1
|
Du SL, Zhou YT, Hu HJ, Lin L, Zhang ZQ. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: a review. Toxicol Mech Methods 2025; 35:89-100. [PMID: 39223849 DOI: 10.1080/15376516.2024.2400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs), the first line against the invasion of foreign invaders, play a predominant role in the pathogenesis of silicosis. Studies have shown that inhaled silica dust is recognized and engulfed by AMs, resulting in the production of large amounts of silica-induced reactive oxygen species (ROS), including particle-derived ROS and macrophage-derived ROS. These ROS change the microenvironment of the AMs where the macrophage phenotype is stimulated to swift from M0 to M1 and/or M2, and ultimately emerge as the M2 phenotype to trigger silicosis. This is a complex process accompanied by various molecular biological events. Unfortunately, the detailed processes and mechanisms have not been systematically described. In this review, we first systematically introduce the process of ROS induced by silica in AMs. Then, describe the role and molecular mechanism of M2-type macrophage polarization caused by silica-induced ROS. Finally, we review the mechanism of pulmonary fibrosis induced by M2 polarized AMs. We conclude that silica-induced ROS initiate the fibrotic process of silicosis by inducing macrophage into M2 phenotype, and that targeted intervention of silica-induced ROS in AMs can reprogram the macrophage polarization and ameliorate the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Yu-Ting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
2
|
Qu SJ, Zhu SY, Wang EY, Yan XL, Cao RF, Li HT, Jiang ZL. Environmental high temperature affects pre-implantation embryo development by impairing the DNA repair ability. J Therm Biol 2024; 125:103968. [PMID: 39312816 DOI: 10.1016/j.jtherbio.2024.103968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Environmental high temperature poses a significant threat to human health, however, limited information is available for understanding the relationship between the hot weather and infertility. This study aims to assess the adverse effect of the hot weather to early embryonic cells. Our results indicated that environmental high temperature exposure could cause the decline of early embryo quality and implantation ability. In detail, it led to early embryonic development retardation, embryo degeneration rate increased, the rate of blastocyst and hatching decreased, and reduced the number of implants. And the finding also the impairment of environmental high temperature on early embryonic cells may be due to oxidative damage of DNA caused by ROS, while BER repair ability is decreased, failing to repair oxidative damage of DNA in time, resulting in a large number of early embryonic apoptosis. The work underscored that pregnant women should stay away from high-temperature environments.
Collapse
Affiliation(s)
- Si-Jing Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - En-Yan Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Lei Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rong-Feng Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hua-Tao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhong-Ling Jiang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Aparicio-Alonso M, Torres-Solórzano V, Méndez-Contreras JF, Acevedo-Whitehouse K. Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. TOXICS 2023; 11:805. [PMID: 37888657 PMCID: PMC10610828 DOI: 10.3390/toxics11100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
The chemical composition of COVID test swabs has not been examined beyond the manufacturer's datasheets. The unprecedented demand for swabs to conduct rapid lateral flow tests and nucleic acid amplification tests led to mass production, including 3D printing platforms. Manufacturing impurities could be present in the swabs and, if so, could pose a risk to human health. We used scanning electron microscopy and energy dispersive X-ray (EDX) spectroscopy to examine the ultrastructure of seven assorted brands of COVID test swabs and to identify and quantify their chemical elements. We detected eight unexpected elements, including transition metals, such as titanium and zirconium, the metalloid silicon, as well as post-transition metals aluminium and gallium, and the non-metal elements sulphur and fluorine. Some of the elements were detected as trace amounts, but for others, the amount was close to reported toxicological thresholds for inhalation routes. Experimental studies have shown that the detrimental effects of unexpected chemical elements include moderate to severe inflammatory states in the exposed epithelium as well as proliferative changes. Given the massive testing still being used in the context of the COVID pandemic, we urge caution in continuing to recommend repeated and frequent testing, particularly of healthy, non-symptomatic, individuals.
Collapse
Affiliation(s)
- Manuel Aparicio-Alonso
- Medical Direction and Healthcare Responsibility, Centro Médico Jurica, Santiago de Querétaro 76100, Mexico
| | - Verónica Torres-Solórzano
- Unit for Basic and Applied Microbiology, Universidad Autónoma de Querétaro, Santiago de Querétaro 76140, Mexico;
| | | | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, Universidad Autónoma de Querétaro, Santiago de Querétaro 76140, Mexico;
| |
Collapse
|
4
|
Elkhenany H, Elkodous MA, Mansell JP. Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation. Nanomedicine (Lond) 2023; 18:1459-1475. [PMID: 37815159 DOI: 10.2217/nnm-2023-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Materials & methods: Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP. Results: TNC had no cytotoxic effect on MG63. The addition of TNC to EB1089-FHBP cotreatment enhanced the maturation of MG63, as supported by the greater alkaline phosphatase activity and OPN and OCN gene expression. Conclusion: TNC could serve as a promising carrier for FHBP, opening up possibilities for its application in bone regeneration.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical & Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-Cho, Toyohashi, Aichi, 441-8580, Japan
| | - Jason Peter Mansell
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
5
|
Hemmendinger M, Squillacioti G, Charreau T, Garzaro G, Ghelli F, Bono R, Sauvain JJ, Suarez G, Hopf NB, Wild P, Progiou A, Fito C, Bergamaschi E, Guseva Canu I. Occupational exposure to nanomaterials and biomarkers in exhaled air and urine: Insights from the NanoExplore international cohort. ENVIRONMENT INTERNATIONAL 2023; 179:108157. [PMID: 37625222 DOI: 10.1016/j.envint.2023.108157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The current evidence on nanomaterial toxicity is mostly derived from experimental studies making it challenging to translate it into human health risks. We established an international cohort (N = 141 workers) within the EU-LIFE project "NanoExplore" to address possible health effects from occupational exposures to nanomaterials. We used a handheld direct-reading optical particle counter to measure airborne nanoparticle number concentrations (PNC) and lung-deposited surface areas (LDSAs). Airborne particles were characterized by TEM and SEM-EDAX. We assessed oxidative/nitrosative stress with a panel of biomarkers in exhaled breath condensate (EBC) (8-isoprostane, malondialdehyde, nitrotyrosine), inflammation (high-sensitivity C reactive protein (hs-CRP), IL-1β, TNF-α, IL-10) and KL-6 (considered as biomarker of interstitial lung fibrosis) and urine (total antioxidant power (TAP), 8-isoprostane, and malondialdehyde). Exhaled breath sampled in gas-sampling bags were assessed for oxidative potential. These biomarkers were quantified pre-shift at the beginning of the workweek and post-shift the 4th day. Relationships between airborne nanoparticle concentration and biomarkers were assessed by multiple linear regression with log-transformed exposure and biomarker concentrations adjusted for potential confounders. We found a positive dose-response relationship for three inflammation biomarkers (IL-10, IL-1β and TNF-α) in EBC with both PNC and LDSA. A negative dose-response relationship was observed between PNC and TAP. This study suggests that occupational exposures to nanoparticles can affect the oxidative balance and the innate immunity in occupationally exposed workers. However, owing to the intrinsic variability of biomarkers, the observed changes along with their health significance should be assessed in a long-term perspective study.
Collapse
Affiliation(s)
- Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin - Via Santena 5 bis, 10126 Torino, Italy
| | - Thomas Charreau
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, Via Zuretti 29, 10126 Torino, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin - Via Santena 5 bis, 10126 Torino, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin - Via Santena 5 bis, 10126 Torino, Italy
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland
| | - Guillaume Suarez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland
| | - Athena Progiou
- ALCON Consultant Engineers Ltd., 18Τroias street, 11257 Athens, Greece
| | - Carlos Fito
- Instituto tecnológico del embalaje, transporte y logística (ITENE), C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Via Zuretti 29, 10126 Torino, Italy
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Epalinges, Lausanne, Switzerland.
| |
Collapse
|
6
|
Ma Y, Meng X, Sowanou A, Wang J, Li H, Li A, Zhong N, Yao Y, Pei J. Effect of Fluoride on the Expression of 8-Hydroxy-2'-Deoxyguanosine in the Blood, Kidney, Liver, and Brain of Rats. Biol Trace Elem Res 2023; 201:2904-2916. [PMID: 35984601 DOI: 10.1007/s12011-022-03394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Excessive exposure of fluoride not only leads to damage on bone, but also has an adverse effect on soft tissues. Oxidative DNA damage induced by fluoride is thought to be one of the toxic mechanisms of fluoride effect. However, the dose-response of fluoride on oxidative DNA damage is barely studied in organisms. This study investigated the concentration of fluoride in rat blood, kidney, liver, and brain as well as the dose-time effect of fluoride on the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the above tissues. Rats were exposed to 0 mg/L, 25 mg/L, 50 mg/L, and 100 mg/L of fluorine ion and treated for one and three months. The results showed that the accumulation of fluoride in soft tissues was very different. At the first month, blood fluoride was increased, liver and brain fluoride showed a U-shaped change, and kidney fluoride was not significant. At the third month, blood fluoride was altered with an inverted U-shaped change, kidney and brain fluoride increased, but liver fluoride decreased. Both the exposure concentration and the time of exposure had a significant effect on the expression of 8-OHdG in the above tissues. However, the effect patterns of fluoride on these tissues were notably different at different times. At the first month of fluoride treatment, blood, kidney, and liver 8-OHdG decreased with the increasing fluoride concentration. At the third month, blood 8-OHdG showed a U-shaped change, but kidney 8-OHdG altered with an inverted U-shaped change. Liver 8-OHdG increased, while brain 8-OHdG decreased at the third month. Correlation analysis showed that only blood 8-OHdG was significantly inversely correlated with blood fluoride and dental fluorosis grade in both the first and third months. Liver 8-OHdG was negatively and significantly correlated with liver fluoride. There was a weak but nonsignificant correlation between kidney and brain 8-OHdG and fluoride in both tissues. Additionally, blood 8-OHdG was positively correlated with kidney and liver 8-OHdG at the first month and positively correlated with brain 8-OHdG at the third month. Taken together, our data suggests that concentration and time of fluoride exposure had a significant effect on 8-OHdG, but the effect patterns of fluoride on 8-OHdG were different in the tissues, which suggests that the impact of fluoride on 8-OHdG may be a tissue-specific, as well as a non-monotonic positive correlation.
Collapse
Affiliation(s)
- Yongzheng Ma
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Alphonse Sowanou
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Hanying Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Nan Zhong
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yingjie Yao
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
7
|
Miu BA, Voinea IC, Diamandescu L, Dinischiotu A. MRC-5 Human Lung Fibroblasts Alleviate the Genotoxic Effect of Fe-N Co-Doped Titanium Dioxide Nanoparticles through an OGG1/2-Dependent Reparatory Mechanism. Int J Mol Sci 2023; 24:ijms24076401. [PMID: 37047374 PMCID: PMC10094865 DOI: 10.3390/ijms24076401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
The current study was focused on the potential of pure P25 TiO2 nanoparticles (NPs) and Fe(1%)-N co-doped P25 TiO2 NPs to induce cyto- and genotoxic effects in MRC-5 human pulmonary fibroblasts. The oxidative lesions of P25 NPs were reflected in the amount of 8-hydroxydeoxyguanosine accumulated in DNA and the lysosomal damage produced, but iron-doping partially suppressed these effects. However, neither P25 nor Fe(1%)-N co-doped P25 NPs had such a serious effect of inducing DNA fragmentation or activating apoptosis signaling. Moreover, oxo-guanine glycosylase 1/2, a key enzyme of the base excision repair mechanism, was overexpressed in response to the oxidative DNA deterioration induced by P25 and P25-Fe(1%)-N NPs.
Collapse
|
8
|
Mohammadparast V, Mallard BL. The effect and underlying mechanisms of titanium dioxide nanoparticles on glucose homeostasis: A literature review. J Appl Toxicol 2023; 43:22-31. [PMID: 35287244 PMCID: PMC10078690 DOI: 10.1002/jat.4318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Titanium dioxide (TiO2 ) is used extensively as a white pigment in the food industry, personal care, and a variety of products of everyday use. Although TiO2 has been categorized as a bioinert material, recent evidence has demonstrated different toxicity profiles of TiO2 nanoparticles (NPs) and a potential health risk to humans. Studies indicated that titanium dioxide enters the systemic circulation and accumulates in the lungs, liver, kidneys, spleen, heart, and central nervous system and may cause oxidative stress and tissue damage in these vital organs. Recently, some studies have raised concerns about the possible detrimental effects of TiO2 NPs on glucose homeostasis. However, the findings should be interpreted with caution due to the methodological issues. This article aims to evaluate current evidence regarding the effects of TiO2 NPs on glucose homeostasis, including possible underlying mechanisms. Furthermore, the limitations of current studies are discussed, which may provide a comprehensive understanding and new perspectives for future studies in this field.
Collapse
Affiliation(s)
| | - Beth L Mallard
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
9
|
AlHarthi MA, Soumya S, Rani A, Kheder W, Samsudin AR. Impact of exposure of human osteoblast cells to titanium dioxide particles in-vitro. J Oral Biol Craniofac Res 2022; 12:760-764. [PMID: 36124073 PMCID: PMC9482106 DOI: 10.1016/j.jobcr.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/15/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Titanium Dental implant is the most successful treatment modality to replace missing teeth today. Although titanium is considered biologically biocompatible, strong, and corrosion-free, the risk of implant failure continues due to bone loss at the expense of optimum oral health. Current research points toward the presence of titanium dioxide (TiO2) particles leached from dental implant surface, which occurred due to mechanical and chemical insults on the surface. This study aimed to investigate the influence of TiO2 particles of different sizes leaching from implant surfaces on Human Osteoblast cells (HOB) in-vitro. Titanium dioxide particles in both nano (NPs) and micro (MPs) size and at different concentrations were introduced to human osteoblast cells with and without treatment with vitamin C. Production of ROS was measured using H2DCFDA cellular ROS Assay Kit and MCP-1 and IL-8 cytokines released were assayed at 24 h time point using ELISA technique. Results showed a dose dependent increase in ROS production following exposure of HOB to both nano and micro particles. MCP-1 and IL-8 were released and there was minimal difference between the amount generated by nano compared with micro size particles. Treatment of HOB with antioxidant vitamin C demonstrated a significant reduction in the generation of ROS. At the same time, MCP-1 release was reduced significantly for the 100 μg/mL TiO2 NPs and MPs after Vitamin C treatment while IL-8 release increased significantly. This study suggests a positive role played by antioxidants in the control of ROS generation and chemokines production in the peri-implant tissue environment.
Collapse
Affiliation(s)
- Mariam Ali AlHarthi
- College of Dental Medicine, Sharjah Institute for Medical Research, United Arab Emirates
| | - S Soumya
- University of Sharjah, Sharjah Institute for Medical Research, United Arab Emirates
| | - Aghila Rani
- University of Sharjah, Sharjah Institute for Medical Research, United Arab Emirates
| | - Waad Kheder
- College of Dental Medicine, Sharjah Institute for Medical Research, United Arab Emirates
| | - A R Samsudin
- College of Dental Medicine, Sharjah Institute for Medical Research, United Arab Emirates
| |
Collapse
|
10
|
Abd-Elhakim YM, Hashem MM, Abo-EL-Sooud K, Hassan BA, Elbohi KM, Al-Sagheer AA. Effects of Co-Exposure of Nanoparticles and Metals on Different Organisms: A Review. TOXICS 2021; 9:284. [PMID: 34822675 PMCID: PMC8623643 DOI: 10.3390/toxics9110284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
Wide nanotechnology applications and the commercialization of consumer products containing engineered nanomaterials (ENMs) have increased the release of nanoparticles (NPs) to the environment. Titanium dioxide, aluminum oxide, zinc oxide, and silica NPs are widely implicated NPs in industrial, medicinal, and food products. Different types of pollutants usually co-exist in the environment. Heavy metals (HMs) are widely distributed pollutants that could potentially co-occur with NPs in the environment. Similar to what occurs with NPs, HMs accumulation in the environment results from anthropogenic activities, in addition to some natural sources. These pollutants remain in the environment for long periods and have an impact on several organisms through different routes of exposure in soil, water, and air. The impact on complex systems results from the interactions between NPs and HMs and the organisms. This review describes the outcomes of simultaneous exposure to the most commonly found ENMs and HMs, particularly on soil and aquatic organisms.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Khaled Abo-EL-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 41639, Egypt;
| | - Khlood M. Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
11
|
Omari Shekaftik S, Nasirzadeh N. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: a systematic review. Nanotoxicology 2021; 15:850-864. [PMID: 34171202 DOI: 10.1080/17435390.2021.1936254] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In nuclear and mitochondrial DNA, 8-hydroxy-2'-deoxyguanosine (8-OHdG) is one of the predominant forms of reactive oxygen species (ROSs) lesions, which commonly used as a biomarker for oxidative stress. Studies showed that the different nanomaterials can induce toxicity by ROSs in human body. So, this study is going to review the studies about oxidative DNA damage caused by occupational exposure to nanomaterials, using 8-OHdG biomarker.Systematic review was managed based on Cochrane systematic review guideline. Literature search was conducted in scientific databases with the main terms of "biomarkers," "biological markers," combined with "occupational exposure" and "nanomaterials." All papers in the field of occupational exposure to nanomaterials until 2020 December were included. To evaluate the quality and bias of studies, GRADE method (Grading of Recommendations, Assessment, Development, and Evaluation) was used.Two hundred twenty-six studies were primarily achieved. By considering the inclusion criteria, overall 8 articles were selected. The majority of the studies were classified as the moderate quality studies (six studies). Also, the study-level bias was critical. This review shows that there is a significant relationship between job title and amount of produced nanomaterials and the existence of 8-OHdG. Also, the levels of 8-OHdG can be measured in urine, blood, and inhalation samples by instrumental procedures.Oxidative damages are an important threat for workers exposed to nanomaterial. Blood and EBC 8-OHdG level can be introduced as a biomarker for metal nanomaterials, but urinary 8-OHdG needs to be taken with caution. So, it is recommended that evaluation not be solely based on one biomarker.
Collapse
Affiliation(s)
- Soqrat Omari Shekaftik
- Department of Occupational Health Engineering, Faculty of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Nasirzadeh
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wu WT, Jung WT, Lee HL. Lipid peroxidation metabolites associated with biomarkers of inflammation and oxidation stress in workers handling carbon nanotubes and metal oxide nanoparticles. Nanotoxicology 2021; 15:577-587. [PMID: 33570441 DOI: 10.1080/17435390.2021.1879303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to assess the effects of lipid peroxidation with occupational exposure to different types of nanomaterials (NMs). In this cross-sectional study, urine and exhaled breath condensate (EBC) samples were collected from 80 NM-handling workers [30 workers handling nano-titanium oxide (nano-TiO2), 28 handling nano-silicon dioxide (nano-SiO2), 22 handling carbon nanotubes (CNTs)], and 69 controls (office workers) from 2010 to 2012. Urinary 8-isoPGF2α, 2,3 dinor-8-isoPGF2α, PGF2α, and EBC 8-iso PGF2α were measured as lipid peroxidation biomarkers in 2013. A significant positive correlation was found between 8-isoPGF2α, 2,3 dinor-8-isoPGF2α, PGF2α, and total isoprostane in urine. Furthermore, significant positive correlations were noted between EBC 8-iso PGF2α and urinary 2,3 dinor-8-isoPGF2α (Spearman correlation r = 0.173, p = 0.035). Exposure to nano-TiO2 resulted in significantly higher levels of urinary 8-isoPGF2α, 2,3 dinor-8-isoPGF2α and PGF2α, even after controlling for confounding factors. Moreover, significant associations and exposure intensity-response relationships between EBC 8-iso PGF2α and NMs were observed in workers, whether handling nano-TiO2, nano-SiO2, or CNTs. Among them, the significant trends were identified based on the intensity of risk levels. These results provided evidence that exposure to nano-TiO2, nano-SiO2, and CNTs may lead to lipid peroxidation in EBC. For routine biomonitoring purposes, this finding, which came through noninvasive methods, may be useful for workers exposed to NMs.HighlightsData regarding the effects of nano-titanium oxide (nano-TiO2), nano-silicon dioxide (nano-SiO2), and carbon nanotubes (CNTs) on lipid peroxidation in workers are limited.8-Iso PGF2α in exhaled breath condensate of workers exposed to nanoparticles was higher than that of office workers.Exposure to titanium oxide (TiO2) and silica (SiO2) may lead to lipid peroxidation, as indicated by 8-isoPGF2α, 2,3 dinor-8-isoPGF2α, and PGF2α.Examination of lipid peroxidation in EBC has seems to be a useful technique for noninvasive monitoring of workers exposed to nanoparticles.
Collapse
Affiliation(s)
- Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
13
|
Zhao J, Xie G, Xu Y, Zheng L, Ling J. Accumulation and toxicity of multi-walled carbon nanotubes in Xenopus tropicalis tadpoles. CHEMOSPHERE 2020; 257:127205. [PMID: 32502735 DOI: 10.1016/j.chemosphere.2020.127205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), a common nanomaterial widely used and discharged in environment, might exert toxic effects on aquatic animals. In this paper, filter-feeding tadpole of Xenopus tropicalis was selected as bioindicator to study the exposure effects of MWCNTs suspensions of 0.5, 1, 2, 4 and 8 mg/L for 72 h. The results showed that the tadpoles could remain high survival rate of over 96.7% after 24 h's exposure to MWCNTs, but then decrease considerably, showing a significant time-dependent relationship. The LC50 was 2.53 mg/L for tadpoles exposed to MWCNTs for 72 h, when MWCNTs accumulated in their gills and digestive tracts. Moreover, the enrichment degree of MWCNTs in tadpole was related to exposure density than time. When MWCNTs suspension concentration was not over 1 mg/L, the heart rates increased significantly and then decreased continuously. The survivors from the toxicity test were transferred to fresh filtered water for recovery, but MWCNTs accumulated in the tadpoles' body didn't decrease obviously after 4 days. Although the maximum tadpoles survival rate of 80% was recorded in the exposure group of 0.5 mg/L MWCNTs, only 43.3% of the survivors could recover. Therefore, the final survival rate was negative related to the exposure densities of MWCNTs but positive related to the accumulating degree in tadpoles' body. The results demonstrated that MWCNTs exposure posed potential health risks to filter-feeding organisms by intake and accumulation in organs, which could provide useful information for the reasonable evaluation and scientific management of nanomaterials.
Collapse
Affiliation(s)
- Jianbin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Analysis and Testing Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Chen Z, Han S, Zheng P, Zhou S, Jia G. Combined effect of titanium dioxide nanoparticles and glucose on the blood glucose homeostasis in young rats after oral administration. J Appl Toxicol 2020; 40:1284-1296. [DOI: 10.1002/jat.3985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science CenterPeking University Beijing China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing China
| |
Collapse
|
15
|
Chen Z, Zhou D, Zhou S, Jia G. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague‐Dawley rats. J Appl Toxicol 2019; 39:807-819. [DOI: 10.1002/jat.3769] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing 100191 China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing 100191 China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science CenterPeking University Beijing 100191 China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public HealthPeking University Beijing 100191 China
| |
Collapse
|
16
|
Chen Z, Zhou D, Wang Y, Zhao L, Hu G, Liu J, Feng H, Long C, Yan T, Zhou S, Jia G. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J Appl Toxicol 2018; 39:590-602. [PMID: 30427543 DOI: 10.1002/jat.3750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have already been used as food additive in various products and are usually consumed with a considerable amount of sugar. Oral consumption of TiO2 NPs poses concerning health risks; however, research on the combined effect of ingested TiO2 NPs and glucose is limited. We examined young Sprague-Dawley rats administrated TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day with and without 1.8 g/kg body weight glucose for 30 and 90 days. Heart rate, systolic and diastolic blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. The results showed that oral exposure to TiO2 NPs and high doses of glucose both could induce cardiovascular injuries. The toxic effects were dose-, time- and gender-dependent. The interaction effects between oral-exposed TiO2 NPs and glucose existed and revealed to be antagonism in most of the biological parameters. However, toxic effects of the high-dose glucose seemed to be more severe than TiO2 NPs and the interaction of TiO2 NPs with glucose. These results suggest that it may be more important to control the sugar intake than TiO2 NPs for protecting the health of TiO2 NP consumers.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lin Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiaxing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Huimin Feng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Tenglong Yan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
17
|
He Q, Zhou X, Liu Y, Gou W, Cui J, Li Z, Wu Y, Zuo D. Titanium dioxide nanoparticles induce mouse hippocampal neuron apoptosis via oxidative stress- and calcium imbalance-mediated endoplasmic reticulum stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:6-15. [PMID: 30114659 DOI: 10.1016/j.etap.2018.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to explore the potential neurotoxicity and the underlying mechanism of titanium dioxide nanoparticles (TiO2-NPs) to mouse hippocampal neuron HT22 cells. We found that TiO2-NPs had concentration-dependent and time-dependent cytotoxicities to HT22 cells by the MTT assay. Propidium iodide (PI) staining with FACScan flow cytometry proved that TiO2-NPs dose-dependently increased the apoptosis rate in HT22 cells, and the apoptotic features were observed by Hochest 33258 and AO/EB staining. The levels of calcium (Ca2+) and reactive oxygen species (ROS) were significantly increased in TiO2-NPs-treated cells. Further studies by western blot and real-time QPCR proved that the protein and mRNA levels of GRP78, IRE-1α, ATF6, CHOP and caspase-12 were up-regulated after TiO2-NPs treatment, which indicates that TiO2-NPs-induced cytotoxicity is related to endoplasmic reticulum stress (ERS). Apoptosis-related protein cleaved caspase-3 and pro-apoptotic protein Bax expression levels were up-regulated, and the anti-apoptotic protein Bcl-2 expression level was down-regulated in TiO2-NPs-treated cells. The antioxidant N-acetyl-L-cysteine (NAC) can significantly reduce TiO2-NPs-induced ERS characterized by the down-regulation of GRP78 and cleaved caspase-12 levels, which indicates that oxidative stress is participated in TiO2-NPs-induced ERS. Our study suggests that TiO2-NPs-induced apoptosis in HT22 cells is through oxidative stress- and calcium imbalance-mediated ERS.
Collapse
Affiliation(s)
- Qiong He
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xuejiao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Wenfeng Gou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiahui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
18
|
Xu X, Liao W, Lin Y, Dai Y, Shi Z, Huo X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1481-1494. [PMID: 28623427 DOI: 10.1007/s10653-017-9997-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3-6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children's urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62-407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111-0.542; β Q3 = 0.347, 95% CI 0.103-0.531; β Q4 = 0.314, 95% CI 0.087-0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039-0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.
Collapse
Affiliation(s)
- Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Weitang Liao
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yucong Lin
- Tabor Academy, Marion, MA, USA
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhihua Shi
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Møller P, Jensen DM, Wils RS, Andersen MHG, Danielsen PH, Roursgaard M. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models. Nanotoxicology 2017; 11:1237-1256. [DOI: 10.1080/17435390.2017.1406549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Liou SH, Wu WT, Liao HY, Chen CY, Tsai CY, Jung WT, Lee HL. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:329-335. [PMID: 28273583 DOI: 10.1016/j.jhazmat.2017.02.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO2, SiO2, and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r=0.256, p=0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r=-0.272, p=0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.
Collapse
Affiliation(s)
- Saou-Hsing Liou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hui-Yi Liao
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chao-Yu Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Yen Tsai
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Liou SH, Chen YC, Liao HY, Wang CJ, Chen JS, Lee HL. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers. Biomarkers 2016; 21:600-6. [DOI: 10.3109/1354750x.2016.1160432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Saou-Hsing Liou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yu-Cheng Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Yi Liao
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jhih-Sheng Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
22
|
Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Chen T, Li Y, Zhang W, Gao X, Li P, Wang H, Jia G. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1633-42. [DOI: 10.1016/j.nano.2015.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
|
23
|
Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ, Kim JS, Cho MH. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells. PLoS One 2015; 10:e0131208. [PMID: 26121477 PMCID: PMC4485469 DOI: 10.1371/journal.pone.0131208] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/30/2015] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application.
Collapse
Affiliation(s)
- Kyeong-Nam Yu
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Soo Jin Park
- R&D Center, Biterials Co., Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, Korea
| | - Joohyun Lim
- Department of Chemistry, College of Natural Sciences, Gwanak-gu, Seoul National University, Seoul, Korea
| | - Jinkyu Lee
- Department of Chemistry, College of Natural Sciences, Gwanak-gu, Seoul National University, Seoul, Korea
| | - Tae-Jong Yoon
- Department of Applied Bioscience, College of Life Science, CHA University, Pocheon-shi, Gyeonggi-do, Korea
| | - Jun-Sung Kim
- R&D Center, Biterials Co., Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, Korea
- * E-mail: (JSK); (MHC)
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
- Graduate Group of Tumor Biology, Seoul National University, Gwanak-gu, Seoul, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Yeongtong-Gu, Suwon, Gyeonggi-Do, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-Do, Korea
- * E-mail: (JSK); (MHC)
| |
Collapse
|
24
|
Niska K, Pyszka K, Tukaj C, Wozniak M, Radomski MW, Inkielewicz-Stepniak I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int J Nanomedicine 2015; 10:1095-107. [PMID: 25709434 PMCID: PMC4327568 DOI: 10.2147/ijn.s73557] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•−2) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2•− generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2•− content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2•− in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts.
Collapse
Affiliation(s)
- Karolina Niska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Pyszka
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland ; Kardio-Med Silesia, Zabrze, Poland ; Silesian Medical University, Zabrze, Poland
| | | |
Collapse
|
25
|
Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta Gen Subj 2014; 1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, United States.
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 40109-2029, United States
| |
Collapse
|
26
|
Morreall J, Limpose K, Sheppard C, Kow YW, Werner E, Doetsch PW. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells. DNA Repair (Amst) 2014; 26:15-22. [PMID: 25534136 DOI: 10.1016/j.dnarep.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species threaten genomic integrity by inducing oxidative DNA damage. One common form of oxidative DNA damage is the mutagenic lesion 8-oxoguanine (8-oxodG). One driver of oxidative stress that can induce 8-oxodG is inflammation, which can be initiated by the cytokine tumor necrosis factor alpha (TNF-α). Oxidative DNA damage is primarily repaired by the base excision repair pathway, initiated by glycosylases targeting specific DNA lesions. 8-oxodG is excised by 8-oxoguanine glycosylase 1 (OGG1). A common Ogg1 allelic variant is S326C-Ogg1, prevalent in Asian and Caucasian populations. S326C-Ogg1 is associated with various forms of cancer, and is inactivated by oxidation. However, whether oxidative stress caused by inflammatory cytokines compromises OGG1 variant repair activity remains unknown. We addressed whether TNF-α causes oxidative stress that both induces DNA damage and inactivates S326C-OGG1 via cysteine 326 oxidation. In mouse embryonic fibroblasts, we found that S326C-OGG1 was inactivated only after exposure to H2O2 or TNF-α. Treatment with the antioxidant N-acetylcysteine prior to oxidative stress rescued S326C-OGG1 activity, demonstrated by in vitro and cellular repair assays. In contrast, S326C-OGG1 activity was unaffected by potassium bromate, which induces oxidative DNA damage without causing oxidative stress, and presumably cysteine oxidation. This study reveals that Cys326 is vulnerable to oxidation that inactivates S326C-OGG1. Physiologically relevant levels of TNF-α simultaneously induce 8-oxodG and inactivate S326C-OGG1. These results suggest a mechanism that could contribute to increased risk of cancer among S326C-Ogg1 homozygous individuals.
Collapse
Affiliation(s)
- Jordan Morreall
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, 30322, USA
| | - Kristin Limpose
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, USA
| | - Clayton Sheppard
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yoke Wah Kow
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erica Werner
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Emory Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
27
|
Hammond SA, Carew AC, Helbing CC. Evaluation of the effects of titanium dioxide nanoparticles on cultured Rana catesbeiana tailfin tissue. Front Genet 2013; 4:251. [PMID: 24312126 PMCID: PMC3836013 DOI: 10.3389/fgene.2013.00251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/04/2013] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles (NPs), materials that have one dimension less than 100 nm, are used in manufacturing, health, and food products, and consumer products including cosmetics, clothing, and household appliances. Their utility to industry is derived from their high surface-area-to-volume ratios and physico-chemical properties distinct from their bulk counterparts, but the near-certainty that NPs will be released into the environment raises the possibility that they could present health risks to humans and wildlife. The thyroid hormones (THs), thyroxine, and 3,3',5-triiodothyronine (T3), are involved in development and metabolism in vertebrates including humans and frogs. Many of the processes of anuran metamorphosis are analogous to human post-embryonic development and disruption of TH action can have drastic effects. These shared features make the metamorphosis of anurans an excellent model for screening for endocrine disrupting chemicals (EDCs). We used the cultured tailfin (C-fin) assay to examine the exposure effects of 0.1-10 nM (~8-800 ng/L) of three types of ~20 nm TiO2 NPs (P25, M212, M262) and micron-sized TiO2 (μ TiO2) ±10 nM T3. The actual Ti levels were 40.9-64.7% of the nominal value. Real-time quantitative polymerase chain reaction (QPCR) was used to measure the relative amounts of mRNA transcripts encoding TH-responsive THs receptors (thra and thrb) and Rana larval keratin type I (rlk1), as well as the cellular stress-responsive heat shock protein 30 kDa (hsp30), superoxide dismutase (sod), and catalase (cat). The levels of the TH-responsive transcripts were largely unaffected by any form of TiO2. Some significant effects on stress-related transcripts were observed upon exposure to micron-sized TiO2, P25, and M212 while no effect was observed with M262 exposure. Therefore, the risk of adversely affecting amphibian tissue by disrupting TH-signaling or inducing cellular stress is low for these compounds relative to other previously-tested NPs.
Collapse
Affiliation(s)
- S Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria Victoria, BC, Canada
| | | | | |
Collapse
|
28
|
Liu K, Lin X, Zhao J. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomedicine 2013; 8:2509-20. [PMID: 23901269 PMCID: PMC3720578 DOI: 10.2147/ijn.s46919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors.
Collapse
Affiliation(s)
- Kui Liu
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Xialu Lin
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
29
|
Liu S, Yang Z. Evaluation of the effect of acute and subacute exposure to TiO₂ nanoparticles on oxidative stress. Methods Mol Biol 2013; 1028:135-145. [PMID: 23740117 DOI: 10.1007/978-1-62703-475-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The nanosized titanium dioxide (nano-TiO2) is produced abundantly and used widely in the chemical, electrical/electronic, and energy industries because of its special photovoltaic and photocatalytic activities. Past reports have shown that the nano-TiO2 can enter into the human body through different routes such as inhalation, ingestion, dermal penetration, and injection. The effects of nano-TiO2 on different organs are currently being investigated. Oxidative stress is considered to play an important role in the oxidative potential of nanoparticles. Here we discuss the association between oxidative stress and the toxicity caused by exposure to nano-TiO2 in different organs.
Collapse
Affiliation(s)
- Shichang Liu
- Nankai University, Ministry of Education, Tianjin, China
| | | |
Collapse
|