myelination ability. This artificial axon culture system enables the effective uncoupling of molecular cues from the biophysical properties of the axons, allowing the detailed study of the astrocyte-OL crosstalk. Oligodendrocyte precursor cells (OPCs) were cultured on poly(trimethylene carbonate-co-ε-caprolactone) copolymer electrospun microfibres that served as surrogate axons. This platform was then combined with a previously established tissue engineered glial scar model of astrocytes embedded in 1 % (w/v) alginate matrices, in which astrocyte reactive phenotype was acquired using meningeal fibroblast conditioned medium. OPCs were shown to adhere to uncoated engineered microfibres and differentiate into myelinating OL. Reactive astrocytes were found to significantly impair OL differentiation ability, after six and eight days in a co-culture system. Differentiation impairment was seen to be correlated with astrocytic miRNA release through exosomes. We found significantly reduction on the expression of pro-myelinating miRNAs (miR-219 and miR-338) and an increase in anti-myelinating miRNA (miR-125a-3p) content between reactive and quiescent astrocytes. Additionally, we show that OPC differentiation inhibition could be reverted by rescuing the activated astrocytic phenotype with ibuprofen, a chemical inhibitor of the small rhoGTPase RhoA. Overall, these findings show that modulating astrocytic function might be an interesting therapeutic avenue for demyelinating diseases. The use of these engineered microfibres as an artificial axon culture system will enable the screening for potential therapeutic agents that promote OL differentiation and myelination while providing valuable insight on the myelination/remyelination processes.
Collapse
Affiliation(s)
- Daniela N Rocha
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Eva D Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Liliana R Pires
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Ilaria Zanolla
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Cláudia Machado
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Faculty of Medicine, Universidade do Porto, 4200-319 Porto, Portugal
| | - Ana P Pêgo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-343 Porto, Portugal.
| |
Collapse
|
10
|
Visser Z, Verma SK, Rainey JK, Frampton JP. Loading and Release of Quercetin from Contact-Drawn Polyvinyl Alcohol Fiber Scaffolds. ACS Pharmacol Transl Sci 2022; 5:1305-1317. [PMID: 36524014 PMCID: PMC9745892 DOI: 10.1021/acsptsci.2c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/30/2022]
Abstract
Polymeric drug releasing systems have numerous applications for the treatment of chronic diseases and traumatic injuries. In this study, a simple, cost-effective, and scalable method for dry spinning of crosslinked polyvinyl alcohol (PVA) fibers is presented. This method utilizes an entangled solution of PVA to form liquid bridges that are drawn into rapidly drying fibers through extensional flow. The fibers are crosslinked by a one-pot reaction in which glyoxal is introduced to the PVA solution prior to contact drawing. Failure analysis of fiber formation is used to understand the interplay of polymer concentration, glyoxal concentration, and crosslinking time to identify appropriate formulations for the production of glyoxal-crosslinked PVA fibers. The small molecule quercetin (an anti-inflammatory plant flavonoid) can be added to the one-pot reaction and is shown to be incorporated into the fibers in a concentration-dependent manner. Upon rehydration in an aqueous medium, the glyoxal-crosslinked PVA fiber scaffolds retain their morphology and slowly degrade, as measured over the course of 10 days. As the scaffolds degrade, they release the loaded quercetin, reaching a cumulative release of 56 ± 6% of the loaded drug after 10 days. The bioactivity of the released quercetin is verified by combining quercetin-loaded fibers with contact-drawn polyethylene oxide-type I collagen (PEO-Col) fibers and monitoring the growth of PC12 cells on the fibers. PC12 cells readily attach to the PEO-Col fibers and display increased nerve growth factor-induced elongation and neurite formation in the presence of quercetin-loaded PVA fibers relative to substrates formed from only PEO-Col fibers or PEO-Col and PVA fibers without quercetin.
Collapse
Affiliation(s)
- Zachary
B. Visser
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - Surendra Kumar Verma
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - Jan K. Rainey
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Biochemistry & Molecular Biology, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Chemistry, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - John P. Frampton
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Biochemistry & Molecular Biology, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| |
Collapse
|
11
|
Renkler NZ, Cruz-Maya I, Bonadies I, Guarino V. Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications. Polymers (Basel) 2022; 14:polym14194249. [PMID: 36236197 PMCID: PMC9572386 DOI: 10.3390/polym14194249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
In the last two decades, several processes have been explored for the development of micro and/or nanostructured substrates by sagely physically and/or chemically manipulating polymer materials. These processes have to be designed to overcome some of the limitations of the traditional ones in terms of feasibility, reproducibility, and sustainability. Herein, the primary aim of this work is to focus on the enormous potential of using a high voltage electric field to manipulate polymers from synthetic and/or natural sources for the fabrication of different devices based on elementary units, i.e., fibers or particles, with different characteristic sizes—from micro to nanoscale. Firstly, basic principles and working mechanisms will be introduced in order to correlate the effect of selected process parameters (i.e., an applied voltage) on the dimensional features of the structures. Secondly, a comprehensive overview of the recent trends and potential uses of these processes will be proposed for different biomedical and bio-sustainable application areas.
Collapse
|
12
|
Abouzeid RE, Salama A, El-Fakharany EM, Guarino V. Mineralized Polyvinyl Alcohol/Sodium Alginate Hydrogels Incorporating Cellulose Nanofibrils for Bone and Wound Healing. Molecules 2022; 27:697. [PMID: 35163962 PMCID: PMC8838367 DOI: 10.3390/molecules27030697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Bio sustainable hydrogels including tunable morphological and/or chemical cues currently offer a valid strategy of designing innovative systems to enhance healing/regeneration processes of damaged tissue areas. In this work, TEMPO-oxidized cellulose nanofibrils (T-CNFs) were embedded in alginate (Alg) and polyvinyl alcohol (PVA) solution to form a stable mineralized hydrogel. A calcium chloride reaction was optimized to trigger a crosslinking reaction of polymer chains and mutually promote in situ mineralization of calcium phosphates. FTIR, XRD, SEM/EDAX, and TEM were assessed to investigate the morphological, chemical, and physical properties of different mineralized hybrid hydrogels, confirming differences in the deposited crystalline nanostructures, i.e., dicalcium phosphate dehydrate (DCPDH) and hydroxyapatite, respectively, as a function of applied pH conditions (i.e., pH 4 or 8). Moreover, in vitro tests, in the presence of HFB-4 and HSF skin cells, confirmed a low cytotoxicity of the mineralized hybrid hydrogels, and also highlighted a significant increase in cell viability via MTT tests, preferentially, for the low concentration, crosslinked Alg/PVA/calcium phosphate hybrid materials (<1 mg/mL) in the presence of hydroxyapatite. These preliminary results suggest a promising use of mineralized hybrid hydrogels based on Alg/PVA/T-CNFs for bone and wound healing applications.
Collapse
Affiliation(s)
- Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
13
|
Design of Asymmetric Nanofibers-Membranes Based on Polyvinyl Alcohol and Wool-Keratin for Wound Healing Applications. J Funct Biomater 2021; 12:jfb12040076. [PMID: 34940555 PMCID: PMC8706361 DOI: 10.3390/jfb12040076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
The development of asymmetric membranes—i.e., matching two fibrous layers with selected composition and morphological properties to mimic both the epidermis and dermis—currently represents one of the most promising strategies to support skin regeneration during the wound healing process. Herein, a new asymmetric platform fabricated by a sequential electrospinning process was investigated. The top layer comprises cross-linked polyvinylalcohol (PVA) nanofibers (NFs)—from water solution—to replicate the epidermis’s chemical stability and wettability features. Otherwise, the bottom layer is fabricated by integrating PVA with wool-keratin extracted via sulfitolysis. This protein is a biocompatibility polymer with excellent properties for dermis-like structures. Morphological characterization via SEM supported by image analysis showed that the asymmetric membrane exhibited average fiber size—max frequency diameter 450 nm, range 1.40 μm—and porosity suitable for the healing process. FTIR-spectrums confirmed the presence of keratin in the bottom layer and variations of keratin-secondary structures. Compared with pure PVA-NFs, keratin/PVA-NFs showed a significant improvement in cell adhesion in in vitro tests. In perspective, these asymmetric membranes could be promisingly used to confine active species (i.e., antioxidants, antimicrobials) to the bottom layer to support specific cell activities (i.e., proliferation, differentiation) in wound healing applications.
Collapse
|
14
|
Sanchez Ramirez DO, Cruz-Maya I, Vineis C, Guarino V, Tonetti C, Varesano A. Wool Keratin-Based Nanofibres-In Vitro Validation. Bioengineering (Basel) 2021; 8:224. [PMID: 34940377 PMCID: PMC8698655 DOI: 10.3390/bioengineering8120224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Protein-based nanofibres are commonly used in the biomedical field to support cell growth. For this study, the cell viability of wool keratin-based nanofibres was tested. Membranes were obtained by electrospinning using formic acid, hexafluoroisopropanol, and water as solvents. For aqueous solutions, polyethylene oxide blended with keratin was employed, and their use to support in vitro cell interactions was also validated. Morphological characterization and secondary structure quantification were carried out by SEM and FTIR analyses. Although formic acid produced the best nanofibres from a morphological point of view, the results showed a better response to cell proliferation after 14 days in the case of fibres from hexafluoroisopropanol solution. Polyethylene oxide in keratin nanofibres was demonstrated, over time, to influence in vitro cell interactions, modifying membranes-wettability and reducing the contact between keratin chains and water molecules, respectively.
Collapse
Affiliation(s)
- Diego Omar Sanchez Ramirez
- National Research Council-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Corso Giuseppe Pella 16, 13900 Biella, Italy; (C.V.); (C.T.); (A.V.)
| | - Iriczalli Cruz-Maya
- National Research Council-Institute for Polymers, Composites and Biomaterials (CNR-IPCB), Mostra d’Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125 Napoli, Italy;
| | - Claudia Vineis
- National Research Council-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Corso Giuseppe Pella 16, 13900 Biella, Italy; (C.V.); (C.T.); (A.V.)
| | - Vincenzo Guarino
- National Research Council-Institute for Polymers, Composites and Biomaterials (CNR-IPCB), Mostra d’Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125 Napoli, Italy;
| | - Cinzia Tonetti
- National Research Council-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Corso Giuseppe Pella 16, 13900 Biella, Italy; (C.V.); (C.T.); (A.V.)
| | - Alessio Varesano
- National Research Council-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Corso Giuseppe Pella 16, 13900 Biella, Italy; (C.V.); (C.T.); (A.V.)
| |
Collapse
|
15
|
Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J Funct Biomater 2021; 12:59. [PMID: 34842715 PMCID: PMC8628998 DOI: 10.3390/jfb12040059] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of antibiotic resistance has become a major threat to human health and it is spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and overcome deadly bacterial infections. This review emphasizes electrospun nanofibers' design criteria and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy. Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and remaining challenges for polymeric nanofibers.
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Alisa Yamin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
16
|
Design of alginate based micro‐gels via electro fluid dynamics to construct microphysiological cell culture systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Maiolo L, Guarino V, Saracino E, Convertino A, Melucci M, Muccini M, Ambrosio L, Zamboni R, Benfenati V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv Healthc Mater 2021; 10:e2001268. [PMID: 33103375 DOI: 10.1002/adhm.202001268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Research over the past four decades has highlighted the importance of certain brain cells, called glial cells, and has moved the neurocentric vision of structure, function, and pathology of the nervous system toward a more holistic perspective. In this view, the demand for technologies that are able to target and both selectively monitor and control glial cells is emerging as a challenge across neuroscience, engineering, chemistry, and material science. Frequently neglected or marginally considered as a barrier to be overcome between neural implants and neuronal targets, glial cells, and in particular astrocytes, are increasingly considered as active players in determining the outcomes of device implantation. This review provides a concise overview not only of the previously established but also of the emerging physiological and pathological roles of astrocytes. It also critically discusses the most recent advances in biomaterial interfaces and devices that interact with glial cells and thus have enabled scientists to reach unprecedented insights into the role of astroglial cells in brain function and dysfunction. This work proposes glial interfaces and glial engineering as multidisciplinary fields that have the potential to enable significant advancement of knowledge surrounding cognitive function and acute and chronic neuropathologies.
Collapse
Affiliation(s)
- Luca Maiolo
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Vincenzo Guarino
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Annalisa Convertino
- Consiglio Nazionale delle Ricerche Istituto per la Microelettronica e i Microsistemi Via del Fosso del Cavaliere n.100 Roma 00133 Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche Istituto per la Studio dei Materiali Nanostrutturati via P. Gobetti 101 Bologna 40129 Italy
| | - Luigi Ambrosio
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri Compositi e Biomateriali Viale J.F. Kennedy 54, Mostra d'Oltremare, Pad 20 Napoli 80125 Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche Istituto per la Sintesi Organica e la Fotoreattività via P. Gobetti 101 Bologna 40129 Italy
| |
Collapse
|
18
|
Reinišová L, Hermanová S. Poly(trimethylene carbonate- co-valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Adv 2020; 10:44111-44120. [PMID: 35517150 PMCID: PMC9059556 DOI: 10.1039/d0ra08087j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Aliphatic poly(ester-carbonates) are receiving extensive research attention as tailorable materials suitable for multiple applications from tissue engineering and 3D scaffold printing to drug delivery. Thus, simple reliable procedures for producing easily tailorable poly(ester-carbonates) without metal residues are continuously sought after. In this work, we report on one-pot synthesis of random copolymers of TMC and δ-VL using metal-free biocompatible 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a catalyst and benzyl alcohol and poly(ethylene oxide) as initiators. Random poly(ester-carbonates) with TMC : VL unit ratios ranging from 80 : 20 to 20 : 80 were synthesized via ring-opening polymerization while displaying excellent agreement of comonomers' ratios in the feed and copolymer chains. The copolymers' supramolecular structure, thermal and mechanical properties were thoroughly analyzed by various methods. The obtained results clearly indicated that the physicochemical properties can be controlled simply by varying the ratio of comonomers and the length of segments in the copolymer chain. Several copolymers exhibited behavior of thermoplastic elastomers with the most promising one exhibiting a 2200% increase in elongation at break compared to the poly(valerolactone) homopolymer while retaining tensile strength and Young's modulus suitable for biomedical applications. Overall, our work contributed to widening the portfolio of tailorable copolymers for specialized bioapplications and possibly paving a way for the use of more sustainable polymers in the biomedical field.
Collapse
Affiliation(s)
- Lucie Reinišová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague Technická 5 16628 Prague Czech Republic
| | - Soňa Hermanová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague Technická 5 16628 Prague Czech Republic
| |
Collapse
|
19
|
Ferraris S, Spriano S, Scalia AC, Cochis A, Rimondini L, Cruz-Maya I, Guarino V, Varesano A, Vineis C. Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications. Polymers (Basel) 2020; 12:E2896. [PMID: 33287236 PMCID: PMC7761715 DOI: 10.3390/polym12122896] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.
Collapse
Affiliation(s)
- Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (A.C.S.); (A.C.); (L.R.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (A.C.S.); (A.C.); (L.R.)
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (A.C.S.); (A.C.); (L.R.)
| | - Iriczalli Cruz-Maya
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy; (I.C.-M.); (V.G.)
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy; (I.C.-M.); (V.G.)
| | - Alessio Varesano
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900 Biella, Italy; (A.V.); (C.V.)
| | - Claudia Vineis
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900 Biella, Italy; (A.V.); (C.V.)
| |
Collapse
|
20
|
Potential of a facile sandwiched electrospun scaffold loaded with ibuprofen as an anti-adhesion barrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111451. [PMID: 33255038 DOI: 10.1016/j.msec.2020.111451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022]
Abstract
The combination of nanofibre-based barriers and anti-adhesion drugs is potentially useful for adhesion prevention after ventral surgeries. However, drug molecules exposed to the surface of barriers easily result in an initial burst that is sharp, thus limiting the anti-adhesion efficiency. In this study, we developed a sandwiched electrospun scaffold loaded with ibuprofen (Sandwich) serving as a physical barrier, as well as an effectual carrier delivering it into the injured site for enhancing anti-adhesion capability. This Sandwich scaffold exhibited significantly a reduced initial burst of drug release in the first hour and a prolonged delivery for ibuprofen over 14 days, expected to provide the long-term anti-adhesion capability. In vitro study on fibroblasts showed that incorporation of ibuprofen effectively inhibited their adhesion and proliferation, and developed Sandwich maintained the least adhesion of L-929 after 5 days of culture (<20%). For RAW 264.7 macrophages, worse cell adhesion and poorer TNF-α production of Sandwich indicated its superior anti-inflammatory effect. In summary, the sandwiched ibuprofen-loaded scaffold showed promising potential for preventing adhesion formation.
Collapse
|
21
|
Guida P, Piscitelli E, Marrese M, Martino V, Cirillo V, Guarino V, Angeli E, Cocola C, Pelucchi P, Repetto L, Firpo G, Karnavas T, Gotte M, Gritzapis A, D'Albore M, Repetto D, Pezzuoli D, Missitzis I, Porta G, Bertalot G, Bellipanni G, Zucchi I, Ambrosio L, Valbusa U, Reinbold RA. Integrating Microstructured Electrospun Scaffolds in an Open Microfluidic System for in Vitro Studies of Human Patient-Derived Primary Cells. ACS Biomater Sci Eng 2020; 6:3649-3663. [PMID: 33463182 DOI: 10.1021/acsbiomaterials.0c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have suggested that microenvironmental stimuli play a significant role in regulating cellular proliferation and migration, as well as in modulating self-renewal and differentiation processes of mammary cells with stem cell (SCs) properties. Recent advances in micro/nanotechnology and biomaterial synthesis/engineering currently enable the fabrication of innovative tissue culture platforms suitable for maintenance and differentiation of SCs in vitro. Here, we report the design and fabrication of an open microfluidic device (OMD) integrating removable poly(ε-caprolactone) (PCL) based electrospun scaffolds, and we demonstrate that the OMD allows investigation of the behavior of human cells during in vitro culture in real time. Electrospun scaffolds with modified surface topography and chemistry can influence attachment, proliferation, and differentiation of mammary SCs and epigenetic mechanisms that maintain luminal cell identity as a function of specific morphological or biochemical cues imparted by tailor-made fiber post-treatments. Meanwhile, the OMD architecture allows control of cell seeding and culture conditions to collect more accurate and informative in vitro assays. In perspective, integrated systems could be tailor-made to mimic specific physiological conditions of the local microenvironment and then analyze the response from screening specific drugs for more effective diagnostics, long-term prognostics, and disease intervention in personalized medicine.
Collapse
Affiliation(s)
- Patrizia Guida
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council of Italy, via F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Marica Marrese
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Mostra D'Oltremare, Pad. 20, viale Kennedy 54, 80125 Naples, Italy
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council of Italy, via F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Valentina Cirillo
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Mostra D'Oltremare, Pad. 20, viale Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites & Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, viale Kennedy 54, 80125 Naples, Italy
| | - Elena Angeli
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council of Italy, via F.lli Cervi 93, 20090 Segrate, Milan, Italy.,Consorzio Italbiotech, via Fantoli 15/16, 20138 Milan, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council of Italy, via F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Luca Repetto
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Giuseppe Firpo
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Theodoros Karnavas
- Columbia University, Department of Genetics & Development, New York, 10032 United States
| | - Martin Gotte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Angelos Gritzapis
- Department of Breast Cancer Surgery, Hospital "Agios Savvas", Leoforos Alexandras Avenue, 171, 11522 Athens, Greece
| | - Marietta D'Albore
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Mostra D'Oltremare, Pad. 20, viale Kennedy 54, 80125 Naples, Italy
| | - Diego Repetto
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Denise Pezzuoli
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Ioannis Missitzis
- Department of Breast Cancer Surgery, Hospital "Agios Savvas", Leoforos Alexandras Avenue, 171, 11522 Athens, Greece
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Bertalot
- IEO, European Institute of Oncology IRCCS, via G Ripamonti, 435, 20141 Milan, Italy
| | - Gianfranco Bellipanni
- Center for Biotechnology, Sbarro Institute for Research and Molecular Medicine and Department of Biology, Temple University, Philadelphia 19122, United States
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council of Italy, via F.lli Cervi 93, 20090 Segrate, Milan, Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites & Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, viale Kennedy 54, 80125 Naples, Italy
| | - Ugo Valbusa
- Department of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Rolland A Reinbold
- Institute of Biomedical Technologies, National Research Council of Italy, via F.lli Cervi 93, 20090 Segrate, Milan, Italy
| |
Collapse
|
22
|
Zuppolini S, Cruz-Maya I, Guarino V, Borriello A. Optimization of Polydopamine Coatings onto Poly-ε-Caprolactone Electrospun Fibers for the Fabrication of Bio-Electroconductive Interfaces. J Funct Biomater 2020; 11:E19. [PMID: 32192126 PMCID: PMC7151565 DOI: 10.3390/jfb11010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/28/2023] Open
Abstract
In recent years, mussel adhesive proteins have attracted much attention because they can form strong adhesive interface interactions with various substrates in a wet environment. Inspired by their catechol- and amine-based molecular structure, polydopamine (PDA), a dopamine derived synthetic eumelanin polymer, was recognized as a suitable bio-interface coating. PDA was successfully used to improve adhesion due to the availability of copious functional groups for covalently immobilizing biomolecules and anchoring reactive species and ions. Recently, it has been demonstrated that PDA and its derivatives can be successfully used for the surface modification of implants interfaces to modulate in vitro cellular responses in order to enhance the in vivo functionality of biomedical implants (i.e., prosthesis). Herein, we propose the development of multifunctional scaffolds based on polyε-caprolactone (PCL) electrospun fibers coated with PDA via electro fluid dynamic methods, by optimizing polymerization/oxidation reactions capable of driving PDA self-assembly, and, ultimately, investigating the effects on cell response. Morphological analyses have confirmed the possibility to obtain different surface topographies as a function of the coating process while in vitro studies proved the ability of PDA coating to interact with cells no compromising in vitro viability. In perspective, in vitro conductive properties of fibers will be further investigated in order to validate their promising use as bioconductive interfaces for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB)—National Research Council of Italy, V.le Kennedy 54, 80125 Naples, Italy; (S.Z.); (I.C.-M.)
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB)—National Research Council of Italy, V.le Kennedy 54, 80125 Naples, Italy; (S.Z.); (I.C.-M.)
| |
Collapse
|
23
|
Wu S, Ahmad Z, Li JS, Chang MW. Fabrication of flexible composite drug films via foldable linkages using electrohydrodynamic printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110393. [DOI: 10.1016/j.msec.2019.110393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 11/25/2022]
|
24
|
Celebioglu A, Uyar T. Fast Dissolving Oral Drug Delivery System Based on Electrospun Nanofibrous Webs of Cyclodextrin/Ibuprofen Inclusion Complex Nanofibers. Mol Pharm 2019; 16:4387-4398. [PMID: 31436100 DOI: 10.1021/acs.molpharmaceut.9b00798] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, the polymer-free electrospinning was performed in order to produce cyclodextrin/ibuprofen inclusion complex nanofibers, which could have potential as the fast dissolving oral drug delivery system. Ibuprofen is a poorly water-soluble nonsteroidal anti-inflammatory drug; however, the water solubility of ibuprofen can be significantly enhanced by inclusion complexation with cyclodextrins. Here, hydroxypropyl-beta-cyclodextrin (HPβCyD) was chosen both as a nanofiber matrix and host molecule for inclusion complexation in order to enhance water solubility and fast dissolution of ibuprofen. Ibuprofen was inclusion-complexed with HPβCyD in highly concentrated aqueous solutions of HPβCyD (200%, w/v) having two different molar ratios: 1:1 and 2:1 (HPβCyD/ibuprofen). The HPβCyD/ibuprofen-IC (1:1) aqueous solution was turbid having some undissolved/uncomplexed ibuprofen, whereas HPβCyD/ibuprofen-IC (2:1) aqueous solution was homogeneous and clear, indicating that ibuprofen was totally complexed with HPβCyD and becomes water soluble. Then, both HPβCyD/ibuprofen-IC solutions (1:1 and 2:1) were electrospun into bead-free and uniform nanofibers having ∼200 nm fiber diameter. The electrospun HPβCyD/ibuprofen-IC nanofibers were obtained as nanofibrous webs having self-standing and flexible character, which is appropriate for fast dissolving oral drug delivery systems. Ibuprofen was completely preserved during the electrospinning process, and the resulting electrospun HPβCyD/ibuprofen-IC nanofibers were produced without any loss of ibuprofen by preserving the initial molar ratio of 1:1 and 2:1 (HPβCyD/ibuprofen). X-ray diffraction and differential scanning calorimetry measurements indicated the presence of some crystalline ibuprofen in HPβCyD/ibuprofen-IC (1:1) nanofibers, whereas ibuprofen was totally in the amorphous state in HPβCyD/ibuprofen-IC (2:1) nanofibers. Nonetheless, both HPβCyD/ibuprofen-IC (1:1 and 2:1) nanofibrous webs have shown very fast dissolving character when contacted with water or when wetted with artificial saliva. In brief, our results revealed that electrospun HPβCyD/ibuprofen-IC nanofibrous webs have potential as fast dissolving oral drug delivery systems.
Collapse
Affiliation(s)
- Asli Celebioglu
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| | - Tamer Uyar
- Department of Fiber Science & Apparel Design, College of Human Ecology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
25
|
Development of a poly(vinyl alcohol)/lysine electrospun membrane-based drug delivery system for improved skin regeneration. Int J Pharm 2019; 570:118640. [PMID: 31446025 DOI: 10.1016/j.ijpharm.2019.118640] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Nanofiber-based wound dressings are currently being explored as delivery systems of different biomolecules for avoiding skin infections as well as improve/accelerate the healing process. In the present work, a nanofibrous membrane composed of poly(vinyl alcohol) (PVA) and lysine (Lys) was produced by using the electrospinning technique. Further, anti-inflammatory (ibuprofen (IBP)) and antibacterial (lavender oil (LO)) agents were incorporated within the electrospun membrane through blend electrospinning and surface physical adsorption methods, respectively. The obtained results demonstrated that the PVA_Lys electrospun membranes incorporating IBP or LO displayed the suitable morphological, mechanical and biological properties for enhancing the wound healing process. Moreover, the controlled and sustained release profile attained for IBP was appropriate for the duration of the wound healing inflammatory phase, whereas the initial burst release of LO is crucial to prevent wound bacterial contamination. Indeed, the PVA_Lys_LO electrospun membranes were able to mediate a strong antibacterial activity against both S. aureus and P. aeruginosa, without compromising human fibroblasts viability. Overall, the gathered data emphasizes the potential of the PVA_Lys electrospun membranes-based drug delivery systems to be used as wound dressings.
Collapse
|
26
|
Hu Y, Wang J, Li X, Hu X, Zhou W, Dong X, Wang C, Yang Z, Binks BP. Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions. J Colloid Interface Sci 2019; 545:104-115. [DOI: 10.1016/j.jcis.2019.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 11/28/2022]
|
27
|
Wu S, Li JS, Mai J, Chang MW. Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24876-24885. [PMID: 29953813 DOI: 10.1021/acsami.8b08880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple method to rapidly customize and to also mass produce oral dosage forms is arguably a current bottleneck in the development of modern personalized medicine. Specifically, delayed-release mechanisms with well-controlled dosage profiles for combinations of traditional Chinese herbal extracts and Western medications are not well established. Herein, we demonstrate a novel multidrug-loaded membrane sandwich with structures infused with ibuprofen (IBU) and Ganoderma lucidum polysaccharide (GLP) using three-dimensional electrohydrodynamic printing and electrospinning techniques. The resulting flexible membrane consists of microscaled, multilayered cellulose acetate (CA) membranes loaded with IBU in the shape of either concentric squares or circles, as the top and bottom layers of a sandwich structure. In between the CA-IBU layers are randomly electrospun polyvinyl pyrrolidone (PVP) layers loaded with GLP. The complete fibrous membrane sandwich can be folded and embedded into a 0-size capsule to achieve oral compliance. Simulated in vitro testing of gastric and intestinal fluids demonstrated a triphasic release profile. There was an immediate release of GLP after gastric juices dissolved the capsule shell and the PVP, followed by the short-term release of 60% of the IBU within an hour afterward, and the remaining IBU was released in a sustained manner following a Fickian diffusion profile. In summary, this multidrug (both hydrophilic and/or hydrophobic) oral system with precision-designed structures should enable personalized therapeutic dosing.
Collapse
Affiliation(s)
| | | | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California , Los Angeles 90007 , California , United States
| | | |
Collapse
|
28
|
Fasolino I, Guarino V, Marrese M, Cirillo V, Vallifuoco M, Tamma ML, Vassallo V, Bracco A, Calise F, Ambrosio L. HepG2 and human healthy hepatocyte in vitro culture and co-culture in PCL electrospun platforms. ACTA ACUST UNITED AC 2017; 13:015017. [PMID: 28901955 DOI: 10.1088/1748-605x/aa8c51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of new drugs to treat pathological cells in the case of aggressive liver primary cancer is imposing the identification of high-throughput screening systems to predict the in vivo response of new therapeutic molecules, in order to reduce current use of animals and drug testing costs. Recently, micro/nanostructured scaffolds have been adopted to reproduce the hepatic microenvironment due to their higher similarity to the biological niche with respect to the traditional two-dimensional culture plate, so providing novel in vitro models for reliably understanding molecular mechanisms related to cancer cells activity. Herein, we propose the study of electrospun scaffolds made of polycaprolactone as in vitro model that can mimic the morphological organization of native extracellular matrix and the co-culture of hepatic cell lines-i.e., HepG2, human healthy hepatocytes (HHH). The micro- and nano-scale morphological features of fibers with diameter equal to (3.22 ± 0.42) μm and surface roughness of (17.84 ± 4.43) nm-allow the reproduction of the in vivo scenario influencing the adhesion and proliferation rate of the cultured cells. A much lower proliferation rate is observed for the HepG2 cells compared to the HHH cells, when cultured on the fibrous scaffolds over a time course of 4 weeks. Moreover, results on oxidative stress mechanisms indicate an antioxidant effect of fibers mainly in the case of co-colture, thus suggesting a promising use as new in vitro models to explore alternative therapeutic strategies in hepatocarcinoma treatment.
Collapse
Affiliation(s)
- I Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V. le Kennedy 54, I-80125, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guarino V, Cruz-Maya I, Altobelli R, Abdul Khodir WK, Ambrosio L, Alvarez Pèrez MA, Flores AA. Electrospun polycaprolactone nanofibres decorated by drug loaded chitosan nano-reservoirs for antibacterial treatments. NANOTECHNOLOGY 2017; 28:505103. [PMID: 29058684 DOI: 10.1088/1361-6528/aa9542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The main limitation of conventional antibiotic therapies concerns the low efficacy to fight bacteria attacks during long treatment times. In this context, the integrated use of electrofluidodynamics (EFDs)-basically electrospinning and electrospraying-may represent an interesting route for designing nanostructured platforms with controlled release to prevent the formation of bacterial biofilms in oral implant sites. They allow for the deposition of nanofibres and nanoparticles by different modes-i.e. sequential, simultaneous-for the fabrication of more efficacious systems in terms of degradation protection, pharmacokinetic control and drug distribution to the surrounding tissues. Herein, we will investigate EFDs processing modes and conditions to decorate polycaprolactone nanofibres surfaces by chitosan nano-reservoirs for the administration of Amoxicillin Trihydrate as an innovative antibacterial treatment of the periodontal pocket.
Collapse
Affiliation(s)
- Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, Naples, National Research Council of Italy, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Papa A, Guarino V, Cirillo V, Oliviero O, Ambrosio L. Optimization of Bicomponent Electrospun Fibers for Therapeutic Use: Post-Treatments to Improve Chemical and Biological Stability. J Funct Biomater 2017; 8:jfb8040047. [PMID: 29035303 PMCID: PMC5748554 DOI: 10.3390/jfb8040047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022] Open
Abstract
Bicomponent electrospun nanofibers based on the combination of synthetic (i.e., aliphatic polyesters such as polycaprolactone (PCL)) and natural proteins (i.e., gelatin) have been extensively investigated as temporary platforms to instruct cells by the release of molecular/pharmaceutical signals for the regeneration of several tissues. Here, water soluble proteins (i.e., gelatin), strictly embedded to PCL, act as carriers of bioactive molecules, thus improving bioavailability and supporting cell activities during in vitro regeneration. However, these proteins are rapidly digested by enzymes, locally produced by many different cell types, both in vitro and in vivo, with significant drawbacks in the control of molecular release. Hence, we have investigated three post-processing strategies based on the use of different crosslinking agents-(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (EDC), glyceraldehyde (GC), and 1,4-butanediol diglycidyl ether (BDDGE)-to delay the dissolution time of gelatin macromolecules from bicomponent fibers. All of the qualitative (i.e., SEM, TGA) and quantitative (i.e., Trinitrobenzene sulfonate (TNBS) and bicinchoninic acid (BCA) assays) morphological/chemical analyses as well as biocompatibility assays indicate that EDC crosslinking improves the chemical stability of bicomponent fibers at 37 °C and provides a more efficient encapsulation and controlled sustained release of drug, thus resulting in the best post-treatment to design bio-inspired fibrous platforms for the extended in vitro release of drugs.
Collapse
Affiliation(s)
- Antonio Papa
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V. le Kennedy 54, 80125 Naples, Italy.
- IMAST Scarl, P.za Bovio 22, 80133 Naples, Italy.
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V. le Kennedy 54, 80125 Naples, Italy.
| | - Valentina Cirillo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V. le Kennedy 54, 80125 Naples, Italy.
| | - Olimpia Oliviero
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V. le Kennedy 54, 80125 Naples, Italy.
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad. 20, V. le Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
31
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
32
|
Pires LR, Lopes CDF, Salvador D, Rocha DN, Pêgo AP. Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:157. [PMID: 28894995 DOI: 10.1007/s10856-017-5967-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
It is now widely accepted that a therapeutic strategy for spinal cord injury (SCI) demands a multi-target approach. Here we propose the use of an easily implantable bilayer polymeric patch based on poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) that combines physical guidance cues provided by electrospun aligned fibres and the delivery of ibuprofen, as a mean to reduce the inhibitory environment at the lesion site by taming RhoA activation. Bilayer patches comprised a solvent cast film onto which electrospun aligned fibres have been deposited. Both layers were loaded with ibuprofen. In vitro release (37°C, in phosphate buffered saline) of the drug from the loaded scaffolds under sink condition was found to occur in the first 24 h. The released ibuprofen was shown to retain its bioactivity, as indicated by the reduction of RhoA activation when the neuronal-like cell line ND7/23 was challenged with lysophosphatidic acid. Ibuprofen-loaded P(TMC-CL) bilayer scaffolds were successfully implanted in vivo in a dorsal hemisection rat SCI model mediating the reduction of RhoA activation after 5 days of implantation in comparison to plain P(TMC-CL) scaffolds. Immunohistochemical analysis of the tissue shows βIII tubulin positive cells close to the ibuprofen-loaded patches further supporting the use of this strategy in the context of regeneration after a lesion in the spinal cord.
Collapse
Affiliation(s)
- Liliana R Pires
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INL- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Cátia D F Lopes
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Daniela Salvador
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Daniela N Rocha
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS), Porto, Portugal.
- Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal.
| |
Collapse
|
33
|
Faccendini A, Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury. Pharmaceuticals (Basel) 2017; 10:ph10030063. [PMID: 28678209 PMCID: PMC5620607 DOI: 10.3390/ph10030063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/13/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
The complex pathophysiology of spinal cord injury (SCI) may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. A primary mechanical injury in the spinal cord triggers a cascade of secondary events, which are involved in SCI instauration and progression. The aim of the present review is to provide an overview of the therapeutic neuro-protective and neuro-regenerative approaches, which involve the use of nanofibers as local drug delivery systems. Drugs released by nanofibers aim at preventing the cascade of secondary damage (neuro-protection), whereas nanofibrous structures are intended to re-establish neuronal connectivity through axonal sprouting (neuro-regeneration) promotion, in order to achieve a rapid functional recovery of spinal cord.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | | | | | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|
34
|
Pastusiak M, Dobrzynski P, Kasperczyk J, Sobota M, Kaczmarczyk B, Janeczek H. Synthesis of trimethylene carbonate/ϵ
-caprolactone copolymers initiated with zinc alkoxide: influence of copolymer chain microstructure on thermal and mechanical properties. POLYM INT 2017. [DOI: 10.1002/pi.5379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malgorzata Pastusiak
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; Zabrze Poland
| | - Piotr Dobrzynski
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; Zabrze Poland
- Faculty of Mathematics and Natural Sciences; Jan Dlugosz University; Czestochowa Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; Zabrze Poland
- Department of Biopharmacy; Medical University of Silesia; Sosnowiec Poland
| | - Michal Sobota
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; Zabrze Poland
| | - Bozena Kaczmarczyk
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; Zabrze Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; Zabrze Poland
| |
Collapse
|
35
|
Torres-Giner S, Pérez-Masiá R, Lagaron JM. A review on electrospun polymer nanostructures as advanced bioactive platforms. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24274] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Rocío Pérez-Masiá
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| |
Collapse
|
36
|
Synthesis and Controlled Release Behavior of Biodegradable Polymers with Pendant Ibuprofen Group. INT J POLYM SCI 2016. [DOI: 10.1155/2016/5861419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The continuous use of nonsteroidal anti-inflammatory drugs such as ibuprofen frequently leads to some serious side-effects including stomach ulcers and bleeding. In this paper, two kinds of new biocompatible polyesters (PIGB, PIGH) and polyester-amide (PIGA) comprising biodegradable components (L-glutamic acid,1,4-butanediol, and1,6-hexanediol and6-amino hexanol) and ibuprofen as pendant group have been prepared by the melting polycondensation. The chemical structures of the monomer and polymers are characterized by FTIR,1H NMR spectrum, GPC, and contact angle measurements. The drug loading of ibuprofen reaches very high level (35–37%) for PIGB, PIGH, and PIGA carriers. The free ibuprofen molecules are releasedin vitrofrom polymer carriers in a controlled manner without a burst release, different from the release pattern observed in the other drug-encapsulated systems. It is also found that the different hydrophilicity among PIGB, PIGH, and PIGA plays a key role in the time-controlled release of ibuprofen. In addition, the viability of HeLa cells after 48 h of incubation reaches more than 100%, indicating no cytotoxicity for PIGB, PIGH, and PIGA carriers.
Collapse
|
37
|
Pires LR, Pêgo AP. Bridging the lesion-engineering a permissive substrate for nerve regeneration. Regen Biomater 2015; 2:203-14. [PMID: 26816642 PMCID: PMC4669012 DOI: 10.1093/rb/rbv012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/21/2015] [Accepted: 06/30/2015] [Indexed: 01/30/2023] Open
Abstract
Biomaterial-based strategies to restore connectivity after lesion at the spinal cord are focused on bridging the lesion and providing an favourable substrate and a path for axonal re-growth. Following spinal cord injury (SCI) a hostile environment for neuronal cell growth is established by the activation of multiple inhibitory mechanisms that hamper regeneration to occur. Implantable scaffolds can provide mechanical support and physical guidance for axon re-growth and, at the same time, contribute to alleviate the hostile environment by the in situ delivery of therapeutic molecules and/or relevant cells. Basic research on SCI has been contributing with the description of inhibitory mechanisms for regeneration as well as identifying drugs/molecules that can target inhibition. This knowledge is the background for the development of combined strategies with biomaterials. Additionally, scaffold design is significantly evolving. From the early simple hollow conduits, scaffolds with complex architectures that can modulate cell fate are currently being tested. A number of promising pre-clinical studies combining scaffolds, cells, drugs and/or nucleic acids are reported in the open literature. Overall, it is considered that to address the multi-factorial inhibitory environment of a SCI, a multifaceted therapeutic approach is imperative. The progress in the identification of molecules that target inhibition after SCI and its combination with scaffolds and/or cells are described and discussed in this review.
Collapse
Affiliation(s)
- Liliana R. Pires
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
| | - Ana P. Pêgo
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- Faculdade de Engenharia—Universidade do Porto (FEUP), Porto, Portugal and
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
Pires LR, Rocha DN, Ambrosio L, Pêgo AP. The role of the surface on microglia function: implications for central nervous system tissue engineering. J R Soc Interface 2015; 12:rsif.2014.1224. [PMID: 25540243 DOI: 10.1098/rsif.2014.1224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration.
Collapse
Affiliation(s)
- Liliana R Pires
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Daniela N Rocha
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Luigi Ambrosio
- Department of Chemical Sciences and Materials Technology, National Research Council of Italy, Rome, Italy
| | - Ana Paula Pêgo
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Rocha DN, Brites P, Fonseca C, Pêgo AP. Poly(trimethylene carbonate-co-ε-caprolactone) promotes axonal growth. PLoS One 2014; 9:e88593. [PMID: 24586346 PMCID: PMC3937290 DOI: 10.1371/journal.pone.0088593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 01/13/2014] [Indexed: 12/31/2022] Open
Abstract
Mammalian central nervous system (CNS) neurons do not regenerate after injury due to the inhibitory environment formed by the glial scar, largely constituted by myelin debris. The use of biomaterials to bridge the lesion area and the creation of an environment favoring axonal regeneration is an appealing approach, currently under investigation. This work aimed at assessing the suitability of three candidate polymers – poly(ε-caprolactone), poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) (11∶89 mol%) and poly(trimethylene carbonate) - with the final goal of using these materials in the development of conduits to promote spinal cord regeneration. Poly(L-lysine) (PLL) coated polymeric films were tested for neuronal cell adhesion and neurite outgrowth. At similar PLL film area coverage conditions, neuronal polarization and axonal elongation was significantly higher on P(TMC-CL) films. Furthermore, cortical neurons cultured on P(TMC-CL) were able to extend neurites even when seeded onto myelin. This effect was found to be mediated by the glycogen synthase kinase 3β (GSK3β) signaling pathway with impact on the collapsin response mediator protein 4 (CRMP4), suggesting that besides surface topography, nanomechanical properties were implicated in this process. The obtained results indicate P(TMC-CL) as a promising material for CNS regenerative applications as it promotes axonal growth, overcoming myelin inhibition.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Pedro Brites
- Nerve Regeneration Group, IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carlos Fonseca
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|