1
|
Wang Y, Jan H, Zhong Z, Zhou L, Teng K, Chen Y, Xu J, Xie D, Chen D, Xu J, Qin L, Tuan RS, Li ZA. Multiscale metal-based nanocomposites for bone and joint disease therapies. Mater Today Bio 2025; 32:101773. [PMID: 40290898 PMCID: PMC12033929 DOI: 10.1016/j.mtbio.2025.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Bone and joint diseases are debilitating conditions that can result in significant functional impairment or even permanent disability. Multiscale metal-based nanocomposites, which integrate hierarchical structures ranging from the nanoscale to the macroscale, have emerged as a promising solution to this challenge. These materials combine the unique properties of metal-based nanoparticles (MNPs), such as enzyme-like activities, stimuli responsiveness, and photothermal conversion, with advanced manufacturing techniques, such as 3D printing and biohybrid systems. The integration of MNPs within polymer or ceramic matrices offers a degree of control over the mechanical strength, antimicrobial efficacy, and the manner of drug delivery, whilst concomitantly promoting the processes of osteogenesis and chondrogenesis. This review highlights breakthroughs in stimulus-responsive MNPs (e.g., photo-, magnetically-, or pH-activated systems) for on-demand therapy and their integration with biocomposite hybrids containing cells or extracellular vesicles to mimic the native tissue microenvironment. The applications of these composites are extensive, ranging from bone defects, infections, tumors, to degenerative joint diseases. The review emphasizes the enhanced load-bearing capacity, bioactivity, and tissue integration that can be achieved through hierarchical designs. Notwithstanding the potential of these applications, significant barriers to progress persist, including challenges related to long-term biocompatibility, regulatory hurdles, and scalable manufacturing. Finally, we propose future directions, including machine learning-guided design and patient-specific biomanufacturing to accelerate clinical translation. Multiscale metal-based nanocomposites, which bridge nanoscale innovations with macroscale functionality, are a revolutionary force in the field of biomedical engineering, providing personalized regenerative solutions for bone and joint diseases.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hasnain Jan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Zheng Zhong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Liangbin Zhou
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Kexin Teng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Ye Chen
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Dexin Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Jiake Xu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Zhong Alan Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, NT, Hong Kong Special Administrative Region of China
| |
Collapse
|
2
|
Allafchian AR, Mousavi SF, Bashari H, Jalali SAH, Mohammadinezhad R. Extracted of polysaccharides from the roots of Eremurus persicus bioss plant / polyvinyl alcohol: Design and characterization of cellular scaffold for cell culture applications. Int J Biol Macromol 2025; 306:141360. [PMID: 39986524 DOI: 10.1016/j.ijbiomac.2025.141360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Biomaterial-based cell scaffolds are one of the interesting cases in tissue engineering. It provides a substrate for repairing and growing different cells which facilitates the healing process of injuries. Therefore, its ingredients must be completely biocompatible and nontoxic to cells. Electrospinning is the most common method of producing different scaffolds, in which a combination of synthetic and natural polymers can be used. As known before, the use of synthetic polymers increases scaffolds strength and the use of biopolymers increases cell adhesion and reduces body's immune responses. In this study, the morphology of scaffolds made by Eremurus persicus Bioss (EPB) root extract and polyvinyl alcohol (PVA) was investigated. EPB root extract was extracted using 96 % ethanol from fresh roots. Different volume ratios of PVA/EPB with purity of 12 % PVA (w/v) and 3 % EPB root extract (w/v) were prepared to find the optimal compound for fabricating straight thin nanofibers. Characterization of samples showed the optimal combined sample is PVA/EPB (50:50). FTIR results indicated no chemical interaction between polymers. XRD results confirmed both PVA nanofibers and PVA/EPB ones had no crystal structure. FESEM results pointed out 50:50 PVA/EPB nanofibers had an average diameter of 184.5 nm, with electrical conductivity of 335 ± 5 μs, viscosity of 1057.5 mm.min-1, surface tension of 47.97 ± 0.03 mN.m-1, contact angle of 50.3 ± 4.7 and tensile strength of 138.73 cN. PVA/EPB combinations also showed anti-inflammatory properties and mild antibacterial activity against Escherichia coli (E.coli) bacterium. MTT results of cell viability also inferred that the combination of two polymers in a ratio of 50:50 does not cause toxicity to cell and can be used as a scaffold for cell culture and other medical applications.
Collapse
Affiliation(s)
- Ali Reza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyedeh Fatemeh Mousavi
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Bashari
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyed Amir Hossein Jalali
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
3
|
Aștilean Pertea AN, Dreancă A, Gog-Bogdan S, Sevastre B, Ungur A, Negoescu A, Taulescu M, Rotar O, Dindelegan M, Gherman LM, Magyari K, Oana L. Bone proliferation in osteoporotic experimental animals using alginate-pullulan-bioactive glass‑gold nanoparticles composite. Bone 2025; 194:117439. [PMID: 40024425 DOI: 10.1016/j.bone.2025.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
In the present study, scaffold composites based on alginate-pullulan-bioactive glass‑gold nanoparticles were orthotopically implanted in an experimental model of delayed bone union, in rats, given by a metabolic pathology, namely osteoporosis. Differences between treated and untreated groups were observed and the efficacy of our biomaterial was evaluated by applying micro-CT imaging, together with histological evaluation of the osteoporotic animals with sub-critical bone defects, at 30 and 60 days. Osteoporosis was successfully induced by ovariectomy in 9-month-old rats, confirmed by micro-CT and histopathological analysis. A secondary complication from a cortical bone defect was further induced to study bone proliferation in such a delayed environment. The studied composite presents osteointegration and angiogenesis properties at 60 days post-implantation in the osteoporotic animals. These results are given by the micro-CT analysis in which higher bone mineral density and bone volume fraction were observed, alongside histopathology, stating a lack of tissue necrosis and inflammatory reaction and the presence of new woven islands within and around the implanted biomaterial. This is the first endeavor to treat cortical bone defects in osteoporotic animals using scaffold biopolymers containing bioactive glass‑gold nanoparticles instead of cement.
Collapse
Affiliation(s)
| | - Alexandra Dreancă
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Sidonia Gog-Bogdan
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Ungur
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrada Negoescu
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marian Taulescu
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Oana Rotar
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maximilian Dindelegan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Centre for Experimental Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", 400349 Cluj-Napoca, Romania
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; INSPIRE Research Platform InfoBioNano4Health & Biomedical Imaging, Babeș Bolyai University, 400084 Cluj-Napoca, Romania.
| | - Liviu Oana
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Chaparro D, Goudeli E. Design of engineered nanoparticles for biomedical applications by computational modeling. NANOSCALE 2025; 17:9705-9737. [PMID: 40190149 DOI: 10.1039/d4nr05199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Engineered nanoparticles exhibit superior physicochemical, antibacterial, optical, and sensing properties compared to their bulk counterparts, rendering them attractive for biomedical applications. However, given that nanoparticle properties are sensitive to their nanostructural characteristics and their chemical stability is largely affected by physiological conditions, nanoparticle behavior can be unpredictable in vivo, requiring careful surface modification to ensure biocompatibility, prevent rapid aggregation, and maintain functionality under biological environments. Therefore, understanding the mechanisms of nanoparticle formation and macroscopic behavior in physiological media is essential for the development of structure-property relationships and, their rational design for biomedical applications. Computational simulations provide insight into nanoscale phenomena and nanoparticle dynamics, expediting material discovery and innovation. This review provides an overview of the process design and characterization of metallic and metal oxide nanoparticles with an emphasis on atomistic and mesoscale simulations for their application in bionanomedicine.
Collapse
Affiliation(s)
- Diego Chaparro
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| | - Eirini Goudeli
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
5
|
Xia Q, Zhou S, Zhou J, Zhao X, Saif MS, Wang J, Hasan M, Zhao M, Liu Q. Recent Advances and Challenges for Biological Materials in Micro/Nanocarrier Synthesis for Bone Infection and Tissue Engineering. ACS Biomater Sci Eng 2025; 11:1945-1969. [PMID: 40067283 DOI: 10.1021/acsbiomaterials.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Roughly 1.71 billion people worldwide suffer from large bone abnormalities, which are the primary cause of disability. Traditional bone grafting procedures have several drawbacks that impair their therapeutic efficacy and restrict their use in clinical settings. A great deal of work has been done to create fresh, more potent strategies. Under these circumstances, a crucial technique for the regeneration of major lesions has emerged: bone tissue engineering (BTE). BTE involves the use of biomaterials that can imitate the natural design of bone. To yet, no biological material has been able to fully meet the parameters of the perfect implantable material, even though several varieties have been created and investigated for bone regeneration. Against this backdrop, researchers have focused a great deal of interest over the past few years on the subject of nanotechnology and the use of nanostructures in regenerative medicine. The ability to create nanoengineered particles that can overcome the current constraints in regenerative strategies─such as decreased cell proliferation and differentiation, insufficient mechanical strength in biological materials, and insufficient production of extrinsic factors required for effective osteogenesis has revolutionized the field of bone and tissue engineering. The effects of nanoparticles on cell characteristics and the application of biological materials for bone regeneration are the main topics of our review, which summarizes the most recent in vitro and in vivo research on the application of nanotechnology in the context of BTE.
Collapse
Affiliation(s)
- Qipeng Xia
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Shuyan Zhou
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jingya Zhou
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- College of Acupuncture and Massage, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Xia Zhao
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, PR China
| | - Muhammad Saqib Saif
- Department of Biochemistry, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jianping Wang
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Min Zhao
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Qiang Liu
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
6
|
Huang Y, Chen T, Ren C, Bao B, Huang R, Sun Y, Yu C, Yang Y, Wong WT, Zeng Q, Jiang L, Liu T, Lin Q, Zhu L, Liao Y. High-Strength Gelatin Hydrogel Scaffold with Drug Loading Remodels the Inflammatory Microenvironment to Enhance Osteoporotic Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501051. [PMID: 39972948 DOI: 10.1002/adma.202501051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Osteoporosis is a widespread condition that induces an inflammatory microenvironment, limiting the effectiveness of conventional therapies and presenting significant challenges for bone defect repair. To address these issues, a high-strength gelatin hydrogel scaffold loaded with roxadustat is developed, specifically designed to remodel the inflammatory microenvironment and enhance osteoporotic bone regeneration. By incorporating minimal methacrylated hyaluronic acid (HAMA) into an o-nitrobenzyl functionalized gelatin (GelNB) matrix, a gelatin hydrogel with a fracture strength of 10 MPa is achieved, providing exceptional structural stability and enabling precise scaffold fabrication through digital light processing (DLP) 3D printing. Validated through cell experiments and animal studies, the hydrogel scaffold supports cell adhesion and migration, offers excellent tissue compatibility, and is fully degradable, meeting the requirements of a therapeutic scaffold. Including roxadustat further enhances the scaffold's functionality by regulating the inflammatory microenvironment via hypoxia-inducible factor-1α (HIF-1α) signaling, significantly improving bone defect repair in osteoporotic models. This drug-loaded scaffold effectively addresses inflammation-induced limitations and enhances the regenerative capacity of the affected area, paving the way for improved therapeutic outcomes in osteoporotic bone repair.
Collapse
Affiliation(s)
- Yangguang Huang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ting Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunling Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rongkun Huang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Changlong Yu
- Burn Plastic Wound Repair Surgery of Ganzhou Hospital of Guangdong Provincial People's Hospital, GanZhou, 341000, China
| | - Yunlong Yang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
7
|
Hu D, Wu Q, Yang Y, Wang Y, Li Y, Chen H, Tang L, Mao X, Wang Z. Bioinspired Fe 3O 4@Ag@ indocyanine green/adenosine triphosphate nanoenzyme in synergistic antibacterial performance. DISCOVER NANO 2025; 20:55. [PMID: 40133718 PMCID: PMC11937479 DOI: 10.1186/s11671-025-04232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Metal-based nanoenzymes with excellent biocompatibility and stable chemical properties are an effective antimicrobial agent against bacterial resistance due to their radical-mediated catalysis. In this work, due to the pH of most bacterial infection sites being close to neutral, targeting the problem of Fe3O4@Ag difficulty in maintaining the catalytic activity of nanoenzymes in neutral environments, we prepare a novel multifunctional Fe3O4@Ag@ indocyanine green/adenosine triphosphate peroxidase nanoenzymes for synergistic antibacterial activity. ICG (Indocyanine Green) and ATP (Adenosine triphosphate) are adsorbed on the surface of Fe3O4@Ag through electrostatic adsorption to form its structure. The cell viability remained above 90%, indicating its good biocompatibility. By complexing ATP with nanoenzymes to participate in single electron transfer and binding with Fe (II), ATP promotes the sudden release of hydroxyl radical (·OH) from the system, successfully transferring Fe3O4@Ag the peroxidase activity of nanoenzymes extends to neutral pH. By utilizing ICG as a photosensitizer and a sonosensitizer, under the combined treatment of near-infrared light and ultrasound, the photodynamic therapy (PDT)/photothermal therapy (PTT)/sonodynamic therapy (SDT) functions can be achieved, achieving multifunctional synergistic antibacterial effects. In a neutral environment, its bactericidal efficiency against Gram negative (Escherichia coli) and Gram positive (Staphylococcus aureus) is 99.9% and 99.7%, respectively, providing a new multi-mode synergistic antibacterial strategy for bacterial infections.
Collapse
Affiliation(s)
- Dongmei Hu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Wu
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and Spri Engineering Research Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Wang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanhao Li
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haixiang Chen
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Liang Tang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiang Mao
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Zhenyu Wang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
8
|
Zhang T, Yang J, Lu Y, Wang Y, Wang X, Li Y, Li W, Wang Y. Synergistic Functions of the Janus Fibrous Membrane for Enhanced Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14873-14887. [PMID: 40013909 DOI: 10.1021/acsami.4c18965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The treatment of bone defects presents significant challenges in clinical practice. Guided bone regeneration (GBR) strategies offer a new approach, but existing commercial GBR membranes still lack optimal barrier and osteogenic functions. This study presents the design of a Janus fibrous membrane using classic amphiphilic block copolymers and gelatin methacryloyl containing unsaturated double bonds through a gradient electrospinning process. Specifically, by controlling electrospinning parameters, self-assembly of block copolymers, and secondary photo-cross-linking, differential composition, topological structure, and properties between different layers were achieved, thereby realizing synergistic physiological barrier and repair-promoting functions. By leveraging the Janus effect, it effectively blocks the adverse effects of soft tissue cell ingrowth on bone repair while guiding osteogenic cell proliferation and differentiation. Furthermore, the membrane's functionality is optimized by incorporating the antimicrobial component ε-poly-l-lysine and the osteogenic component niobium. In vivo studies demonstrate the membrane's excellent biocompatibility, antibacterial activity, and remarkable bone regeneration potential in both normal and infectious bone defect animal models. The developed Janus fibrous membrane serves as a versatile platform for biomedical applications, offering the vast potential to effectively address the limitations of current GBR membranes in clinical bone defect treatment.
Collapse
Affiliation(s)
- Tingting Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Yu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Xiaoshuang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Yijiao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| |
Collapse
|
9
|
Mahnoor, Malik K, Kazmi A, Sultana T, Raja NI, Bibi Y, Abbas M, Badruddin IA, Ali MM, Bashir MN. A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications. Heliyon 2025; 11:e41654. [PMID: 39916856 PMCID: PMC11800088 DOI: 10.1016/j.heliyon.2025.e41654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
The importance of nanocomposites constantly attains attention because of their unique properties all across the fields especially in medical perspectives. The study of green-synthesized nanocomposites has grown to be extremely fascinating in the field of research. Nanocomposites are more promising than mono-metallic nanoparticles because they exhibit synergistic effects. This review encapsulates the current development in the formulation of plant-mediated nanocomposites by using several plant species and the impact of secondary metabolites on their biocompatible functioning. Phyto-synthesis produces diverse nanomaterials with biocompatibility, environment-friendliness, and in vivo actions, characterized by varying sizes, shapes, and biochemical nature. This process is advantageous to conventional physical and chemical procedures. New studies have been conducted to determine the biomedical efficacy of nanocomposites against various diseases. Unfortunately, there has been inadequate investigation into green-assisted nanocomposites. Incorporating phytosynthesized nanocomposites in therapeutic interventions not only enhances healing processes but also augments the host's immune defenses against infections. This review highlights the phytosynthesis of nanocomposites and their various biomedical applications, including antibacterial, antidiabetic, antiviral, antioxidant, antifungal, anti-cancer, and other applications, as well as their toxicity. This review also explores the mechanistic action of nanocomposites to achieve their designated tasks. Biogenic nanocomposites for multimodal imaging have the potential to exchange the conventional methods and materials in biomedical research. Well-designed nanocomposites have the potential to be utilized in various biomedical fields as innovative theranostic agents with the subsequent objective of efficiently diagnosing and treating a variety of human disorders.
Collapse
Affiliation(s)
- Mahnoor
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Khafsa Malik
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tahira Sultana
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS, Arid Agriculture University Rawalpindi, Pakistan
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, University of Veterinary and Animal Science Lahore (Jhang Campus), Jhang, 35200, Pakistan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - M. Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| | - Muhammad Nasir Bashir
- Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
- National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
10
|
Che Z, Sheng X, Sun Q, Wu Y, Song K, Chen A, Chen J, Chen Q, Cai M. Deferoxamine functionalized alginate-based collagen composite material enhances the integration of metal implant and bone interface. Carbohydr Polym 2025; 349:122944. [PMID: 39643405 DOI: 10.1016/j.carbpol.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 12/09/2024]
Abstract
Poor osseointegration markedly compromises the longevity of prostheses. To enhance the stability of titanium implants, surface functionalization is a proven strategy to promote prosthesis-bone integration. This study developed a hydrogel coating capable of simultaneous osteoangiogenesis and vascularization by incorporating deferoxamine (DFO) into a sodium alginate mineralized collagen composite hydrogel. The physicochemical properties of this hydrogel were thoroughly analyzed. In vivo and in vitro experiments confirmed the hydrogel scaffold's osteogenic and angiogenic capabilities. Results indicated that sodium alginate notably enhanced the mechanical characteristics of the mineralized collagen, allowing it to fully infiltrate the interstices of the 3D-printed titanium scaffold. Furthermore, as the hydrogel degraded, collagen, calcium ion, phosphate ion, and DFO were gradually released around the scaffolds, altering the local osteogenic microenvironment and strongly inducing new bone tissue growth. These findings offer novel perspectives for the creation and utilization of functionalized bone implant materials.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Xiao Sheng
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Wuxing, Huzhou, Zhejiang 313000, People's Republic of China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Jing Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Qiyun Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
11
|
Randhawa A, Ganguly K, Dutta SD, Patil TV, Lim KT. Transcriptomic profiling of human mesenchymal stem cells using a pulsed electromagnetic-wave motion bioreactor system for enhanced osteogenic commitment and therapeutic potentials. Biomaterials 2025; 312:122713. [PMID: 39084096 DOI: 10.1016/j.biomaterials.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Traditional bioreactor systems involve the use of three-dimensional (3D) scaffolds or stem cell aggregates, limiting the accessibility to the production of cell-secreted biomolecules. Herein, we present the use a pulse electromagnetic fields (pEMFs)-assisted wave-motion bioreactor system for the dynamic and scalable culture of human bone marrow-derived mesenchymal stem cells (hBMSCs) with enhanced the secretion of various soluble factors with massive therapeutic potential. The present study investigated the influence of dynamic pEMF (D-pEMF) on the kinetic of hBMSCs. A 30-min exposure of pEMF (10V-1Hz, 5.82 G) with 35 oscillations per minute (OPM) rocking speed can induce the proliferation (1 × 105 → 4.5 × 105) of hBMSCs than static culture. Furthermore, the culture of hBMSCs in osteo-induction media revealed a greater enhancement of osteogenic transcription factors under the D-pEMF condition, suggesting that D-pEMF addition significantly boosted hBMSCs osteogenesis. Additionally, the RNA sequencing data revealed a significant shift in various osteogenic and signaling genes in the D-pEMF group, further suggesting their osteogenic capabilities. In this research, we demonstrated that the combined effect of wave and pEMF stimulation on hBMSCs allows rapid proliferation and induces osteogenic properties in the cells. Moreover, our study revealed that D-pEMF stimuli also induce ROS-scavenging properties in the cultured cells. This study also revealed a bioactive and cost-effective approach that enables the use of cells without using any expensive materials and avoids the possible risks associated with them post-implantation.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
12
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
13
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
14
|
Venkatesan J, Anchan RV, Murugan SS, Anil S, Kim SK. Natural hydroxyapatite-based nanobiocomposites and their biomaterials-to-cell interaction for bone tissue engineering. DISCOVER NANO 2024; 19:169. [PMID: 39375246 PMCID: PMC11458869 DOI: 10.1186/s11671-024-04119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Hydroxyapatite (HA) is an extensively used biomaterial for dental and orthopaedic applications because of its biocompatibility and biomimetic nature. HA is extensively used as a bone-graft substitute. HA bone graft substitutes of bovine or synthetic origins have been extensively studied. However, caprine-based HA has not been explored. In this study, we aimed to determine the utilization of goat bone-derived HA for commercial applications. HA from caprine bone and teeth was isolated using thermal calcination. The developed HA can be used as a bone graft substitute. Chemical characterization of the isolated HA was carried out using Fourier transform infrared spectroscopy, X-Ray Diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The biocompatibility and apatite formation of isolated HA were assessed using MG-63 cells, MC3T3-E1, L929 cells, MSCs, adipose derived stem cells, human dermal tissue derived fibroblast cells and osteoblast-like cell line, The studies demonstrate that HA support cell adhesion and osteogenic properties. To improve sheep, lamp, or caprine bone-derived HA, several other composites have been developed with MgO2, ZrO2, ZnO2, and other polymeric substances. 3D printed technology was used to develop a bioink using sheep-derived HA and printed the composite scaffold as a bone graft substitute. Furthermore, the biomedical applications of sheep-derived HA been studied in terms of their antimicrobial activity, bone-forming ability, and wound healing applications. Sheep-, goat-, and caprine-derived HA are still underutilized and require further research to develop commercial possibilities and sustainable raw materials for HA-based bone graft substitutes.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangaluru, 575018, India
| | - Rowena Valeen Anchan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangaluru, 575018, India
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- College of Dental Medicine, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University ERICA Campus, Ansan, 11558, Republic of Korea.
| |
Collapse
|
15
|
Hlukhaniuk A, Świętek M, Patsula V, Hodan J, Janoušková O, Bystrianský L, Brož A, Malić M, Zasońska B, Tokarz W, Bačáková L, Horák D. Poly(ε-Caprolactone)-Based Composites Modified With Polymer-Grafted Magnetic Nanoparticles and L-Ascorbic Acid for Bone Tissue Engineering. J Biomed Mater Res B Appl Biomater 2024; 112:e35480. [PMID: 39223717 DOI: 10.1002/jbm.b.35480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning. AA is known for increasing osteoblast activity and suppressing osteosarcoma cells. Composites were characterized in terms of morphology, mechanical properties, hydrolytic stability, antibacterial performance, and biocompatibility. AA affected both the fiber diameter and the mechanical properties of the nanocomposites. All produced mats were nontoxic to rat bone marrow-derived mesenchymal cells; however, a composite with 5 wt.% of AA suppressed the initial proliferation of SAOS-2 osteoblast-like cells. Moreover, AA improved antibacterial properties against Staphylococcus aureus and Escherichia coli compared to PCL. Overall, these magnetic composites, reported for the very first time, can be used as scaffolds for both tissue regeneration and osteosarcoma prevention.
Collapse
Affiliation(s)
- Anna Hlukhaniuk
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Małgorzata Świętek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hodan
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Janoušková
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Lukáš Bystrianský
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Antonín Brož
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marina Malić
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Beata Zasońska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Waldemar Tokarz
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Shineh G, Mobaraki M, Afzali E, Alakija F, Velisdeh ZJ, Mills DK. Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. BIOMEDICAL MATERIALS & DEVICES 2024; 2:918-941. [DOI: 10.1007/s44174-024-00159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/06/2024] [Indexed: 01/06/2025]
|
17
|
Sun T, Huang H, Zhao Y, Li Z, Wang H, Zhou G. Low-Temperature Deposited Amorphous Poly(aryl ether ketone) Hierarchically Porous Scaffolds with Strontium-Doped Mineralized Coating for Bone Defect Repair. Adv Healthc Mater 2024; 13:e2400927. [PMID: 38717232 DOI: 10.1002/adhm.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Indexed: 06/06/2024]
Abstract
In recent years, the demand for clinical bone grafting has increased. As a new solution for orthopedic implants, polyether ether ketone (PEEK, crystalline PAEK) has excellent comprehensive performance and is practically applied in the clinic. In this research, a noteworthy elevated scheme to enhance the performance of PEEK scaffolds is presented. The amorphous aggregated poly (aryl ether ketone) (PAEK) resin is prepared as the matrix material, which maintains high mechanical strength and can be processed through the solution. So, the tissue engineering scaffolds with multilevel pores can be printed by low-temperature deposited manufacturing (LDM) to improve biologically inert scaffolds with smooth surfaces. Also, the feature of PAEK's solution processing is profitable to uniformly add the functional components for bone repair. Ultimately, A system of orthopedic implantable PAEK material based on intermolecular interactions, surface topology, and surface modification is established. The specific steps include synthesizing PAEK that contain polar carboxyl structures, preparing bioinks and fabricating scaffolds by LDM, preparation of scaffolds with strontium-doped mineralized coatings, evaluation of their osteogenic properties in vitro and in vivo, and investigation on the effect and mechanism of scaffolds in promoting osteogenic differentiation. This work provides an upgraded system of PAEK implantable materials for clinical application.
Collapse
Affiliation(s)
- Tianze Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Huagui Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yantao Zhao
- Institute of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Honghua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
18
|
Sardari S, Hheidari A, Ghodousi M, Rahi A, Pishbin E. Nanotechnology in tissue engineering: expanding possibilities with nanoparticles. NANOTECHNOLOGY 2024; 35:392002. [PMID: 38941981 DOI: 10.1088/1361-6528/ad5cfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Tissue engineering is a multidisciplinary field that merges engineering, material science, and medical biology in order to develop biological alternatives for repairing, replacing, maintaining, or boosting the functionality of tissues and organs. The ultimate goal of tissue engineering is to create biological alternatives for repairing, replacing, maintaining, or enhancing the functionality of tissues and organs. However, the current landscape of tissue engineering techniques presents several challenges, including a lack of suitable biomaterials, inadequate cell proliferation, limited methodologies for replicating desired physiological structures, and the unstable and insufficient production of growth factors, which are essential for facilitating cell communication and the appropriate cellular responses. Despite these challenges, there has been significant progress made in tissue engineering techniques in recent years. Nanoparticles hold a major role within the realm of nanotechnology due to their unique qualities that change with size. These particles, which provide potential solutions to the issues that are met in tissue engineering, have helped propel nanotechnology to its current state of prominence. Despite substantial breakthroughs in the utilization of nanoparticles over the past two decades, the full range of their potential in addressing the difficulties within tissue engineering remains largely untapped. This is due to the fact that these advancements have occurred in relatively isolated pockets. In the realm of tissue engineering, the purpose of this research is to conduct an in-depth investigation of the several ways in which various types of nanoparticles might be put to use. In addition to this, it sheds light on the challenges that need to be conquered in order to unlock the maximum potential of nanotechnology in this area.
Collapse
Affiliation(s)
- Sohrab Sardari
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research branch, Tehran, Iran
| | - Maryam Ghodousi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
| | - Amid Rahi
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
19
|
Annamalai J, Seetharaman B, Sellamuthu I. Nanomaterials in the environment and their pragmatic voyage at various trophic levels in an ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121307. [PMID: 38870799 DOI: 10.1016/j.jenvman.2024.121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
In the development of nanotechnology, nanomaterials (NMs) have a huge credential in advancing the existing follow-ups of analytical and diagnosis techniques, drug designing, agricultural science, electronics, cosmetics, sports, textiles and water purification. However, NMs have also grasped attention of researchers onto their toxicity. In the present review, initially the development of notable NMs such as metal and metal-oxide nanoparticles (NPs), magnetic NPs, carbon-based NMs and quantum dots intended to be commercialized along with their applications are discussed. This is followed by the current scenario of NMs in the environment to widen the outlook on the concentration of NPs in the environmental compartments and the frequency of organism exposed to NPs at varied trophic levels. In order to understand the physiochemical and morphological significance of NPs in exhibiting toxicity, fate of NPs in the environment is briefly deliberated. This is further geared-up to glance in-sightedly on the organisms starting from primary producer to primary consumer, secondary consumer, tertiary consumer and decomposers encountering NPs in their habitual niche. The state of NPs to which organisms are exposed, mechanism of NP uptake and toxicity, anomalies faced at each trophic level, concentration of NPs that is liable to cause toxicity and, biotransfer of NPs to the next generation and trophic level are detailed. Finally, the future prospects on bioaccumulation and biomagnification of NP-based products are conversed. Thus, the review would be noteworthy in unveiling the significance of NPs in forthcoming years combined with threat towards each organism in an ecosystem.
Collapse
Affiliation(s)
- Jayshree Annamalai
- Endocrine Disruption and Reproductive Toxicology (EDART) Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India.
| | - Barathi Seetharaman
- Endocrine Disruption and Reproductive Toxicology (EDART) Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India.
| | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India.
| |
Collapse
|
20
|
Wu S, Lai Y, Zheng X, Yang Y. Facile fabrication of linezolid/strontium coated hydroxyapatite/graphene oxide nanocomposite for osteoporotic bone defect. Heliyon 2024; 10:e31638. [PMID: 38947479 PMCID: PMC11214387 DOI: 10.1016/j.heliyon.2024.e31638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Hydroxyapatite (HAp) coatings currently have limited therapeutic applications because they lack anti-infection, osteoinductivity, and poor mechanical characteristics. On the titanium substrate, electrochemical deposition (ECD) was used to construct the strontium (Sr)-featuring hydroxyapatite (HAp)/graphene oxides (GO)/linezolid (LZ) nanomaterial coated with antibacterial and drug delivery properties. The newly fabricated nanomaterials were confirmed by X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis and morphological features were examined by scanning electron microscope (SEM) analysis. The results reveal multiple nucleation sites for SrHAp/GO/LZ composite coatings due to oxygen-comprising moieties on the 2D surface of GO. It was shown to be favorable for osteoblast proliferation and differentiation. The elastic modulus and hardness of LZ nanocomposite with SrHAp/GO/LZ coatings were increased by 67 % and 121 %, respectively. An initial 5 h burst of LZ release from the SrHAp/GO/LZ coating was followed by 14 h of gradual release, owing to LZ's physical and chemical adsorption. The SrHAp/GO/LZ coating effectively inhibited both S. epidermidis and S. aureus, and the inhibition lasted for three days, as demonstrated by the inhibition zone and colony count assays. When MG-63 cells are coated with SrHAp/GO/LZ composite coating, their adhesion, proliferation, and differentiation greatly improve when coated with pure titanium. A novel surface engineering nanomaterial for treating and preventing osteoporotic bone defects, SrHAp/GO/LZ, was shown to have high mechanical characteristics, superior antibacterial abilities, and osteoinductivity.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Yunxiao Lai
- Medical College, Huanghuai University, Zhumadian, 463003, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling, 317500, China
| | - Yang Yang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian, 463003, China
- Medical College, Huanghuai University, Zhumadian, 463003, China
| |
Collapse
|
21
|
Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi HAM, Mahdavi M, Farahbakhshpour F, Hashemiaval N, Khandani KK, Eivazzadeh-Keihan R, Maleki A. Recent advances on biomedical applications of gellan gum: A review. Carbohydr Polym 2024; 334:122008. [PMID: 38553201 DOI: 10.1016/j.carbpol.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Shahin Afarin
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahbakhshpour
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Neginsadat Hashemiaval
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Kimia Kalantari Khandani
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
22
|
Mrozińska Z, Kaczmarek A, Świerczyńska M, Juszczak M, Kudzin MH. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool-Copper Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2878. [PMID: 38930247 PMCID: PMC11204859 DOI: 10.3390/ma17122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.
Collapse
Affiliation(s)
- Zdzisława Mrozińska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Anna Kaczmarek
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| | - Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Lodz, Poland; (Z.M.); (M.J.)
| |
Collapse
|
23
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
24
|
Mohanto S, Biswas A, Gholap AD, Wahab S, Bhunia A, Nag S, Ahmed MG. Potential Biomedical Applications of Terbium-Based Nanoparticles (TbNPs): A Review on Recent Advancement. ACS Biomater Sci Eng 2024; 10:2703-2724. [PMID: 38644798 DOI: 10.1021/acsbiomaterials.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, P.O. Rahara, Kolkata, West Bengal 700118, India
| | - Amol Dilip Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor , Malaysia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
25
|
Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett 2024; 14:451-464. [PMID: 38645590 PMCID: PMC11026358 DOI: 10.1007/s13534-024-00350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/23/2024] Open
Abstract
With the graying of the world's population, the morbidity of age-related chronic degenerative bone diseases, such as osteoporosis and osteoarthritis, is increasing yearly, leading to an increased risk of bone defects, while current treatment methods face many problems, such as shortage of grafts and an incomplete repair. Therefore, bone tissue engineering offers an alternative solution for regenerating and repairing bone tissues by constructing bioactive scaffolds with porous structures that provide mechanical support to damaged bone tissue while promoting angiogenesis and cell adhesion, proliferation, and activity. 3D printing technology has become the primary scaffold manufacturing method due to its ability to precisely control the internal pore structure and complex spatial shape of bone scaffolds. In contrast, the fast development of nanotechnology has provided more possibilities for the internal structure and biological function of scaffolds. This review focuses on the application of 3D printing technology in bone tissue engineering and nanotechnology in the field of bone tissue regeneration and repair, and explores the prospects for the integration of the two technologies.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|
26
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
27
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
28
|
Joseph A, Muhammad L F, S Vijayan A, Xavier J, K B M, Karthikeyan A, Gopinath N, P V M, Nair BG. 3D printed arrowroot starch-gellan scaffolds for wound healing applications. Int J Biol Macromol 2024; 264:130604. [PMID: 38447843 DOI: 10.1016/j.ijbiomac.2024.130604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Skin, the largest organ in the body, blocks the entry of environmental pollutants into the system. Any injury to this organ allows infections and other harmful substances into the body. 3D bioprinting, a state-of-the-art technique, is suitable for fabricating cell culture scaffolds to heal chronic wounds rapidly. This study uses starch extracted from Maranta arundinacea (Arrowroot plant) (AS) and gellan gum (GG) to develop a bioink for 3D printing a scaffold capable of hosting animal cells. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction analysis (XRD) prove that the isolated AS is analogous to commercial starch. The cell culture scaffolds developed are superior to the existing monolayer culture. Infrared microscopy shows the AS-GG interaction and elucidates the mechanism of hydrogel formation. The physicochemical properties of the 3D-printed scaffold are analyzed to check the cell adhesion and growth; SEM images have confirmed that the AS-GG printed scaffold can support cell growth and proliferation, and the MTT assay shows good cell viability. Cell behavioral and migration studies reveal that cells are healthy. Since the scaffold is biocompatible, it can be 3D printed to any shape and structure and will biodegrade in the requisite time.
Collapse
Affiliation(s)
- Abey Joseph
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Fathah Muhammad L
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Athira S Vijayan
- School of Material Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Joseph Xavier
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Megha K B
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Akash Karthikeyan
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Nigina Gopinath
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mohanan P V
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Baiju G Nair
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
29
|
Singh A, Kumar S, Acharya TK, Kumar S, Chawla S, Goswami C, Goswami L. Modulation of calcium-influx by carboxymethyl tamarind‑gold nanoparticles promotes biomineralization for tissue regeneration. Int J Biol Macromol 2024; 264:130605. [PMID: 38447827 DOI: 10.1016/j.ijbiomac.2024.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Gold nanoparticles (AuNPs) have been reported to modulate bone tissue regeneration and are being extensively utilized in biomedical implementations attributable to their low cytotoxicity, biocompatibility and simplicity of functionalization. Lately, biologically synthesized nanoparticles have acquired popularity because of their environmentally acceptable alternatives for diverse applications. Here we report the green synthesis of AuNPs by taking the biopolymer Carboxymethyl Tamarind (CMT) as a unique reducing as well as a stabilizing agent. The synthesized CMT-AuNPs were analyzed by UV-vis spectrophotometer, DLS, FTIR, XRD, TGA, SEM and TEM. These results suggest that CMT-AuNPs possess an average size of 19.93 ± 8.52 nm and have long-term stability. Further, these CMT-AuNPs promote the proliferation together with the differentiation and mineralization of osteoblast cells in a "dose-dependent" manner. Additionally, CMT-AuNPs are non-toxic to SD rats when applied externally. We suggest that the CMT-AuNPs have the potential to be a suitable and non-toxic agent for differentiation and mineralization of osteoblast cells in vitro and this can be tested in vivo as well.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Tusar Kanta Acharya
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India; School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India.
| |
Collapse
|
30
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
31
|
Garg J, Chiu MN, Krishnan S, Kumar R, Rifah M, Ahlawat P, Jha NK, Kesari KK, Ruokolainen J, Gupta PK. Emerging Trends in Zinc Ferrite Nanoparticles for Biomedical and Environmental Applications. Appl Biochem Biotechnol 2024; 196:1008-1043. [PMID: 37314636 DOI: 10.1007/s12010-023-04570-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the application of nanoparticles (NPs) gained immense attention towards environmental and biomedical applications. NPs are ultra-small particles having size ranges from 1 to 100 nm. NPs loaded with therapeutic or imaging compounds have proved a versatile approach towards healthcare improvements. Among various inorganic NPs, zinc ferrite (ZnFe2O4) NPs are considered as non-toxic and having an improved drug delivery characteristics . Several studies have reported broader applications of ZnFe2O4 NPs for treating carcinoma and various infectious diseases. Additionally, these NPs are beneficial for reducing organic and inorganic environmental pollutants. This review discusses about various methods to fabricate ZnFe2O4 NPs and their physicochemical properties. Further, their biomedical and environmental applications have also been explored comprehensively.
Collapse
Affiliation(s)
- Jivesh Garg
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, Punjab, India
| | - Mei Nee Chiu
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, Punjab, India
| | | | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Mahwish Rifah
- Department of Biotechnology, Jamia Hamdard, Delhi, 110062, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
32
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
33
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
34
|
Kim YM, Ghim MS, Quan M, Kim YY, Cho YS. Experimental Verification of the Impact of the Contact Area between the Defect Site and the Scaffold on Bone Regeneration Efficacy. Polymers (Basel) 2024; 16:338. [PMID: 38337228 DOI: 10.3390/polym16030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In the field of bone tissue engineering, which is being developed for the ideal restoration of bone defects, researchers are exploring the improvement of the bone regeneration efficacy of scaffolds through various approaches involving osteoconductive, osteoinductive, and angiogenic factors. In the current trend of research, there is also a suggestion that the topological factors of recent scaffolds may influence the attachment, migration, proliferation, and differentiation of bone cells. Building upon experimental confirmation of the effect of scaffold conformity with the defect site on enhanced bone regeneration in previous studies, we conducted this research to experimentally investigate the relationship between contact area with the defect site and bone regeneration efficacy. The results demonstrated that as the contact area of the scaffold increased, not only did the resistance to bone tissue growth increase, more significant bone regeneration also occurred, as evidenced through histological analysis and micro-CT analysis. This research confirms that the contact area between the scaffold and the defect site is a critical variable affecting bone regeneration efficacy, emphasizing its importance when designing customized scaffolds. This finding holds promising implications for future studies and applications in the field.
Collapse
Affiliation(s)
- You Min Kim
- Division of Mechanical Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Min-Soo Ghim
- Division of Mechanical Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Meiling Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Beihua University, Jilin 132021, China
- MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Young Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary's Hospital, Catholic University of Korea, 64 Daeheung-ro, Daejeon 34943, Republic of Korea
| | - Young-Sam Cho
- Division of Mechanical Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
- MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| |
Collapse
|
35
|
Eivazzadeh-Keihan R, Sadat Z, Lalebeigi F, Naderi N, Panahi L, Ganjali F, Mahdian S, Saadatidizaji Z, Mahdavi M, Chidar E, Soleimani E, Ghaee A, Maleki A, Zare I. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. NANOSCALE ADVANCES 2024; 6:337-366. [PMID: 38235087 PMCID: PMC10790973 DOI: 10.1039/d3na00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Sadat
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farnaz Lalebeigi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Nooshin Naderi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leila Panahi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sakineh Mahdian
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Saadatidizaji
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elham Chidar
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Erfan Soleimani
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran P.O. Box 14395-1561 Tehran Iran
| | - Ali Maleki
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd Shiraz 7178795844 Iran
| |
Collapse
|
36
|
Aliabadi HAM, Forouzandeh-Malati M, Hassanzadeh-Afruzi F, Noruzi EB, Ganjali F, Kashtiaray A, Bani MS, Eftekhari RB, Eivazzadeh-Keihan R, Maleki A. Magnetic xanthan gum-silk fibroin hydrogel: A nanocomposite for biological and hyperthermia applications. Int J Biol Macromol 2023; 253:127005. [PMID: 37734527 DOI: 10.1016/j.ijbiomac.2023.127005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
A magnetic xanthan hydrogel/silk fibroin nanobiocomposite (XG hydrogel/SF/Fe3O4) was designed, fabricated, and characterized using analyzing methods such as FT-IR, EDX, FE-SEM, XRD, TGA, and VSM to evaluate the exact structure of product nanobiocomposite. The FE-SEM images reveal the presence of spherical shapes exhibiting a narrow size range and homogeneous distribution, measuring between 30 and 35 nm in diameter. The VSM analysis demonstrates the superparamagnetic properties of the XG hydrogel/SF/Fe3O4 nanobiocomposite, exhibiting a magnetic saturation of 54 emu/g at room temperature. The biological response of the nanobiocomposite scaffolds was assessed through cell viability and red blood cell hemolytic assays. MCF10A cells were exposed to a concentration of 1.75 mg/mL of the nanobiocomposite, and after 2 and 3 days, the cell viability was found to be 96.95 % and 97.02 %, respectively. The hemolytic effect was nearly 0 % even at higher concentrations (2 mg/mL). Furthermore, the magnetic nanobiocomposite showed excellent potential for hyperthermia applications, with a maximum specific absorption rate of 7 W/g for 1 mg/mL of the sample under a magnetic field in different frequencies (100, 200, 300, and 400 MHz) and 5 to 20 min time intervals.
Collapse
Affiliation(s)
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceuticals, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
37
|
Popescu RC, Calin BS, Tanasa E, Vasile E, Mihailescu M, Paun IA. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Front Bioeng Biotechnol 2023; 11:1273277. [PMID: 38170069 PMCID: PMC10758856 DOI: 10.3389/fbioe.2023.1273277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, Magurele, Romania
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
| | - Eugenia Tanasa
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Mona Mihailescu
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| |
Collapse
|
38
|
Dalavi PA, Prabhu A, M S, Murugan SS, Jayachandran V. Casein-assisted exfoliation of tungsten disulfide nanosheets for biomedical applications. Colloids Surf B Biointerfaces 2023; 232:113595. [PMID: 37913705 DOI: 10.1016/j.colsurfb.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Our regular life can be more challenging by bone abnormalities. Bone tissue engineering is used for repairing, regenerating, or replacing bone tissue that has been injured or infected. It is effective in overcoming the drawbacks of conventional bone grafting methods like autograft and allograft by enhancing the effectiveness of bone regeneration. Recent discoveries have shown that the exfoliation of transition metal dichalcogenides (TMDs) with protein is in great demand for bone tissue engineering applications. WS2 nanosheets were developed using casein and subsequently characterized with different analytical techniques. Strong absorption peaks were observed in the UV-visible spectra at 520 nm and 630 nm. Alginate and alginate-casein WS2 microspheres were developed. Stereomicroscopic images of the microspheres are spherical in shape and have an average diameter of around 0.8 ± 0.2 mm. The alginate-casein WS2 microspheres show higher content of water absorption and retention properties than only alginate-containing microspheres. The apatite formation in the simulated bodily fluid solution was facilitated more effectively by the alginate-casein-WS2 microspheres. Additionally, alginate-casein-WS2 microspheres have a compressive strength is 58.01 ± 4 MPa. Finally, in vitro cell interaction studies reveals that both the microspheres are biocompatible with the C3H10T1/2 cells, and alginate-casein-WS2-based microspheres promote cell growth more significantly. Alginate-casein-WS2 microspheres promote alkaline phosphatase activity, and mineralization process. Additionally, alginate-casein-WS2-based microspheres exponentially enhance the genes for ALP, BMP-2, OCN, and Collage type-1. The produced alginate-casein-WS2 microspheres could be a suitable synthetic graft for a bone transplant replacement.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Venkatesan Jayachandran
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
39
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
40
|
Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, Andronescu E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int J Mol Sci 2023; 24:15397. [PMID: 37895077 PMCID: PMC10607471 DOI: 10.3390/ijms242015397] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, Bucharest National Polytechnic University of Science and Technology, 011061 Bucharest, Romania; (D.-M.R.); (V.-A.S.); (A.F.); (D.F.); (A.-M.G.)
| |
Collapse
|
41
|
Barbosa F, Garrudo FFF, Marques AC, Cabral JMS, Morgado J, Ferreira FC, Silva JC. Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications. Int J Mol Sci 2023; 24:13203. [PMID: 37686010 PMCID: PMC10488027 DOI: 10.3390/ijms241713203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue's fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies.
Collapse
Affiliation(s)
- Frederico Barbosa
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio F. F. Garrudo
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Ana C. Marques
- Departament of Chemical Engineering and CERENA—Center for Natural Resources and the Environment, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
42
|
Vijayan V, Sreekumar S, Ahina KM, Lakra R, Kiran MS. Lanthanum Oxide Nanoparticles Reinforced Collagen ƙ-Carrageenan Hydroxyapatite Biocomposite as Angio-Osteogenic Biomaterial for In Vivo Osseointegration and Bone Repair. Adv Biol (Weinh) 2023; 7:e2300039. [PMID: 37080950 DOI: 10.1002/adbi.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Indexed: 04/22/2023]
Abstract
A composite biomatrix fabricated with collagen, ƙ-carrageenan, hydroxyapatite reinforced with lanthanum oxide nanoparticles is explored as proangiogenic and osteogenic bone tissue repair biomaterial. The biomatrix shows increased physical and biological stability as observed from proteolytic degradation and thermal stability studies. The addition of lanthanum oxide nanoparticles facilitates good osseointegration coupled with simultaneous activation of proangiogenic properties to act as a bone mimicking material. The minimal level of reactive oxygen species and superior cytocompatibility help the as-synthesized biomatrix in achieving capillary migration into the bone micro environment. The composite biomatrix upregulates the expression of VEGF, VEGF-R2 genes in endothelial cells and osteopontin, osteocalcin in osteoblasts cells, respectively. The in vivo hard tissue repair experiment conducted in a rat model shows complete healing of the bone defect by eight weeks with the application of collagen-ƙ-carrageenan-hydroxyapatite-lanthanum oxide nanoparticle biomaterial when compared to the biomaterial made out of individual constituents alone. The biomaterial matrix gets biointegrated into the bone tissue and exerts its therapeutic value in bringing a faster osseo repair process. The study shows the feasibility of using rare-earth metal nanoparticles in combination with protein-polysaccharide biopolymers for bone regeneration.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- University of Madras, Chennai, Tamil Nadu, 600005, India
| | - Sreelekshmi Sreekumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kannoth Madappurakkal Ahina
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
- University of Madras, Chennai, Tamil Nadu, 600005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
43
|
Hammami I, Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications: Fabrication, Structural, Electrical, and Biological Analysis. Int J Mol Sci 2023; 24:10571. [PMID: 37445749 DOI: 10.3390/ijms241310571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
44
|
Kalidas S, Sumathi S. Mechanical, biocompatibility and antibacterial studies of gelatin/polyvinyl alcohol/silkfibre polymeric scaffold for bone tissue engineering. Heliyon 2023; 9:e16886. [PMID: 37332937 PMCID: PMC10272316 DOI: 10.1016/j.heliyon.2023.e16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
The current study focuses on the incorporation of natural polymers (gelatin, silk fibre) and synthetic (polyvinyl alcohol) polymer towards the fabrication of a novel composite for bone tissue engineering. The Electrospinning method was used to fabricate the novel gelatin/polyvinyl alcohol/silk fibre scaffold. XRD, FTIR and SEM-EDAX analysis was performed to characterize the composite. The characterized composite was investigated for its physical properties (porosity and mechanical studies) and biological studies (antimicrobial activity, hemocompatibility, bioactivity). The fabricated composite showed high porosity and the highest tensile strength of 34 MPa, with elongation at a break of 35.82 for the composite. The antimicrobial activity of the composite was studied and the zone of inhibition was measured around 51 ± 0.54 for E. coli, 48 ± 0.48 for S. aureus and 50 ± 0.26 for C. albicans. The hemolytic % was noted around 1.36 for the composite and the bioactivity assay revealed the formation of apatite on composite surfaces.
Collapse
|
45
|
Karkehabadi H, Rahmati A, Abbasi R, Farmany A, Najafi R, Behroozi R, Rezaei-Soufi L, Abbaspourrokni H. Effect of copper oxide nanoparticles and light-emitting diode irradiation on the cell viability and osteogenic/odontogenic differentiation of human stem cells from the apical papilla. BMC Oral Health 2023; 23:249. [PMID: 37118787 PMCID: PMC10148393 DOI: 10.1186/s12903-023-02916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
OBJECTIVES This experimental study aimed to assess the effect of copper oxide nanoparticles (CuONPs) and light-emitting diode (LED) irradiation on the cell viability and osteogenic/odontogenic differentiation of human SCAPs. METHODS After the culture of SCAPs, the effects of different concentrations of CuONPs on cell viability were evaluated by the methyl thiazolyl tetrazolium (MTT) assay after 24 and 48 h, and the optimal concentration was determined (n = 12). SCAPs were then divided into four groups based on the type of treatment: (I) no-treatment control group, (II) exposure to CuONPs, (III) LED irradiation (635 nm, 200 mW/cm2) for 30 s, and (IV) exposure to CuONPs combined with LED irradiation. CuONPs were synthesized by a green technique, which was based on reduction and simultaneous stability of copper ions by using the pomegranate peel extract. After treatments, the expression of osteogenic/odontogenic markers including dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP), alkaline phosphatase (ALP), and dentin matrix acidic phosphoprotein 1 (DMP1) was evaluated in all four groups using quantitative real-time polymerase chain reaction (PCR) (n = 16). Also, osteogenic differentiation of SCAPs was evaluated qualitatively by alizarin red staining (ARS) to assess the matrix mineralization (n = 4). SPSS version 18 was used for data evaluation. The Kruskal-Wallis and Mann-Whitney tests were used to compare the groups. RESULTS Exposure to 1 µg/mL CuONPs resulted in maximum viability of SCAPs. Concentrations of CuONPs over 10 µg/mL significantly decreased the viability of SCAPs. Real-time PCR showed that the expression of DMP1, BSP, ALP, and DSPP in CuONPs + LED and LED groups was significantly higher than that in CuONPs and control groups at both 24 and 48 h (P < 0.05). The density of ARS increased in all experimental groups after 24 h, and in CuONPs + LED and CuONPs groups after 48 h, compared to the control group. CONCLUSION Addition of CuONPs and LED irradiation of SCAPs in the culture medium significantly enhanced their osteogenic/odontogenic differentiation.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Rahmati
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Loghman Rezaei-Soufi
- Department of Operative Dentistry, Dental Research Center, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadiseh Abbaspourrokni
- Department of Endodontics, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
46
|
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater 2023; 12:e2202766. [PMID: 36512599 PMCID: PMC11468595 DOI: 10.1002/adhm.202202766] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) is a topic of interest for the last decade, and advances in materials, processing techniques, and the understanding of bone healing pathways have opened new avenues of research. The dual responsibility of BTE scaffolds in providing load-bearing capability and interaction with the local extracellular matrix to promote bone healing is a challenge in synthetic scaffolds. This article describes the usage and processing of multi-materials and hierarchical structures to mimic the structure of natural bone tissues to function as bioactive and load-bearing synthetic scaffolds. The first part of this literature review describes the physiology of bone healing responses and the interactions at different stages of bone repair. The following section reviews the available literature on biomaterials used for BTE scaffolds followed by some multi-material approaches. The next section discusses the impact of the scaffold's structural features on bone healing and the necessity of a hierarchical distribution in the scaffold structure. Finally, the last section of this review highlights the emerging trends in BTE scaffold developments that can inspire new tissue engineering strategies and truly develop the next generation of synthetic scaffolds.
Collapse
Affiliation(s)
- Tejas M. Koushik
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| | - Catherine M. Miller
- College of Medicine and DentistryJames Cook UniversitySmithfieldQueensland4878Australia
| | - Elsa Antunes
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| |
Collapse
|
47
|
Kausar A. Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
48
|
Samrot AV, Sathiyasree M, Rahim SBA, Renitta RE, Kasipandian K, Krithika Shree S, Rajalakshmi D, Shobana N, Dhiva S, Abirami S, Visvanathan S, Mohanty BK, Sabesan GS, Chinni SV. Scaffold Using Chitosan, Agarose, Cellulose, Dextran and Protein for Tissue Engineering-A Review. Polymers (Basel) 2023; 15:polym15061525. [PMID: 36987305 PMCID: PMC10054888 DOI: 10.3390/polym15061525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 03/30/2023] Open
Abstract
Biological macromolecules like polysaccharides/proteins/glycoproteins have been widely used in the field of tissue engineering due to their ability to mimic the extracellular matrix of tissue. In addition to this, these macromolecules are found to have higher biocompatibility and no/lesser toxicity when compared to synthetic polymers. In recent years, scaffolds made up of proteins, polysaccharides, or glycoproteins have been highly used due to their tensile strength, biodegradability, and flexibility. This review is about the fabrication methods and applications of scaffolds made using various biological macromolecules, including polysaccharides like chitosan, agarose, cellulose, and dextran and proteins like soy proteins, zein proteins, etc. Biopolymer-based nanocomposite production and its application and limitations are also discussed in this review. This review also emphasizes the importance of using natural polymers rather than synthetic ones for developing scaffolds, as natural polymers have unique properties, like high biocompatibility, biodegradability, accessibility, stability, absence of toxicity, and low cost.
Collapse
Affiliation(s)
- Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Mahendran Sathiyasree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sadiq Batcha Abdul Rahim
- Faculty of Engineering, Built Environment and IT, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Robinson Emilin Renitta
- Department of Food Processing, Karunya Institute of Technology and Science, Coimbatore 641114, Tamil Nadu, India
| | - Kasirajan Kasipandian
- Faculty of Engineering, Built Environment and IT, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sivasuriyan Krithika Shree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Deenadhayalan Rajalakshmi
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Nagarajan Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Shanmugaboopathi Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India
| | - Sasi Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi, Affiliated to Manonmaniam Sundaranar University, Thoothukudi 628003, Tamil Nadu, India
| | - Sridevi Visvanathan
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah Darul Aman, Malaysia
| | - Basanta Kumar Mohanty
- Faculty of Medicine, Manipal University College Malaysia (MUCM), Jalan Padang Jambu, Bukit Baru 75150, Melaka, Malaysia
| | - Gokul Shankar Sabesan
- Faculty of Medicine, Manipal University College Malaysia (MUCM), Jalan Padang Jambu, Bukit Baru 75150, Melaka, Malaysia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
49
|
Gold Nanoparticles Enriched Graphene System for Therapeutics: A Novel Combination of Experimental and Theoretical Studies. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
50
|
Safiaghdam H, Nokhbatolfoghahaei H, Farzad-Mohajeri S, Dehghan MM, Farajpour H, Aminianfar H, Bakhtiari Z, Jabbari Fakhr M, Hosseinzadeh S, Khojasteh A. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. J Biomed Mater Res A 2023; 111:322-339. [PMID: 36334300 DOI: 10.1002/jbm.a.37465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Magnesium (Mg) plays an important role in controlling bone apatite structure and density and is a potential bioactive material in repairing critical-sized bone defects. In this study, we aimed to evaluate the effect of adding NanoMgO to polycaprolactone/beta-tricalcium phosphate (PCL/β-TCP) scaffolds on bone regeneration. Novel 3D-printed porous PCL/β-TCP composite scaffolds containing 10% nanoMgO were fabricated by fused deposition modeling (FDM) and compared with PCL/β-TCP (1:1) scaffolds (control). The morphology and physicochemical properties of the scaffolds were characterized by ATR-FTIR, XRD, scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX), transmission-electron-microscopy (TEM), water contact angle, and compressive strength tests and correlated to its cytocompatibility and osteogenic capacity in-vitro. To evaluate in-vivo osteogenic capacity, bone-marrow-derived stem cell (BMSC)-loaded scaffolds were implanted into 8 mm rat critical-sized calvarial defects for 12 weeks. The hydrophilic scaffolds showed 50% porosity (pore size = 504 μm). MgO nanoparticles (91.5 ± 27.6 nm) were homogenously dispersed and did not adversely affect BMSCs' viability and differentiation. Magnesium significantly increased elastic modulus, pH, and degradation. New bone formation (NBF) in Micro-CT was 30.16 ± 0.31% and 23.56 ± 1.76% in PCL/β-TCP/nanoMgO scaffolds with and without BMSCs respectively, and 19.38 ± 2.15% and 15.75 ± 2.24% in PCL/β-TCP scaffolds with and without BMSCs respectively. Angiogenesis was least remarkable in PCL/β-TCP compared with other groups (p < .05). Our results suggest that the PCL/β-TCP/nanoMgO scaffold is a more suitable bone substitute compared to PCL/β-TCP in critical-sized calvarial defects.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Student Research Committee, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Hekmat Farajpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Aminianfar
- Institute of Biomedical Research, University of Tehran, Tehran, Iran.,Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zeinab Bakhtiari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoumeh Jabbari Fakhr
- Institute of Biomedical Research, University of Tehran, Tehran, Iran.,Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|