1
|
Xiao Y, Qu Y, Hu X, Zhao J, Xu S, Zheng L, Liang X. E7 peptide modified poly(ε-caprolactone)/silk fibroin/octacalcium phosphate nanofiber membranes with "recruitment-osteoinduction" potentials for effective guided bone regeneration. Int J Biol Macromol 2025; 305:140862. [PMID: 39952537 DOI: 10.1016/j.ijbiomac.2025.140862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Effective membranes that have the osteogneic potential and the ability to recruit osteoblast precursor cells challenged guided bone regeneration (GBR). Herein, we engineered multifunctional nanofiber membranes by using eletrospun poly(ε-caprolactone) (PCL) and silk fibroin (SF), incorporated with octacalcium phosphate (OCP) and BMSCs-affine peptide (E7) to form the PCL/SF/OCP/E7 (PSOE) nanofiber, wherein the E7 peptide enhances the enrichment of BMSCs, and OCP as osteogenesis promoter. The composite membranes enhance the recruitment and biomineralization processes essential for bone regeneration. Notably, the dual functionality of BMSC recruitment and osteoinduction provides a "recruitment-osteoinduction" strategy that significantly improves bone repair. In vitro analyses confirmed that the PSOE nanofibers have superior hydrophilicity and biocompatibility, and significantly upregulated the expression of osteogenic genes in mesenchymal stem cells, thereby facilitating osteogenic differentiation. In vivo studies using a rat tibial defect model revealed that PSOE nanofibers promoted bone repair within 8 weeks, as validated by micro-CT and histological evaluations. This study highlights the PSOE nanofiber's potential as a promising synthetic periosteum substitute for effective bone regeneration.
Collapse
Affiliation(s)
- Yuanming Xiao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Yangyang Qu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Xuankai Hu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Jinmin Zhao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Life Science Research Institute of Guangxi Medical University, Nanning, 530021, PR China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China.
| | - Xiaonan Liang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
2
|
He W, Ding F, Zhang L, Liu W. In situ osteogenic activation of mesenchymal stem cells by the blood clot biomimetic mechanical microenvironment. Nat Commun 2025; 16:1162. [PMID: 39880808 PMCID: PMC11779924 DOI: 10.1038/s41467-025-56513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation. To mimic this property, a viscoelastic peptide bionic hydrogel named BCgel was developed, featuring a nanofiber network, Itgb1 binding affinity, BC-like viscoelasticity, and biosafety. The anticipated efficacy of BCgel is demonstrated by its ability to induce nuclear translocation of Runx2 and promote bone regeneration in both in vitro experiments and in vivo bone defect models with blood clot defect, conducted on rats as well as beagles. This study offers insights into the mechano-transduction mechanisms of MSCs during osteogenesis and presents potential guidelines for the design of viscoelastic hydrogels in bone regenerative medicine.
Collapse
Affiliation(s)
- Wangxiao He
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| | - Fan Ding
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Liqiang Zhang
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
3
|
Teitelbaum M, Culbertson MD, Wetterstrand C, O’Connor JP. Impaired fracture healing is associated with callus chondro-osseous junction abnormalities in periostin-null and osteopontin-null mice. Exp Biol Med (Maywood) 2025; 249:10066. [PMID: 39911634 PMCID: PMC11794000 DOI: 10.3389/ebm.2024.10066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/22/2024] [Indexed: 02/07/2025] Open
Abstract
Periostin and osteopontin are matricellular proteins abundantly expressed in bone fracture callus. Null mutation of either the periostin (Postn) gene or the osteopontin (Spp1) gene can impair bone fracture healing. However, the cell and molecular pathways affected by loss of POSTN or SPP1 which lead to impaired fracture healing are not well understood. To identify potential pathways, a detailed radiological, histological, and immunohistochemical analysis of femur fracture healing in Postn-null (PostnKO), Spp1-null (Spp1KO), and normal (WT) mice was performed. Apparent changes in specific protein levels identified by immunohistochemistry were confirmed by mRNA quantitation. Comparisons between the PostnKO and Spp1KO fracture calluses were confounded by interactions between the two genes; loss of Postn reduced Spp1 expression and loss of Spp1 reduced Postn expression. Consequently, alterations in fracture healing between mice heterozygous for the Postn-null allele (PostnHET) as well as the PostnKO and Spp1KO mice were similar. Calluses from PostnHET, PostnKO, and Spp1KO mice all had dysmorphic chondro-osseous junctions and reduced numbers of osteoclasts. The dysmorphic chondro-osseous junctions in the PostnHET, PostnKO, and Spp1KO calluses were associated with reduced numbers of MMP-13 expressing hypertrophic chondrocytes, consistent with delayed cartilage resolution. Unlike collagen X expressing callus chondrocytes, chondrocytes only expressed MMP-13 when localized to the chondro-osseous junction or after traversing the chondro-osseous junction. Cyclooxygenase-2 (COX-2) expression also appeared to be reduced in osteoclasts from the PostnHET, PostnKO, and Spp1KO calluses, including in those osteoclasts localized at the chondro-osseous junction. The results indicate that POSTN and SPP1 are necessary for normal chondro-osseous junction formation and that signaling from the chondro-osseous junction, possibly from COX-2 expressing osteoclasts, regulates callus vasculogenesis and chondrocyte hypertrophy necessary for endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Marc Teitelbaum
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Rutgers-School of Graduate Studies, Newark Health Sciences Campus, Newark, NJ, United States
| | - Maya D. Culbertson
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Charlene Wetterstrand
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Rutgers-School of Graduate Studies, Newark Health Sciences Campus, Newark, NJ, United States
| |
Collapse
|
4
|
Zheng Y, Cong L, Zhao L, Wang P, Xing L, Liu J, Xu H, Li N, Zhao Y, Yuan L, Shi Q, Sun X, Liang Q, Wang Y. Lymphatic platelet thrombosis limits bone repair by precluding lymphatic transporting DAMPs. Nat Commun 2025; 16:829. [PMID: 39827193 PMCID: PMC11742876 DOI: 10.1038/s41467-025-56147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
In the musculoskeletal system, lymphatic vessels (LVs), which are interdigitated with blood vessels, travel and form an extensive transport network. Blood vessels in bone regulate osteogenesis and hematopoiesis, however, whether LVs in bone affect fracture healing is unclear. Here, we investigate the lymphatic draining function at the tibial fracture sites using near-infrared indocyanine green lymphatic imaging (NIR-ICG) and discover that lymphatic drainage insufficiency (LDI) starts on day one and persists for up to two weeks following the fracture in male mice. Sufficient lymphatic drainage facilitates fracture healing in male mice. Furthermore, we identify that lymphatic platelet thrombosis (LPT) blocks the draining lymphoid sinus and LVs, causes LDI, and inhibits fracture healing in male mice, which can be rescued by a blood thinner. Moreover, unblocked lymphatic drainage decreases neutrophils and increases M2-type macrophages of the hematoma niche to support osteoblast (OB) survival and bone marrow-derived mesenchymal stem cell (BMSC) proliferation via transporting damage-associated molecular patterns (DAMPs) in male rats. Lymphatic platelet thrombolysis also benefits senile fracture healing in female mice. These findings demonstrate that LPT limits bone regeneration by impeding lymphatic transporting DAMPs. Together, these findings represent a way forward in the treatment of bone repair.
Collapse
Affiliation(s)
- Yangkang Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Lin Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China.
| | - YongJun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
5
|
Ao Y, Guo Y, Zhang Y, Xie L, Xia R, Xu J, Shi M, Gao X, Yu X, Chen Z. Hypoxia-Mimicking Mediated Macrophage-Elimination of Erythrocytes Promotes Bone Regeneration via Regulating Integrin α vβ 3/Fe 2+-Glycolysis-Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403921. [PMID: 39352318 PMCID: PMC11615788 DOI: 10.1002/advs.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/20/2024] [Indexed: 12/06/2024]
Abstract
Erythrocytes are the dominant component of a blood clot in terms of volume and number. However, longstanding compacted erythrocytes in blood clots form a physical barrier and make fibrin mesh more anti-fibrinolytic, thus impeding infiltration of mesenchymal stem cells. The necrosis or lysis of erythrocytes that are not removed timely can also lead to the release of pro-inflammatory toxic metabolites, interfering with bone regeneration. Proper bio-elimination of erythrocytes is essential for an undisturbed bone regeneration process. Here, hypoxia-mimicking is applied to enhance macrophage-elimination of erythrocytes. The effect of macrophage-elimination of erythrocytes on the macrophage intracellular reaction, bone regenerative microenvironment, and bone regeneration outcome is investigated. Results show that the hypoxia-mimicking agent dimethyloxalylglycine successfully enhances erythrophagocytosis by macrophages in a dose-dependent manner primarily by up-regulating the expression of integrin αvβ3. Increased phagocytosed erythrocytes then regulate macrophage intracellular Fe2+-glycolysis-inflammation, creating an improved bone regenerative microenvironment characterized by loose fibrin meshes with down-regulated local inflammatory responses in vivo, thus effectively promoting early osteogenesis and ultimate bone generation. Modulating macrophage-elimination of erythrocytes can be a promising strategy for eradicating erythrocyte-caused bone regeneration hindrance and offers a new direction for advanced biomaterial development focusing on the bio-elimination of erythrocytes.
Collapse
Affiliation(s)
- Yong Ao
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Yuanlong Guo
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Yingye Zhang
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Lv Xie
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Ruidi Xia
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Jieyun Xu
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Mengru Shi
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Xiaomeng Gao
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Xiaoran Yu
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| | - Zetao Chen
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐sen UniversityGuangdong Research Center for Dental and Cranial Rehabilitation and Material EngineeringGuangzhou510055China
| |
Collapse
|
6
|
Padilla-Lopategui S, Ligorio C, Bu W, Yin C, Laurenza D, Redondo C, Owen R, Sun H, Rose FRAJ, Iskratsch T, Mata A. Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407156. [PMID: 39543808 DOI: 10.1002/adma.202407156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The immune system has evolved to heal small ruptures and fractures with remarkable efficacy through regulation of the regenerative hematoma (RH); a rich and dynamic environment that coordinates numerous molecular and cellular processes to achieve complete repair. Here, a biocooperative approach that harnesses endogenous molecules and natural healing to engineer personalized regenerative materials is presented. Peptide amphiphiles (PAs) are co-assembled with blood components during coagulation to engineer a living material that exhibits key compositional and structural properties of the RH. By exploiting non-selective and selective PA-blood interactions, the material can be immediately manipulated, mechanically-tuned, and 3D printed. The material preserves normal platelet behavior, generates and provides a continuous source of growth factors, and promotes in vitro growth of mesenchymal stromal cells, endothelial cells, and fibroblasts. Furthermore, using a personalized autologous approach to convert whole blood into PA-blood gel implants, bone regeneration is shown in a critical-sized rat calvarial defect. This study provides proof-of-concept for a biocooperative approach that goes beyond biomimicry by using mechanisms that Nature has evolved to heal as tools to engineer accessible, personalized, and regenerative biomaterials that can be readily formed at point of use.
Collapse
Affiliation(s)
- Soraya Padilla-Lopategui
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Cosimo Ligorio
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, NG7 2UH, UK
| | - Wenhuan Bu
- School of Stomatology, China Medical University, Shenyang, 110001, China
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Chengcheng Yin
- School of Stomatology, China Medical University, Shenyang, 110001, China
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Domenico Laurenza
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Carlos Redondo
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Robert Owen
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hongchen Sun
- School of Stomatology, China Medical University, Shenyang, 110001, China
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Felicity R A J Rose
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
7
|
Yusa Y, Shimizu Y, Hayashi M, Aizawa T, Nakahara T, Ueno T, Sato A, Miura C, Yamamoto A, Imai Y. Effect of hematoma on early degradation behavior of magnesium after implantation. Biomed Mater 2024; 19:055043. [PMID: 39151472 DOI: 10.1088/1748-605x/ad7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The corrosion of magnesium (Mg)-based bioabsorbable implanting devices is influenced by implantation environment which dynamically changes by biological response including wound healing. Understanding the corrosion mechanisms along the healing process is essential for the development of Mg-based devices. In this study, a hematoma model was created in a rat femur to analyze Mg corrosion with hematoma in the early stage of implantation. Pure Mg specimen (99.9%,ϕ1.2 × 6 mm) was implanted in rat femur under either hematoma or non-hematoma conditions. After a designated period of implantation, the specimens were collected and weighed. The insoluble salts formed on the specimen surfaces were analyzed using scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Raman spectroscopy on days 1, 3, and 7. The results indicate that hematomas promote Mg corrosion and change the insoluble salt precipitation. The weight loss of the hematoma group (27.31 ± 5.91 µg mm-2) was significantly larger than that of the non-hematoma group (14.77 ± 3.28 µg mm-2) on day 7. In the non-hematoma group, carbonate and phosphate were detected even on day 1, but the only latter was detected on day 7. In the hematoma group, hydroxide was detected on day 1, followed by the formation of carbonate and phosphate on days 3 and 7. The obtained results suggest the hypoxic and acidic microenvironment in hematomas accelerates the Mg corrosion immediately after implantation, and the subsequent hematoma resorption process leads to the formation of phosphate and carbonate with organic molecules. This study revealed the risk of hematomas as an acceleration factor of the corrosion of Mg-based devices leading to the early implant failure. It is important to consider this risk in the design of Mg-based devices and to optimize surgical procedures controlling hemorrhage at implantation and reducing unexpected bleeding after surgery.
Collapse
Affiliation(s)
- Yu Yusa
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshinaka Shimizu
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Masanobu Hayashi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takayuki Aizawa
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Nakahara
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Takahiro Ueno
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Akimitsu Sato
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Chieko Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akiko Yamamoto
- Research Center for Functional Materials, National Institute for Materials Sciences, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
8
|
Gangrade A, Zehtabi F, Rashad A, Haghniaz R, Falcone N, Mandal K, Khosravi S, Deka S, Yamauchi A, Voskanian L, Kim HJ, Ermis M, Khademhosseini A, de Barros NR. Nanobioactive Blood-Derived Shear-Thinning Biomaterial for Tissue Engineering Applications. APPLIED MATERIALS TODAY 2024; 38:102250. [PMID: 39006868 PMCID: PMC11242922 DOI: 10.1016/j.apmt.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The conventional technique for successful bone grafts, involving the use of a patienťs own tissue (autografts), is challenged by limited availability and donor site morbidity. While allografts and xenografts offer alternatives, they come with the risk of rejection. This underscores the pressing need for tailor-made artificial bone graft materials. In this context, injectable hydrogels are emerging as a promising solution for bone regeneration, especially in complex maxillofacial reconstruction cases. These hydrogels can seamlessly adapt to irregular shapes and conservatively fill defects. Our study introduces a shear-thinning biomaterial by blending silicate nanoplatelets (SNs) enriched with human blood-derived plasma rich in growth factors (PRGF) for personalized applications. Notably, our investigations unveil that injectable hydrogel formulations comprising 7.5% PRGF yield sustained protein and growth factor release, affording precise control over critical growth factors essential for tissue regeneration. Moreover, our hydrogel exhibits exceptional biocompatibility in vitro and in vivo and demonstrates hemostatic properties. The hydrogel also presents a robust angiogenic potential and an inherent capacity to promote bone differentiation, proven through Alizarin Red staining, gene expression, and immunostaining assessments of bone-related biomarkers. Given these impressive attributes, our hydrogel stands out as a leading candidate for maxillofacial bone regeneration application. Beyond this, our findings hold immense potential in revolutionizing the field of regenerative medicine, offering an influential platform for crafting precise and effective therapeutic strategies.
Collapse
Affiliation(s)
- Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Sangeeta Deka
- Indian Institute of Technology Guwahati, Assam, India, Pin-781039
| | - Alana Yamauchi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- College of Pharmacy, Korea University, 30019, Republic of Korea
- Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
9
|
Jang HJ, Yoon JK. The Role of Vasculature and Angiogenic Strategies in Bone Regeneration. Biomimetics (Basel) 2024; 9:75. [PMID: 38392121 PMCID: PMC10887147 DOI: 10.3390/biomimetics9020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Bone regeneration is a complex process that involves various growth factors, cell types, and extracellular matrix components. A crucial aspect of this process is the formation of a vascular network, which provides essential nutrients and oxygen and promotes osteogenesis by interacting with bone tissue. This review provides a comprehensive discussion of the critical role of vasculature in bone regeneration and the applications of angiogenic strategies, from conventional to cutting-edge methodologies. Recent research has shifted towards innovative bone tissue engineering strategies that integrate vascularized bone complexes, recognizing the significant role of vasculature in bone regeneration. The article begins by examining the role of angiogenesis in bone regeneration. It then introduces various in vitro and in vivo applications that have achieved accelerated bone regeneration through angiogenesis to highlight recent advances in bone tissue engineering. This review also identifies remaining challenges and outlines future directions for research in vascularized bone regeneration.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Zhao S, Qiao Z, Pfeifer R, Pape HC, Mao K, Tang H, Meng B, Chen S, Liu H. Modulation of fracture healing by senescence-associated secretory phenotype (SASP): a narrative review of the current literature. Eur J Med Res 2024; 29:38. [PMID: 38195489 PMCID: PMC10775505 DOI: 10.1186/s40001-023-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.
Collapse
Affiliation(s)
- Shangkun Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Qiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Roman Pfeifer
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital of Zurich, Zurich, 8091, China
| | - Keya Mao
- Chinese PLA General Hospital Beijing, Beijing, 100853, China
| | - Hai Tang
- Beijing Friendship Hospital, Beijing, 100050, China
| | - Bin Meng
- First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Songfeng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Dang Y, Zhang Y, Jian M, Luo P, Anwar N, Ma Y, Zhang D, Wang X. Advances of Blood Coagulation Factor XIII in Bone Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:591-604. [PMID: 37166415 DOI: 10.1089/ten.teb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biologic process of bone healing is complicated, involving a variety of cells, cytokines, and growth factors. As a result of bone damage, the activation of a clotting cascade leads to hematoma with a high osteogenic potential in the initial stages of healing. A major factor involved in this course of events is clotting factor XIII (FXIII), which can regulate bone defect repair in different ways during various stages of healing. Autografts and allografts often have defects in clinical practice, making the development of advanced materials that support bone regeneration a critical requirement. Few studies, however, have examined the promotion of bone healing by FXIII in combination with biomaterials, in particular, its effect on blood coagulation and osteogenesis. Therefore, we mainly summarized the role of FXIII in promoting bone regeneration by regulating the extracellular matrix and type I collagen, bone-related cells, angiogenesis, and platelets, and described the research progress of FXIII = related biomaterials on osteogenesis. This review provides a reference for investigators to explore the mechanism by which FXIII promotes bone healing and the combination of FXIII with biomaterials to achieve targeted bone tissue repair.
Collapse
Affiliation(s)
- Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Minghui Jian
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Peng Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Tissue Engineering, The Fourth Military Medical University, Xian, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Ma C, Wang T, Jin X, Zhang W, Lv Q. Lineage-specific multifunctional double-layer scaffold accelerates the integrated regeneration of cartilage and subchondral bone. Mater Today Bio 2023; 23:100800. [PMID: 37766897 PMCID: PMC10520449 DOI: 10.1016/j.mtbio.2023.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Repairing cartilage/subchondral bone defects that involve subchondral bone is a major challenge in clinical practice. Overall, the integrated repair of the structure and function of the osteochondral (OC) unit is very important. Some studies have demonstrated that the differentiation of cartilage is significantly enhanced by reducing the intake of nutrients such as lipids. This study demonstrates that using starvation can effectively optimize the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs). A hyaluronic acid (HA)-based hydrogel containing starved BMSCs-EVs displayed continuous release for more than 3 weeks and significantly promoted the proliferation and biosynthesis of chondrocytes around the defect regulated by the forkhead-box class O (FOXO) pathway. When combined with vascular inhibitors, the hydrogel inhibited cartilage hypertrophy and facilitated the regeneration of hyaline cartilage. A porous methacrylate gelatine (GelMA)-based hydrogel containing calcium salt loaded with thrombin rapidly promoted haematoma formation upon contact with the bone marrow cavity to quickly block the pores and prevent the blood vessels in the bone marrow cavity from invading the cartilage layer. Furthermore, the haematoma could be used as nutrients to accelerate bone survival. The in vivo experiments demonstrated that the multifunctional lineage-specific hydrogel promoted the integrated regeneration of cartilage/subchondral bone. Thus, this hydrogel may represent a new strategy for osteochondral regeneration and repair.
Collapse
Affiliation(s)
- Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Tao Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Xinmeng Jin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Wanglin Zhang
- Department of Orthopaedics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
13
|
Gu F, Zhang K, Zhu WA, Sui Z, Li J, Xie X, Yu T. Silicone rubber sealed channel induced self-healing of large bone defects: Where is the limit of self-healing of bone? J Orthop Translat 2023; 43:21-35. [PMID: 37965195 PMCID: PMC10641457 DOI: 10.1016/j.jot.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background Large defects of long tubular bones due to severe trauma, bone tumor resection, or osteomyelitis debridement are challenging in orthopedics. Bone non-union and other complications often lead to serious consequences. At present, autologous bone graft is still the gold standard for the treatment of large bone defects. However, autologous bone graft sources are limited. Silicon rubber (SR) materials are widely used in biomedical fields, due to their safety and biocompatibility, and even shown to induce nerve regeneration. Materials and methods We extracted rat bone marrow mesenchymal stem cells (BMMSCs) in vitro and verified the biocompatibility of silicone rubber through cell experiments. Then we designed a rabbit radius critical sized bone defect model to verify the effect of silicone rubber sealed channel inducing bone repair in vivo. Results SR sealed channel could prevent the fibrous tissue from entering the fracture end and forming bone nonunion, thereby inducing self-healing of long tubular bone through endochondral osteogenesis. The hematoma tissue formed in the early stage was rich in osteogenesis and angiogenesis related proteins, and gradually turned into vascularization and endochondral osteogenesis, and finally realized bone regeneration. Conclusions In summary, our study proved that SR sealed channel could prevent the fibrous tissue from entering the fracture end and induce self-healing of long tubular bone through endochondral osteogenesis. In this process, the sealed environment provided by the SR channel was key, and this might indicate that the limit of self-healing of bone exceeded the previously thought. The translational potential of this article This study investigated a new concept to induce the self-healing of large bone defects. It could avoid trauma caused by autologous bone extraction and possible rejection reactions caused by bone graft materials. Further research based on this study, including the innovation of induction materials, might invent a new type of bone inducing production, which could bring convenience to patients. We believed that this study had significant meaning for the treatment of large bone defects in clinical practice.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Wan-an Zhu
- Department of Radiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
14
|
Glatt V, Tetsworth K. Biomimetic Hematoma as a Novel Delivery Vehicle for rhBMP-2 to Potentiate the Healing of Nonunions and Bone Defects. J Orthop Trauma 2023; 37:S33-S39. [PMID: 37828700 DOI: 10.1097/bot.0000000000002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
SUMMARY The management of bone defects and nonunions creates unique clinical challenges. Current treatment alternatives are often insufficient and frequently require multiple surgeries. One promising option is bone morphogenetic protein-2 (BMP-2), which is the most potent inducer of osteogenesis. However, its use is associated with many side effects, related to the delivery and high doses necessary. To address this need, we developed an ex vivo biomimetic hematoma (BH), replicating naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin. It is an autologous carrier able to deliver reduced doses of rhBMP-2 to enhance bone healing for complex fractures. More than 50 challenging cases involving recalcitrant nonunions and bone defects have already been treated using the BH delivering reduced doses of rhBMP-2, to evaluate both the safety and efficacy. Preliminary data suggest the BH is currently the only clinically used carrier able to effectively deliver reduced doses (∼70% less) of rhBMP-2 with high efficiency, rapidly and robustly initiating the bone repair cascade to successfully reconstruct complex bone injuries without side effects. The presented case provides a clear demonstration of this technology's ability to significantly alter the clinical outcome in extremely challenging scenarios where other treatment options have failed or are considered unsuitable. A favorable safety profile would portend considerable promise for BH as an alternative to bone grafts and substitutes. Although further studies regarding its clinical efficacy are still warranted, this novel approach nevertheless has tremendous potential as a favorable treatment option for bone defects, open fractures, and recalcitrant nonunions.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio, TX
- Orthopaedic Research Centre of Australia, Brisbane, Queensland, Australia
| | - Kevin Tetsworth
- Orthopaedic Research Centre of Australia, Brisbane, Queensland, Australia
- Department of Orthopaedic Surgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Herston Biofabrication Institute, Orthopaedic Clinical Stream, Herston, Queensland, Australia
| |
Collapse
|
15
|
Hilliard RL, Livesey MA, De Gasperi D. Repair of femoral fractures in calves via external skeletal fixator with intramedullary pin tie-in. Vet Surg 2023; 52:1091-1099. [PMID: 37462353 DOI: 10.1111/vsu.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 11/05/2023]
Abstract
OBJECTIVE To describe the success rate and associated complications of external skeletal fixator/intramedullary pin tie-in for calf femoral fracture fixation. STUDY DESIGN Clinical retrospective. ANIMALS Ten calves, less than 30 days old, with diaphyseal/metaphyseal femoral fractures. METHODS Medical records were reviewed from the University of Wisconsin from 2000 to 2020. Fractures were repaired using open reduction and fixation. An intramedullary Steinman pin was placed, exiting near the greater trochanter, and utilized for fracture reduction. Bicortical transfixation pins were placed distal and proximal to the fracture site. Poly(methyl methacrylate) (PMMA)-filled tubing connected the transfixation pins and proximal intramedullary pin, creating a Type 1a external skeletal fixator (ESF) tie-in. Follow up was obtained via medical records and phone interviews. RESULTS Short-term survival rate was 7/10 (70%). Postanesthetic death occurred once. Postoperative complications occurred in all remaining cases. The most common findings were transfixation pin tract lucency and lameness (6/9 cases), implant dysfunction (5/9 cases), and infection (4/9 cases). Three of five cases with long-term follow up survived; all went on to productive careers. CONCLUSION Although patients were prone to postoperative complications, short-term survival was comparable to previous reports. CLINICAL SIGNIFICANCE The external skeletal fixator/intramedullary (ESF/IM) pin tie-in is less expensive and offers comparable success rates to other methods, providing a lower cost option for calf femoral fracture repair.
Collapse
Affiliation(s)
- Rachel L Hilliard
- University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Michael A Livesey
- University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Diego De Gasperi
- University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, USA
- University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| |
Collapse
|
16
|
Yang J, Zhang L, Ding Q, Zhang S, Sun S, Liu W, Liu J, Han X, Ding C. Flavonoid-Loaded Biomaterials in Bone Defect Repair. Molecules 2023; 28:6888. [PMID: 37836731 PMCID: PMC10574214 DOI: 10.3390/molecules28196888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Skeletons play an important role in the human body, and can form gaps of varying sizes once damaged. Bone defect healing involves a series of complex physiological processes and requires ideal bone defect implants to accelerate bone defect healing. Traditional grafts are often accompanied by issues such as insufficient donors and disease transmission, while some bone defect implants are made of natural and synthetic polymers, which have characteristics such as good porosity, mechanical properties, high drug loading efficiency, biocompatibility and biodegradability. However, their antibacterial, antioxidant, anti-inflammatory and bone repair promoting abilities are limited. Flavonoids are natural compounds with various biological activities, such as antitumor, anti-inflammatory and analgesic. Their good anti-inflammatory, antibacterial and antioxidant activities make them beneficial for the treatment of bone defects. Several researchers have designed different types of flavonoid-loaded polymer implants for bone defects. These implants have good biocompatibility, and they can effectively promote the expression of angiogenesis factors such as VEGF and CD31, promote angiogenesis, regulate signaling pathways such as Wnt, p38, AKT, Erk and increase the levels of osteogenesis-related factors such as Runx-2, OCN, OPN significantly to accelerate the process of bone defect healing. This article reviews the effectiveness and mechanism of biomaterials loaded with flavonoids in the treatment of bone defects. Flavonoid-loaded biomaterials can effectively promote bone defect repair, but we still need to improve the overall performance of flavonoid-loaded bone repair biomaterials to improve the bioavailability of flavonoids and provide more possibilities for bone defect repair.
Collapse
Affiliation(s)
- Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
| | - Wencong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (J.Y.); (L.Z.); (Q.D.); (S.Z.); (S.S.); (W.L.)
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Jinhui Liu
- Huashikang (Shenyang) Health Industrial Group Corporation, Shenyang 110031, China;
| | - Xiao Han
- Looking Up Starry Sky Medical Research Center, Siping 136001, China;
| | - Chuanbo Ding
- Jilin Agriculture Science and Technology College, Jilin 132101, China
| |
Collapse
|
17
|
Laubach M, Bessot A, McGovern J, Saifzadeh S, Gospos J, Segina DN, Kobbe P, Hildebrand F, Wille ML, Bock N, Hutmacher DW. An in vivo study to investigate an original intramedullary bone graft harvesting technology. Eur J Med Res 2023; 28:349. [PMID: 37715198 PMCID: PMC10503043 DOI: 10.1186/s40001-023-01328-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Harvesting bone graft (BG) from the intramedullary canal to treat bone defects is largely conducted using the Reamer-Irrigator-Aspirator (RIA) system. The RIA system uses irrigation fluid during harvesting, which may result in washout of osteoinductive factors. Here, we propose a new harvesting technology dedicated to improving BG collection without the potential washout effect of osteoinductive factors associated with irrigation fluid. This novel technology involves the conceptual approach of first aspirating the bone marrow (BM) with a novel aspirator prototype, followed by reaming with standard reamers and collecting the bone chips with the aspirator (reaming-aspiration method, R-A method). The aim of this study was to assess the harvesting efficacy and osteoinductive profile of the BG harvested with RIA 2 system (RIA 2 group) compared to the novel harvesting concept (aspirator + R-A method, ARA group). METHODS Pre-planning computed tomography (CT) imaging was conducted on 16 sheep to determine the femoral isthmus canal diameter. In this non-recovery study, sheep were divided into two groups: RIA 2 group (n = 8) and ARA group (n = 8). We measured BG weight collected from left femur and determined femoral cortical bone volume reduction in postoperative CT imaging. Growth factor and inflammatory cytokine amounts of the BGs were quantified using enzyme-linked immunosorbent assay (ELISA) methods. RESULTS The use of the stand-alone novel aspirator in BM collection, and in harvesting BG when the aspirator is used in conjunction with sequential reaming (R-A method) was proven feasible. ELISA results showed that the collected BG contained relevant amounts of growth factors and inflammatory cytokines in both the RIA 2 and the ARA group. CONCLUSIONS Here, we present the first results of an innovative concept for harvesting intramedullary BG. It is a prototype of a novel aspirator technology that enables the stepwise harvesting of first BM and subsequent bone chips from the intramedullary canal of long bones. Both the BG collected with the RIA 2 system and the aspirator prototype had the capacity to preserve the BG's osteoinductive microenvironment. Future in vivo studies are required to confirm the bone regenerative capacity of BG harvested with the innovative harvesting technology.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Agathe Bessot
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
| | - Jacqui McGovern
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Siamak Saifzadeh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, 4032, Australia
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Daniel N Segina
- Department of Orthopaedics, Holmes Regional Trauma Center, Melbourne, FL, USA
| | - Philipp Kobbe
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost, Halle, Germany
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Halle, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marie-Luise Wille
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
18
|
Bianconi S, Oliveira KMC, Klein KL, Wolf J, Schaible A, Schröder K, Barker J, Marzi I, Leppik L, Henrich D. Pretreatment of Mesenchymal Stem Cells with Electrical Stimulation as a Strategy to Improve Bone Tissue Engineering Outcomes. Cells 2023; 12:2151. [PMID: 37681884 PMCID: PMC10487010 DOI: 10.3390/cells12172151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Electrical stimulation (EStim), whether used alone or in combination with bone tissue engineering (BTE) approaches, has been shown to promote bone healing. In our previous in vitro studies, mesenchymal stem cells (MSCs) were exposed to EStim and a sustained, long-lasting increase in osteogenic activity was observed. Based on these findings, we hypothesized that pretreating MSC with EStim, in 2D or 3D cultures, before using them to treat large bone defects would improve BTE treatments. Critical size femur defects were created in 120 Sprague-Dawley rats and treated with scaffold granules seeded with MSCs that were pre-exposed or not (control group) to EStim 1 h/day for 7 days in 2D (MSCs alone) or 3D culture (MSCs + scaffolds). Bone healing was assessed at 1, 4, and 8 weeks post-surgery. In all groups, the percentage of new bone increased, while fibrous tissue and CD68+ cell count decreased over time. However, these and other healing features, like mineral density, bending stiffness, the amount of new bone and cartilage, and the gene expression of osteogenic markers, did not significantly differ between groups. Based on these findings, it appears that the bone healing environment could counteract the long-term, pro-osteogenic effects of EStim seen in our in vitro studies. Thus, EStim seems to be more effective when administered directly and continuously at the defect site during bone healing, as indicated by our previous studies.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Karla M. C. Oliveira
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Kari-Leticia Klein
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Jakob Wolf
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Katrin Schröder
- Vascular Research Centre, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - John Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Liudmila Leppik
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| |
Collapse
|
19
|
Sheng XQ, Yang Y, Ding C, Wang BY, Hong Y, Meng Y, Liu H. Uncovertebral Joint Fusion Versus End Plate Space Fusion in Anterior Cervical Spine Surgery: A Prospective Randomized Controlled Trial. J Bone Joint Surg Am 2023; 105:1168-1174. [PMID: 37228228 DOI: 10.2106/jbjs.22.01375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND The uncovertebral joint is a potential region for anterior cervical fusion. Currently, we are aware of no clinical trials on human uncovertebral joint fusion (UJF). The purpose of this study was to compare the time it took to achieve osseous union/fusion and the clinical efficacy of UJF to end plate space fusion (ESF)-i.e., traditional anterior cervical discectomy and fusion (ACDF)-in anterior cervical surgery. METHODS Patients with single-level cervical spondylosis were recruited from April 2021 through October 2022 and randomly divided into the UJF and ESF groups, with 40 patients in each group. Autologous iliac bone was used for bone grafting in both groups. The primary outcome was the early fusion rate at 3 months postoperatively. Secondary outcomes included the prevalence of complications and patient-reported outcome measures (PROMs), including the Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI), and visual analog scale (VAS) scores for arm and neck pain. RESULTS A total of 74 patients (92.5%) with an average age of 49.8 years (range, 26 to 65 years) completed the trial and were included in the analysis. There was no significant difference between the 2 groups at baseline. The operative duration and intraoperative blood loss were also comparable between the 2 groups. The fusion rate in the UJF group was significantly higher than that in the ESF group at 3 months (66.7% compared with 13.2%, p < 0.0001) and 6 months (94.1% compared with 66.7%, p = 0.006) after the operation. No significant difference was found in the fusion rate between the 2 groups 12 months postoperatively. Overall, the PROMs significantly improved after surgery in both groups and did not differ significantly between the groups at any follow-up time point. The prevalence of complications was not significantly different between the 2 groups. CONCLUSIONS In our study of anterior cervical fusion surgery, we found that the early fusion rate after UJF was significantly higher than that after ESF. LEVEL OF EVIDENCE Therapeutic Level I . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Xia-Qing Sheng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chen Ding
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bei-Yu Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying Hong
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Anesthesia and Operation Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yang Meng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hao Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Woloszyk A, Aguilar L, Perez L, Salinas EL, Glatt V. Biomimetic hematoma delivers an ultra-low dose of rhBMP-2 to successfully regenerate large femoral bone defects in rats. BIOMATERIALS ADVANCES 2023; 148:213366. [PMID: 36905826 DOI: 10.1016/j.bioadv.2023.213366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Successful repair of large bone defects remains a clinical challenge. Following fractures, a bridging hematoma immediately forms as a crucial step that initiates bone healing. In larger bone defects the micro-architecture and biological properties of this hematoma are compromised, and spontaneous union cannot occur. To address this need, we developed an ex vivo Biomimetic Hematoma that resembles naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin, as an autologous delivery vehicle for a very reduced dose of rhBMP-2. When implanted into a rat femoral large defect model, complete and consistent bone regeneration with superior bone quality was achieved with 10-20× less rhBMP-2 compared to that required with the collagen sponges currently used. Moreover, calcium and rhBMP-2 demonstrated a synergistic effect enhancing osteogenic differentiation, and fully restored mechanical strength 8 weeks after surgery. Collectively, these findings suggest the Biomimetic Hematoma provides a natural reservoir for rhBMP-2, and that retention of the protein within the scaffold rather than its sustained release might be responsible for more robust and rapid bone healing. Clinically, this new implant, using FDA-approved components, would not only reduce the risk of adverse events associated with BMPs, but also decrease treatment costs and nonunion rates.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Emily L Salinas
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
21
|
Shim DW, Hong H, Cho KC, Kim SH, Lee JW, Sung SY. Accelerated tibia fracture healing in traumatic brain injury in accordance with increased hematoma formation. BMC Musculoskelet Disord 2022; 23:1110. [PMID: 36539743 PMCID: PMC9764518 DOI: 10.1186/s12891-022-06063-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) has been known to accelerate bone healing. Many cells and molecules have been investigated but the exact mechanism is still unknown. The neuroinflammatory state of TBI has been reported recently. We aimed to investigate the effect of TBI on fracture healing in patients with tibia fractures and assess whether the factors associated with hematoma formation changed more significantly in the laboratory tests in the fractures accompanied with TBI. METHODS We retrospectively investigated patients who were surgically treated for tibia fractures and who showed secondary bone healing. Patients with and without TBI were divided for comparative analyses. Radiological parameters were time to callus formation and the largest callus ratio during follow-up. Preoperative levels of complete blood count and chemical battery on admission were measured in all patients. Subgroup division regarding age, gender, open fracture, concomitant fracture and severity of TBI were compared. RESULTS We included 48 patients with a mean age of 44.9 (range, 17-78), of whom 35 patients (72.9%) were male. There were 12 patients with TBI (Group 1) and 36 patients without TBI (Group 2). Group 1 showed shorter time to callus formation (P < 0.001), thicker callus ratio (P = 0.015), leukocytosis and lymphocytosis (P ≤ 0.028), and lower red blood cell counts (RBCs), hemoglobin, and hematocrit (P < 0.001). Aging and severity of TBI were correlated with time to callus formation and callus ratio (P ≤ 0.003) while gender, open fracture, and concomitant fracture were unremarkable. CONCLUSION Tibia fractures with TBI showed accelerated bone healing and superior measurements associated with hematoma formation (lymphocytes, RBCs, hemoglobin, hematocrit). Promoted fracture healing in TBI was correlated with the enhanced proinflammatory state. LEVEL OF EVIDENCE III, case control study.
Collapse
Affiliation(s)
- Dong Woo Shim
- grid.496063.eDepartment of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon, 22711 South Korea
| | - Hyunjoo Hong
- Department of Radiology, Severance Health Check-up, 10, Tongil-ro, Jung-gu, Seoul, Republic of Korea
| | - Kwang-Chun Cho
- grid.15444.300000 0004 0470 5454Department of Neurosurgery, Yongin Severance Hospital, Yonsei University College of Medicine, Severance Hospital 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do Republic of Korea
| | - Se Hwa Kim
- grid.496063.eDepartment of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon, 22711 South Korea
| | - Jin Woo Lee
- grid.415562.10000 0004 0636 3064Department of Orthopaedic Surgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 South Korea
| | - Seung-Yong Sung
- grid.496063.eDepartment of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon, 22711 South Korea
| |
Collapse
|
22
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Lu H, Xiao L, Wang W, Li X, Ma Y, Zhang Y, Wang X. Fibrinolysis Regulation: A Promising Approach to Promote Osteogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1192-1208. [PMID: 35442086 DOI: 10.1089/ten.teb.2021.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soon after bone fracture, the initiation of the coagulation cascade results in the formation of a blood clot, which acts as a natural material to facilitate cell migration and osteogenic differentiation at the fracture site. The existence of hematoma is important in early stage of bone healing, but the persistence of hematoma is considered harmful for bone regeneration. Fibrinolysis is recently regarded as a period of critical transition in angiogenic-osteogenic coupling, it thereby is vital for the complete healing of the bone. Moreover, the enhanced fibrinolysis is proposed to boost bone regeneration through promoting the formation of blood vessels, and fibrinolysis system as well as the products of fibrinolysis also play crucial roles in the bone healing process. Therefore, the purpose of this review is to elucidate the fibrinolysis-derived effects on osteogenesis and summarize the potential approaches-improving bone healing by regulating fibrinolysis, with the purpose to further understand the integral roles of fibrinolysis in bone regeneration and to provide theoretical knowledge for potential fibrinolysis-related osteogenesis strategies. Impact statement Fibrinolysis emerging as a new and viable therapeutic intervention to be contained within osteogenesis strategies, however to now, there have been no review articles which collates the information between fibrinolysis and osteogenesis. This review, therefore, focusses on the effects that fibrinolysis exerts on bone healing, with a purpose to provide theoretical reference to develop new strategies to modulate fibrinolysis to accelerate fibrinolysis thus enhancing bone healing.
Collapse
Affiliation(s)
- Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuyan Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
25
|
Liu X, Yin M, Li Y, Wang J, Da J, Liu Z, Zhang K, Liu L, Zhang W, Wang P, Jin H, Zhang B. Genipin modified lyophilized platelet-rich fibrin scaffold for sustained release of growth factors to promote bone regeneration. Front Physiol 2022; 13:1007692. [PMID: 36246111 PMCID: PMC9561255 DOI: 10.3389/fphys.2022.1007692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Lyophilized platelet-rich fibrin (L-PRF) was shown to further activate resident platelets in platelet-rich fibrin causing a higher amount of growth factors release. However, it still required further experimental studies to resolve the uncontrolled degradation and burst release problem. In this study, the nature crosslinker genipin is introduced to improve the performance of L-PRF scaffold. We used a series of gradient concentration genipin solutions to react with L-PRF. The crosslinking degree, micro morphology, mean pore size, water absorption and mechanical properties of the crosslinked scaffold were evaluated. In order to study the effect of genipin modification on the release kinetics of growth factors from L-PRF, we detected the release of platelet-derived growth factor, vascular endothelial growth factor and transforming growth factor in vitro by ELISA. To investigate the biodegradability of the crosslinked L-PRF in vivo, the scaffolds were transplanted subcutaneously into backs of rats, and the materials were recovered at 1, 2 and 4 weeks after implantation. The biodegradation, inflammatory reaction and biocompatibility of the scaffolds were examined by histological staining. Finally, the genipin crosslinked/uncrosslinked L- Platelet-rich fibrin scaffolds were implanted with freshly prepared SHED cell sheets into rat critical size calvarial defects and the skull samples were recovered to examine the treatment efficacy of genipin crosslinked L-PRF by histologic and radiographic approaches. Results of this study indicated that genipin can be used to modify L-PRF at room temperature at a very low concentration. Genipin-modified L-PRF shows better biomechanical performance, slower biodegradation, good bioavailable and sustained release of growth factors. The 0.01% w/v and 0.1% w/v genipin crosslinked L-PRF have good porous structure and significantly promote cell proliferation and enhance the expression of key genes in osteogenesis in vitro, and work best in promoting bone regeneration in vivo.
Collapse
Affiliation(s)
- Xiaoyao Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingjing Yin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongshuang Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peijun Wang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Han Jin, ; Bin Zhang,
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- *Correspondence: Han Jin, ; Bin Zhang,
| |
Collapse
|
26
|
Woloszyk A, Tuong ZK, Perez L, Aguilar L, Bankole AI, Evans CH, Glatt V. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. BIOMATERIALS ADVANCES 2022; 139:213027. [PMID: 35882120 DOI: 10.1016/j.bioadv.2022.213027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, QLD, Australia; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Abraham I Bankole
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester 55902, MN, USA.
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
27
|
Tiedemann K, Tsao S, Komarova SV. Platelets and osteoblasts: secretome connections. Am J Physiol Cell Physiol 2022; 323:C347-C353. [PMID: 35675640 DOI: 10.1152/ajpcell.00187.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Megakaryocyte hyperplasia associated with myeloproliferative neoplasms commonly leads to abnormal bone tissue deposition in the bone marrow, known as osteosclerosis. In this study, we aimed to synthesize the known proteomics literature describing factors released by megakaryocytes and platelets and to examine if any of the secreted factors have a known ability to stimulate the bone-forming cells, osteoblasts. Using a systematic search of Medline, we identified 77 articles reporting on factors secreted by platelets and megakaryocytes. After a full-text screening and analysis of the studies, we selected seven papers that reported proteomics data for factors secreted by platelets from healthy individuals. From 60 proteins reported in at least two studies, we focused on 23 that contained a putative signal peptide, which we searched for a potential osteoblast-stimulatory function. From nine proteins with a positive effect on osteoblast formation and function, two extracellular matrix (ECM) proteins, secreted protein acidic and rich in cysteine (SPARC) and tissue inhibitor of metalloproteinase-1 (TIMP1), and three cellular proteins with known extracellular function, the 70-kDa heat shock protein (HSP70), thymosin-β4 (TB4), and super dismutase (SOD), were identified as hypothetical candidate molecules to be examined as potential mediators in mouse models of osteomyelofibrosis. Thus, careful analysis of prior literature can be beneficial in assisting the planning of future experimental studies.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Serena Tsao
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Roohani I, Yeo GC, Mithieux SM, Weiss AS. Emerging concepts in bone repair and the premise of soft materials. Curr Opin Biotechnol 2021; 74:220-229. [PMID: 34974211 DOI: 10.1016/j.copbio.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
Human bone has a strong regenerative capacity that allows for restoration of its function and structure after damage. For degenerative bone diseases or large defects, bone regeneration requirements exceed the natural potential for self-healing, so bone grafts or bone substitute materials are required to support the regeneration of bone tissue. Compared to the plethora of endogenous bioactive molecules and cells in native bone grafts, the regenerative capacity of tissue-engineered materials is limited. The modest clinical impact of tissue-engineered strategies in this domain can be attributed to a failure to fully recognize key physical and biological events during bone healing, and to recapitulate the structure and composition of the target tissue to generate truly biomimetic grafts. This limitation has motivated the emergence of new strategies such as immunomodulation, endochondral ossification routes, engineered microtissues and hematoma regulation, and the development of advanced biomaterials including gene-activated matrices, soft microgels and hierarchically designed materials.
Collapse
Affiliation(s)
- Iman Roohani
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Charles Perkins Centre D17, University of Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Chitosan coatings with distinct innate immune bioactivities differentially stimulate angiogenesis, osteogenesis and chondrogenesis in poly-caprolactone scaffolds with controlled interconnecting pore size. Bioact Mater 2021; 10:430-442. [PMID: 34901558 PMCID: PMC8636821 DOI: 10.1016/j.bioactmat.2021.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
This study tested whether osseous integration into poly (ε-caprolactone) (PCL) bioplastic scaffolds with fully-interconnecting 155 ± 8 μm pores is enhanced by an adhesive, non-inflammatory 99% degree of deacetylation (DDA) chitosan coating (99-PCL), or further incorporation of pro-inflammatory 83% DDA chitosan microparticles (83-99-PCL) to accelerate angiogenesis. New Zealand White rabbit osteochondral knee defects were press-fit with PCL, 99-PCL, 83-99-PCL, or allowed to bleed (drill-only). Between day 1 and 6 weeks of repair, drill-only defects repaired by endochondral ossification, with an 8-fold higher bone volume fraction (BVF) versus initial defects, compared to a 2-fold (99-PCL), 1.1-fold (PCL), or 0.4-fold (83-99-PCL) change in BVF. Hematoma innate immune cells swarmed to 83-99-PCL, elicited angiogenesis throughout the pores and induced slight bone resorption. PCL and 99-PCL pores were variably filled with cartilage or avascular mesenchyme near the bone plate, or angiogenic mesenchyme into which repairing trabecular bone infiltrated up to 1 mm deep. More repair cartilage covered the 99-PCL scaffold (65%) than PCL (18%) or 83-99-PCL (0%) (p < 0.005). We report the novel finding that non-inflammatory chitosan coatings promoted cartilage infiltration into and over a bioplastic scaffold, and were compatible with trabecular bone integration. This study also revealed that in vitro osteogenesis assays have limited ability to predict osseous integration into porous scaffolds, because (1) in vivo, woven bone integrates from the leading edge of regenerating trabecular bone and not from mesenchymal cells adhering to scaffold surfaces, and (2) bioactive coatings that attract inflammatory cells induce bone resorption. Porous polycaprolactone scaffolds elicited drawn-out osteochondral wound repair. Regenerating trabecular bone only infiltrated angiogenic mesenchyme free of inflammatory cells. 83% DDA chitosan stimulated sterile inflammatory angiogenesis and trabecular bone resorption. 99% DDA chitosan coatings promoted chondrogenesis inside and over the PCL articular surface.
Collapse
|
30
|
Pliszczak-Król A, Kiełbowicz Z, Król J, Antończyk A, Gemra M, Skrzypczak P, Prządka P, Zalewski D, Bieżyński J, Nicpoń J. Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells-Evaluation of the Animal Model. MATERIALS 2021; 14:ma14226934. [PMID: 34832335 PMCID: PMC8622787 DOI: 10.3390/ma14226934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Implantation of composite scaffolds could be potentially associated with the risk of hemostatic disturbances in a recipient. However, there is a lack of information on possible alterations in clotting mechanisms resulting from such a procedure. The aim of the present work was to investigate changes in hemostatic parameters in sheep implanted with a scaffold composed of poly(ε-caprolactone) and hydroxyapatite and tricalcium phosphate (9:4.5:4.5), settled previously with mesenchymal stem cells stimulated by fibroblast growth factor-2 and bone morphogenetic protein-2. Nine Merino sheep were examined for 7 days, and measurements of clotting times (PT, aPTT), activities of antithrombin, protein C and clotting factors II-XII, and concentrations of fibrinogen and D-dimer were carried out before and 1 h, 24 h, 3 days and 7 days after scaffold implantation. The introduction of scaffold initially resulted in a slowdown of the clotting processes (most evident 24 h after surgery); PT and aPTT increased to 14.8 s and 33.9 s, respectively. From the third day onwards, most of these alterations began to return to normal values. The concentration of fibrinogen rose throughout the observation period (up to 8.4 g/L), mirroring the ongoing inflammatory reaction. However, no signals of significant disturbances in hemostatic processes were detected in the sheep tested.
Collapse
Affiliation(s)
- Aleksandra Pliszczak-Król
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-6-6409-2994
| | - Zdzisław Kiełbowicz
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Jarosław Król
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Agnieszka Antończyk
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Marianna Gemra
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Piotr Skrzypczak
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Przemysław Prządka
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Dariusz Zalewski
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Janusz Bieżyński
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| | - Jakub Nicpoń
- Department and Clinic of Surgery, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (Z.K.); (A.A.); (P.S.); (P.P.); (J.B.); (J.N.)
| |
Collapse
|
31
|
Gao X, Cheng H, Sun X, Lu A, Ruzbarsky JJ, Wang B, Huard J. Comparison of Autologous Blood Clots with Fibrin Sealant as Scaffolds for Promoting Human Muscle-Derived Stem Cell-Mediated Bone Regeneration. Biomedicines 2021; 9:biomedicines9080983. [PMID: 34440188 PMCID: PMC8391974 DOI: 10.3390/biomedicines9080983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background. Fibrin sealant has been used as a scaffold to deliver genetically modified human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs for bone regeneration. Methods. In vitro osteogenic differentiation was performed using 3D pellet culture and evaluated using microCT and Von Kossa staining. The lenti-GFP transduced cells were then mixed with human blood for evaluation of osteogenic differentiation. Furthermore, a murine critical- sized calvarial defect model was utilized to compare BC and FS scaffolds for lenti-BMP2/GFP-transduced hMDSCs mediated bone regeneration and evaluated with micro-CT and histology. Results. Lenti-BMP2/GFP transduced hMDSCs formed significantly larger mineralized pellets than non-transduced hMDSCs. hMDSCs within the human blood clot migrated out and differentiated into ALP+ osteoblasts. In vivo, BC resulted in significantly less new bone formation within a critical-sized calvarial bone defect than FS scaffold, despite no difference observed for GFP+ donor cells, osteoclasts, and osteoblasts in the newly formed bone. Conclusions. Human lenti-BMP2/GFP-transduced hMDSCs can efficiently undergo osteogenic differentiation in vitro. Unexpectedly, the newly regenerated bone in BC group was significantly less than the FS group. The autologous blood clot scaffold is less efficacious for delivering stem cells for bone regeneration than fibrin sealant.
Collapse
Affiliation(s)
- Xueqin Gao
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (X.G.); (A.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | - Xuying Sun
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | - Aiping Lu
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (X.G.); (A.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
| | | | - Bing Wang
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15140, USA;
- Department of Medicine, Division of Cardiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15140, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15140, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (X.G.); (A.L.)
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.C.); (X.S.)
- Correspondence:
| |
Collapse
|
32
|
Shen YW, Yang Y, Liu H, Wu TK, Ma LT, Chen L, Hu LY, Ding C, Rong X, Wang BY, Meng Y, Hong Y. Preliminary results in anterior cervical discectomy and fusion with the uncovertebral joint fusion cage in a goat model. BMC Musculoskelet Disord 2021; 22:628. [PMID: 34273965 PMCID: PMC8286593 DOI: 10.1186/s12891-021-04412-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023] Open
Abstract
Objective To preliminarily evaluate the safety and efficacy of the uncovertebral joint fusion cage in a goat model of cervical spine interbody fusion. Methods Twenty-four healthy adult goats were randomly assigned to one of the two following groups: Group A, goats were implanted with an uncovertebral joint fusion cage combined with a local autograft and Group B, goats were implanted with a non-profile cage filled with a local autograft. The goats were prospectively evaluated for 24 weeks and then were sacrificed for evaluation. X-rays, CT and micro-CT scanning, and undecalcified bone histological analysis were used for the evaluation of fusion. Results 75.0% (9/12) of the goats in Group A were evaluated as having fusion at 12 weeks, compared to 41.7% (5/12) in Group B. 83.3% (10/12) of the goats in Group A were evaluated as having fusion at 24 weeks compared to 58.3% (7/12) in Group B. The fusion grading scores in Group A were significantly higher than that in Group B both at 12 weeks and 24 weeks (P < 0.05). Micro-CT scanning and undecalcified bone histological analysis showed that new bone formation can be obviously found in the bilateral uncovertebral joint. The bone volume fraction (BV/ TV) in Group A (23.59 ± 4.43%) was significantly higher than Group B (16.16 ± 4.21%), with P < 0.05. Conclusions Preliminary results of this study demonstrated that uncovertebral joint fusion cage is effective for achieving early bone formation and fusion without increase of serious complications.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Yi Yang
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Hao Liu
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
| | - Ting-Kui Wu
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Li-Tai Ma
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Lin Chen
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Ling-Yun Hu
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Chen Ding
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Xin Rong
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Bei-Yu Wang
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Yang Meng
- Department of Orthopedic surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| | - Ying Hong
- Department of Operation Room and Anesthesia Center, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China
| |
Collapse
|
33
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
34
|
Cheng L, Chen Z, Cai Z, Zhao J, Lu M, Liang J, Wang F, Qi J, Cui W, Deng L. Bioinspired Functional Black Phosphorus Electrospun Fibers Achieving Recruitment and Biomineralization for Staged Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005433. [PMID: 33230977 DOI: 10.1002/smll.202005433] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/29/2020] [Indexed: 05/18/2023]
Abstract
The ideal bone repair material should firstly recognize and recruit osteoblast precursor cells to initiate the repair process, then promote the differentiation of osteoblasts and accelerate the mineralization of the extracellular matrix (ECM). Here, a bioinspired staged bone regeneration strategy which loads bone morphogenetic protein2 (BMP2 )-modified black phosphorus (BP@BMP2 ) nanosheets to a polylactic acid (PLLA) electrospun fibrous scaffold, with a combination of recruiting osteoblast precursor cells and biomineralization properties for bone regeneration, is constructed successfully by micro-sol electrospinning technique. BP, acting as carriers, can not only provide a negative surface and a strong BMP2 loading ability but can also promote biomineralization in a 3D manner on the electrospun fibrous scaffold, while the BMP2 is to target osteoblast precursor cells for recruitment and osteogenesis differentiation, which endows BP@BMP2 nanosheets with staged bone regeneration ability. Furthermore, the in vitro and in vivo data showed that the BP@BMP2 loaded electrospun fibrous scaffold have good biocompatibility and a strong osteogenesis ability resulting in rapid new bone tissue regeneration. Altogether, this newly developed bioinspired BMP2 -modified BP electrospun fiber with staged bone regeneration properties via recruiting osteoblast precursor cells to the bone injured site and accelerating biomineralization can be a promising approach in physiologic bone repair.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhijie Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jing Liang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jin Qi
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
35
|
Yang Y, Xiao Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv Healthc Mater 2020; 9:e2000726. [PMID: 32691989 DOI: 10.1002/adhm.202000726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Blood coagulation in tissue healing not only prevents blood loss, but also forms a natural scaffold for tissue repair and regeneration. As blood clot formation is the initial and foremost phase upon bone injury, and the quality of blood clot (hematoma) orchestrates the following inflammatory and cellular processes as well as the subsequent callus formation and bone remodeling process. Inspired by the natural healing hematoma, tissue-engineered biomimic scaffold/hydrogels and blood prefabrication strategies attract significant interests in developing functional bone substitutes. The alteration of the fracture hematoma ca significantly accelerate or impair the overall bone healing process. This review summarizes the impact of biomaterials on blood coagulation and provides evidence on fibrin network structure, growth factors, and biomolecules that contribute to bone healing within the hematoma. The aim is to provide insights into the development of novel implant and bone biomaterials for enhanced osteogenesis. Advances in the understanding of biomaterial characteristics (e.g., morphology, chemistry, wettability, and protein adsorption) and their effect on hematoma properties are highlighted. Emphasizing the importance of the initial healing phase of the hematoma endows the design of advanced biomaterials with the desired regulatory properties for optimal coagulation and hematoma properties, thereby facilitating enhanced osteogenesis and ideal therapeutic effects.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
36
|
Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers (Basel) 2020; 12:polym12092112. [PMID: 32957433 PMCID: PMC7570389 DOI: 10.3390/polym12092112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
This research endeavor aims to develop polyvinyl alcohol (PVA) based films capable of blends with silver nanoparticles (Ag-NPs) for improved antibacterial properties and good mechanical strength to widen its scope in the field of wound dressing and bandages. This study reports synthesis of propylamine-substituted PVA (PA-PVA), Ag-NPs via chemical and green methods (starch capping) and their blended films in various proportions. Employment of starch-capped Ag-NPs as nanofillers into PVA films has substantially improved the above-mentioned properties in the ensuing nanocomposites. Synthesis of PA-PVA, starch-capped Ag-NPs and blended films were well corroborated with UV/Vis spectroscopy, FTIR, NMR, XRD and SEM analysis. Synthesized Ag-NPs were of particle shape and have an average size 20 nm and 40 nm via green and chemical synthesis, respectively. The successful blending of Ag-NPs was yielded up to five weight per weight into PA-PVA film as beyond this self-agglomeration of Ag-NPs was observed. Antibacterial assay has shown good antimicrobial activities by five weight per weight Ag-NPs(G)-encapsulated into PA-PVA blended film, i.e., 13 mm zone inhibition against Escherichia coli and 11 mm zone inhibition against Staphylococcus aureus. Physical strength was measured in the terms of young's modulus via tensile stress-strain curves of blended films. The five weight per weight Ag-NPs(G)/PA-PVA blend film showed maximum tensile strength 168.2 MPa while three weight per weight Ag-NPs(G)/PVA blend film showed highest values for ultimate strain 297.0%. Ag-NPs embedment into PA-PVA was resulted in strong and ductile film blend than pristine PA-PVA film due to an increase in hydrogen bonding. These good results of five weight per weight Ag-NPs(G)/PA-PVA product make it a potent candidate for wound dressing application in physically active body areas.
Collapse
|
37
|
Covani U, Giammarinaro E, Marconcini S. Alveolar socket remodeling: The tug-of-war model. Med Hypotheses 2020; 142:109746. [DOI: 10.1016/j.mehy.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
|
38
|
Vallittu PK, Posti JP, Piitulainen JM, Serlo W, Määttä JA, Heino TJ, Pagliari S, Syrjänen SM, Forte G. Biomaterial and implant induced ossification: in vitro and in vivo findings. J Tissue Eng Regen Med 2020; 14:1157-1168. [PMID: 32415757 PMCID: PMC7496445 DOI: 10.1002/term.3056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Material-induced ossification is suggested as a suitable approach to heal large bone defects. Fiber-reinforced composite-bioactive glasses (FRC-BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC-BG implant in vivo from the perspective of material-induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly-formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC-BG, we cultured human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2 O3 control. AD-MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro-osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC-BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC-BG implant demonstrated material-induced ossification both in vitro and in vivo.
Collapse
Affiliation(s)
- Pekka K. Vallittu
- Department of Biomaterials ScienceInstitute of Dentistry, University of Turku and City of Turku, Welfare DivisionTurkuFinland
| | - Jussi P. Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku Brain Injury CentreTurku University Hospital and University of TurkuTurkuFinland
| | - Jaakko M. Piitulainen
- Division of Surgery and Cancer Diseases, Department of Otorhinolaryngology ‐ Head and Neck Surgery, Turku University HospitalTurku Finland and University of TurkuTurkuFinland
| | - Willy Serlo
- PEDEGO Research Unit, University of Oulu, Oulu, Finland and Department of Children and AdolescentsOulu University HospitalOuluFinland
| | | | | | - Stefania Pagliari
- International Clinical Research Center of St. Anne's University Hospital BrnoBrnoCzech Republic
| | - Stina M. Syrjänen
- Department of Oral Pathology and Radiology, Institute of DentistryUniversity of TurkuTurkuFinland
| | - Giancarlo Forte
- International Clinical Research Center of St. Anne's University Hospital BrnoBrnoCzech Republic
| |
Collapse
|
39
|
Charbonnier B, Manassero M, Bourguignon M, Decambron A, El-Hafci H, Morin C, Leon D, Bensidoum M, Corsia S, Petite H, Marchat D, Potier E. Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites. Acta Biomater 2020; 109:254-266. [PMID: 32194263 DOI: 10.1016/j.actbio.2020.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triply-periodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro- to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants. STATEMENT OF SIGNIFICANCE: Architectural features are known to be key parameters for successful bone repair using synthetic bioceramic bone graft. So far, conventional manufacturing techniques, lacking reproducibility and complete control of the implant macro-architecture, impeded the exploration of complex architectures, such as triply periodic minimal surfaces (TPMS), which are foreseen to have an unrivaled potential for bone repair. Using a new additive manufacturing process, macroporous TPMS-based bioceramics implants were produced in calcium phosphate, characterized and implanted in a femoral defect in rats. The results showed, for the first time, that such macroporous implants can be successfully implanted in anatomical load-bearing sites when a cortical-like outer shell is added. This outer shell also concentrated new bone formation in the implant center, without affecting new bone quantity or maturity.
Collapse
|
40
|
Lee KH, Lee SM, Kim SW, Park KJ, Lee JH. Minimization of skin incision at preauricular sinusectomy using a trans pit approach. Int J Pediatr Otorhinolaryngol 2020; 132:109903. [PMID: 32014737 DOI: 10.1016/j.ijporl.2020.109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/07/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND We introduced a surgical procedure which includes a simple sinusectomy without opening the sinus whilst attempting to minimize the skin incision. METHODS A total of 34 patients with preauricular sinus were treated. In six patients, this technique was performed bilaterally, so a total of 40 ears were enrolled and analyzed for recurrence rate and surgical outcome in retrospective observational study. A database was created which included patient age, the preoperative and postoperative incision size, suture materials used, and complications. Incisional size according to the previous infection condition and incision and drainage (I & D) history were analyzed. RESULTS The mean initial skin incision length was 0.75 ± 0.40 cm and mean incision length after skin suture was 0.81 ± 0.42 cm. The young group under 10 years of age had a mean initial skin incision length of 0.56 ± 0.06 cm, and mean incision length after skin suture was 0.58 ± 0.08 cm. Suture materials were Nylon 6-0 for 14 ears, Nylon 7-0 for 20 ears, and Nylon 8-0 for 6 ears. The incidence of minor complications (immediate wound dehiscence, wound opening at a previous I & D region, keloid formation) was 7.5%. CONCLUSION Our method overcomes potential problems with esthetics in addition to reducing the recurrence rates of preauricular sinusectomy. With our technique, minimization of skin incision length is possible without the risk of recurrence. The use of fine suture materials and not using drainage avoids additional skin trauma.
Collapse
Affiliation(s)
- Kang Hyun Lee
- Department of Otorhinolaryngology and Head and neck Surgery, Chucheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea
| | - Sung Min Lee
- Department of Otorhinolaryngology and Head and neck Surgery, Chucheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea
| | - Sang Wook Kim
- Department of Otorhinolaryngology and Head and neck Surgery, Chucheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea
| | - Ki Joon Park
- Department of Otorhinolaryngology and Head and neck Surgery, Chucheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology and Head and neck Surgery, Chucheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon, Republic of Korea; Department of Otorhinolaryngology and Head and neck Surgery, Hangang Sacred Heart Hospital, Hallym University Medical Center, Seoul, Republic of Korea; Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea.
| |
Collapse
|
41
|
Sciatic Nerve Palsy following Curved Periacetabular Osteotomy. Case Rep Orthop 2020; 2020:8569285. [PMID: 32257486 PMCID: PMC7106866 DOI: 10.1155/2020/8569285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Curved periacetabular osteotomy (CPO) is used for the treatment of dysplastic hips. Previous studies have reported satisfying outcomes and low rate of severe complications associated with this procedure; however, no case of postoperative sciatic nerve palsy has been reported. In this study, we describe a case of postoperative sciatic nerve palsy following CPO due to nerve strangulation by scar tissue without direct injury. A female patient had severe buttock pain and posterior leg numbness after she underwent left-side CPO. Postoperative magnetic resonance imaging showed that the sciatic nerve was strangulated by the surrounding soft tissue. There was no bone fragment, active infection, bone necrosis, tumor, or spine disease. Therefore, we diagnosed nerve palsy by soft tissue strangulation, and revision surgery was indicated. During revision surgery, the sciatic nerve was observed to be strangulated by the scarring soft tissue, and the nerve had no mobility. After detachment, the pain and numbness disappeared. Direct injury of the sciatic nerve should not be caused by CPO; however, there is a possibility of postoperative sciatic nerve palsy due to the scarring soft tissue. Early diagnosis and appropriate treatment are important for optimal postoperative clinical outcomes.
Collapse
|
42
|
Do the Fibrin Scaffold and Growth Factors in Platelet-Rich Fibrin Play the Most Vital Roles in Bone Regeneration? A Critical Comment. J Craniofac Surg 2019; 30:1923-1926. [DOI: 10.1097/scs.0000000000005487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Lu J, Wang QY, Sheng JG. Exosomes in the Repair of Bone Defects: Next-Generation Therapeutic Tools for the Treatment of Nonunion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1983131. [PMID: 31467871 PMCID: PMC6699293 DOI: 10.1155/2019/1983131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Nonunion with bone defects, a common complication after long bone fracture, is a major challenge for orthopaedic surgeons worldwide because of the high incidence rate and difficulties in achieving successful treatment. Bone defects are the main complications of nonunion. The conventional biological treatments for nonunion with bone defects involve the use of autologous bone grafts or bone graft substitutes and cell-based therapy. Traditional nonunion treatments have always been associated with safety issues and various other complications. Bone grafts have limited autologous cancellous bone and there is a risk of infection. Additionally, problems with bone graft substitutes, including rejection and stimulation of bone formation, have been noted, and the health of the stem cell niche is a major consideration in cell-based therapy. In recent years, researchers have found that exosomes can be used to deliver functional RNA and mediate cell-to-cell communication, suggesting that exosomes may repair bone defects by regulating cells and cytokines involved in bone metabolism. In this review, we highlight the possible relationships between risk factors for nonunion and exosomes. Additionally, we discuss the roles of exosomes in bone metabolism and bone regeneration.
Collapse
Affiliation(s)
- Jian Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Qi-Yang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jia-Gen Sheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
44
|
Pazarçeviren AE, Evis Z, Keskin D, Tezcaner A. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Biomed Mater 2019; 14:035018. [DOI: 10.1088/1748-605x/ab007b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Ma Y, Zhou Y, Wu F, Ji W, Zhang J, Wang X. The Bidirectional Interactions Between Inflammation and Coagulation in Fracture Hematoma. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:46-54. [PMID: 30129875 DOI: 10.1089/ten.teb.2018.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPACT STATEMENT The review leads to better understanding of the interrelation between inflammation mediators and coagulation factors in the early fracture hematoma, and their influences on hematoma formation in the beginning of fracture healing. Furthermore, development of therapies aimed at simultaneous modulation of both coagulation factors and inflammation factors that affect hematoma structure, rather than specific factors, may be most promising.
Collapse
Affiliation(s)
- Yaping Ma
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,2 Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi, China
| | - Yinghong Zhou
- 3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fujun Wu
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenjun Ji
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- 1 Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,2 Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JCMR-ZMU & URMC), Zunyi Medical University, Zunyi, China.,3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
46
|
Influence of Absorbable Calcium Sulfate-Based Bone Substitute Materials on Human Haemostasis-In Vitro Biological Behavior of Antibiotic Loaded Implants. MATERIALS 2018; 11:ma11060935. [PMID: 29865173 PMCID: PMC6025628 DOI: 10.3390/ma11060935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/16/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Calcium sulfate (CS) formulations are frequently implanted as antibiotically impregnated bone substitutes in orthopedic and trauma surgery to prevent or treat bone infections. Calcium ions have been discussed as candidates to accelerate blood coagulation. The goal of this study is to evaluate substance-specific influences of CS formulations on blood coagulation. Specific ELISAs were conducted to determine markers of activated blood coagulation after incubation of human blood with CS beads. Additionally, wettability with freshly drawn human blood was measured. Three different types of CS bone substitute beads were compared (CS dihydrate with tripalmitin, containing Gentamicin (Herafill®-G: Group A) or Vancomycin (CaSO₄-V: Group B); and a CS hemihydrate with Tobramycin (Osteoset®: Group C)). Examinations were performed by ELISA assays for F1+2, FXIIa and C3a. Our results prove that none of the CS preparations accelerated single specific assays for activated coagulation markers. This allows the conclusion that neither Herafill®-G (CaSO₄-G) nor CaSO₄-V alter haemostasis negatively. Blood samples incubated with Osteoset® display an elevated F1+2-activity. The addition of tripalmitin in Herafill®-G shifts the original into a significantly hydrophobic formulation. This was additionally proven by contact angle examination of the three substances with freshly drawn human blood, showing that acceleration of plasmatic coagulation is hindered by lipids and induced by surface effects caused by presence of rapidly soluble calcium ions in the Osteoset® preparation.
Collapse
|