1
|
代 兴, 李 旻, 陈 佳, 冯 萍, 陈 京, 赵 舰, 周 倩, 罗 书, 张 华, 严 晓, 霍 娇, 练 雪. [Assessment of Dietary Arsenic Exposure Levels and the Associated Health Risks in Chongqing City, China]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1573-1580. [PMID: 39990844 PMCID: PMC11839360 DOI: 10.12182/20241160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 02/25/2025]
Abstract
Objective To determine the levels of arsenic in food in Chongqing city, and to assess the levels of dietary arsenic exposure and the associated potential health risks in residents of Chongqing city. Methods By using the monitoring data on arsenic levels in food in Chongqing between 2018 and 2023 in combination with the local dietary survey data for Chongqing from the 2018 China Nutrition and Health Survey Program, and adopting the 2-dimensional Monte Carlo simulation, we made an estimate of the dietary arsenic exposure levels of Chongqing residents. The margin of exposure (MOE) method was applied to assess both non-carcinogenic risks (skin damage) and carcinogenic risks (lung cancer and urinary system cancers) associated with dietary intake of arsenic. Results Out of 4900 food samples, the detection rate of arsenic was 36.40%, with the average levels ranging from the median bound (MB) of 0.0207 to the upper bound (UB) of 0.0234 mg/kg. The highest average levels were found in rice and its products, with an MB of 0.0981 and a UB of 0.0985 mg/kg. The daily average exposure to inorganic arsenic for residents of different ages, sexes, and places of residence was highest in individuals aged 3 to 6, with an MB of 1.046 μg/(kg·d) and a UB of 1.116 μg/(kg·d), and lowest among individuals aged 60 and older. Arsenic exposure was higher in males than that in females and higher in people living in rural areas compared to those in urban areas. In terms of non-carcinogenic risks, the MOE values for inorganic arsenic were always higher than 1 in various populations. As for carcinogenic risks, the MOE values were all less than 100 in various populations. Rice and its products were the main source of dietary arsenic exposure in Chongqing, accounting for 69.97% to 74.37% of the total exposure. Conclusion The non-carcinogenic risk caused by dietary arsenic exposure in Chongqing is relatively low, but there may be a certain level of carcinogenic risk. Continued attentions should be given to dietary arsenic exposure levels in young children.
Collapse
Affiliation(s)
- 兴慧 代
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
- 重庆市疾病预防控制中心 (重庆 400042)Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - 旻涛 李
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
- 重庆市疾病预防控制中心 (重庆 400042)Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - 佳辉 陈
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
- 重庆市疾病预防控制中心 (重庆 400042)Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - 萍 冯
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 京蓉 陈
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 舰 赵
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 倩如 周
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 书全 罗
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 华东 张
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 晓峰 严
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - 娇 霍
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
- 重庆市疾病预防控制中心 (重庆 400042)Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - 雪梅 练
- 重庆医科大学公共卫生学院 (重庆 400016)School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Dong J, Wang Y, Qian Q, Wu J, Yang D, Liu D. The alleviation effect and its mechanism of Niuhuang Jiedu prescription on realgar-induced genotoxicity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118426. [PMID: 38844250 DOI: 10.1016/j.jep.2024.118426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar (As2S2 or As4S4) is a traditional Chinese medicine (TCM) containing arsenic. Existing studies have shown that it has genotoxicity under long-term use with large doses. Niuhuang Jiedu (NHJD) is a Chinese medicine prescription containing realgar and seven other TCMs. Whether the multiple TCMs combination in NHJD can reduce the genotoxicity induced by realgar in equivalent doses is still unknown. AIM OF THE STUDY To research the effect of NHJD on realgar's genotoxicity and the possible mechanism involved based on the arsenic methylation metabolic pathway. MATERIAL AND METHODS Six groups (control, realgar (0.8 g/kg), NHJD (12.48 g/kg), as well as Glycyrrhiza uralensis Fisch (GU), Scutellaria baicalensis Georg (SB), Rheum palmatum L (RP) plus equivalent doses of realgar, respectively) were set up. ICR mice were intragastric administered for 12 weeks. First, genotoxicology tests were conducted to evaluate the effect of NHJD, GU, SB, and RP on reducing realgar's genotoxicity. The inorganic arsenic (iAs), dimethyl arsenic acid (DMA), and monomethyl arsenic acid (MMA) were determined by HPLC-AFS, and the iAs%, MMA%, DMA%, primary methylation index (PMI), etc. Were calculated. Meanwhile, the S-adenosyl methionine (SAM) and arsenate reductase (ARR) levels, the arsenic (+3)methyltransferase (As3MT), purine-nucleoside phosphorylase (PNP), glutathione S-transfer omega1 (GSTO1) gene expression were detected, aimed to explore the possible alleviation mechanisms of NHJD. RESULTS The combination of multiple TCMs in NHJD decreased the levels of MN‰, SPA%, and DNA damage caused by realgar, with similar effects observed when SB, RP, and GU were used separately with realgar. Notably, the iAs% significantly decreased, while DMA% and PMI notably increased in the NHJD and realgar + SB (or RP) groups compared to the realgar-only group (P < 0.05). Increases in SAM and ARR levels were observed across various groups, but only the ARR increase in the NHJD group was statistically significant. Moreover, significant increases in As3MT mRNA and GSTO1 mRNA were noted in the NHJD group, and PNP mRNA levels significantly rose in the realgar + SB group. CONCLUSIONS This study revealed that NHJD could attenuate the genotoxic effects of realgar. The botanicals SB, RP, and GU within NHJD may be key contributors to this effect. Enhancements in arsenic methylation capabilities through increased levels of SAM and ARR and elevated gene expressions of As3MT, PNP, and GSTO1 suggest potential mechanisms behind these findings.
Collapse
Affiliation(s)
- Ju Dong
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ying Wang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin Qian
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Wu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongqing Yang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Deye Liu
- Center for Disease Control and Prevention of Jiangsu Provincial, Nanjing, 210021, China
| |
Collapse
|
3
|
Chen W, Wang D, Ma L, Wu F, Ren Q, Tao J, Chen X, Zhang A. Chronic arsenite exposure induced skeletal muscle atrophy by disrupting angiotensin II-melatonin axis in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1350-1359. [PMID: 37966059 DOI: 10.1002/tox.24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Arsenic is a well-known environmental toxicant and emerging evidence suggests that arsenic exposure has potential skeletal muscle toxicity; however, the underlying mechanism has not yet been clarified. The aim of this study was to investigate the correlation among adverse effects of subchronic and chronic environmental arsenic exposure on skeletal muscle as well as specific myokines secretion and angiotensin II (AngII)-melatonin (MT) axis in rats. Four-week-old rats were exposed to arsenite (iAs) in drinking water at environmental relevant concentration of 10 ppm for 3 or 9 months. Results indicated that the gastrocnemius muscle had atrophied and its mass was decreased in rats exposed to arsenite for 9 months, whereas, they had no significant changes in rats exposed to arsenite for 3 months. The levels of serum-specific myokine irisin and gastrocnemius muscle insulin-like growth factor-1 (IGF-1) were increased in 3-month exposure group and decreased in 9-month exposure group, while serum myostatin (MSTN) was increased significantly in 9-month exposure group. In addition, serum AngII level increased both in 3- and 9-month exposure groups, while serum MT level increased in 3-month exposure group and decreased in 9-month exposure group. Importantly, the ratio of AngII to MT level in serum increased gradually with the prolongation of arsenite exposure. It showed a certain correlation between AngII-MT axis and gastrocnemius muscle mass, gastrocnemius muscle level of IGF-1 or serum levels of irisin and MSTN. In conclusion, the disruption of AngII-MT axis balance may be a significant factor for skeletal muscle atrophy induced by chronic environmental arsenic exposure.
Collapse
Affiliation(s)
- Wanying Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Fan Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Qian Ren
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Rao G, Qiao B, Zhong G, Li T, Su Q, Wu S, Tang Z, Hu L. Arsenic and polystyrene-nano plastics co-exposure induced testicular toxicity: Triggers oxidative stress and promotes apoptosis and inflammation in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:264-276. [PMID: 37705229 DOI: 10.1002/tox.23970] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Co-existing of polystyrene-nano plastics (PSNPs) and arsenic (As) in the environment caused a horrendous risk to human health. However, the potential mechanism of PSNPs and As combination induced testicular toxicity in mammals has not been elucidated. Therefore, we first explore the testicular toxicity and the potential mechanism in male Kunming mice exposed to As or/and PSNPs. Results revealed that compared to the As or PSNPs group, the combined group showed more significant testicular toxicity. Specifically, As and PSNPs combination induced irregular spermatozoa array and blood-testis barrier disruption. Simultaneously, As and PSNPs co-exposure also exacerbated oxidative stress, including increasing the MDA content, and down-regulating expression of Nrf-2, HO-1, SOD-1, and Trx. PSNPs and As combination also triggered testicular apoptosis, containing changes in apoptotic factors (P53, Bax, Bcl-2, Cytc, Caspase-8, Caspase-9, and Caspase-3). Furthermore, co-exposed to As and PSNPs aggravated inflammatory damage characterized by targeted phosphorylation of NF-κB and degradation of I-κB. In summary, our results strongly confirmed As + PSNPs co-exposure induced the synergistic toxicity of testis through excessive oxidative stress, apoptosis, and inflammation, which could offer a new sight into the mechanism of environmental pollutants co-exposure induced male reproductive toxicity.
Collapse
Affiliation(s)
- Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou, China
| | - Baoxin Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
6
|
Wang D, Liang Q, Tai D, Wang Y, Hao H, Liu Z, Huang L. Association of urinary arsenic with the oxidative DNA damage marker 8-hydroxy-2 deoxyguanosine: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166600. [PMID: 37659570 DOI: 10.1016/j.scitotenv.2023.166600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer has classified arsenic as a class I carcinogen. Oxidative DNA damage is a typical early precursor to recognized malignancies. The most sensitive early independent marker of oxidative DNA damage is believed to be 8-hydroxy-2 deoxyguanosine (8-OHdG). To date, research on the link between urinary arsenic and 8-OHdG has not been consistent. OBJECTIVE This study was aimed at exploring the effects of urinary arsenic on 8-OHdG in human urine. METHODS A literature search until January 2023 was performed on the PubMed, Cochrane Library, Web of Science, Embase, and Scopus databases through a combination of computer and manual retrieval. Stata 12.0 was used to examine the degree of heterogeneity among included studies. The percentage change and 95 % confidence interval (95 % CI) of 8-OHdG were calculated between populations exposed to different doses. We used a random effect model because the degree of heterogeneity exceeded 50 %. Sensitivity analysis and testing for publication bias were performed. RESULTS This meta-analysis included nine studies, most of which were performed in China. After exposure to arsenic, urinary arsenic (per 10 μg/g creatinine increase) was associated with the increased 8-OHdG (% change = 41.49 %, 95 % CI: 19.73 %, 63.25 %). Subgroup analysis indicated that the percentage change in 8-OHdG in urine was more pronounced in people exposed to arsenic <50 μg/L (% change = 24.60 %, 95 % CI: 17.35 %, 37.85 %). In studies using total urinary arsenic content as an indicator, the percentage change in 8-OHdG in urine was more significant (% change = 60.38 %, 95 % CI: 15.08 %, 105.68 %). CONCLUSION The 8-OHdG levels in human urine significantly increased after exposure to environmental arsenic, thus suggesting that arsenic exposure is correlated with oxidative DNA damage.
Collapse
Affiliation(s)
- Donglei Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Qingqing Liang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Dapeng Tai
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yali Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Hongyu Hao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Zhengran Liu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
7
|
Chen X, Chen W, Wang D, Ma L, Tao J, Zhang A. Subchronic Arsenite Exposure Induced Atrophy and Erythropoietin Sensitivity Reduction in Skeletal Muscle Were Relevant to Declined Serum Melatonin Levels in Middle-Aged Rats. TOXICS 2023; 11:689. [PMID: 37624196 PMCID: PMC10458431 DOI: 10.3390/toxics11080689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Arsenic is a kind of widespread environmental toxicant with multiorgan-toxic effects, and arsenic exposure is associated with the occurrence and development of many chronic diseases. The influence of environmental arsenic exposure on skeletal muscle, which is a vital organ of energy and glucose metabolism, has received increasing attention. This study aimed to investigate the types of inorganic arsenic-induced skeletal muscle injury, and the potential regulatory effects of melatonin (MT) and erythropoietin (EPO) in young (3-month-old) and middle-aged (12-month-old) rats. Our results showed that 1 mg/L sodium arsenite exposure for 3 months could accelerate gastrocnemius muscle atrophy and promote the switch of type II fibers to type I fibers in middle-aged rats; however, it did not cause significant pathological changes of gastrocnemius muscle in young rats. In addition, arsenite could inhibit serum MT levels, and promote serum EPO levels but inhibit EPO receptor (EPOR) expression in gastrocnemius muscle in middle-aged rats, while serum MT levels and EPOR expression in gastrocnemius muscle showed an opposite effect in young rats. Importantly, exogenous MT antagonized the arsenite-induced skeletal muscle toxic effect and restored serum EPO and gastrocnemius muscle EPOR expression levels in middle-aged rats. There was a positive correlation among gastrocnemius muscle index, serum MT level, and gastrocnemius muscle EPOR protein level in arsenite-exposed rats. This study demonstrated that inorganic arsenic could accelerate skeletal muscle mass loss and type II fiber reduction in middle-aged rats, which may be related to decreased MT secretion and declined EPO sensitivity in skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (W.C.)
| |
Collapse
|
8
|
Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, Gu Y, Jiang C, Li S, He Y, Wen W. Involvement of a AS3MT/c-Fos/p53 signaling axis in arsenic-induced tumor in human lung cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:615-627. [PMID: 36399430 DOI: 10.1002/tox.23708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenite methyltransferase (AS3MT) is an enzyme that catalyzes the dimethylation of arsenite (+3 oxidation state). At present, the studies on arsenic carcinogenicity mainly focus on studying the polymorphisms of AS3MT and measuring their catalytic activities. We recently showed that AS3MT was overexpressed in lung cancer patients who had not been exposed to arsenic. However, little is known about the molecular mechanisms of AS3MT in arsenite-induced tumorigenesis. In this study, we showed that AS3MT protein expression was higher in the arsenic-exposed population compared to the unexposed population. AS3MT was also overexpressed in human lung adenocarcinoma (A549) and human bronchial epithelial (16HBE) cells exposed to arsenic (A549: 20-60 μmol/L; 16HBE: 2-6 μmol/L) for 48 h. Furthermore, we investigated the effects of AS3MT on cell proliferation and apoptosis using siRNA. The downregulation of AS3MT inhibited the proliferation and promoted the apoptosis of cells. Mechanistically, AS3MT was found to specifically bind to c-Fos, thereby inhibiting the binding of c-Fos to c-Jun. Additionally, the siRNA-mediated knockdown of AS3MT enhanced the phosphorylation of Ser392 in p53 by upregulating p38 MAPK expression. This led to the activation of p53 signaling and the upregulated expression of downstream targets, such as p21, Fas, PUMA, and Bax. Together, these studies revealed that the inorganic arsenic-mediated upregulation of AS3MT expression directly affected the proliferation and apoptosis of cells, leading to arsenic-induced toxicity or carcinogenicity.
Collapse
Affiliation(s)
- Mingjun Sun
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Huirong Cheng
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tianle Yu
- Cardiovascular medicine, Weihai Central Hospital, Weihai, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ming Li
- Elderly Health Management Center, Haida Hospital, Weihai, China
| | - Qian Chen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Yun Gu
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
9
|
Zhao C, Du M, Yang J, Guo G, Wang L, Yan Y, Li X, Lei M, Chen T. Changes in arsenic accumulation and metabolic capacity after environmental management measures in mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158652. [PMID: 36108864 DOI: 10.1016/j.scitotenv.2022.158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Due to the public health concern of arsenic, environmental management measures in mining areas had been implemented. To assess the effect of environmental management measures in the mining area comprehensively, arsenic accumulation in the urine, hair, nails, and urinary metabolites of residents in a realgar mining area in Hunan province, China were investigated in 2019, and the changes in arsenic levels in the biomarkers during 2012-2019 were tracked. The importance of confounding factors (age, sex, occupation, residence, clinical history, vegetable source, cooking fuel, smoking, alcohol consumption, BMI) was analyzed using the Boruta algorithm. After the implementation of environmental management measures (including ceasing mining and smelting activities, building landfills, adjusting the planting structure, and soil restoration), urine, hair, and nail arsenic concentration decreased drastically but were still excessive. Arsenic accumulation was highest in older male miners who were long settled in the mining area and consumed homegrown vegetables. The only factor for changes in urinary arsenic levels was the cooking fuel type; residents using wood as cooking fuel experienced sustained arsenic exposure. Occupation and sex were important for determining arsenic changes in the hair and nails. Short-term arsenic accumulation in urine was affected by arsenic exposure, while long-term accumulation in hair and nails by arsenic metabolic capacity. The percentage of urinary arsenic metabolism and arsenic methylation indices of the participants in the mining area were within the normal range (%iAs: 10-30 %, %MMA: 10-20 %, % DMA: 60-80 %); samples indicated worse metabolic capacity than the reference population. The arsenic metabolic capacity of male miners was relatively weak, probably aggravated by alcohol drinking and smoking. Without soil remediation, arsenic exposure will continue. Homegrown vegetables and biomass fuels should be abandoned; reduced cigarette and alcohol consumption is recommended. Urinary arsenic would be more proper for assessing environmental remediation in mining areas.
Collapse
Affiliation(s)
- Chen Zhao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Du
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanghui Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewen Li
- Shandong University, School of Public Health, Jinan, Shandong, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Sahoo K, Sharma A. Understanding the mechanistic roles of environmental heavy metal stressors in regulating ferroptosis: adding new paradigms to the links with diseases. Apoptosis 2023; 28:277-292. [PMID: 36611106 DOI: 10.1007/s10495-022-01806-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis is a new type of iron-dependent cell death induced by a failure of the lipid repair protein GPX4 or the Xc- antiporter, which is essential for glutathione production. Some heavy metals such as arsenic (As), cobalt (Co), cadmium (Cd), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), mercury (Hg) as well as zinc (Zn) are shown to induce ferroptotic cell death involving the generation of oxidative stress, mitochondrial dysfunctioning, lipid peroxidation, and several other cellular etiologies. However, selenium (Se) treatment has been shown to enhance adaptive transcription responses to protect cells from ferroptosis. Heavy metals like Cadmium exposure activated ALK4/5 signaling via Smad3 and Akt signaling which leads to cell death mechanism. Continuous exposure to a small dose of mercury can damage tissues, and methylmercury bind to sulfhydryl proteins and GSH, this elevates oxidative stress, free radical accumulation, glutathione depletion, mitochondrial damage, and inhibited the nuclear factor-κB pathway which leads to ferroptotic cell death. Animals exposed to nickel and cobalt may have increased lipid peroxidation which can induce ferroptosis. Glutathione depletion is caused by Zn intoxication and exposure to manganese. These metals are systemic toxins that have been shown adverse effects on humans. Ferroptosis has recently been related to several pathological disorders, including, Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as cardiovascular disease, and any type of cancer. For these disorders and some heavy metal toxicity, ferroptosis suppression needs to be looked upon as a promising therapeutic choice.
Collapse
Affiliation(s)
- Kumudini Sahoo
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.,School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| |
Collapse
|
11
|
De Guzman K, Stone G, Yang AR, Schaffer KE, Lo S, Kojok R, Kirkpatrick CR, Del Pozo AG, Le TT, DePledge L, Frost EL, Kayser GL. Drinking water and the implications for gender equity and empowerment: A systematic review of qualitative and quantitative evidence. Int J Hyg Environ Health 2023; 247:114044. [PMID: 36395654 DOI: 10.1016/j.ijheh.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Safe drinking water is a fundamental human right, yet more than 785 million people do not have access to it. The burden of water management disproportionately falls on women and young girls, and they suffer the health, psychosocial, political, educational, and economic effects. While water conditions and disease outcomes have been widely studied, few studies have summarized the research on drinking water and implications for gender equity and empowerment (GEE). METHODS A systematic review of primary literature published between 1980 and 2019 was conducted on drinking water exposures and management and the implications for GEE. Ten databases were utilized (EMBASE, PubMed, Web of Science, Cochrane, ProQuest, Campbell, the British Library for Development Studies, SSRN, 3ie International Initiative for Impact Evaluation, and clinicaltrials.gov). Drinking water studies with an all-female cohort or disaggregated findings according to gender were included. RESULTS A total of 1280 studies were included. GEE outcomes were summarized in five areas: health, psychosocial stress, political power and decision-making, social-educational conditions, and economic and time-use conditions. Water quality exposures and implications for women's health dominated the literature reviewed. Women experienced higher rates of bladder cancer when exposed to arsenic, trihalomethanes, and chlorine in drinking water and higher rates of breast cancer due to arsenic, trichloroethylene, and disinfection byproducts in drinking water, compared to men. Women that were exposed to arsenic experienced higher incidence rates of anemia and adverse pregnancy outcomes compared to those that were not exposed. Water-related skin diseases were associated with increased levels of psychosocial stress and social ostracization among women. Women had fewer decision-making responsibilities, economic independence, and employment opportunities around water compared to men. CONCLUSION This systematic review confirms the interconnected nature of gender and WaSH outcomes. With growing attention directed towards gender equity and empowerment within WaSH, this analysis provides key insights to inform future research and policy.
Collapse
Affiliation(s)
- Kimberly De Guzman
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Gabriela Stone
- Department of Global Health, University of California, San Diego, United States
| | - Audrey R Yang
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Kristen E Schaffer
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Shelton Lo
- T.H. Chan School of Public Health, Harvard University, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Rola Kojok
- Department of Health Promotion and Behavioral Science, Public Health Program, San Diego State University, San Diego, CA, United States
| | - Colette R Kirkpatrick
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Ada G Del Pozo
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Tina T Le
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | | | - Elizabeth L Frost
- School of Public Health, San Diego State University, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA; The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Georgia L Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Wu L, Yang F, Du S, Hu T, Wei S, Wang G, Zeng Q, Luo P. Inorganic arsenic promotes apoptosis of human immortal keratinocytes through the TGF-β1/ERK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1321-1331. [PMID: 35142421 DOI: 10.1002/tox.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Chronic exposure to high-dose inorganic arsenic through groundwater, air, or food remains a major environmental public health issue worldwide. Apoptosis, a method of cell death, has recently become a hot topic of research in biology and medicine. Previous studies have demonstrated that extracellular signal-regulated kinase (ERK) is related to arsenic-induced apoptosis. However, the reports are contradictory, and the knowledge of the above-mentioned mechanisms and their mutual regulation remains limited. In this study, the associations between the TGF-β1/ERK signaling pathway and arsenic-induced cell apoptosis were confirmed using the HaCaT cell model. The relative expressions of the indicators of the TGF-β1/ERK signaling pathway, apoptosis-related genes (cytochrome C, caspase-3, caspase-9, cleaved caspase-3, cleaved caspase-9, and Bax), the mitochondrial membrane potential, and the total apoptosis rate were significantly increased (P < .05), while the expression of the antiapoptosis gene Bcl-2 was significantly decreased (P < .05) in cells of the group exposed to arsenic. Moreover, the results demonstrated that the ERK inhibitor (PD98059) and TGF-β1 inhibitor (LY364947) could inhibit the activation of the ERK signaling pathway, thereby reducing the mitochondrial membrane potential, the total apoptosis rate, and the expression of pro-apoptosis-related genes in the cells, while the expression of the antiapoptosis gene Bcl-2 was significantly increased (P < .05). By contrast, the recombinant human TGF-β1 could promote apoptosis of the HaCaT cells by increasing the activation of the ERK signaling pathway (P < .05). These results indicate that inorganic arsenic promotes the apoptosis of human immortal keratinocytes through the TGF-β1/ERK signaling pathway.
Collapse
Affiliation(s)
- Liping Wu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Fan Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Sufei Du
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ting Hu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Guoze Wang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Jiang R, Zhang Q, Ji D, Jiang T, Hu Y, He S, Tao L, Shen J, Zhang W, Song Y, Ma Y, Tong S, Tao F, Yao Y, Liang C. Influence of combined exposure levels of total arsenic and inorganic arsenic on arsenic methylation capacity among university students: findings from Bayesian kernel machine regression analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28714-28724. [PMID: 34988804 DOI: 10.1007/s11356-021-17906-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The arsenic (As) methylation capacity is an important determinant of susceptibility to As-related diseases. Total As (TAs) or inorganic As (iAs) was reported to associated with As methylation capacity. We measured urinary concentrations of iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) by using HPLC-HG-AFS and calculated the primary methylation capacity index (PMI) and secondary methylation capacity index (SMI) in 209 university students in Hefei, China, a non-As endemic area. Volunteers were given a standardized questionnaire asking about their sociodemographic characteristics. Bayesian kernel machine regression (BKMR) analysis was used to estimate the association of lnTAs and lniAs levels with methylation indices (ln%MMA, ln%DMA, lnPMI, lnSMI). The median concentrations of iAs, MMA, and DMA were 1.22, 0.92, and 12.17 μg/L, respectively; the proportions of iAs, MMA, and DMA were 8.76%, 6.13%, and 84.84%, respectively. Females had higher %DMA and lower %MMA than males. The combined levels of lnTAs and lniAs showed a decrease in the changes in ln%DMA and lnSMI. With regard to the single exposure level, the lnTAs showed positive correlations with ln%DMA, lnPMI, and lnSMI when lniAs was set at a specific level, while lniAs showed negative correlations with ln%DMA, lnPMI, and lnSMI when lnTAs was set at a specific level; all the dose-response relationships were nonlinear. Our results suggested that combined levels of TAs and iAs play an important role in reducing As methylation capacity, especially iAs, and the reduction only occurs when TAs and iAs are present up to a certain combined level.
Collapse
Affiliation(s)
- Rui Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Dongmei Ji
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuan Hu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Long Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Shen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuxiang Song
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yicheng Ma
- The Second Clinical Medical College, Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Shilu Tong
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Tsuji JS, Lennox KP, Watson HN, Chang ET. Essential concepts for interpreting the dose-response of low-level arsenic exposure in epidemiological studies. Toxicology 2021; 457:152801. [PMID: 33905760 DOI: 10.1016/j.tox.2021.152801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
Scientifically robust selections of epidemiological studies and assessments of the dose-response of inorganic arsenic in the low-dose range must consider key issues specific to arsenic in order to reduce risk of bias. The abundance of toxicological, mechanistic, and epidemiological evidence on arsenic enables a nuanced assessment of risk of bias in epidemiological studies of low-level arsenic, as opposed to a generic evaluation based only on standard principles. Important concepts in this context include 1) arsenic metabolism and mode of action for toxicity and carcinogenicity; 2) effects of confounding factors such as diet, health status including nutritional deficiencies, use of tobacco and other substances, and body composition; 3) strengths and limitations of various metrics for assessing relevant exposures consistent with the mode of action; and 4) the potential for bias in the positive direction for the observed dose-response relationship as exposure increases in the low-dose range. As an example, evaluation of a recent dose-response modeling using eight epidemiological studies of inorganic arsenic and bladder cancer demonstrated that the pooled risk estimate was markedly affected by the single study that was ranked as having a high risk of bias, based on the above factors. The other seven studies were also affected by these factors to varying, albeit lesser, degrees that can influence the apparent dose-response in the low-dose range (i.e., drinking water concentration of 65 µg/L or dose of approximately ≤1 µg/kg-day). These issues are relevant considerations for assessing health risks of oral exposures to inorganic arsenic in the U.S. population, and setting evidence-based regulatory limits to protect human health.
Collapse
|
15
|
Arsenic metabolism differs between child and adult patients during acute arsenic poisoning. Toxicol Appl Pharmacol 2020; 410:115352. [PMID: 33264645 DOI: 10.1016/j.taap.2020.115352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Epidemiological studies on chronic arsenic poisoning have clarified the relationship between various adverse effects and methylation efficiency or methylation capacity. However, no study has similarly investigated such effects on patients with acute arsenic poisoning. In the present work, we studied 61 patients with acute oral arsenic poisoning occurring after consumption of an arsenic trioxide-laced meal (curry soup). The cohort included children (defined as under 15 year old [y/o], n = 22) and adults (over 16 y/o, n = 39) whose urinary arsenic profiles were analyzed. None of these patients had received treatment with chelating agents. The estimated median (IQR) arsenic intake was 64.5 mg (48.3-80.5 mg) in children and 76.0 mg (56.0-91.0 mg) in adults, and these values were not significantly different. Symptoms of poisoning in children improved approximately 1 week after hospitalization. However, the symptoms in most adults deteriorated with severe signs of arsenic poisoning. Urinary arsenic profiles of all the patients were analyzed to obtain the following information: % monomethylarsonic acid (MMA), % dimethylarsinic acid (DMA), second methylation ratio (DMA/MMA), and secondary methylation index (SMI, DMA/MMA + DMA). The levels of these parameters may help identify patients at risk for worsening symptoms. %MMA, an indicator of incomplete methylation, increased more in adults, who experienced more severe symptom progression, compared with children. In contrast, %DMA, which indicates more complete and efficient methylation, increased particularly in children with mild symptoms. Overall the present results indicate that children possess an excellent capacity for methylation (second methylation ratio) of arsenic to DMA and therefore, experience relatively less severe progression of symptomology during acute arsenic poisoning.
Collapse
|
16
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020; 8:464. [PMID: 33134234 PMCID: PMC7578365 DOI: 10.3389/fpubh.2020.00464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India.,Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
17
|
Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X, Tao Y, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2020; 188:109824. [PMID: 32593899 DOI: 10.1016/j.envres.2020.109824] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 05/16/2023]
Abstract
Exposure to arsenic is a risk factor for nonalcoholic steatohepatitis (NASH). Ferroptosis is a form of regulated cell death defined by the accumulation of lipid peroxidation. In the current study, we observed the occurrence of ferroptosis in arsenic-induced NASH by assessing ferroptosis related hallmarks. In vitro, we found that ferrostatin-1 effectively attenuated the executing of ferroptosis and NASH. Simultaneously, the expression of ACSL4 (acyl-CoA synthetase long-chain family member 4) was upregulated in rat's liver and L-02 cells exposed to arsenic. While, suppression of ACSL4 with rosiglitazone or ACSL4 siRNA remarkably alleviated arsenic-induced NASH and ferroptosis through diminishing 5-hydroxyeicosatetraenoic acid (5-HETE) content. Additionally, Mitofusin 2 (Mfn2), a physical tether between endoplasmic reticulum and mitochondria, has rarely been explored in the ferroptosis. Using Mfn2 siRNA or inositol-requiring enzyme 1 alpha (IRE1α) inhibitor, we found NASH and ferroptosis were obviously mitigated through reducing 5-HETE content. Importantly, Co-IP assay indicated that Mfn2 could interact with IRE1α and promoted the production of 5-HETE, ultimately led to ferroptosis and NASH. Collectively, our data showed that ferroptosis is involved in arsenic-induced NASH. These data provide insightful viewpoints into the mechanism of arsenic-induced NASH.
Collapse
Affiliation(s)
- Sen Wei
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xue Jia
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Ye Tao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Yuhan Zhu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Guang Yang
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Shuang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
18
|
Pan W, Ye X, Zhu Z, Li C, Zhou J, Liu J. A case-control study of arsenic exposure with the risk of primary ovarian insufficiency in women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25220-25229. [PMID: 32347494 DOI: 10.1007/s11356-020-08806-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/07/2020] [Indexed: 05/18/2023]
Abstract
Arsenic, a well-known toxic metalloid, is ubiquitously existed in environment. Arsenic exposure has been associated with female reproductive health. However, a potential association between arsenic exposure and primary ovarian insufficiency (POI) in women has not been recognized yet. In this case-control study, a total of 169 POI cases and 209 healthy controls were recruited to determine urinary concentrations of arsenic and serum levels of reproductive hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Mullerian hormone (AMH) and estradiol). The median concentration of urinary arsenic in cases (21.5 μg/L, 28.0 μg/g for creatinine adjustment) was significantly higher than that of controls (13.8 μg/L, 19.3 μg/g for creatinine adjustment). Urinary arsenic concentrations were significantly positively associated with the risk of POI (adjusted odds ratio (OR) = 2.66, 95% CI: 1.43-4.95 for the highest vs lowest tertile of arsenic, p = 0.002; p for trend = 0.004). We also assessed the associations between arsenic exposure and reproductive hormones that are important for ovarian functions. FSH and LH levels were positively associated with urinary arsenic, whereas AMH and estradiol levels were negatively correlated with this element. This study provided evidence that arsenic exposure could be the potential risk factor for POI in women.
Collapse
Affiliation(s)
- Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front Public Health 2020. [PMID: 33134234 DOI: 10.3389/fpubh/2020.00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Arsenic contamination in drinking water and associated adverse outcomes are one of the major health issues in more than 50 countries worldwide. The scenario is getting even more detrimental with increasing number of affected people and newer sites reported from all over the world. Apart from drinking water, the presence of arsenic has been found in various other dietary sources. Chronic arsenic toxicity affects multiple physiological systems and may cause malignancies leading to death. Exposed individuals, residing in the same area, developed differential dermatological lesion phenotypes and varied susceptibility toward various other arsenic-induced disease risk, even after consuming equivalent amount of arsenic from the similar source, over the same duration of time. Researches so far indicate that differential susceptibility plays an important role in arsenic-induced disease manifestation. In this comprehensive review, we have identified major population-based studies of the last 20 years, indicating possible causes of differential susceptibility emphasizing arsenic methylation capacity, variation in host genome (single nucleotide polymorphism), and individual epigenetic pattern (DNA methylation, histone modification, and miRNA expression). Holistic multidisciplinary strategies need to be implemented with few sustainable yet cost-effective solutions like alternative water source, treatment of arsenic-contaminated water, new adaptations in irrigation system, simple modifications in cooking strategy, and dietary supplementations to combat this menace. Our review focuses on the present perspectives of arsenic research with special emphasis on the probable causes of differential susceptibility toward chronic arsenic toxicity and sustainable remediation strategies.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata, India
- Department of Environmental Science, University of Calcutta, Kolkata, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, U.T. MD Anderson Cancer Center, Smithville, TX, United States
| | | |
Collapse
|
20
|
On the Use of Hair Analysis for Assessing Arsenic Intoxication. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16060977. [PMID: 30889915 PMCID: PMC6466288 DOI: 10.3390/ijerph16060977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Correlations between the concentrations of arsenic in scalp hair and in drinking water as well as in blood and/or urine have been reported. These correlations clearly show exposure–absorption–excretion relationships. In addition, arsenic metabolites such as monomethylarsonic acid and dimethylarsinic acid have been identified and quantified in these tissues and fluids, leaving little doubt that elevated levels of arsenic in the hair can reflect systemic arsenic intoxication. Consequently, hair analysis has potential merit as a screening procedure for poisoning by arsenic. However, questions regarding the exogenous versus the endogenous deposition of arsenic in the hair, and uncertainties about the normal level of arsenic in the hair remain unresolved. Pending their resolution, the determination of arsenic in hair should remain a screening tool, and clinical signs and symptoms should be employed to complete the diagnosis of arsenic poisoning.
Collapse
|
21
|
Spratlen MJ, Grau-Perez M, Umans JG, Yracheta J, Best LG, Francesconi K, Goessler W, Bottiglieri T, Gamble MV, Cole SA, Zhao J, Navas-Acien A. Targeted metabolomics to understand the association between arsenic metabolism and diabetes-related outcomes: Preliminary evidence from the Strong Heart Family Study. ENVIRONMENTAL RESEARCH 2019; 168:146-157. [PMID: 30316100 PMCID: PMC6298442 DOI: 10.1016/j.envres.2018.09.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/02/2018] [Accepted: 09/25/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. A more efficient arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk for arsenic-related health outcomes. This profile, however, has also been associated with increased risk for diabetes-related outcomes. OBJECTIVES The mechanism behind these conflicting associations is unclear; we hypothesized the one-carbon metabolism (OCM) pathway may play a role. METHODS We evaluated the influence of OCM on the relationship between arsenic metabolism and diabetes-related outcomes (HOMA2-IR, waist circumference, fasting plasma glucose) using metabolomic data from an OCM-specific and P180 metabolite panel measured in plasma, arsenic metabolism measured in urine, and HOMA2-IR and FPG measured in fasting plasma. Samples were drawn from baseline visits (2001-2003) in 59 participants from the Strong Heart Family Study, a family-based cohort study of American Indians aged ≥14 years from Arizona, Oklahoma, and North/South Dakota. RESULTS In unadjusted analyses, a 5% increase in DMA% was associated with higher HOMA2-IR (geometric mean ratio (GMR)= 1.13 (95% CI: 1.03, 1.25)) and waist circumference (mean difference=3.66 (0.95, 6.38). MMA% was significantly associated with lower HOMA2-IR and waist circumference. After adjustment for OCM-related metabolites (SAM, SAH, cysteine, glutamate, lysophosphatidylcholine 18.2, and three phosphatidlycholines), associations were attenuated and no longer significant. CONCLUSIONS These preliminary results indicate that the association of lower MMA% and higher DMA% with diabetes-related outcomes may be influenced by OCM status, either through confounding, reverse causality, or mediation.
Collapse
Affiliation(s)
- Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Fundación Investigación Clínico de Valencia-INCLIVA, Area of Cardiometabolic and Renal Risk, Valencia, Valencia, Spain; University of Valencia, Department of Statistics and Operational Research, Valencia, Valencia, Spain
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA; Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Kevin Francesconi
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | | | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jinying Zhao
- College of Public Health and Health Professions and the College of Medicine at the University of Florida, Gainesville, FL, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
22
|
Spratlen MJ, Grau-Perez M, Umans JG, Yracheta J, Best LG, Francesconi K, Goessler W, Balakrishnan P, Cole SA, Gamble MV, Howard BV, Navas-Acien A. Arsenic, one carbon metabolism and diabetes-related outcomes in the Strong Heart Family Study. ENVIRONMENT INTERNATIONAL 2018; 121:728-740. [PMID: 30321848 PMCID: PMC6221918 DOI: 10.1016/j.envint.2018.09.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Inorganic arsenic exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. A more efficient arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk for arsenic-related health outcomes; however, this profile has also been associated with increased risk for diabetes-related outcomes. The mechanism behind these contrasting associations is equivocal; we hypothesized one carbon metabolism (OCM) may play a role. METHODS We evaluated the association between OCM-related variables (nutrient intake and genetic variants) and both arsenic metabolism biomarkers (iAs%, MMA% and DMA%) and diabetes-related outcomes (metabolic syndrome, diabetes, HOMA2-IR and waist circumference) in 935 participants free of prevalent diabetes and metabolic syndrome from the Strong Heart Family Study, a family-based prospective cohort comprised of American Indian tribal members aged 14+ years. RESULTS Of the 935 participants free of both diabetes and metabolic syndrome at baseline, 279 (29.8%) developed metabolic syndrome over a median of 5.3 years of follow-up and of the 1458 participants free of diabetes at baseline, 167 (11.3%) developed diabetes over follow-up. OCM nutrients were not associated with arsenic metabolism, however, higher vitamin B6 was associated with diabetes-related outcomes (higher HOMA2-IR and increased risk for diabetes and metabolic syndrome). A polymorphism in an OCM-related gene, methionine synthase (MTR), was associated with both higher MMA% (β = 2.57, 95% CI: 0.22, 4.92) and lower HOMA2-IR (GMR = 0.79, 95% CI = 0.66, 0.93 per 5 years of follow-up). Adjustment for OCM variables did not affect previously reported associations between arsenic metabolism and diabetes-related outcomes; however, the association between the MTR variant and diabetes-related outcomes were attenuated after adjustment for arsenic metabolism. CONCLUSIONS Our findings suggest MMA% may be a partial mediator in the association between OCM and diabetes-related outcomes. Additional mediation analyses with longer follow-up period are needed to confirm this finding. Further research is needed to determine whether excess B vitamin intake is associated with increased risk for diabetes-related outcomes.
Collapse
Affiliation(s)
- Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America; Fundación Investigación Clínico de Valencia-INCLIVA, Area of Cardiometabolic and Renal Risk, Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, United States of America; Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, United States of America
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, United States of America
| | - Kevin Francesconi
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | - Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, United States of America; Department of Medicine, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, New York, United States of America; Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
23
|
Wei B, Yu J, Kong C, Li H, Yang L, Xia Y, Wu K. A follow-up study of the development of skin lesions associated with arsenic exposure duration. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:2729-2738. [PMID: 29948538 DOI: 10.1007/s10653-018-0136-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Little information about the development of skin lesions in relation to arsenic exposure duration is available. Therefore, skin lesions in a cohort from the Bameng region of China were diagnosed in 2012 and 2017. The results indicated that the prevalence of hyperkeratosis, pigmentation and depigmentation in 2017 was 64.67, 6.67 and 12.67%. There were 42 and 34% of male subjects and female subjects suffered from skin lesions in 2012. Their morbidity rates were 10.43 and 8.98 per 1000 person-years. In 2017, the values were significantly increased. The prevalence and morbidity rate of skin lesions were positively correlated with age and arsenic levels in drinking water. Males had higher prevalence of skin lesions compared with female. However, the ≤ 40 years female group had higher prevalence of skin lesions. In addition, the increased rate of skin lesions prevalence was negatively correlated with arsenic levels in drinking water. The odds ratios (ORs) showed that the risks of skin lesions were positively associated with the proportion of inorganic arsenic (%iAs) and monomethylarsonic acid (%MMA) in urine, and negatively correlated with arsenic methylation capacity in both 2012 and 2017. It can be concluded that females immigrated from other areas were more susceptible to developing skin lesions. A certain cumulative arsenic exposure dose, which may be existing, significantly increased the prevalence of skin lesions. Longer arsenic exposure duration might elevate the toxicity of iAs to skin lesions and reduce the positive effects of arsenic methylation capacity on skin lesions.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- Collage of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- Collage of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- Collage of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yajuan Xia
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
24
|
Wei B, Yu J, Kong C, Li H, Yang L, Xia Y, Wu K. Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24394-24402. [PMID: 29948723 DOI: 10.1007/s11356-018-2512-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Little was known about the arsenic metabolism and arsenic methylation associated with the changes of skin lesions after reducing the arsenic in drinking water (WAs). Therefore, urinary concentrations and proportions of arsenic species were determined for recovery (RC), improvement (IC), persistent (PE), aggravation (AC), new incidence (NC), and no sign (HC) groups based on the changes of skin lesions between before (in 2004) and after (in 2017) WAs reduction. The results indicate that the urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total arsenic (TAs) were much higher for RC and IC groups than for the other groups in 2004, while these values varied slightly among the groups in 2017. The urinary %iAs of all the groups was significantly decreased after WAs reduction. In contrast, the urinary %DMA of RC, IC, AC, and NC groups was increased. From 2004 to 2017, the PE and HC groups had lower decrease rate of %iAs and %MMA, and increase rate of %DMA, primary methylation index (PMI), and secondary methylation index (SMI) after WAs reduction. The adjusted odd ratios (ORs) showed that the RC, IC, AC, and NC groups were positively related with %iAs and %MMA and were negatively correlated with %DMA, PMI, and SMI before WAs reduction. It can be concluded that higher urinary %iAs and %MMA before WAs reduction increased the probability of skin lesions recovery and improvement, and the risks of skin lesions aggravation and incidence. Higher increase rate of urinary %DMA was positively associated with of skin lesions recovery and improvement. Moreover, higher urinary %iAs and %MMA or lower increase rate of urinary %DMA might increase the risk of skin lesions aggravation.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Yajuan Xia
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| | - Kegong Wu
- Inner Mongolia Center for Comprehensive Disease Control and Prevention, Hohhot, Inner Mongolia, People's Republic of China
| |
Collapse
|
25
|
Urinary Arsenic in Human Samples from Areas Characterized by Natural or Anthropogenic Pollution in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020299. [PMID: 29425136 PMCID: PMC5858368 DOI: 10.3390/ijerph15020299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022]
Abstract
Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20-44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79-4.00]), GSTT gene (GMR: 0.68 [0.52-0.80]), consumption of tap water (GMR: 1.35 [1.02-1.77]), seafood (GMR: 1.44 [1.11-1.88]), whole milk (GMR: 1.34 [1.04-1.73]), and fruit/vegetables (GMR: 1.37 [1.03-1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources.
Collapse
|
26
|
Rasheed H, Kay P, Slack R, Gong YY. The effect of association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions. Toxicol Appl Pharmacol 2018; 339:42-51. [DOI: 10.1016/j.taap.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023]
|
27
|
Wei B, Yu J, Kong C, Li H, Yang L, Guo Z, Cui N, Xia Y, Wu K. An investigation of the health effects caused by exposure to arsenic from drinking water and coal combustion: arsenic exposure and metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25947-25954. [PMID: 28940151 DOI: 10.1007/s11356-017-0203-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Few studies have been conducted to compare arsenic exposure, metabolism, and methylation in populations exposed to arsenic in drinking water and from coal combustion. Therefore, arsenic concentrations in the environment and arsenic speciation in the urine of subjects exposed to arsenic as a consequence of coal combustion in a rural area in Shaanxi province (CCA) and in drinking water in a rural area in Inner Mongolia (DWA) were investigated. The mean arsenic concentrations in drinking water, indoor air, and soil in CCA were 4.52 μg/L, 0.03 mg/m3, and 14.93 mg/kg, respectively. The mean arsenic concentrations in drinking water and soil in DWA were 144.71 μg/L and 10.19 mg/kg, respectively, while the level in indoor air was lower than the limit of detection. The total daily intakes of arsenic in DWA and CCA were 4.47 and 3.13 μg/day·kg, respectively. The mean urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and total arsenic (TAs) for subjects with skin lesions in DWA were 50.41, 47.01, 202.66, and 300.08 μg/L. The concentrations for subjects without skin lesions were 49.76, 44.20, 195.60, and 289.56 μg/L, respectively. The %iAs, %MMA, and %DMA in the TAs in the urine of subjects from CCA were 12.24, 14.73, and 73.03%, while the corresponding values from DWA were 17.54, 15.57, and 66.89%, respectively. The subjects in DWA typically had a higher %iAs and %MMA, and a lower %DMA, and primary and secondary methylation index (PMI and SMI) than the subjects in CCA. It was concluded that the arsenic methylation efficiency of subjects in DWA and CCA was significantly influenced by chronic exposure to high levels of arsenic in the environment. The lower PMI and SMI values in DWA revealed lower arsenic methylation capacity due to ingestion of arsenic in drinking water. However, it remained unclear if the differences in arsenic metabolism between the two groups were due to differences in exposure levels or in exposure route.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, 100101, Beijing, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhiwei Guo
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| | - Na Cui
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| | - Yajuan Xia
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| | - Kegong Wu
- Inner Mongolia Center for Disease Control and Research, Hohhot, China
| |
Collapse
|
28
|
Integration of microRNAome, proteomics and metabolomics to analyze arsenic-induced malignant cell transformation. Oncotarget 2017; 8:90879-90896. [PMID: 29207610 PMCID: PMC5710891 DOI: 10.18632/oncotarget.18741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Long-term exposure to arsenic has been linked to tumorigenesis in different organs and tissues, such as skin; however, the detailed mechanism remains unclear. In this present study, we integrated “omics” including microRNAome, proteomics and metabolomics to investigate the potential molecular mechanisms. Compared with non-malignant human keratinocytes (HaCaT), twenty-six miRNAs were significantly altered in arsenic-induced transformed cells. Among these miRNAs, the differential expression of six miRNAs was confirmed using Q-RT-PCR, representing potential oxidative stress genes. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were performed to identify the differential expression of proteins in arsenic-induced transformed cells, and twelve proteins were significantly changed. Several proteins were associated with oxidative stress and carcinogenesis including heat shock protein beta-1 (HSPB1), peroxiredoxin-2 (PRDX2). Using ultra-performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS), 68 metabolites including glutathione, fumaric acid, citric acid, phenylalanine, and tyrosine, related to redox metabolism, glutathione metabolism, citrate cycle, met cycle, phenylalanine and tyrosine metabolism were identified and quantified. Taken together, these results indicated that arsenic-induced transformed cells exhibit alterations in miRNA, protein and metabolite profiles providing novel insights into arsenic-induced cell malignant transformation and identifying early potential biomarkers for cutaneous squamous cell carcinoma induced by arsenic.
Collapse
|
29
|
Zhang XY, Zhou MY, Li LL, Jiang YJ, Zou XT. Effects of arsenic supplementation in feed on laying performance, arsenic retention of eggs and organs, biochemical indices and endocrine hormones. Br Poult Sci 2016; 58:63-68. [PMID: 27636676 DOI: 10.1080/00071668.2016.1216945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1. The primary objective of this experiment was to estimate the toxic effects of arsenic (As) supplementation in feed on laying performance, As retention by eggs and organs, serum biochemical indices and endocrine hormones in laying hens. 2. A total of 320 "Jinghong Number 1" hens, 56-week-old, were randomly allocated into four treatments of four replicates with 20 layers in each. Graded arsenical was added to the basal diet in the experimental diets at As levels of 0, 17, 34 and 51 mg/kg, respectively. The trial lasted for 9 weeks including 1 week for acclimatisation. 3. Supplementation of dietary As for eight weeks had no effect on laying performance. As retention in albumen, yolk, egg, liver and kidney increased as As levels increased The level of serum phosphorus (P) was minimised at the 17 mg As/kg group. The activity of serum glutamic oxaloacetic transaminase (GOT) increased linearly. No differences were observed for levels of serum calcium (Ca), alkaline phosphatase (AKP) and serum glutamic pyruvic transaminase (GPT). Concentrations of estradiol (E2) and progesterone (PG) declined at 34 and 51 mg/kg As levels compared with the control group. As supplementation exerted no influence on levels of serum follicle stimulating hormone (FSH), luteinising hormone (LH), triiodothyronine (T3), thyroxine (T4) and the ratio between T3 and T4. 4. In conclusion, dietary As supplementation accelerated retention in tissues and eggs, and affected the laying rate by diminishing hormone levels of E2 and PG at 51 mg/kg.
Collapse
Affiliation(s)
- X Y Zhang
- a Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science , Zhejiang University (Zijingang Campus) , Hangzhou , China
| | - M Y Zhou
- a Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science , Zhejiang University (Zijingang Campus) , Hangzhou , China
| | - L L Li
- a Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science , Zhejiang University (Zijingang Campus) , Hangzhou , China
| | - Y J Jiang
- a Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science , Zhejiang University (Zijingang Campus) , Hangzhou , China
| | - X T Zou
- a Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science , Zhejiang University (Zijingang Campus) , Hangzhou , China
| |
Collapse
|
30
|
Cortés-Arriagada D, Toro-Labbé A. A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped graphene. RSC Adv 2016. [DOI: 10.1039/c6ra03813a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Density functional theory calculations show the ability of silicon embedded graphene for the removal of methylated arsenic(iii, v) pollutants.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Nucleus Millennium Chemical Processes and Catalysis
- Laboratorio de Química Teórica Computacional (QTC)
- Departamento de Química-Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
| | - Alejandro Toro-Labbé
- Nucleus Millennium Chemical Processes and Catalysis
- Laboratorio de Química Teórica Computacional (QTC)
- Departamento de Química-Física
- Facultad de Química
- Pontificia Universidad Católica de Chile
| |
Collapse
|