1
|
Wu M, Li K, Wu J, Ding X, Ma X, Wang W, Xiao W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol Res 2025; 212:107571. [PMID: 39756553 DOI: 10.1016/j.phrs.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C. A. Meyer) is a tonic traditional Chinese herbal medicine, and natural products, including ginsenoside Rg1 (G-Rg1), which is a kind of 20(S)-protopanaxatriol saponin with a relatively high biological activity, can be isolated from the roots or stems of ginseng. Given these information, this review aimed to summarise and discuss the metabolic mechanisms of G-Rg1 in the regulation of diverse liver diseases and the measures to improve its bioavailability. As a kind of monomer in Chinese medicine with multitarget pharmacological effects, G-Rg1 can provide significant therapeutic benefits in the alleviation of alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, viral hepatitis, etc., which mainly rely on the inhibition of apoptosis, strengthening endogenous anti-inflammatory and antioxidant mechanisms, activation of immune responses and regulation of efflux transport signals, to improve pathological changes in the liver caused by lipid deposition, inflammation, oxidative stress, accumulation of hepatotoxic product, etc. However, the poor bioavailability of G-Rg1 must be overcome to improve its clinical application value. In summary, focusing on the hepatoprotective benefits of G-Rg1 will provide new insights into the development of natural Chinese medicine resources and their pharmaceutical products to target the treatment of liver diseases.
Collapse
Affiliation(s)
- Mingyu Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xianyi Ding
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaotong Ma
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
2
|
Dan L, Li X, Chen S, You X, Wang D, Wang T, Li J, Liu W, Mu J, Feng Q. Protective role of ginsenoside Rg1 in the dynamic progression of liver injury to fibrosis: a preclinical meta-analysis. Front Pharmacol 2025; 16:1512184. [PMID: 39936090 PMCID: PMC11810943 DOI: 10.3389/fphar.2025.1512184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Background The pathological progression from liver injury to fibrosis is a hallmark of liver disease, with no effective strategies to halt this transition. Ginsenoside Rg1 has demonstrated a range of hepatoprotective properties; however, systematic preclinical evidence supporting its therapeutic potential for liver injury and fibrosis remains limited. Purpose. This study evaluated the efficacy and underlying mechanisms of ginsenoside Rg1 in animal models of liver injury and fibrosis, and providing a basis for future clinical investigation. Methods A systematic review was conducted on preclinical studies published in PubMed, Web of Science, and Embase databases up to 1 August 2024, adhereing to rigorous quality standards. The methodological quality was assessed using SYRCLE's risk of bias tool. Meta-analysis and subgroup analysis were performed using Revman 5.4 software, while publication bias was evaluated through funnel plots and Egger's test in STATA 15.0 software. Additionally, a time-dose interval curve was utilized to assess the dose-response relationship and identify the effective dose of ginsenoside Rg1 for treating liver injury and fibrosis. Results Twenty-four trials involving 423 animals were included. The findings indicated that ginsenoside Rg1 significantly improved liver function markers (ALT and AST), reduced pathological indicators associated with liver injury and fibrosis, and lowered liver fibrosis-related markers (α-SMA, HYP, and PCIII). Furthermore, it exhibited beneficial effects on mechanistic indicators of inflammation, oxidative stress, and apoptosis, compared to the control group (P < 0.05). Time-dose interval analysis revealed that the effective dose range of ginsenoside Rg1 was between 4 and 800 mg/kg/d. Conclusion Rg1 at a dose of 4-800 mg/kg/d mitigates the progression of liver injury to fibrosis via anti-inflammatory, antioxidative, and anti-apoptotic pathways. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD 42024557878.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojie You
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese Medicine Department, 363 Hospital of Chengdu, Chengdu, China
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenping Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Mu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ratchamak R, Authaida S, Koedkanmark T, Boonkum W, Semaming Y, Chankitisakul V. Dietary supplementation with ginseng extract enhances testicular function, semen preservation, and fertility rate of mature and aging Thai native roosters. Theriogenology 2024; 227:31-40. [PMID: 39004045 DOI: 10.1016/j.theriogenology.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The decrease in fertility in aging roosters is related to the reduced quality of ejaculated sperm. This study aimed to investigate the effect of dietary supplementation with ginseng extract at various concentrations (0-150 mg/kg) on testicular function, semen preservation, and fertility at different stages of sexual maturity (mature and aging roosters) in Thai native roosters. Pradu Hang Dum roosters at 32 (mature; n = 24) and 75 (aging; n = 24) weeks of age were fed diets with non-supplemented or supplemented ginseng extracts (50, 100, and 150 mg/kg) until the end of the experiment. In experiment 1, fresh semen samples were examined for the quality parameters of semen volume, sperm concentration, sperm motility, sperm viability, lipid peroxidation, and enzymatic activities. In experiment 2, semen was preserved at 5 °C for up to 48 h, and the semen quality and fertility potential were determined. In experiment 3, testicular function and testosterone concentrations were evaluated. The results showed that ginseng extract supplementation in the diets of both mature and aging roosters at 50 and 100 mg/kg improved fresh semen quality (P < 0.05). A decrease in malondialdehyde levels in fresh semen was observed with increasing enzyme activities. In mature roosters, the progressive motility of cold-stored semen and fertility rates were higher in the G50 and G100 groups compared to the control and G150 groups after 24 h of storage (P < 0.05). In aging roosters, the highest significant differences in progressive motility, viability, and fertility rates were observed in the G50 and G100 groups at all storage times (P < 0.01). These improvements might be attributed to good testicular function in spermatogenesis, as revealed by the results of histological examination and testosterone concentrations. However, higher doses of ginseng extract supplementation negatively affected sperm quality. In summary, the recommended dose of ginseng extract supplementation in diets is 50 mg/kg. Fertility results indicated that insemination with semen preserved for 24 h was satisfactory in both mature and aging roosters.
Collapse
Affiliation(s)
- Ruthaiporn Ratchamak
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002, Thailand; The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thirawat Koedkanmark
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002, Thailand; The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yoswaris Semaming
- Program in Veterinary Technology, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002, Thailand; The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Zhou Z, Hu C, Cui B, You L, An R, Liang K, Wang X. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38855973 DOI: 10.1021/acs.jafc.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
6
|
Gong Q, Wang X, Liu Y, Yuan H, Ge Z, Li Y, Huang J, Liu Y, Chen M, Xiao W, Liu R, Shi R, Wang L. Potential Hepatoprotective Effects of Allicin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. TOXICS 2024; 12:328. [PMID: 38787107 PMCID: PMC11126064 DOI: 10.3390/toxics12050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1β, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.
Collapse
Affiliation(s)
- Qianmei Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongshi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Heling Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifeng Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhou Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjun Xiao
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Wang K, Teng W, Wu N, Gu S, Zhou T, Zhang Y. Preparation and evaluation of Angelica sinensis polysaccharide-modified chitosan sponge for acute liver injury protection. Int J Biol Macromol 2023; 253:127126. [PMID: 37778573 DOI: 10.1016/j.ijbiomac.2023.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
In this study, a porous sponge material was formed by physically mixing chitosan (CS) and Angelica sinensis polysaccharide (ASP). After removing the water by freeze-drying, the CS/ASP sponge was obtained. The prepared sponges exhibited excellent swelling properties, thermal stability and biocompatibility as well as improvements over the insufficient mechanical properties of pure chitosan sponges. Notably, the ASP released from the CS/ASP sponge could be effectively absorbed by the liver, which endowed the CS/ASP sponge with effective liver-protective effects against CCl4-induced acute liver injury; these protective effects surpassed those of both blank CS and CS/Dextran sponges. The underlying protective mechanism may involve the activation of the Nrf2-mediated antioxidant signaling pathway and the inhibition of hepatocyte apoptosis. Understanding CS/ASP sponges may provide new insights and inspire new methods for the clinical application of ASP. At the same time, we hope to suggest future directions for the development of polysaccharide preparations.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wangtianzi Teng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Nire Wu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - SaiSai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Tao Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
8
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
9
|
Mohamed Azar KAH, Ezhilarasan D, Shree Harini K, Karthick M, Uthirappan M. Coleus vettiveroides ethanolic root extract protects against thioacetamide-induced acute liver injury in rats. Cell Biochem Funct 2023; 41:876-888. [PMID: 37605364 DOI: 10.1002/cbf.3839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Acute liver injury is caused by various factors, including oxidative stress and inflammation. Coleus vettiveroides, an ayurvedic medicinal plant, is known to possess antioxidant, antibacterial, and antidiabetic properties. In this current study, we investigated the protective effect of C. vettiveroides ethanolic root extract (CVERE) against thioacetamide (TAA)-induced acute liver injury in rats. A single dose of TAA (300 mg/kg, b.w., i.p.) was administered to induce acute liver injury. The treatment groups of rats were concurrently treated with CVERE (125 and 250 mg/kg, b.w., p.o.) and silymarin (100 mg/kg, b.w., p.o.), respectively. After 24 h of the experimental period, TAA-induced liver injury was confirmed by increased activity of serum transaminases and malondialdehyde levels in liver tissue, decreased levels of antioxidants, upregulated expression of the inflammatory marker gene, and altered liver morphology. Whereas CVERE simultaneous treatment inhibited hepatic injury and prevented the elevation of serum aspartate and alanine transaminases, alkaline phosphatase, and lactate dehydrogenase activities. CVERE attenuated TAA-induced oxidative stress by suppressing lipid peroxidation and restoring antioxidants such as superoxide dismutase, catalase, and reduced glutathione. Further, CVERE treatment was found to inhibit nuclear factor κB-mediated inflammatory signaling, as indicated by downregulated pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-1β. Our findings suggest that CVERE prevents TAA-induced acute liver injury by targeting oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Munusamy Karthick
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mani Uthirappan
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Xie Q, Zhang X, Zhou Q, Xu Y, Sun L, Wen Q, Wang W, Chen Q. Antioxidant and anti-inflammatory properties of ginsenoside Rg1 for hyperglycemia in type 2 diabetes mellitus: systematic reviews and meta-analyses of animal studies. Front Pharmacol 2023; 14:1179705. [PMID: 37745069 PMCID: PMC10514510 DOI: 10.3389/fphar.2023.1179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Background: According to existing laboratory data, ginsenoside Rg1 may help cure diabetes and its complications by reducing oxidative stress (OS) and managing inflammation. However, this conclusion lacks reliability and is unclear. As a result, the purpose of this systematic review and meta-analysis was to evaluate the antioxidant and anti-inflammatory effects of ginsenoside Rg1 in the treatment of diabetes and its complications. Methods: We searched for relevant studies published through December 2022, including electronic bibliographic databases such as PubMed, EMBASE, Web of Science, CNKI, and Wanfang. The SYstematic Review Center for Laboratory Animal Experimentation Risk of Bias (SYRCLE RoB) tool was used to conduct a meta-analysis to assess the methodological quality of animal research. The meta-analysis was conducted using RevMan5.4 software, following the Cochrane Handbook for Systematic Reviews of Interventions. This study is registered in the International Systems Review Prospective Registry (PROSPERO) as CRD42023386830. Results: Eighteen eligible studies involving 401 animals were included. Ginsenoside Rg1 was significantly correlated with blood glucose (BG), insulin levels, body weight, superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels. In addition, according to subgroup analysis, the hypoglycemic, anti-inflammatory, and antioxidant effects of ginsenoside Rg1 in type 2 diabetic animals were not affected by experimental species, modeling, experimental drug dosage, or course of treatment. Conclusion: This meta-analysis presents a summary of the hypoglycemic effects of ginsenoside Rg1, which are achieved through anti-inflammatory and antioxidant mechanisms. These findings provide evidence-based support for the medical efficacy of ginsenoside Rg1. Specifically, ginsenoside Rg1 reduced MDA levels and restored SOD activity to exert its antioxidant activity. It had a positive effect on the reduction of IL-6 and TNF-α levels. However, the inclusion of studies with low methodological quality and the presence of publication bias may undermine the validity of the results. Further investigation with a more rigorous experimental design and comprehensive studies is necessary to fully understand the specific glycemic mechanisms of ginsenosides. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier https://CRD42023386830.
Collapse
Affiliation(s)
- Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoran Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- School of Biomedical Sciences, Mianyang Normal University, Mianyang, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Zhang Y, Wu M, Li H, Sun J, Huang L, Yuan Y. Potential benefits of Rehmanniae Radix after ancient rice-steaming process in promotion of antioxidant activity in rats' health. Food Sci Nutr 2023; 11:5532-5542. [PMID: 37701193 PMCID: PMC10494654 DOI: 10.1002/fsn3.3509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 09/14/2023] Open
Abstract
Rice steam processed product of Rehmanniae Radix (RSRR), one of the processed products of Rehmanniae Radix (RR), is popular as an herbal medicine and food. However, the health-promoting effects and mechanisms of RSRR are still unclear. In this study, 10-week-old Sprague-Dawley female rats were treated with different processed products of RR. No organ coefficient differences were observed between RSRR and the control group, indicating that RSRR did not cause damage to the rats. Compared with other RR products, superoxide dismutase, glutathione, and catalase levels were significantly higher and malondialdehyde levels were significantly lower in the RSRR group, indicating that RSRR exerted a better antioxidant effect. Gene expression analysis showed that hemoglobin genes (Hba-a1, Hba-a2, Hbb-bs, Hbb, Hbq1b, Hbb-b1, and LOC103694857) may be potential biomarkers to evaluate the antioxidant effect of RSRR. Antioxidation-related signaling pathways in GO annotation, including cellular oxidant detoxification, hydrogen peroxide metabolic process, hemoglobin complex, and oxygen binding signaling pathways were significantly enriched, indicating these pathways may represent the antioxidant mechanism of RSRR. To explore the main active compounds primarily responsible for the antioxidant activity of RSRR, UPLC-Q-TOF-MS was used and six components (catalpol, rehmannioside A, rehmannioside D, melittoside, ajugol, and verbascoside) were identified in rat serum. Catalpol and rehmannioside A were predicted to be the major active components by network pharmacology. These results suggested that RSRR exhibits antioxidant activity and has health-promoting properties. This study provides a scientific basis for the antioxidant mechanism and clinical use of RSRR.
Collapse
Affiliation(s)
- Ying Zhang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Meng‐xi Wu
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong‐mei Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Dao‐di HerbsChina Academy of Chinese Medical SciencesBeijingChina
| | - Jianhui Sun
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Lu‐qi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuan Yuan
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
12
|
Cao P, Gan J, Wu S, Hu Y, Xia B, Li X, Zeng H, Cheng B, Yu H, Li F, Si L, Huang J. Molecular mechanisms of hepatoprotective effect of tectorigenin against ANIT-induced cholestatic liver injury: Role of FXR and Nrf2 pathways. Food Chem Toxicol 2023:113914. [PMID: 37348807 DOI: 10.1016/j.fct.2023.113914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Cholestatic liver injury is caused by toxic action or allergic reaction, resulting in abnormality of bile formation and excretion. Few effective therapies have become available for the treatment of cholestasis. Herein, we found that tectorigenin (TG), a natural isoflavone, showed definite protective effects on alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury, significantly reversing the abnormality of plasma alanine/aspartate aminotransferase, total/direct bilirubin and alkaline phosphatase, as well as hepatic reactive oxygen species, catalase and superoxide dismutase. Importantly, the targeted metabolomic determination found that BA homeostasis could be well maintained in TG-treated cholestatic mice, especially the levels of glycocholic acid, tauromuricholic acid, taurocholic acid, taurolithocholic acid, tauroursodeoxycholic acid and taurodeoxycholic acid. Overall, primary/secondary and amidated/unamidated bile acid (BA) levels were significantly altered upon ANIT stimulation but could be restored by TG intervention to certain extents. In addition, TG boosted the expression of farnesoid x receptor (FXR), which in turn upregulated multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) to accelerate the excretion of BA. Meanwhile, TG enhanced the expression of Nrf2 and its upstream genes PI3K/Akt and downstream target genes HO-1, NQO1, GCLC and GCLM to strengthen the antioxidant capacity. Taken together, TG plays a vital role in maintaining BA homeostasis and ameliorating cholestatic liver injury through regulating FXR-mediated BA efflux and Nrf2-mediated antioxidative pathways.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jun Gan
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Xia
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyue Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongan Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifan Yu
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fei Li
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Bian XB, Yu PC, Yang XH, Han L, Wang QY, Zhang L, Zhang LX, Sun X. The effect of ginsenosides on liver injury in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1184774. [PMID: 37251340 PMCID: PMC10213882 DOI: 10.3389/fphar.2023.1184774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Liver injury is a severe liver lesion caused by various etiologies and is one of the main areas of medical research. Panax ginseng C.A. Meyer has traditionally been used as medicine to treat diseases and regulate body functions. Ginsenosides are the main active components of ginseng, and their effects on liver injury have been extensively reported. Methods: Preclinical studies meeting the inclusion criteria were retrieved from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wan Fang Data Knowledge Service Platforms. The Stata 17.0 was used to perform the meta-analysis, meta-regression, and subgroup analysis. Results: This meta-analysis included ginsenosides Rb1, Rg1, Rg3, and compound K (CK), in 43 articles. The overall results showed that multiple ginsenosides significantly reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST), affected oxidative stress-related indicators, such as superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px), and catalase (CAT), and reduced levels of inflammatory factor, such as factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6). Additionally, there was a large amount of heterogeneity in the meta-analysis results. Our predefined subgroup analysis shows that the animal species, the type of liver injury model, the duration of treatment, and the administration route may be the sources of some of the heterogeneity. Conclusion: In a word, ginsenosides have good efficacy against liver injury, and their potential mechanisms of action target antioxidant, anti-inflammatory and apoptotic-related pathways. However, the overall methodological quality of our current included studies was low, and more high-quality studies are needed to confirm their effects and mechanisms further.
Collapse
Affiliation(s)
- Xing-Bo Bian
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Peng-Cheng Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-Hang Yang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Liu Han
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Qi-Yao Wang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Li Zhang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Lian-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, Jilin, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
14
|
Choi EJ, Kim H, Hong KB, Suh HJ, Ahn Y. Hangover-Relieving Effect of Ginseng Berry Kombucha Fermented by Saccharomyces cerevisiae and Gluconobacter oxydans in Ethanol-Treated Cells and Mice Model. Antioxidants (Basel) 2023; 12:antiox12030774. [PMID: 36979022 PMCID: PMC10045427 DOI: 10.3390/antiox12030774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to evaluate the hangover relieving effect of ginseng berry kombucha (GBK) fermented with Saccharomyces cerevisiae and Gluconobacter oxydans in in vitro and in vivo models. The antioxidant activity and oxidative stress inhibitory effect of GBK were evaluated in ethanol-treated human liver HepG2 cells. In addition, biochemical and behavioral analyses of ethanol treated male ICR mice were performed to confirm the anti-hangover effect of GBK. The radical scavenging activity of GBK was increased by fermentation, and the total ginsenoside content of GBK was 70.24 μg/mL. In HepG2 cells, in which oxidative stress was induced using ethanol, GBK significantly increased the expression of antioxidant enzymes by upregulating the Nrf2/Keap1 pathway. Moreover, GBK (15 and 30 mg/kg) significantly reduced blood ethanol and acetaldehyde concentrations in ethanol-treated mice. GBK significantly increased the levels of alcohol-metabolizing enzymes, including alcohol dehydrogenase and acetaldehyde dehydrogenase. The balance beam test and elevated plus maze test revealed that high-dose GBK significantly ameliorated ethanol-induced behavioral changes. Collectively, GBK exerted a protective effect against ethanol-induced liver damage by regulating the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Eun Jung Choi
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Huang X, Chu X, Tian Y, Xue Y, Zhang L, Li J, Hou H, Dong P, Wang J. Preventive effect of salmon sperm DNA on acute carbon tetrachloride-induced liver injury in mice through Nrf2/ARE and mitochondrial apoptosis pathway. Food Sci Nutr 2023; 11:733-742. [PMID: 36789059 PMCID: PMC9922120 DOI: 10.1002/fsn3.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Liver injury refers to the damage of liver function, which will seriously harm the body's health if it is not prevented and treated in time. Sporadic researches have reported that ingestion of DNA has a hepatoprotective effect, but its effect and mechanism were not clarified. The purpose of this study was to explore the preventive effect and mechanism of salmon sperm DNA on acute liver injury in mice induced by carbon tetrachloride (CCl4). Six-week-old ICR (Institute of Cancer Research) male mice were used to establish a liver injury model by injecting with 4% CCl4, silymarin, and three different concentrations of DNA solutions were given to mice by gavage for 14 days. The histological and pathological changes in the liver were observed. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and the levels of oxidative and antioxidant markers such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) in liver tissue were determined. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA), and hepatic oxidative stress and apoptosis-related markers were determined by western blotting. The results showed that compared with the model group, the DNA test group significantly improved the liver pathological changes and the level of liver function, regulated liver oxidative stress, reduced hepatocyte apoptosis, and decreased the levels of inflammatory factors such as TNF-α and IL-6. Compared with the silymarin group, the high dose of DNA was even more effective in preventing liver injury. In conclusion, salmon sperm DNA has a potential protective effect against acute liver injury induced by CCl4, which is achieved by regulating the Nrf2/ARE (nuclear factor erythroid 2 (NF-E2)-related factor 2/antioxidant responsive element) oxidative stress pathway and mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xinyi Huang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Xu Chu
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Yingying Tian
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Yuhan Xue
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Lei Zhang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Jing Li
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Hu Hou
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Ping Dong
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Jingfeng Wang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| |
Collapse
|
16
|
Hu W, Bi S, Shao J, Qu Y, Zhang L, Li J, Chen S, Ma Y, Cao L. Ginsenoside Rg1 and Re alleviates inflammatory responses and oxidative stress of broiler chicks challenged by lipopolysaccharide. Poult Sci 2023; 102:102536. [PMID: 36764136 PMCID: PMC9929597 DOI: 10.1016/j.psj.2023.102536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Previous study showed that ginsenoside Rg1 (Rg1) and ginsenoside Re (Re) alleviated growth inhibition of broiler chicks with immune stress. The aim of this study was to investigate the effect of Rg1 and Re on inflammatory responses, oxidative stress, and apoptosis in liver of broilers with immune stress induced by lipopolysaccharide (LPS). Forty broiler chicks were randomly divided into 4 groups, each group consisting of 10 chickens. The model group, Rg1 group, and Re group were received continuously interval injection of 250 μg/kg body weight LPS at the age of 12, 14, 33, and 35 days to induce immune stress. Control group was injected with an equivalent amount of sterile saline. Then broilers in Rg1 group and Re group were given 1mg/kg body weight Rg1 and Re intraperitoneally 2 h after the LPS challenge respectively. Blood samples were collected for the detection of hormone levels, inflammatory mediators, and antioxidant parameters. Hepatic tissues were taken for pathological observation. Total RNA was extracted from the liver for real-time quantitative polymerase chain reaction analysis. Our results showed that Rg1 or Re could alleviate histological changes of liver, reduce production of stress-related hormones, inhibit inflammatory responses, and enhance antioxidant capacity in broilers challenged by immune stress. In addition, Rg1 or Re treatment upregulated mRNA expression of antioxidant-related genes and downregulated mRNA expression of inflammation-related factors and apoptosis-related genes in the liver of immune-stressed broilers. The results suggest that the plant extracts containing Rg1 and Re can be used for ameliorating hepatic oxidative stress and inflammation and controlling immune stress in broiler chicks.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Shicheng Bi
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Jianjian Shao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yiwen Qu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Li Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Sihuai Chen
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China.
| |
Collapse
|
17
|
Gao F, Liu H, Han H, Wang X, Qu L, Liu C, Tian X, Hou R. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Front Pharmacol 2022; 13:1058480. [PMID: 36438830 PMCID: PMC9682150 DOI: 10.3389/fphar.2022.1058480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 10/03/2023] Open
Abstract
Berberidis radix polysaccharide (BRP) extracted as capping agents was applied to prepare BRP-selenium nanoparticles (BRP-SeNPs) in the redox reaction system of sodium selenite and ascorbic acid. The stability and characterization of BRP-SeNPs were investigated by physical analysis method. The results revealed that BRP were tightly wrapped on the surface of SeNPs by forming C-O⋯Se bonds or hydrogen bonding interaction (O-H⋯Se). BRP-SeNPs presented irregular, fragmented and smooth surface morphology and polycrystalline nanoring structure, and its particle size was 89.4 nm in the optimal preparation condition. The pharmacologic functions of BRP-SeNPs were explored in vitro and in vivo. The results showed that BRP-SeNPs could heighten the cell viabilities and the enzyme activity of GSH-Px and decrease the content of MDA on H2O2-induced AML-12 cells injury model. In vivo tests, the results displayed that BRP-SeNPs could increase the body weight of mice, promote the enzyme activity like SOD and GSH-Px, decrease the liver organ index and the hepatic function index such as ALT, AST, CYP2E1, reduce the content of MDA, and relieve the proinflammation factors of NO, IL-1β and TNF-α in CCl4-induced mice injury model. Liver tissue histopathological studies corroborated the improvement of BRP-SeNPs on liver of CCl4-induced mice. The results of Western blot showed that BRP-SeNPs could attenuate oxidant stress by the Nrf2/Keap1/MKP1/JNK pathways, and downregulate the proinflammatory factors by TLR4/MAPK pathway. These findings suggested that BRP-SeNPs possess the hepatoprotection and have the potential to be a green liver-protecting and auxiliary liver inflammation drugs.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huimin Liu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hao Han
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lihua Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Ginsenosides Restore Lipid and Redox Homeostasis in Mice with Intrahepatic Cholestasis through SIRT1/AMPK Pathways. Nutrients 2022; 14:nu14193938. [PMID: 36235592 PMCID: PMC9571347 DOI: 10.3390/nu14193938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intrahepatic cholestasis (IC) occurs when the liver and systemic circulation accumulate bile components, which can then lead to lipid metabolism disorders and oxidative damage. Ginsenosides (GS) are pharmacologically active plant products derived from ginseng that possesses lipid-regulation and antioxidation activities. The purpose of this study was to evaluate the possible protective effects of ginsenosides (GS) on lipid homeostasis disorder and oxidative stress in mice with alpha-naphthylisothiocyanate (ANIT)-induced IC and to investigate the underlying mechanisms. A comprehensive strategy via incorporating pharmacodynamics and molecular biology technology was adopted to investigate the therapeutic mechanisms of GS in ANIT-induced mice liver injury. The effects of GS on cholestasis were studied in mice that had been exposed to ANIT-induced cholestasis. The human HepG2 cell line was then used in vitro to investigate the molecular mechanisms by which GS might improve IC. The gene silencing experiment and liver-specific sirtuin-1 (SIRT1) knockout (SIRT1LKO) mice were used to further elucidate the mechanisms. The general physical indicators were assessed, and biological samples were collected for serum biochemical indexes, lipid metabolism, and oxidative stress-related indicators. Quantitative PCR and H&E staining were used for molecular and pathological analysis. The altered expression levels of key pathway proteins (Sirt1, p-AMPK, Nrf2) were validated by Western blotting. By modulating the AMPK protein expression, GS decreased hepatic lipogenesis, and increased fatty acid β-oxidation and lipoprotein lipolysis, thereby improving lipid homeostasis in IC mice. Furthermore, GS reduced ANIT-triggered oxidative damage by enhancing Nrf2 and its downstream target levels. Notably, the protective results of GS were eliminated by SIRT1 shRNA in vitro and SIRT1LKO mice in vivo. GS can restore the balance of the lipid metabolism and redox in the livers of ANIT-induced IC models via the SIRT1/AMPK signaling pathway, thus exerting a protective effect against ANIT-induced cholestatic liver injury.
Collapse
|
19
|
Hepatoprotective Mechanism of Ginsenoside Rg1 against Alcoholic Liver Damage Based on Gut Microbiota and Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5025237. [PMID: 36052161 PMCID: PMC9427247 DOI: 10.1155/2022/5025237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1 decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia, Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1 administration might be a promising strategy for protection of alcohol-induced liver damage.
Collapse
|
20
|
Huangjia Ruangan Granule Inhibits Inflammation in a Rat Model with Liver Fibrosis by Regulating TNF/MAPK and NF-κB Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8105306. [PMID: 35942372 PMCID: PMC9356785 DOI: 10.1155/2022/8105306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
The Huangjia Ruangan granule (HJRG) is a clinically effective Kampo formula, which has a significant effect on liver fibrosis and early liver cirrhosis. However, the mechanism underlying HJRG in treating liver fibrosis remains unclear. In this study, carbon tetrachloride (CCl4) was used to induce liver fibrosis in rats to clarify the effect of HJRG on liver fibrosis and its mechanism. Using network pharmacology, the potential mechanism of HJRG was initially explored, and a variety of analyses were performed to verify this mechanism. In the liver fibrosis model, treatment with HJRG can maintain the liver morphology, lower the levels of AST and ALT in the serum, and ameliorate pathological damage. Histopathological examinations revealed that the liver structure was significantly improved and fibrotic changes were alleviated. It can effectively inhibit collagen deposition and the expression of α-SMA, reduce the levels of the rat serum (HA, LN, PC III, and Col IV), and inhibit the expression of desmin, vimentin, and HYP content in the liver. Analyzing the results of network pharmacology, the oxidative stress, inflammation, and the related pathways (primarily the TNF signaling pathway) were identified as the potential mechanism of HJRG against liver fibrosis. Experiments confirmed that HJRG can significantly increase the content of superoxide dismutase and glutathione and reduce the levels of malondialdehyde and myeloperoxidase in the rat liver; in addition, HJRG significantly inhibited the content of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and reduced the expression of inflammatory regulators (Cox2 and iNOS). Meanwhile, treatment with HJRG inhibited the phosphorylation of NF-κB P65, IκBα, ERK, JNK, and MAPK P38. Moreover, HJRG treatment reversed the increased expression of TNFR1. The Huangjia Ruangan granule can effectively inhibit liver fibrosis through antioxidation, suppressing liver inflammation by regulating the TNF/MAPK and NF-κB signaling pathways, thereby preventing the effect of liver fibrosis.
Collapse
|
21
|
Zhang X, Long F, Li R, Yang Y, Wang T, He Q, Xu M, Wang L, Jiang X. Tanshinone IIA prevents acetaminophen-induced nephrotoxicity through the activation of the Nrf2-Mrp2/4 pathway in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1618-1628. [PMID: 35243748 DOI: 10.1002/tox.23511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
It's known that APAP overdose often leads to hepatotoxicity and nephrotoxicity. In the present study, we investigated the preventative effect of Tan IIA on APAP-induced nephrotoxicity. Mice were orally administrated with Tan IIA (10 or 30 mg/kg/day) for 1 week and subsequently gavaged with 200 mg/kg of APAP. Tan IIA reduced APAP-induced nephrotoxicity as evidenced by histopathological evaluation and serum creatinine levels. Tan IIA pretreatment promoted the efflux of the toxic intermediate metabolite N-acetyl-p-benzoquinone imine (NAPQI), thus reduced its injury to mouse kidney. After Tan IIA pretreatment, a remarkable increase in mRNA and protein expression of Nrf2 and its target genes Mrp2 and Mrp4 was observed in Nrf2+/+ mice kidneys, however, no obvious change of Mrp2 and Mrp4 mRNA and protein expression was detected in Nrf2-/- mice kidneys. HK-2 cells were used for exploring the roles of Tan IIA in the Nrf2-MRPs pathway in vitro. Consistently, Tan IIA up-regulated the Nrf2-MRPs pathway and promoted the nuclear Nrf2 accumulation in HK-2 cells. Collectively, our findings suggested that Tan IIA facilitated the clearance of toxic intermediate metabolite NAPQI from the kidney through upregulation of the Nrf2-MRP2/4 pathway, thereby, performing preventive effects against APAP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiqian Zhang
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Ruina Li
- Department of Pharmacy, Shenzhen Nanshan District People's Hospital, Nanshan District, Shenzhen, China
| | - Yujie Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin He
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu & College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
23
|
Fucoxanthin Attenuates Free Fatty Acid-Induced Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism/Oxidative Stress/Inflammation via the AMPK/Nrf2/TLR4 Signaling Pathway. Mar Drugs 2022; 20:md20040225. [PMID: 35447899 PMCID: PMC9027317 DOI: 10.3390/md20040225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin, a xanthophyll carotenoid abundant in brown algae, is reported to have several biological functions, such as antioxidant, anti-inflammatory, and anti-tumor activities, in mice. We investigated the effects and mechanisms of fucoxanthin in the mixture oleate/palmitate = 2/1(FFA)-induced nonalcoholic fatty liver disease (NAFLD) cell model in this study. The results showed that the content of superoxide dismutase in the FFA group was 9.8 ± 1.0 U/mgprot, while that in the fucoxanthin high-dose (H-Fx) group (2 μg/mL) increased to 22.9 ± 0.6 U/mgprot. The content of interleukin-1β in the FFA group was 89.3 ± 3.6 ng/mL, while that in the H-Fx group was reduced to 53.8 ± 2.8 ng/mL. The above results indicate that fucoxanthin could alleviate the FFA-induced oxidative stress and inflammatory levels in the liver cells. Oil red-O staining revealed visible protrusions and a significant decrease in the number of lipid droplets in the cytoplasm of cells in the fucoxanthin group. These findings on the mechanisms of action suggest that fucoxanthin can repair FFA-induced NAFLD via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and nuclear factor erythroid-2-related factor 2-mediated (Nrf2) signaling pathway, as well as by downregulating the expression of the Toll-like receptor 4-mediated (TLR4) signaling pathway. Fucoxanthin exhibited alleviating effects in the FFA-induced NAFLD model and could be explored as a potential anti-NAFLD substance.
Collapse
|
24
|
Tao W, Yue X, Ye R, Nabi F, Shang Y, Zhu Z, Ahmed BZ, Liu J. Hepatoprotective Effect of the Penthorum Chinense Pursh Extract against the CCl 4-Induced Acute Liver Injury via NF-κB and p38-MAPK PATHWAYS in Dogs. Animals (Basel) 2022; 12:ani12050569. [PMID: 35268138 PMCID: PMC8909057 DOI: 10.3390/ani12050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI), manifested by acute hepatocellular damages and necrosis, is a life-threatening clinical syndrome and Penthorum Chinense Pursh (PCP) is a well-known folk medicine practiced for liver-related diseases. This study aimed to investigate the ameliorative effects of PCP extract (PCPE) on carbon tetrachloride (CCl4) induced ALI in dogs via mitogen-activated protein kinase (MAPK) and Nuclear factor κB (NF-κB) signaling pathway. Healthy dogs were induced by CCl4 and treated with different dosage regimes of PCPE for 7 days. CCl4 produced acute liver injury and induced both oxidative stress and an inflammatory response in dogs. The PCPE significantly ameliorated and improved vacuolar inflammatory lesions in liver tissues during ALI, enhanced activity of superoxide dismutase, and restored glutathione peroxidase, further significantly reducing the indices of malondialdehyde and nitric oxide in serum. Inflammatory factors (IL-1β, IL-6, and TNF-α) were declined and anti-inflammatory factors (IL-10) were increased by the application of PCPE. PCPE treatment, down-regulated the MEKK4, MKK3, p38MAPK, MSK1, and NF-κB, and upregulated the IkB mRNA levels (p < 0.01) in ALI affected dogs. In conclusion, PCPE repaired acute liver injury by improving antioxidant enzymes and by reducing oxidation products. Furthermore, the PCPE inhibited the MAPK/NF-κB signaling pathway, which resulted in anti-inflammatory and antioxidant effects on ALI-induced dogs. In the future, PCPE could be a useful ethnomedicine in veterinary clinical practices for the treatment of liver injuries or failures.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Xin Yue
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Ruiling Ye
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Yangfei Shang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Zhaorong Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Bhutto Zohaib Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal 90150, Pakistan;
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
25
|
Zhang Y, Xu S, Liu M, Xu X, Han T, Jia Z, Li X, Lin R. Pharmacokinetic/Pharmacodynamic Study of Salt-Processed Product of Cuscutae Semen with Hepatoprotective Effects. Curr Drug Metab 2022; 23:964-972. [PMID: 36411565 DOI: 10.2174/1389200224666221118112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Salt-processed product of cuscutae semen (SCS), which is documented in Chinese pharmacopoeia (2020 edition), is one of the processed products of cuscustae semen. SCS possesses hepatoprotective effects. However, Pharmacokinetic/Pharmacodynamic (PK-PD) study of SCS with intervening acute liver injury (ALI) has not been reported yet. Effective constituents are still not well addressed. OBJECTIVE This study was performed to study PK-PD properties with the purpose of linking SCS hepatoprotective effects to key therapeutic outlines to guide therapeutic use in clinical settings. METHODS Rats were orally administered SCS after the acute liver injury model was established. Plasma biochemical analysis, antioxidative analysis, and liver histopathology were measured to evaluate the hepatoprotective effects of SCS. Blood samples were collected at different time points (0 h, 0.083 h, 0.25 h, 0.5 h, 1 h, 1.5 h, 2 h, 3 h, 4 h, 8 h, 12 h, 24 h) for PK/PD study after SCS administration. Contents of chlorogenic acid, hyperoside and astragalin were estimated by UHPLC-ESI-MS. The relationship between concentrations of chlorogenic acid, hyperoside, and astragalin and hepatoprotective effects was assessed by PK-PD modeling. RESULTS The results showed that SCS ameliorated liver repair and decreased the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) markedly. Hepatic oxidative stress was inhibited by SCS, as evidenced by a decrease in malondialdehyde (MDA) and an increase in glutathione (GSH) and superoxide dismutase (SOD) in the liver. PK-PD correlation analysis indicated that concentrations of chlorogenic acid, hyperoside, and astragalin were negatively correlated with level of AST and ALT. CONCLUSION The encouraging finding indicates that SCS has beneficial effects on CCl4-induced liver damage. Chlorogenic acid, hyperoside, and astragalin are three effective constituents to exert hepatoprotective effects while astragalin may have maximum pharmacological activity. PK-PD study reveals the positive relationship between drug concentration and action intensity of SCS against liver injury. This research provides a robust foundation for future studies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuya Xu
- College of Pharmacy Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Mengnan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinfang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ting Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhe Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiangri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruichao Lin
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
26
|
Khodir S, Alafify A, Omar E, Al-Gholam M. Protective Potential of Ginseng and/or Coenzyme Q10 on Doxorubicin-induced Testicular and Hepatic Toxicity in Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Although doxorubicin (DOX) is a successful cancer chemotherapeutic, side effects limit the clinical utility of DOX-based therapy, including male infertility and hepatotoxicity.
Objective: To evaluate the testicular and hepatoprotective effect of ginseng and/or coenzyme Q10 (CoQ10) in rats exposed to DOX and the possible underlying mechanisms.
Materials and Methods: Fifty adult male albino rats were divided into (10/group), control, DOX group, DOX/Gin group, DOX/CoQ10 group and DOX/Gin+CoQ10 group. Serum testosterone, serum liver enzymes, fasting serum cholesterol and triglyceride (TG), tissue malondialdehyde (MDA), tissue superoxide dismutase (SOD), serum tumor necrosis factor-alpha (TNF-α), serum interleukin 6, serum interleukin 10, nuclear factor E2‐related factor 2 (Nrf2) gene expression in liver and testis and organ indices were measured. Histopathological and immunohistochemical assessments of apoptotic marker kaspase3 in testis and liver were also performed.
Results DOX-induced toxicity is associated with a significant decrease in serum testosterone, testis and liver index values, testicular and hepatic SOD, testicular and hepatic Nrf2 gene expression and serum interleukin 10. However, there was a significant increase in serum liver enzymes, serum cholesterol and TG, testicular and hepatic MDA, serum TNF-α and serum interleukin 6 when compared with the control group. The combination of ginseng and CoQ10 resulted in significant improvement of DOX-induced changes when compared with other treated groups.
Conclusion: Ginseng and CoQ10 have valuable therapeutic effects on DOX-induced testicular and hepatic toxicity via up-regulation of Nrf2 gene expression, inhibition of apoptosis, anti-oxidant, anti-inflammatory and hypolipidemic effects.
Collapse
|
27
|
He L, Guo C, Peng C, Li Y. Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. Eur J Pharmacol 2021; 910:174447. [PMID: 34461126 DOI: 10.1016/j.ejphar.2021.174447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Cholestasis is a common manifestation of obstruction of bile flow in various liver diseases. If the bile acid accumulation is not treated in time, it will further lead to hepatocyte damage, liver fibrosis and ultimately to cirrhosis, which seriously affects human life. The pathogenesis of cholestatic liver injury is very complicated, mainly including oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor responsible for upregulating expression of various genes with cytoprotective functions. Nrf2 activation has been proved to inhibit oxidative stress and inflammatory reaction, modulate bile acid homeostasis, and alleviate fibrosis during cholestasis. Therefore, Nrf2 emerges as a potential therapeutic target for cholestatic liver injury. In recent years, natural products with various biological activities including anti-inflammatory, anti-oxidant, anti-tumor and anti-fibrotic effects have received growing attention for being hepatoprotective agents. Natural products like asiatic acid, diosmin, rutin, and so forth have shown significant potential in activating Nrf2 pathway which can lead to attenuate cholestatic liver injury. Therefore, this paper emphasizes the effect of Nrf2 signaling pathway on alleviating cholestasis, and summarizes recent evidence about natural Nrf2 activators with hepatoprotective effect in various models of cholestatic liver injury, thus providing theoretical reference for the development of anti-cholestatic drug.
Collapse
Affiliation(s)
- Linfeng He
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Chaocheng Guo
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Cheng Peng
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Yunxia Li
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.
| |
Collapse
|
28
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
El-Aarag B, Attia A, Zahran M, Younes A, Tousson E. New phthalimide analog ameliorates CCl 4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis. Saudi J Biol Sci 2021; 28:6384-6395. [PMID: 34764756 PMCID: PMC8568827 DOI: 10.1016/j.sjbs.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The present study aimed, for the first time, to examine the biochemical effects of new phthalimide analog, 2-[2-(2-Bromo-1-ethyl-1H-indol-3-yl) ethyl]-1H-isoindole-1,3(2H)-dione, compared to thalidomide drug against liver injury induced in mice. Carbon tetrachloride was intraperitoneal injected in mice for 6 consecutive weeks at a dose of 0.4 mL/kg twice a week for liver injury induction. Histopathological examination, levels of malondialdehyde, nitric oxide, and antioxidant enzymes were determined. Additionally, the protein levels of vascular endothelial growth factor, proliferating cell nuclear protein, tumor necrosis factor-alfa, nuclear factor kappa B-p65, B-cell lymphoma-2, and cysteine-aspartic acid protease-3 were determined. Results revealed that the treatment with phthalimide analog improved the detected liver damage and presented an obvious antioxidant activity through decreasing malondialdehyde and nitric oxide levels accompanied by increasing the levels of the antioxidant enzymes. Furthermore, the analog exhibited an effective inhibitory activity towards the studied protein expressions in liver tissues. Moreover, the B-cell lymphoma-2 protein level was increased while the cysteine-aspartic acid protease-3 level was suppressed after the treatment with phthalimide analog. Together, these results propose that phthalimide analog can ameliorate carbon tetrachloride-induced liver injury in mice through its potent inhibition mediating effect in oxidative stress, inflammation, and apoptosis mechanisms.
Collapse
Affiliation(s)
- Bishoy El-Aarag
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Alshaimaa Attia
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Magdy Zahran
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Ali Younes
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
| |
Collapse
|
30
|
Zhang Y, Xu SY, Jia Z, Han T, Liu MN, Jia TY, Qu WJ, Xu X, Li XR. UPLC-MS/MS Determination of Chlorogenic Acid, Hyperoside and Astragalin in Plasma and its Pharmacokinetic Application in Liver Injury Rats. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200727000551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cuscutae Semen (CS) is reported to show a hepatoprotective effect. Chlorogenic
acid, hyperoside and astragalin are three major biologically active components from CS.
Objective:
A sensitive method based on ultra-high performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) was developed and validated to quantify the three components in rat
plasma and was successfully used to study pharmacokinetics in liver injury rats.
Methods:
Plasma samples were prepared with protein precipitation by acetonitrile. Chromatographic separation
was achieved on ACQUITY-XBridge BEH C18 column with gradient elution using the mobile phase
containing 0.05% formic acid in water (A) and acetonitrile (B). The three components were quantified using
Electrospray Ionization (ESI) source in the negative multiple Reaction Monitoring (MRM) mode.
Results:
Calibration curves of each analyte showed good linearity with correlation coefficients over
0.99. Accuracies (RE%) and precisions (RSD%) were within 15%. The method was stable. Recovery
of the target compounds in plasma samples ranged from 87.00% to 102.29%. No matrix effect was found
to influence the quantitative method.
Conclusion:
The UPLC-MS/MS method met the acceptance criteria and was successfully applied to
the simultaneous determination of chlorogenic acid, hyperoside and astragalin in rat plasma for the first
time. It is suitable for pharmacokinetic application in liver injury rats. It provides the foundation for
further development and utilization of the hepatoprotective effect of cuscutae semen.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Shu-ya Xu
- College of Pharmacy Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Zhe Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Ting Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Meng-nan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Tian-ying Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Wen-jia Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Xinfang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| | - Xiang-ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Garden, Liangxiang, Fangshan District, Beijing102488, China
| |
Collapse
|
31
|
Liu W, Liu Y. Roles of Multidrug Resistance Protein 4 in Microbial Infections and Inflammatory Diseases. MICROBIAL DRUG RESISTANCE (LARCHMONT, N.Y.) 2021; 27:1535-1545. [PMID: 33999661 DOI: 10.1089/mdr.2020.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Numerous studies have reported the emergence of antimicrobial resistance during the treatment of common infections. Multidrug resistance (MDR) leads to failure of antimicrobial treatment, prolonged illness, and increased morbidity and mortality. Overexpression of multidrug resistance proteins (MRPs) as drug efflux pumps are one of the main contributions of MDR, especially multidrug resistance protein 4 (MRP4/ABCC4) in the development of antimicrobial resistance. The molecular mechanism of antimicrobial resistance is still under investigation. Various intervention strategies have been developed for overcoming MDR, but the effect is limited. Suppression of MRP4 may be an attractive therapeutic approach for addressing drug resistance. However, there are few reports on the involvement of MRP4 in antimicrobial resistance and inflammatory diseases. In this review, we introduced the function and regulation of MRP4, and then summarized the roles of MRP4 in microbial infections and inflammatory diseases as well as polymorphisms in the gene encoding this transporter. Further studies should be conducted on drug therapy targeting MRP4 to improve the efficacy of antimicrobial therapy. This review can provide useful information on MRP4 for overcoming antimicrobial resistance and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
33
|
Mo C, Xie S, Zeng T, Lai Y, Huang S, Zhou C, Yan W, Huang S, Gao L, Lv Z. Ginsenoside-Rg1 acts as an IDO1 inhibitor, protects against liver fibrosis via alleviating IDO1-mediated the inhibition of DCs maturation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153524. [PMID: 33667840 DOI: 10.1016/j.phymed.2021.153524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1) has been reported as a hallmark of hepatic fibrosis. Ginseng Rg1(G-Rg1) is a characterized bioactive component isolated from a traditional Chinese medicinal herb Panax ginseng C. A. Meyer (Ginseng) that used in China widely. However, the anti-hepatic fibrosis property of G-Rg1 and the underlying mechanisms of action are poorly reported. PURPOSE Here, we researched the effect of G-Rg1 on experimental liver fibrosis in vivo and in vitro. STUDY DESIGN AND METHODS We applied a CCL4-induced liver fibrosis in mice (wild-type and those overexpressing IDO1 by in vivo AAV9 vector) and HSC-T6 cells to detect the anti-hepatic fibrosis effect of G-Rg1 in vivo and in vitro. RESULTS We found that G-Rg1 reduced serum levels of AST and ALT markedly. Histologic examination indicated that G-Rg1 dramatically improved the extent of liver fibrosis and suppressed the hepatic levels of fibrotic marker α-SMA in vivo and in vitro. The proliferation of HSC-T6 was significantly inhibited by G-Rg1 in vitro. Both TUNEL staining and flow cytometry demonstrated that G-Rg1 attenuated the levels of hepatocyte apoptosis in fibrotic mice. Additionally, G-Rg1 up-regulated the maturation of hepatic DCs via reducing the expression level of hepatic IDO1, which played an inverse role in the maturation of DCs. Furthermore, oral administration of G-Rg1 ameliorated IDO1 overexpression-induced worsen liver fibrosis as well as IDO1 overexpression-mediated more apparent inhibition of maturation of DCs. CONCLUSION These results suggest that G-Rg1, which exerts its antifibrotic properties via alleviating IDO1-mediated the inhibition of DCs maturation, may be a potential therapeutic drug in treating liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
34
|
Ishida K, Kaji K, Sato S, Ogawa H, Takagi H, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Sulforaphane ameliorates ethanol plus carbon tetrachloride-induced liver fibrosis in mice through the Nrf2-mediated antioxidant response and acetaldehyde metabolization with inhibition of the LPS/TLR4 signaling pathway. J Nutr Biochem 2021; 89:108573. [PMID: 33388347 DOI: 10.1016/j.jnutbio.2020.108573] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD)-related fibrosis results from a variety of mechanisms including the accumulation of acetaldehyde, reactive oxygen species, and hepatic overload of endogenous lipopolysaccharide (LPS). Alcohol cessation is the therapeutic mainstay for patients with all stages of ALD, whereas pharmacological strategies for liver fibrosis have not been established. Sulforaphane, a phytochemical found in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) and exerts anticancer, antidiabetic, and antimicrobial effects; however, few studies investigated its efficacy in the development of ALD-related fibrosis. Herein, we investigated the effect of sulforaphane on acetaldehyde metabolism and liver fibrosis in HepaRG and LX-2 cells, human hepatoma and hepatic stellate cell lines, respectively, as well as in a mouse model of alcoholic liver fibrosis induced by ethanol plus carbon tetrachloride (EtOH/CCl4). Sulforaphane treatment induced the activity of acetaldehyde-metabolizing mitochondrial aldehyde dehydrogenase in HepaRG cells and suppressed the acetaldehyde-induced proliferation and profibrogenic activity in LX-2 cells with upregulation of Nrf2-regulated antioxidant genes, including HMOX1, NQO1, and GSTM3. Moreover, sulforaphane attenuated the LPS/toll-like receptor 4-mediated sensitization to transforming growth factor-β with downregulation of NADPH oxidase 1 (NOX1) and NOX4. In EtOH/CCl4-treated mice, oral sulforaphane administration augmented hepatic acetaldehyde metabolism. Additionally, sulforaphane significantly inhibited Kupffer cell infiltration and fibrosis, decreased fat accumulation and lipid peroxidation, and induced Nrf2-regulated antioxidant response genes in EtOH/CCl4-treated mice. Furthermore, sulforaphane treatment blunted hepatic exposure of gut-derived LPS and suppressed hepatic toll-like receptor 4 signaling pathway. Taken together, these results suggest sulforaphane as a novel therapeutic strategy in ALD-related liver fibrosis.
Collapse
Affiliation(s)
- Koji Ishida
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan.
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Ogawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hirotetsu Takagi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
35
|
Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The Effects of Ginsenosides on the Nrf2 Signaling Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:307-322. [PMID: 34981486 DOI: 10.1007/978-3-030-73234-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a major signaling pathway for the maintenance of homeostasis and redox balance. This pathway also plays a significant role in proteostasis, xenobiotic/drug metabolism, apoptosis, and lipid and carbohydrate metabolism. Conversely, the Nrf2 signaling pathway is impaired in several pathological conditions including cancer. Although various drugs have been developed to target the Nrf2 pathway, plant-derived chemicals than can potentially impact this pathway and are particularly attractive due to their minimal side effects. Ginsenosides are active components of ginseng and have been shown to exert pharmacological effects including antioxidant, anti-inflammatory, antitumor, antidiabetes, neuroprotective, and hepatoprotective activities. In this article, we have reviewed the effects of ginsenosides on Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Yarmohammadi F, Rezaee R, Haye AW, Karimi G. Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review. Pharmacol Res 2020; 164:105383. [PMID: 33348022 DOI: 10.1016/j.phrs.2020.105383] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Haye
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
38
|
Zhang X, Kuang G, Wan J, Jiang R, Ma L, Gong X, Liu X. Salidroside protects mice against CCl4-induced acute liver injury via down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 2020; 85:106662. [PMID: 32544869 DOI: 10.1016/j.intimp.2020.106662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Salidroside (Sal), a natural phenolic compound isolated from Rhodiola sachalinensis, has been utilized as anti-inflammatory and antioxidant for centuries, however, its effects against liver injury and the underlying mechanisms are unclear. This study was designed to evaluate the protective effects and underlying mechanisms of Sal on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice. C57BL/6 mice were pretreated with Sal before CCl4 injection, the serum and liver tissue were collected to evaluate liver damage and molecular indices. The results showed that Sal pretreatment dose-dependently attenuated CCl4-induced acute liver injury, as indicated by lowering the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and inhibiting hepatic pathological damage and apoptosis. In addition, Sal alleviated CCl4-primed oxidative stress and inflammatory response by restoring hepatic glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and inhibiting cytokines. Finally, Sal also down-regulated the expression of cytochrome P4502E1 (CYP2E1), and Nod-like receptor protein 3 (NLRP3) inflammasome activation in the liver of mice by CCl4. Our study demonstrates that Sal exerts its hepatoprotective effects on ALI through its antioxidant and anti-inflammatory effects, which might be mediated by down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- The Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Ma
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China.
| | - Xing Liu
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| |
Collapse
|
39
|
Qu H, Liu S, Cheng C, Zhao H, Gao X, Wang Z, Yi J. Hepatoprotection of pine nut polysaccharide via NRF2/ARE/MKP1/JNK signaling pathways against carbon tetrachloride-induced liver injury in mice. Food Chem Toxicol 2020; 142:111490. [PMID: 32540477 DOI: 10.1016/j.fct.2020.111490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Previously, we obtained a purified polysaccharide (PNP40c-1) from Pinus koraiensis pine nut and reported its protective effect on carbon tetrachloride (CCl4)-induced liver injury in vitro. The object of this study is to investigate its hepatoprotective activity in vivo and elucidate the mechanism underlying the hepatoprotection. PNP40c-1 effectively prevented the accumulation of serum liver injury biomarkers including alanine aminotransferase, aspartate aminotransferase, alkaline phpsphatase and total bilirubin stimulated by CCl4. The pathological changes in PNP40c-1-treated mice livers were also markedly ameliorated. Results showed that PNP40c-1 suppressed the production of reactive oxygen species (ROS) and lipid peroxidation, upregulated Nrf2/ARE pathway and enhanced the antioxidant capacity of hepatocytes. Furthermore, the reaction between Nrf2 and ARE promoted the generation of Mkp1, which inhibited the activation of JNK induced by CCl4, and suppressed hepatocytes apoptosis by regulating the protein expression of Bax, cleaved-Caspase-3 and Bcl2, exerting hepatoprotective activity. Taken together, upregulation of Nrf2/ARE pathway and suppression of JNK activation via Nrf2/ARE/Mkp1/JNK signaling pathways are the main mechanisms underlying the hepatoprotective effect of PNP40c-1 against CCl4-induced mice liver injury. These results indicated that PNP40c-1 has potential to serve as a hepatoprotective agent against chemical induced hepatotoxicity.
Collapse
Affiliation(s)
- Hang Qu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Cuilin Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xin Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
40
|
Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-Carbinol Derivative DIM Mitigates Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Inflammatory Response, Apoptosis and Regulating Oxidative Stress. Int J Mol Sci 2020; 21:E2048. [PMID: 32192079 PMCID: PMC7139345 DOI: 10.3390/ijms21062048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a metabolic product of indole-3-carbinol extracted from cruciferous vegetables exhibits anti-inflammatory and anti-cancer properties. Earlier, the product has been demonstrated to possess anti-fibrotic properties; however, its protective effects on liver injury have not been clearly elucidated. In this study, we postulated the effects and molecular mechanisms of action of DIM on carbon tetrachloride (CCl4)-induced liver injury in mice. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 ml/kg) into mice. DIM was injected via subcutaneous route for three days at various doses (2.5, 5 and 10 mg/kg) before CCl4 injection. Mice were sacrificed and serum was collected for quantification of serum transaminases. The liver was collected and weighed. Treatment with DIM significantly reduced serum transaminases levels (AST and ALT), tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by DIM treatment by the reduction in the levels of cleaved caspase-3 and Bcl2 associated X protein (Bax). DIM treated mice significantly restored Cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in CCl4 treated mice. In addition, DIM downregulated overexpression of hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4 mediated apoptosis. Our results suggest that the protective effects of DIM against CCl4- induced liver injury are due to the inhibition of ROS, reduction of pro-inflammatory mediators and apoptosis.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Lokendra Chand
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Hyun Beak Shin
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Yeon Jun Jeong
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| |
Collapse
|
41
|
Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: A review of scientific findings and call for further research. Pharmacol Res 2020; 152:104630. [DOI: 10.1016/j.phrs.2020.104630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
|
42
|
Guo F, Zhuang X, Han M, Lin W. Polysaccharides from Enteromorpha prolifera protect against carbon tetrachloride-induced acute liver injury in mice via activation of Nrf2/HO-1 signaling, and suppression of oxidative stress, inflammation and apoptosis. Food Funct 2020; 11:4485-4498. [DOI: 10.1039/d0fo00575d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EPP protected against hepatic injury induced by CCl4-derived reactive intermediates through the suppression of hepatic oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Fuchuan Guo
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Xinyun Zhuang
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Mengyuan Han
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Wenting Lin
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| |
Collapse
|
43
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
44
|
CCl 4-Induced Liver Injury Was Ameliorated by Qi-Ge Decoction through the Antioxidant Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5941263. [PMID: 31976000 PMCID: PMC6955120 DOI: 10.1155/2019/5941263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Qi-Ge decoction (QGD), which is derived from the Huangqi Gegen decoction, contains three traditional Chinese herbs: Astragalus membranaceus (Huangqi), Pueraria lobata (Gegen), and Citri Reticulatae Blanco Pericarpium (Chenpi). Gastric mucosal damage caused by ethanol was prevented and alleviated by QGD. However, the role of QGD in protecting the liver from toxins has not been reported. High-performance liquid chromatography with diode-array detection was used to qualitatively analyze QGD. Positive control (silymarin 100 mg/kg/day), QGD (20, 10, or 5 g/kg/day), and Nrf2 inhibitor brusatol (0.4 mg/kg/2 d) were administered to rats for 7 days, and then, liver injury was induced by injecting 2 mL/kg 25% CCl4. After 24 h, blood and liver were collected for analysis and evaluation. QGD was found to contain 12 main components including calycosin, puerarin, and hesperidin. QGD treatment significantly reduced liver damage and decreased serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase activities. QGD increased superoxide dismutase and catalase activities, and glutathione levels, but decreased malondialdehyde levels in livers from CCl4-treated rats. Compared to rats treated with CCl4 alone, after QGD administration, mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 were increased, while those of Kelch-like ECH-related protein 1 (Keap1) and cytochrome P450 (CYP)2E1 were decreased. However, these improvements in QGD were reversed by brusatol. In conclusion, QGD can achieve its hepatoprotective effect through an antioxidant mechanism by activating the Nrf2 pathway.
Collapse
|
45
|
Li Q, Yang H, Wang W, Li N, Zou X, Li Y, Fan G, Zhang Y, Kuang T. Brassica rapa Polysaccharides Ameliorate CCl 4 -Induced Acute Liver Injury in Mice through Inhibiting Inflammatory Apoptotic Response and Oxidative Stress. Chem Biodivers 2019; 17:e1900534. [PMID: 31730730 DOI: 10.1002/cbdv.201900534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
Abstract
Brassica rapa L., also called NIUMA, is used empirically in Tibetan medicine for its antioxidant, anti-inflammatory and antiradiation activities. This study explored the hepatoprotective effects of B. rapa polysaccharides (BRPs) on acute liver injury induced by carbon tetrachloride (CCl4 ) in mice and the underlying mechanisms. Mice were treated with CCl4 after the oral administration of BRPs (55, 110 and 220 mg/kg) or bifendate (100 mg/kg) for 7 days. Blood and liver samples of mice were collected for analysis after 24 h. The ALP, ALT and AST levels and the biological activities of SOD, MDA and GSH-Px were measured. Histopathological changes in the liver were determined through hematoxylin and eosin staining. Moreover, TNF-α, IL-1β and IL-6 expression levels were detected by commercial reagent kits. Finally, Western blot analysis was used to check the relative expression levels of caspase-3, p-JAK2 and p-STAT3. The BRP pre-treatment significantly decreased the enzymatic activities of ALT, ALP and AST in the serum, markedly increased the activities of SOD and GSH-Px in the liver and reduced the MDA concentration in the liver. BRPs alleviated hepatocyte injury and markedly inhibited the expression of TNF-α, IL-1β and IL-6, also downregulating the CCl4 -induced hepatic tissue expression of caspase-3. Furthermore, BRPs inhibited the JAK2/STAT3 signaling pathway in a dose-dependent manner in the liver. This study demonstrated that BRPs exert hepatoprotective effect against the CCl4 -induced liver injury via modulating the apoptotic and inflammatory responses and downregulating the JAK2/STAT3 signaling pathway. Therefore, B. rapa could be considered a hepatoprotective medicine.
Collapse
Affiliation(s)
- Qiuyue Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Hailing Yang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Wenxiang Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuemei Zou
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yangxin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| |
Collapse
|
46
|
Choi SY, Park JS, Shon CH, Lee CY, Ryu JM, Son DJ, Hwang BY, Yoo HS, Cho YC, Lee J, Kim JW, Roh YS. Fermented Korean Red Ginseng Extract Enriched in Rd and Rg3 Protects against Non-Alcoholic Fatty Liver Disease through Regulation of mTORC1. Nutrients 2019; 11:nu11122963. [PMID: 31817227 PMCID: PMC6949916 DOI: 10.3390/nu11122963] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
The fermentation of Korean red ginseng (RG) increases the bioavailability and efficacy of RG, which has a protective role in various diseases. However, the ginsenoside-specific molecular mechanism of the fermented RG with Cordyceps militaris (CRG) has not been elucidated in non-alcoholic fatty liver disease (NAFLD). A mouse model of NAFLD was induced by a fast-food diet (FFD) and treated with CRG (100 or 300 mg/kg) for the last 8 weeks. CRG-mediated signaling was assessed in the liver cells isolated from mice. CRG administration significantly reduced the FFD-induced steatosis, liver injury, and inflammation, indicating that CRG confers protective effects against NAFLD. Of note, an extract of CRG contains a significantly increased amount of ginsenosides (Rd and Rg3) after bioconversion compared with that of conventional RG. Moreover, in vitro treatment with Rd or Rg3 produced anti-steatotic effects in primary hepatocytes. Mechanistically, CRG protected palmitate-induced activation of mTORC1 and subsequent inhibition of mitophagy and PPARα signaling. Similar to that noted in hepatocytes, CRG exerted anti-inflammatory activity through mTORC1 inhibition-mediated M2 polarization. In conclusion, CRG inhibits lipid-mediated pathologic activation of mTORC1 in hepatocytes and macrophages, which in turn prevents NAFLD development. Thus, the administration of CRG may be an alternative for the prevention of NAFLD.
Collapse
Affiliation(s)
- Su-Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Chang-Ho Shon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Chae-Young Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Jae-Myun Ryu
- NOVA K-MED Co., Ltd., 1646 Yuseong-daero, HNU Innobiz Park Suite 403, Yuseong-gu, Daejeon 34054, Korea;
| | - Dong-Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Bang-Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, CA 92093, USA;
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Deokjin-gu, Jeonju-si 54596, Korea
- Correspondence: (J.-W.K.); (Y.-S.R.); Tel.: +82-63-850-0953 (J.-W.K.); +82-43-261-2819 (Y.-S.R.)
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
- Correspondence: (J.-W.K.); (Y.-S.R.); Tel.: +82-63-850-0953 (J.-W.K.); +82-43-261-2819 (Y.-S.R.)
| |
Collapse
|
47
|
Carota G, Raffaele M, Sorrenti V, Salerno L, Pittalà V, Intagliata S. Ginseng and heme oxygenase-1: The link between an old herb and a new protective system. Fitoterapia 2019; 139:104370. [PMID: 31629872 DOI: 10.1016/j.fitote.2019.104370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
Abstract
Ginseng is an ancient herb, belonging to Asian traditional medicine, that has been considered as a restorative to enhance vitality for centuries. It has been demonstrated that the antioxidant action of ginseng may be mediated through activation of different cellular signaling pathways involving the heme oxygenase (HO) system. Several compounds derived from ginseng have been studied for their potential role in brain, heart and liver protection, and the Nrf2 pathway seems to be the most affected by these natural molecules to exert this effect. Ginseng is also popularly used in cancer patients therapy for the demonstrated capability to defend tissues from chemotherapy-induced damage. Reported results suggest that the effect of ginseng is primarily associated with ROS scavenging, mainly exerted through the activation of Nrf2 pathway, and the consequent induction of HO-1 levels. This review aims to discuss the connection between the antioxidant properties of ginseng and the activation of the HO system, as well as to outline novel therapeutic applications of this medicinal plant to human health.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
48
|
Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application. Molecules 2019; 24:molecules24183274. [PMID: 31505740 PMCID: PMC6767116 DOI: 10.3390/molecules24183274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Pien-Tze-Huang (PTH) is a famous and commonly used traditional Chinese medicine formula in China. It was first formulated by a royal physician of the Ming Dynasty (around 1555 AD). Recently, PTH has attracted attention worldwide due to its beneficial effects against various diseases, especially cancer. This paper systematically reviewed the up-to-date information on its chemical composition, pharmacology, and clinical application. A range of chemical compounds, mainly ginsenosides and bile acids, have been identified and quantified from PTH. Pharmacological studies indicated that PTH has beneficial effects against various cancers, hepatopathy, and ischemic stroke. Furthermore, PTH has been used clinically to treat various diseases in China, such as colorectal cancer, liver cancer, and hepatitis. In summary, PTH is a potential agent with extensive therapeutic effects for the treatment of various diseases. However, the lack of information on the side effects and toxicity of PTH is a non-negligible issue, which needs to be seriously studied in the future.
Collapse
|
49
|
Wei G, Yang F, Wei F, Zhang L, Gao Y, Qian J, Chen Z, Jia Z, Wang Y, Su H, Dong L, Xu J, Chen S. Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng. J Ginseng Res 2019; 44:757-769. [PMID: 33192118 PMCID: PMC7655499 DOI: 10.1016/j.jgr.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng. Conclusions These results provided the visual and quantitative profiles of and confirmed the pivotal transcripts of CYPs and UGTs regulating the saponin distribution in the root tissues of P. quinquefolius and P. notoginseng.
Collapse
Key Words
- AACT, Acetoacetyl-CoA acyltransferase
- DS, Dammarenediol-II synthase
- DXPR, 1-deoxy-o-xylulose 5-phosphate reductoisomerase
- DXPS, 1-deoxy-o-xylulose 5-phosphate synthase
- FDR, False discovery rate
- FPP, Farnesyl diphosphate
- FPS, Farnesyl pyrophosphate synthase
- GDPS, Gerenyl diphosphatesynthase
- GO, Gene Ontology
- HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphatesynthase
- HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase
- HPLC-UV, High-performance liquid chromatography-ultraviolet detection
- IPP, Isoprenyl diphosphate
- IPPI, Isopentenyl pyrophosphate isomerase
- ISPD, 2-C-methylerythritol 4-phosphatecytidyl transferase
- ISPE, 4-(cytidine-5′-diphospho)-2-C-methylerythritol kinase
- ISPH, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
- MALDI-MS, Matrix-assisted laser desorption/ionization–mass spectrometry
- MECPS, 2-C-methylerythritol-2,4-cyclophosphate synthase
- MEP, 2-C-methyl-D-erythritol-4-phosphate
- MVA, Mevalonate acid
- MVD, Mevalonate diphosphate decarboxylase
- MVK, Mevalonate kinase
- Metabolome
- NCBI Nr, NCBI Non-redundant protein
- OPLS-DA, Orthogonal partial least squares-discriminant analysis
- ORF, Open read frame
- P450, P450-monooxygenase
- PMK, Phosphomevalonate kinase
- Panax plants
- Root tissues
- SE, Squalene epoxidase
- SS, Squalene synthase
- Saponin distribution
- Transcriptome
- UGTs, UDP-glycosyltransferases
- UPLC-MS, Ultrahigh-performance liquid chromatography quadrupole time of flight-mass spectrometry
- WGCNA, Weighted gene coexpression network analysis
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Lianjuan Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Jun Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Zhengwei Jia
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - He Su
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Jeong Y, Ku S, You HJ, Ji GE. A stereo-selective growth inhibition profile of ginsenoside Rh2 on human colon cancer cells. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1607562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yunju Jeong
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Seockmo Ku
- Research Center, BIFIDO Co., Ltd., Hongcheon, Korea
| | - Hyun Ju You
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|