1
|
Tong Y, Guo J, Li F, Lai KP, Mo J. Antibiotic erythromycin in fish: Pharmacokinetics, effects, and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126203. [PMID: 40187523 DOI: 10.1016/j.envpol.2025.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Erythromycin is a macrolide antibiotic commonly utilized in veterinary medicine and aquaculture. It functions by binding to the 50S subunit of 70S ribosomes, inhibiting protein synthesis and effectively treating numerous bacterial diseases. Due to the extensive use of erythromycin, it has been detected in various aquatic systems in recent years. Multiple studies have reported the occurrence of erythromycin resistance and its adverse effects on diverse aquatic organisms. Consequently, potential environmental health risks associated with erythromycin have garnered increasing attention. As an integral component of aquatic ecosystems, fish have been the subject of numerous reports regarding the bioaccumulation and adverse effects of erythromycin; however, these data have not been collated and interpreted. This report provides a comprehensive overview of the environmental fate of erythromycin, detection methods, pharmacokinetics, and impacts on fish. In addition to the therapeutic benefits against pathogens, acute or chronic exposure of fish to erythromycin at concentrations ranging from μg/L to mg/L disrupts the primary defense, antioxidant, and xenobiotic metabolism systems, leading to oxidative stress, cellular structural damage, and metabolic disorders, manifesting as cytotoxicity, organ toxicity, neurotoxicity, developmental toxicity, and reproductive toxicity. However, further in-depth studies are warranted to evaluate the therapeutic efficacy at relatively high levels, particularly when considering pathogens with developed resistance to erythromycin, as well as the long-term effects of erythromycin exposure at environmentally relevant concentrations in fish, thereby better assessing the health risks posed by erythromycin to fish and their consumers humans.
Collapse
Affiliation(s)
- Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Keng Po Lai
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Kamila S, Dey KK, Das T, Chattopadhyay A. Mixture effects of arsenic and chromium on erythrocytic nuclear abnormalities and expression of DNA repair, tumor suppressor and apoptotic genes in liver of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104640. [PMID: 39826661 DOI: 10.1016/j.etap.2025.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/26/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
The present study investigated the individual and mixture effects of Arsenic (As) and Chromium (Cr) at their environmental concentrations in zebrafish (Danio rerio). After 15, 30 and 60 days of exposure, increased frequencies of erythrocytic nuclear abnormalities (ENAs) were noticed. After 60 days of exposure, DNA damage was observed in liver and base excision DNA repair (BER) and mismatch DNA repair (MMR) pathways were studied to know the cellular responses. Altered expression of BER (ogg1, apex1, creb1, polb) and MMR (mlh1, msh2, msh6) genes indicated inhibition of DNA repair. Downregulation of tumor suppressor genes (p53 and brca2) occurred in mixture group. Downregulation of bax, caspase9 and decreased bax/bcl2 ratio indicated prevention of intrinsic apoptotic pathway in treated groups. Results indicated As and Cr-induced predisposition to genomic instability and carcinogenesis in zebrafish. Overall, this study confirmed the additive genotoxic effects of As and Cr in zebrafish erythrocytes and in liver after chronic exposure.
Collapse
Affiliation(s)
- Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | | |
Collapse
|
3
|
Torabinia N, Mehdizadeh M, Keshani F, Mehdizadeh M, Soltani P, Spagnuolo G. Genotoxicity and Micronucleus Formation as a Result of Panoramic Radiography in Epithelial Cells of the Buccal Mucosa: A Cross-sectional Study in Adults. Clin Exp Dent Res 2024; 10:e915. [PMID: 39113422 PMCID: PMC11306522 DOI: 10.1002/cre2.915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/11/2024] Open
Abstract
OBJECTIVES To determine the genetic effects of panoramic radiography on the epithelial cells of the buccal mucosa by examining the micronucleus formation in these cells. MATERIALS AND METHODS In this cross-sectional study, exfoliative cytology samples were prepared from the buccal mucosa of 36 patients immediately before and 10 days after panoramic radiography. The samples were prepared using liquid-based cytology with Papanicolaou staining. The slides were simultaneously evaluated by two expert pathologists and the ratio of the number of cells with micronuclei to the total number of cells on the slide was reported as a percentage. Data analysis was done using paired-samples T test, Pearson's correlation coefficient, and covariance analysis (α = 0.05). RESULTS The study sample consisted of 24 (66.67%) males and 12 females (33.33%) with a mean (SD) age of 27.36 (8.19) years. The frequency of cells with micronucleus before and after panoramic radiography was not statistically different (p = 0.468). Additionally, the frequency of micronucleated cells was not correlated with age (p = 0.737) and sex (p = 0.211). CONCLUSION Panoramic exposure slightly increased the frequency of cells with micronucleus in epithelial cells of the buccal mucosa. However, this increase was not statistically significant.
Collapse
Affiliation(s)
- Nakisa Torabinia
- Department of Oral and Maxillofacial Pathology, Dental Research Center, Dental Research Institute, School of DentistryIsfahan University of Medical SciencesIsfahanIran
| | - Mojdeh Mehdizadeh
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Dental Research Institute, School of DentistryIsfahan University of Medical SciencesIsfahanIran
| | - Forooz Keshani
- Department of Oral and Maxillofacial Pathology, Dental Materials Research Center, Dental Research Institute, School of DentistryIsfahan University of Medical SciencesIsfahanIran
| | - Mohammadreza Mehdizadeh
- Students Research Committee, School of DentistryIsfahan University of Medical SciencesIsfahanIran
| | - Parisa Soltani
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Dental Research Institute, School of DentistryIsfahan University of Medical SciencesIsfahanIran
- Department of Neurosciences, Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
4
|
Zhi J, Wang W, Mei X, Li Q, Jiang D, Shan X, Chen X, Chen Z. An electrochemiluminescence sensor based on Ag NPs amplifying PDDA-modified TbPO 4:Ce NWs signal for sensitive detection of lincomycin. Bioelectrochemistry 2024; 158:108702. [PMID: 38669976 DOI: 10.1016/j.bioelechem.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The residue of lincomycin in water will not only aggravate the drug resistance of bacteria but also cause damage to the human body through biological accumulation. In this work, an electrochemiluminescence (ECL) aptasensor for the detection of lincomycin was constructed based on polydimethyldiallylammonium chloride (PDDA) functionalized Ce-doped TbPO4 nanowires (PDDA-TbPO4:Ce NWs) and silver nanoparticles (Ag NPs). TbPO4:Ce NWs were used as the luminophore, and PDDA was used to functionalize the luminophore to make the surface of the luminophore positively charged. The negatively charged silver nanoparticles were combined with PDDA-TbPO4:Ce NWs by electrostatic interaction. Ag NPs accelerated the electron transfer rate and promoted the ECL efficiency, which finally increased the ECL intensity of TbPO4:Ce NWs by about 4 times. Under the optimal conditions, the detection limit of the ECL sensor was as low as 4.37 × 10-16 M, and the linear range was 1 × 10 - 15 M to 1 × 10 - 5 M, with good selectivity, stability, and repeatability. The sensor can be applied to the detection of lincomycin in water, and the recovery rate is 97.7-103.4 %, which has broad application prospects.
Collapse
Affiliation(s)
- Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu 213032, China.
| | - Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit Co., Ltd, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Dey KK, Kamila S, Das T, Chattopadhyay A. Lead induced genotoxicity and hepatotoxicity in zebrafish (Danio rerio) at environmentally relevant concentration: Nrf2-Keap1 regulated stress response and expression of biomarker genes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104396. [PMID: 38395243 DOI: 10.1016/j.etap.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Genotoxic and hepatotoxic potentials of Pb at an environmentally relevant concentration (5 ppm) in zebrafish were investigated in the present study. Erythrocytic nuclear abnormality tests revealed the increased frequencies of abnormal erythrocytes after Pb exposure, indicating a strong genotoxic potential of Pb. Multiple stress-related parameters were further evaluated in liver, the major detoxifying organ. Pb caused increased production of ROS, which in turn caused severe oxidative stress. As a result, lipid peroxidation was increased, whereas reduced glutathione level and catalase activity was decreased. Alterations in liver histoarchitecture also served as evidence of Pb-induced hepatotoxicity. Pb-induced ROS stress triggered upregulation of Nrf2, Nqo1, Ho1; downregulation of Keap1, and altered mRNA expressions of Mn-sod, Cu/Zn-sod, gpx1, cyp1a, ucp2 suggesting involvement of Nrf2-Keap1-ARE signaling in cellular defence. Nrf2-keap1 is a sensitive biomarker of Pb-induced ROS stress. Overexpression of Hsp70 and other genes in hepatocytes might help cell survival under oxidative stress generation.
Collapse
Affiliation(s)
- Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal - 731235, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal - 731235, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal - 731235, India
| | | |
Collapse
|
6
|
Dey KK, Mondal P, Chattopadhyay A. Environmentally relevant lead alters nuclear integrity in erythrocytes and generates oxidative stress in liver of Anabas testudineus: Involvement of Nrf2-Keap1 regulation and expression of biomarker genes. J Appl Toxicol 2024; 44:260-271. [PMID: 37655692 DOI: 10.1002/jat.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Genotoxic and hepatotoxic effects of lead (Pb) on a freshwater fish, climbing perch (Anabas testudineus) were studied at an environmentally relevant concentration (43.3 ppm). The genotoxic potential of Pb was confirmed by micronucleus study, with increased frequencies of erythrocytic nuclear alterations like lobed, blebbed, notched, fragmented, and micronuclei were observed in erythrocytes in treated groups as compared to control. Inorganic Pb induces oxidative stress which is a consequence of elevated level of Reactive Oxygen Species. Hepatotoxicity was assessed both by the oxidative stress and cellular responses that emerged due to the toxic assault of Pb in the liver, the most important detoxifying organ. Upregulation of xenobiotic metabolizing enzyme like catalase was evident after 15, 30, and 90 days of exposure, and a profound effect was observed on 30th days. The level of lipid peroxidation and reduced glutathione was increased after Pb exposure. Histoarchitectural damages of liver were distinctly evident in treated fish. Western blot analysis confirmed the expressional alterations of stress-responsive marker proteins like Nrf2, Keap1, Hsp70, and Nqo1. Pb exposure resulted in increased expression of Hsp70, Nrf2, and Nqo1, whereas Keap1 was downregulated, suggesting the involvement of Nrf2-Keap1 regulation as a cytoprotective mechanism against Pb toxicity.
Collapse
|
7
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
8
|
Hennig TB, Bandeira FO, Puerari RC, Fraceto LF, Matias WG. A systematic review of the toxic effects of a nanopesticide on non-target organisms: Estimation of protective concentrations using a species sensitivity distribution (SSD) approach - The case of atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162094. [PMID: 36764548 DOI: 10.1016/j.scitotenv.2023.162094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanopesticides, such as nanoencapsulated atrazine (nATZ), have been studied and developed as eco-friendly alternatives to control weeds in fields, requiring lower doses. This review contains a historical and systematic literature review about the toxicity of nATZ to non-target species. In addition, the study establishes protective concentrations for non-target organisms through a species sensitivity distribution (SSD) approach. Through the systematic search, we identified 3197 publications. Of these, 14 studies addressed "(nano)atrazine's toxicity to non-target organisms". Chronological and geographic data on the publication of articles, characterization of nATZ (type of nanocarrier, size, polydispersity index, zeta potential), experimental design (test species, exposure time, measurements, methodology, tested concentrations), and toxic effects are summarized and discussed. The data indicate that cell and algal models do not show sensitivity to nATZ, while many terrestrial and aquatic invertebrates, aquatic vertebrates, microorganisms, and plants have high sensitivity to nAZT. The SSD results indicated that D. similis is the most sensitive species to nATZ, followed by C. elegans, E. crypticus, and P. subcapitata. However, the limitations in terms of the number of species and endpoints available to elaborate the SSD reflect gaps in knowledge of the effects of nATZ on different ecosystems.
Collapse
Affiliation(s)
- Thuanne Braúlio Hennig
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Felipe Ogliari Bandeira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Rodrigo Costa Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University, Av. Três de Março, 18087-180 Sorocaba, SP, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970, Brazil.
| |
Collapse
|
9
|
Rutkoski CF, Grott SC, Israel NG, Carneiro FE, de Campos Guerreiro F, Santos S, Horn PA, Trentini AA, Barbosa da Silva E, Coelho de Albuquerque CA, Alves TC, Alves de Almeida E. Hepatic and blood alterations in Lithobates catesbeianus tadpoles exposed to sulfamethoxazole and oxytetracycline. CHEMOSPHERE 2022; 307:136215. [PMID: 36041517 DOI: 10.1016/j.chemosphere.2022.136215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this study the effects of environmentally realistic concentrations of the antibiotics sulfamethoxazole (SMX) and oxytetracyclyne (OTC) on Lithobates catesbeianus tadpoles were evaluated, through the analyzes of the frequencies of micronucleus and nuclear abnormalities in erythrocytes, alterations in leucocytes, liver histopathology, and changes in hepatic esterase activities and oxidative stress biomarkers. The animals were exposed for 16 days at concentrations of 0 (control), 20, 90 and 460 ng L-1. No significant difference was found in the frequencies of micronucleus and nuclear abnormalities. The two highest concentrations of SMX and all concentrations of OTC caused a significant increase in the number of lymphocytes. A significant decrease in the number of neutrophils compared to the control group was observed for all concentrations tested of both antibiotics. Also, decrease in the activity of glutathione S-transferase and high histopathological severity scores, indicating liver damage, were found in tadpoles exposed to the two highest concentrations of SMX and all concentrations of OTC. The main changes in the liver histopathology were the presence of inflammatory infiltrate, melanomacrophages, vascular congestion, blood cells and eosinophils. Esterase activities were unchanged. Indeed, the two highest concentrations of OTC caused a reduction in the activities of superoxide dismutase and glucose 6-phosphate dehydrogenase, while the highest concentration inhibited the activity of glutathione peroxidase and increased protein carbonyl levels. These results evidences that environmentally realistic concentrations of SMX and OTC in aquatic environments are capable to significantly disrupt tadpoles' physiology, possibly affecting negatively their survival rate in natural environments.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Sabrina Santos
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Amanda Alves Trentini
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
10
|
Mihaljevic O, Zivancevic-Simonovic S, Cupurdija V, Marinkovic M, Tubic Vukajlovic J, Markovic A, Stanojevic-Pirkovic M, Milosevic-Djordjevic O. DNA damage in peripheral blood lymphocytes of severely ill COVID-19 patients in relation to inflammatory markers and parameters of hemostasis. Mutagenesis 2022; 37:203-212. [PMID: 35524945 PMCID: PMC9129204 DOI: 10.1093/mutage/geac011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
Bearing in the mind that a variety of agents can contribute to genome instability, including viral infections, the aim of this study was to analyze DNA damage in hospitalized COVID-19 patients and its relationship with certain laboratory parameters. The potential impact of applied therapy and chest X-rays on DNA damage was also estimated. The study population included 24 severely COVID-19 patients and 15 healthy control subjects. The level of DNA damage was measured as genetic damage index (GDI) by comet assay. The standard laboratory methods and certified enzymatic reagents for the appropriate autoanalyzers were performed for the determination of the biochemical and hematological parameters. COVID-19 patients had significantly higher level of DNA damage compared with control subjects. The absolute number of neutrophil leukocytes was statistically higher, while the absolute number of lymphocytes was statistically lower in COVID-19 patients than in healthy controls. The analysis of the relationship between DNA damage and laboratory parameters indicated that GDI was positively correlated with interleukin 6 (IL-6) concentration and negatively with platelet count in COVID-19 patients. The level of DNA damage was slightly higher in female patients, in whom it was demonstrated a positive correlation of GDI with C-reactive protein (CRP) and procalcitonin. Likewise, there was a negative relationship of GDI and platelet count, and positive relationship of GDI and activated partial thromboplastin time (aPTT) in female population. The applied therapy (antibiotics, corticosteroid, anticoagulant, and antiviral therapy) as well as chest X rays has been shown to have genotoxic potential. The level of DNA damage significantly corresponds to the inflammatory markers and parameters of hemostasis in COVID-19 patients. In conclusion, inflammation, smoking habit, applied therapy, and chest X rays contribute to a higher level of DNA damage in COVID-19 patients.
Collapse
Affiliation(s)
- Olgica Mihaljevic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Vojislav Cupurdija
- Department of Internal Medicine Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Internal medicine, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Milos Marinkovic
- Department of Internal medicine, University Clinical Center Kragujevac, Kragujevac, Serbia
| | | | - Aleksandra Markovic
- Department of Biology, Faculty of Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Olivera Milosevic-Djordjevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Biology, Faculty of Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
11
|
Environmentally relevant fluoride alters nuclear integrity in erythrocytes and induces DNA damage in hepatocytes of zebrafish. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
12
|
Evaluation of Zebrafish DNA Integrity after Individual and Combined Exposure to TiO2 Nanoparticles and Lincomycin. TOXICS 2022; 10:toxics10030132. [PMID: 35324757 PMCID: PMC8954801 DOI: 10.3390/toxics10030132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022]
Abstract
Environmental contamination by nanoparticles (NPs) and drugs represents one of the most debated issues of the last years. The aquatic biome and, indirectly, human health are strongly influenced by the negative effects induced by the widespread presence of pharmaceutical products in wastewater, mainly due to the massive use of antibiotics and inefficient treatment of the waters. The present study aimed to evaluate the harmful consequences due to exposure to antibiotics and NPs, alone and in combination, in the aquatic environment. By exploiting some of their peculiar characteristics, such as small size and ability to bind different types of substances, NPs can carry drugs into the body, showing potential genotoxic effects. The research was conducted on zebrafish (Danio rerio) exposed in vivo to lincomycin (100 mg/L) and titanium dioxide nanoparticles (TiO2 NPs) (10 µg/L) for 7 and 14 exposure days. The effects on zebrafish were evaluated in terms of cell viability, DNA fragmentation, and genomic template stability (GTS%) investigated using Trypan blue staining, TUNEL assay, and the random amplification of polymorphic DNA PCR (RAPD PCR) technique, respectively. Our results show that after TiO2 NPs exposure, as well as after TiO2 NPs and lincomycin co-exposure, the percentage of damaged DNA significantly increased and cell viability decreased. On the contrary, exposure to lincomycin alone caused only a GTS% reduction after 14 exposure days. Therefore, the results allow us to assert that genotoxic effect in target cells could be through a synergistic effect, also potentially mediated by the establishment of intermolecular interactions between lincomycin and TiO2 NPs.
Collapse
|
13
|
Canedo A, de Jesus LWO, Bailão EFLC, Rocha TL. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118019. [PMID: 34670334 DOI: 10.1016/j.envpol.2021.118019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
14
|
Canedo A, Rocha TL. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144084. [PMID: 33383303 DOI: 10.1016/j.scitotenv.2020.144084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Genotoxic pollutants lead to both DNA damage and changes in cell repair mechanisms. Selecting suitable biomonitors is a fundamental step in genotoxicity studies. Thus, zebrafish have become a popular model used to assess the genotoxicity of different pollutants in recent years. They have orthologous genes with humans and hold almost all genes involved in different repair pathways. Therefore, the aim of the current study is to summarize the existing literature on zebrafish using as model system to assess the genotoxicity of different pollutants. Revised data have shown that comet assay is the main technique adopted in these studies. However, it is necessary standardizing the technique applied to zebrafish in order to enable better result interpretation and comparisons. Overall, pollutants lead to single-strand breaks (SSB), double-strand breaks (DSB), adduct formation, as well as to changes in the expression of genes involved in repair mechanisms. Although analyzing repair mechanisms is essential to better understand the genotoxic effects caused by pollutants, few studies have analyzed repair capacity. The current review reinforces the need of conducting further studies on the role played by repair pathways in zebrafish subjected to DNA damage. Revised data have shown that zebrafish are a suitable model to assess pollutant-induced genotoxicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil..
| |
Collapse
|
15
|
Muñoz-Peñuela M, Lo Nostro FL, Dal'Olio Gomes A, Tolussi CE, Branco GS, Pinheiro JPS, Godoi FGAD, Moreira RG. Diclofenac and caffeine inhibit hepatic antioxidant enzymes in the freshwater fish Astyanax altiparanae (Teleostei: Characiformes). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108910. [PMID: 33045363 DOI: 10.1016/j.cbpc.2020.108910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
Although concentrations of pharmaceutical compounds in aquatic ecosystems are low, they can cause toxic effects on organisms. The aim of this study was to evaluate the effects of diclofenac (DCF), a non-steroidal anti-inflammatory drug, and caffeine (CAF), a central nervous system stimulant, both alone or combined, in Astyanax altiparanae males under acute exposure (96 h), measuring neurotoxicity biomarkers, antioxidant response and damage at biochemical and cellular levels. DCF concentration in water, separated and combined, was 3.08 mg L-1 and that of CAF was 9.59 mg L-1. To assess neurotoxicity, brain and muscle acetylcholinesterase (AChE) activities were measured. To evaluate oxidative stress, the enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST), as well as lipoperoxidation (LPO), were analyzed in liver and gills. Activity of hepatic cyclooxygenase (COX) was also evaluated. Genotoxicity was assessed in blood using comet assay and micronucleus test, as well as nuclear abnormalities. DCF and CAF, alone or combined, had neither effect on AChE activity, nor in the activity of SOD, CAT, GPx and GST in gills. In liver, DCF inhibited SOD and GPx activity, CAF inhibited CAT activity, the mixture inhibited SOD and GST activity; although only fish exposed to CAF showed increased hepatic LPO. Under these experimental conditions, no effect on COX activity was observed, nor cytotoxic and genotoxic damage. The most pronounced effects were caused by the drugs separately, since both compounds altered the enzymes, but only CAF triggered LPO, showing more harmful effects.
Collapse
Affiliation(s)
- Marcela Muñoz-Peñuela
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil.
| | - Fabiana Laura Lo Nostro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática y IBBEA, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Aline Dal'Olio Gomes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | | | - Giovana Souza Branco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - João Paulo Silva Pinheiro
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - Filipe Guilherme Andrade de Godoi
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
16
|
Chowdhury J, Mandal TK, Mondal S. Genotoxic impact of emerging contaminant amoxicillin residue on zebra fish ( Danio rerio) embryos. Heliyon 2020; 6:e05379. [PMID: 33163678 PMCID: PMC7609451 DOI: 10.1016/j.heliyon.2020.e05379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023] Open
Abstract
The widest-spectrum, most-consumed β-lactam antibiotic amoxicillin (AMX) is used to treat bovine mastitis that is caused primarily by many bacteria. Excessive use of antibiotics can lead to established residual contamination of the milk even after pasteurization. The amount of antibiotic residue above Maximum Residue Limit (MRL) has a negative impact on both public health and the environment. Therefore, the objective of this study is to determine the concentration of amoxicillin residue (AMXR) in raw and pasteurized milk samples of cow suffered from mastitis, by the standard methods of HPLC compared to pure AMX drug and effect of the said residue on the developmental toxicity and genotoxicity of zebra fish at 72 hpf and 48 hpf embryo, respectively. Results obtained by HPLC showed that AMXR exhibits 574.89 and 250.75 times higher concentration in the raw and pasteurized milk than MRL in compare to pure AMX drug. This current study showed that AMXR decreased the body length and yolk sac region, while the pure AMX drug-treated group showed increased height and length of the yolk sac and shorter body length relative to the other groups. The Comet Assay measured the DNA damage caused by AMXR. The group where AMXR were applied showed the highest percentage of tail DNA and tail moment relative to other groups. So, here AMXR is considered as the genotoxic contaminant that is emerging and affect on public health.
Collapse
Affiliation(s)
- Jayanta Chowdhury
- Department of Microbiology, Techno India University, EM 4, Sector V, Salt Lake City, Kolkata, 700 091, West Bengal, India
| | - Tapan Kumar Mandal
- Department of Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700 037, West Bengal, India
| | - Sandhimita Mondal
- Department of Microbiology, Techno India University, EM 4, Sector V, Salt Lake City, Kolkata, 700 091, West Bengal, India
| |
Collapse
|
17
|
da Silva JCG, Dallegrave E, Rodrigues GZP, Bigolin C, Neumann TMSDO, Schuster AC, Kayser JM, Staudt LBM, Moraes MF, Farias DG, Schiling G, Raasch JR, Perassolo MS, da Silva LB, Gehlen G, Betti AH. Repeated dose of meloxicam induces genotoxicity and histopathological changes in cardiac tissue of mice. Drug Chem Toxicol 2020; 45:822-833. [PMID: 32552192 DOI: 10.1080/01480545.2020.1778018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Meloxicam is the non-steroidal anti-inflammatory drug most used in small animals; however, studies on genotoxicity, oxidative stress, and histopathologic alterations in cardiac tissue are limited, especially at therapeutical doses used in these animals. This study evaluated the toxic effects caused by the treatment involving repeated low at higher doses of meloxicam in mice, by genotoxicity, oxidative stress, and histopathological parameters. Mice (CF1, male) received, by gavage, meloxicam at the therapeutic dose indicated for small animals (0.1 mg/kg) and at higher doses (0.5 and 1 mg/kg) for 28 days. Later, they were euthanized for blood and organ analysis. Oxidative stress was analyzed by the plasma ferric reduction capacity (FRAP) and catalase, and genotoxicity, by the comet assay and the micronucleus test. Heart, liver, lung, and kidney tissues were analyzed by the histology, and stomach and duodenum were analyzed with a magnifying glass. The relative weight of organs did not present significant alterations. However, congestion of duodenum vessels was observed at the three tested doses and caused hyperemia of stomach mucosa at 1 mg/kg. In the heart histology there was a reduction in the number of cardiomyocytes, accompanied by an increase in cell diameter (possible cell hypertrophy) dose-dependent. The highest tested dose of meloxicam also increased the DNA damage index, without alterations in the micronucleus test. Meloxicam did not affect the catalase activity but increased the FRAP (1 mg/kg). Meloxicam at the dose prescribed for small animals could potentially cause cardiac histopathologic alterations and genotoxic effects.
Collapse
Affiliation(s)
| | - Eliane Dallegrave
- Toxicology Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Cassiana Bigolin
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | | | - Andriéli Carolina Schuster
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Juliana Machado Kayser
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | | | - Melina Floriano Moraes
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Débora Graziela Farias
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Gabriela Schiling
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Juliana Raquel Raasch
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Magda Susana Perassolo
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Luciano Basso da Silva
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Andresa Heemann Betti
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A. Environmentally relevant concentration of chromium induces nuclear deformities in erythrocytes and alters the expression of stress-responsive and apoptotic genes in brain of adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135622. [PMID: 31767327 DOI: 10.1016/j.scitotenv.2019.135622] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination of water body has become a serious threat to aquatic life forms specially to fish. Hexavalent chromium (Cr [VI]) is one of the most potent heavy metal toxicant. It is present in aquatic environment at concentrations beyond permissible limit. Considering the fact that toxic effects are function of the exposure concentration, studies involving toxicological risk assessment should be done at environmentally relevant concentration. Therefore we studied the toxic effects of Cr [VI] to zebrafish at an environmentally relevant concentration (2 mg L-1). We monitored the genotoxic potential of Cr [VI] in erythrocytes through a simple reliable microscopic assay and found an increase in frequency of micronucleated erythrocytes along with erythrocytes with blebbed, lobed and notched nuclei. In addition, Cr [VI] induced neurotoxicity, being a least reported event was also investigated. Histological alterations in brain, elevated GSH and MDA content and increased catalase activity indicated oxidative stress-mediated damage. This was further confirmed through expressional alteration of Ucp2. Upregulation of Nrf2, Nqo1 and Ho1 clearly indicated the involvement of Nrf2-ARE system in stress response against Cr [VI] induced neurotoxicity. The transcriptional induction of apoptotic genes such as Bax, Caspase 9 and Caspase 3 along with downregulation of Bcl2 indicated that the cytoprotective system failed to counter the induced stress. Interestingly, there was upregulation of AChE gene, which could be correlated with the upregulated apoptotic genes. This study provides an insight on the neurotoxic stress of Cr [VI] on the zebrafish yet at an environmentally relevant concentration. Moreover the induction of nuclear anomalies in the erythrocytes can serve as extremely sensitive endpoints of toxicological stress indicators of aquatic contaminants like Cr [VI].
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | | | |
Collapse
|
19
|
Liang R, Shao X, Shi Y, Jiang L, Han G. Antioxidant defenses and metabolic responses of blue mussels (Mytilus edulis) exposed to various concentrations of erythromycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134221. [PMID: 31783436 DOI: 10.1016/j.scitotenv.2019.134221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Erythromycin, one of the most widely used macrolide antibiotics, has been detected in various aquatic environments, so erythromycin ecotoxicity should deserve more attention. In this study, blue mussels (Mytilus edulis) were exposed to erythromycin to explore its potential physiological toxicity. After 2d acute and 7d sub-acute exposure to erythromycin, blue mussel glutathione S-transferase (GST) and catalase (CAT) activities were determined with microplate methods and metabolic responses were analyzed using 1H nuclear magnetic resonance (1H NMR). The results revealed that GST was approximately 1.6 times higher in exposed mussels at 200 mg/L and higher concentrations. CAT was about 1.9 times higher in exposed mussels at 200 mg/L, indicating that erythromycin exposure led that blue mussels enhanced antioxidant responses. Low doses of erythromycin exposure had a relatively small impact on the metabolism, while high doses of erythromycin exposure (200 and 400 mg/L) disturbed metabolic balance. With the increase of erythromycin concentrations, the individual metabolic differences within the same treatment groups also increased. The significant increase in alanine, glutamate, taurine, glycine and betaine were observed after acute and subacute exposure. Betaine played an important role in protecting antioxidant enzyme activities through adjusting osmotic pressure. The metabolomic results also showed the modes of erythromycin acted on the energy metabolism, osmoregulation, nerve activities and amino acid metabolism. This study highlighted how metabolomics can provide a comprehensive picture of metabolic responses, although significant antioxidant and metabolic responses were observed at high exposure concentrations.
Collapse
Affiliation(s)
- Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Longxin Jiang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Guoxiang Han
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Mottola F, Iovine C, Santonastaso M, Romeo ML, Pacifico S, Cobellis L, Rocco L. NPs-TiO 2 and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1511. [PMID: 31652841 PMCID: PMC6915627 DOI: 10.3390/nano9111511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maria Luisa Romeo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Luigi Cobellis
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
- Sant' Anna e San Sebastiano Hospital, 81100 Caserta, Italy.
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
21
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Rodrigues S, Antunes SC, Correia AT, Golovko O, Žlábek V, Nunes B. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. CHEMOSPHERE 2019; 216:234-247. [PMID: 30384292 DOI: 10.1016/j.chemosphere.2018.10.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 05/17/2023]
Abstract
Erythromycin (ERY) is one of the most common antibiotics used in human and veterinary practices, leading to ubiquitous environmental distribution and possible toxicity to non-target organisms. The purpose of this study was to determine sub-lethal effects of ERY towards the marine fish Sparus aurata (gilthead seabream). S. aurata were acutely (0.3-323 μg/L, 96 h) and chronically (0.7-8.8 μg/L, 28 d) exposed to ERY. Detoxification [7-ethoxyresorufin O-deethylase (EROD), glutathione S-transferases (GSTs), uridine-diphosphate-glucuronosyltransferase (UGT)], oxidative stress [catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRed)], lipid peroxidation [thiobarbituric acid reactive substances - (TBARS)], genotoxicity [genetic damage index (GDI) and erythrocytic nuclear abnormalities (ENAs)], neurotransmission [acetylcholinesterase (AChE)] and energy metabolism [lactate dehydrogenase (LDH)] biomarkers were evaluated. Results showed that ERY did not promote significant effects in detoxification biomarkers, but induced slight pro-oxidative effects (decrease of GPx activity in the liver after acute exposure and an increase in gills after chronic exposure; and an increase of hepatic GRed activity following chronic exposure). There was a significant decrease in TBARS after chronic exposure, which contradicts a full scenario of oxidative stress. In terms of genotoxicity, both ERY exposures caused only a significant increase of GDI. Neurotransmission and energy metabolism were not also affected by ERY. Although few toxic effects of ERY have been previously documented (involving different metabolic pathways, as tested in this work), these were mainly observed for freshwater species. These findings suggest low vulnerability of S. aurata to ERY at levels close to the ones found in the wild.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Sara C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Alberto T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
23
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Toxicity of erythromycin to Oncorhynchus mykiss at different biochemical levels: detoxification metabolism, energetic balance, and neurological impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:227-239. [PMID: 30387066 DOI: 10.1007/s11356-018-3494-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/16/2018] [Indexed: 05/17/2023]
Abstract
During the last decades, the presence of antibiotics in different aquatic compartments has raised increasing interest and concern, since these compounds are usually persistent and bioactive pseudo pollutants. Erythromycin (ERY) is a macrolide antibiotic, prescribed for human and veterinary medicines but also used in aquaculture and livestock production. Taking into account the recorded environmental levels of ERY, its toxicity to non-target organisms has become a still poorly studied issue, particularly in fish. In this sense, this study investigated the acute and chronic effects of realistic levels of ERY on Oncorhynchus mykiss (rainbow trout), namely, through the quantification of the activity of enzymes involved in different biochemical pathways, such as detoxification (phase I-7-ethoxyresorufin O-deethylase (EROD); phase II-glutathione S-transferases (GSTs), uridine-diphosphate-glucuronosyltransferases (UGTs)), neurotransmission (acetylcholinesterase (AChE)), and energy production (lactate dehydrogenase (LDH)). Both types of exposure caused significant increases in EROD activity in liver of O. mykiss; an increase in GST activity in gills after chronic exposure was also observed. UGT branchial activity was significantly depressed, following the long-term exposure. Thus, EROD, GST, and UGT enzymatic forms seem to be involved in the biotransformation of ERY. In terms of neurotransmission and preferential pathway of energy homeostasis, the exposed organisms appear not to have been affected, as there were no significant alterations in terms of AChE and LDH activities, respectively. The here-obtained data suggest that the observed alterations in terms of detoxification enzymes may have prevented the establishment of a set of toxic responses, namely, neurotoxic and metabolic disorders.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Sara C Antunes
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Alberto T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro (UA), Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Leng Y, Hu F, Ma C, Du C, Ma L, Xu J, Lin Q, Sang Z, Lu Z. Simple, rapid, sensitive, selective and label-free lincomycin detection by using HAuCl4and NaOH. RSC Adv 2019; 9:28248-28252. [PMID: 35530481 PMCID: PMC9071102 DOI: 10.1039/c9ra04095a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
A simple, rapid, sensitive, selective and label-free method is presented for the colorimetric determination of lincomycin (Lin) by using HAuCl4and NaOH.
Collapse
Affiliation(s)
- Yumin Leng
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Fang Hu
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Chunhua Ma
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Chenxi Du
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Linfeng Ma
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Jiao Xu
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Qiyuan Lin
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Zhiwen Lu
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| |
Collapse
|
25
|
Liu J, Cai Y, Lu G, Dan X, Wu D, Yan Z. Interaction of erythromycin and ketoconazole on the neurological, biochemical and behavioral responses in crucian carp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:14-19. [PMID: 28802958 DOI: 10.1016/j.etap.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment has received great attention due to their potential impacts on public health. The single, as well as the combined toxicities of erythromycin (ERY) and ketoconazole (KCZ) on the bioaccumulation, biochemical and behavioral responses, were examined in crucian carp. This study focused on the uptake of contaminants, acetylcholinesterase (AChE) activity in the brain, swimming and shoaling behavior of fish. After 14days of binary exposure, the addition of KCZ at nominal concentrations of 0.2, 2 and 20μg/L significantly increased the accumulation of ERY in the brain of the fish and the bioconcentration factor of 2.08 was 2.6-fold higher than that calculated from the ERY-alone exposure. The brain AChE activity was significantly inhibited by ERY and KCZ with a significant correlation with respect to the accumulative concentration of the contaminants. The inhibition rates of swimming activity to KCZ were increased with a corresponding increase in the exposure concentration of KCZ in the single exposure. However, this manner was altered by the combined exposure. In addition, shoaling was significantly enhanced by KCZ-alone exposure, which was significantly correlated with the swimming activity. This study indicates that the mixture of the contaminants may cause endocrine disrupting effects and behavior modification especially in fish with known ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China; Wentian College, Hohai University, Ma'anshan, 243031, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, China.
| | - Xiaoxiang Dan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Donghai Wu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
26
|
Na C, Zhang Y, Quan X, Chen S, Liu W, Zhang Y. Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A 2O) and advanced oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:186-193. [PMID: 28554110 DOI: 10.1016/j.jhazmat.2017.05.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Coking wastewater contains many types of toxic and hazardous pollutants that have serious toxic effects on human beings as well as aquatic organisms. However, few studies have evaluated the detoxification efficiencies of the treatment processes that are extensively performed in operational coking wastewater treatment plants (WWTPs). This study investigates the detoxification efficiencies of a combined anaerobic-anoxic-oxic (A2O)-ozonation and A2O-Fenton oxidation process in two coking WWTPs using an acute immobilization test for Daphnia magna, acute toxicity test for adult zebrafish, embryo toxicity test for zebrafish and the comet assay. The raw coking wastewaters displayed high acute daphnia and fish toxicity, zebrafish embryo toxicity and genotoxicity. The A2O processing unit effectively removed acute and embryo toxicity, but not genotoxicity. In addition, the A2O effluent quality did not meet the integrated wastewater discharge standard in China (GB18918-2002). The ozonation and Fenton oxidation units used as post-treatments in these two plants not only treated the coking wastewater to the discharge standard but also reduced the genotoxicity. However, the final effluents still showed potential genotoxicity after high dilution. The results suggest that the discharge of treated coking wastewater probably poses potential risks to human health and the environment even if it met regulatory standards.
Collapse
Affiliation(s)
- Chunhong Na
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Babić S, Barišić J, Višić H, Sauerborn Klobučar R, Topić Popović N, Strunjak-Perović I, Čož-Rakovac R, Klobučar G. Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing. WATER RESEARCH 2017; 115:9-21. [PMID: 28254533 DOI: 10.1016/j.watres.2017.02.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Hrvoje Višić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | | | - Natalija Topić Popović
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
28
|
Obimakinde S, Fatoki O, Opeolu B, Olatunji O. Veterinary pharmaceuticals in aqueous systems and associated effects: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3274-3297. [PMID: 27752951 DOI: 10.1007/s11356-016-7757-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Environmental studies have shown that pharmaceuticals can contaminate aqueous matrices, such as groundwater, surface water, sediment as well as aquatic flora and fauna. Effluents from sewage and wastewater treatment plants, pharmaceutical industries and hospitals have been implicated in such contamination. Recent studies have however revealed significant concentrations of pharmaceuticals in wastewater from animal facilities in proximal aquatic habitats. Furthermore, epidemiological studies have shown a consistent positive correlation between exposure to some drugs of veterinary importance and increased adverse effects in aquatic biota largely due to induction of endocrine disruption, antibiotic resistance, neurotoxicity, genotoxicity and oxidative stress. The aquatic habitats and associated biota are important in the maintenance of global ecosystem and food chain. For this reason, anything that compromises the integrity and functions of the aquatic environment may lead to major upset in the world's ecosystems. Therefore, knowledge about this route of exposure cannot be neglected and monitoring of their occurrence in the environment is required. This review focuses on scientific evidence that link the presence of pharmaceuticals in aqueous matrices to animal production facilities and presents means to reduce the occurrence of veterinary pharmaceutical residues in the aquatic habitats.
Collapse
Affiliation(s)
- Samuel Obimakinde
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa.
| | - Olalekan Fatoki
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| | - Beatrice Opeolu
- Department of Environmental and Occupational Health, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| | - Olatunde Olatunji
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| |
Collapse
|
29
|
Liu J, Lu G, Cai Y, Wu D, Yan Z, Wang Y. Modulation of erythromycin-induced biochemical responses in crucian carp by ketoconazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5285-5292. [PMID: 28004371 DOI: 10.1007/s11356-016-8268-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The individual and combined biochemical responses of erythromycin and ketoconazole have been examined in an organism representative of the aquatic environment, crucian carp (Carassius auratus). The possible interactions between erythromycin and ketoconazole were investigated on the bioaccumulation and the expression of biotransformation enzymes 7-ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST), and an antioxidant defense enzyme superoxide dismutase (SOD) in fish tissues. After 14 days of combined exposure (erythromycin + ketoconazole), the addition of ketoconazole at nominal concentrations of 0.2, 2, and 20 μg/L significantly increased the accumulation of erythromycin in fish bile; however, elevated erythromycin accumulation levels were not observed in the other test tissues. The inductions of EROD and SOD activity to erythromycin were inhibited by the combined exposure of ketoconazole in most cases; however, the GST activity returned to normal with exposure time and concentration of combined administration. From the tested pharmaceutical mixtures, it indicated that certain specific combinations may pose some perturbations in biochemical responses in fish and also provide a better understanding of the effects of toxic mixtures.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, China.
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
- Wentian College, Hohai University, Ma'anshan, 243031, China
| | - Donghai Wu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
30
|
Li S, Liu C, Yin G, Zhang Q, Luo J, Wu N. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens Bioelectron 2017; 91:687-691. [PMID: 28119249 DOI: 10.1016/j.bios.2017.01.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/05/2023]
Abstract
In this study, a biosensor with a dual recognition system comprising a molecularly imprinted polymer (MIP) and aptamers selective for lincomycin was fabricated. The MIP was synthesized by electropolymerization of carbon dots (C-dots)-tagged DNA aptamers combined with lincomycin and o-aminophenol on the gold-nanoparticle-functionalized graphene oxide (Au-GO)-modified electrode. Electrogenerated chemiluminescence (ECL) resonance energy transfer was observed between Au-GO and C-dots. After the C-dots accepted the energy, they acted as a signal indicator and exhibited enhanced signal intensity in the presence of target lincomycin. When lincomycin was competitively bound to DNA aptamers and MIP, it blocked the transfer of energy, and a decreased ECL signal was observed. Hence, a dual recognition method for the detection of lincomycin is realized. Using this strategy, the sensor exhibited a linear ECL response to lincomycin at concentrations from 5.0 × 10 -12 mol/L to 1.0 × 10 -9 mol/L. The detection limit of this assay was found to be 1.6 × 10 -13 mol/L. This method was utilized to determine lincomycin residuals in meat samples with satisfactory results.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China.
| | - Chunhua Liu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China
| | - Guihao Yin
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China
| | - Qun Zhang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China.
| | - Nanchun Wu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China
| |
Collapse
|
31
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Rainbow trout (Oncorhynchus mykiss) pro-oxidant and genotoxic responses following acute and chronic exposure to the antibiotic oxytetracycline. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:104-117. [PMID: 27913897 DOI: 10.1007/s10646-016-1746-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Oxytetracycline (OTC), an antibacterial agent, is extensively used in aquaculture practices all over the world, but also in human and veterinary medicines. Because of its intensive use, low rates of absorption by treated animals, inadequate disposal, and low efficiency of removal in wastewater treatment plants, the potential harmful effects on aquatic organisms are of great concern. This work aimed to assess the effects of this antibiotic in rainbow trout, following both acute and chronic exposures. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers, in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and erythrocytic nuclear abnormalities (ENAs). The obtained results showed a mild pattern of antioxidant response, with modifications in CAT and GPx activities in gills, and lipid peroxidation in liver. These results suggest that despite the occurrence of oxidative effects, a full scenario of oxidative stress is not likely. However, exposure to OTC resulted in the establishment of genotoxic alterations with the induction of DNA strand breaks in blood cells (increase of GDI), and of chromosome breakage and/or segregational abnormalities (increase of ENAs). Considering that the oxidative response was not totally devisable, other mechanisms may be involved in the genotoxic effects reported.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Sara C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Alberto T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123, Porto, Portugal
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
32
|
Arslan M, Timocin T, Ila HB. In vitro potential cytogenetic and oxidative stress effects of roxithromycin. Drug Chem Toxicol 2016; 40:463-469. [DOI: 10.1080/01480545.2016.1264410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Arslan
- Department of Nursing, School of Health Sciences, Ardahan University, Ardahan, Turkey and
| | - Taygun Timocin
- Department of Biology, Institute of Science, Cukurova University, Adana, Turkey
| | - Hasan B Ila
- Department of Biology, Institute of Science, Cukurova University, Adana, Turkey
| |
Collapse
|
33
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:591-600. [PMID: 26760278 DOI: 10.1016/j.scitotenv.2015.10.138] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by erythromycin may be related to the oxidative damage observed, shown to occur at environmentally relevant concentrations of erythromycin.
Collapse
Affiliation(s)
- S Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - B Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Peng J, Wang Y, Liu L, Kuang H, Li A, Xu C. Multiplex lateral flow immunoassay for five antibiotics detection based on gold nanoparticle aggregations. RSC Adv 2016. [DOI: 10.1039/c5ra22583c] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A new immunochromatographic assay was developed for the simultaneous screening of five antibiotics that can coexist in milk, namely lincomycin, gentamicin, kanamycin, streptomycin, and neomycin, using five corresponding monoclonal antibodies.
Collapse
Affiliation(s)
- Juan Peng
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Yongwei Wang
- Cereals & Oils Nutrition Research Group
- Academy of Science & Technology of State Administration of Grain
- Beijing100037
- People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Aike Li
- Cereals & Oils Nutrition Research Group
- Academy of Science & Technology of State Administration of Grain
- Beijing100037
- People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
35
|
Evaluation of Possible Genotoxic Activity of Dirithromycin in Cultured Human Lymphocytes. J Toxicol 2015; 2015:535490. [PMID: 26576152 PMCID: PMC4631994 DOI: 10.1155/2015/535490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Dirithromycin antibiotic is a 14-membered lactone ring macrolide and is widely used in medicine to treat many different types of bacterial infections. In the present study, the possible genotoxicity of dirithromycin was evaluated in cultured human lymphocytes by using sister chromatid exchanges (SCEs), chromosome aberration (CA), and micronucleus (MN) tests and also cell proliferation kinetics such as mitotic index (MI), replication index (RI), and nuclear division index (NDI) were analyzed for cytotoxicity. Cell cultures were treated with four different concentrations of dirithromycin (37.75, 67.50, 125, and 250 µg/mL) for 24 and 48 h periods. Dirithromycin significantly induced SCE and MN frequency at all concentrations in both 24 and 48 h treated cells. In addition, CA level has been markedly increased in the cells treated with almost all concentrations of dirithromycin for 24 (except 37.75 µg/mL) and 48 h treatment periods as compared to control. However, MI, RI, and NDI values were not affected by the dirithromycin treatment (p > 0.05). The results of this study indicated that dirithromycin treatment caused genetic damage by increasing the level of cytogenetic endpoints, suggesting its genotoxic and mutagenic action on human lymphocytes in vitro.
Collapse
|
36
|
Xia DL, Chen YP, Chen C, Wang YF, Li XD, He H, Gu HY. Comparative Study of Biosafety, DNA, and Chromosome Damage of Different-Materials-Modified Fe3O4 in Rats. Appl Biochem Biotechnol 2015; 177:1069-82. [DOI: 10.1007/s12010-015-1797-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022]
|
37
|
Liu J, Lu G, Ding J, Zhang Z, Wang Y. Tissue distribution, bioconcentration, metabolism, and effects of erythromycin in crucian carp (Carassius auratus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:914-920. [PMID: 24911771 DOI: 10.1016/j.scitotenv.2014.05.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 05/28/2023]
Abstract
In this study, the tissue distribution, bioconcentration, metabolism and biological effects of the macrolide antibiotic erythromycin (ERY) were investigated in fish using crucian carp (Carassius auratus) as a model. Crucian carp were exposed to various concentrations of ERY (4, 20, and 100 μg/L) for 28 days. The UPLC/MS/MS analysis of both water and tissue provided the bioconcentration of ERY and its metabolites in the fish body. The results from tissue samples showed that a maximum tissue concentration occurred in the muscle and that the bioconcentration factor (BCF) of 72.2 was lower than the theoretical BCF of 90.4 calculated from the octanol-water coefficient of ERY. A significant portion of the absorbed ERY was metabolized via demethylation and dehydration and observed in the form of descladinose in fish. In addition, the relevant biomarkers, including acetylcholinesterase in the brain, as well as 7-ethoxyresorufin O-deethylase and superoxide dismutase in the liver, changed significantly during 28 days of exposure (P<0.05). These results clearly indicated that ERY accumulated in fish and that similar metabolites as those observed in mammals were produced, resulting in the biochemical disturbance of biological systems.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jiannan Ding
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenghua Zhang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yonghua Wang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
38
|
Sunjog K, Kolarević S, Kračun-Kolarević M, Gačić Z, Skorić S, Ðikanović V, Lenhardt M, Vuković-Gačić B. Variability in DNA damage of chub (Squalius cephalus L.) blood, gill and liver cells during the annual cycle. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:967-974. [PMID: 24709324 DOI: 10.1016/j.etap.2014.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
In this work the genotoxic potential of water in three localities in Serbia, which differ by the nature and degree of pollution, was determined in tissues of European chub (Squalius cephalus L.) on monthly basis over the 2011/2012 year season using the alkaline comet assay. Specimen samples of chub were taken from Special Nature Reserve "Uvac", as control site, and Pestan and Beljanica Rivers, as polluted sites at Kolubara basin, surrounded with coal mines. Three tissues, blood, gills and liver were used for assessing the level of DNA damage. Analysis was done by software (Comet Assay IV). The control site at Reserve "Uvac" showed the lowest DNA damage values for all three tissues compared to Pestan and Beljanica. Blood has the lowest level of DNA damage in comparison with liver and gills. Decreased damage for all three tissues was observed at summer, while during the spring and autumn damage increased.
Collapse
Affiliation(s)
- K Sunjog
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - S Kolarević
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - M Kračun-Kolarević
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - Z Gačić
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - S Skorić
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - V Ðikanović
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - M Lenhardt
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia.
| | - B Vuković-Gačić
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
40
|
Singh P, Singh L, Mondal SC, Kumar S, Singh IN. Erythromycin-induced genotoxicity and hepatotoxicity in mice pups treated during prenatal and postnatal period. Fundam Clin Pharmacol 2013; 28:519-29. [DOI: 10.1111/fcp.12055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Preeti Singh
- Department of Pharmaceutical Technology; Meerut Institute of Engineering and Technology; Baghpat Bypass, nh-58 Meerut 250005 Uttar Pradesh India
| | - Lubhan Singh
- Department of Pharmaceutical Technology; Meerut Institute of Engineering and Technology; Baghpat Bypass, nh-58 Meerut 250005 Uttar Pradesh India
| | - Sambhu Charan Mondal
- Department of Pharmaceutical Technology; Meerut Institute of Engineering and Technology; Baghpat Bypass, nh-58 Meerut 250005 Uttar Pradesh India
| | - Sokindra Kumar
- Department of Pharmacology; R. V. Northland Institute (Pharmacy); Dadri Greater Noida Gautam Buddh Nagar 201206 Uttar Pradesh India
| | - Ishwari Narayan Singh
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67 SAS Nagar (Mohali)- 160062 Punjab India
| |
Collapse
|
41
|
Kahl VF, Reyes JM, Sarmento MS, da Silva J. Mitigation by vitamin C of the genotoxic effects of nicotine in mice, assessed by the comet assay and micronucleus induction. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 744:140-4. [DOI: 10.1016/j.mrgentox.2012.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
|