1
|
Al Saihati HA, Badr OA, Dessouky AA, Mostafa O, Samir Farid A, Aborayah NH, Abdullah Aljasir M, Baioumy B, Mahmoud Taha N, El-Sherbiny M, Hamed Al-Serwi R, Ramadan MM, Salim RF, Shaheen D, E M Ali F, Ebrahim N. Exploring the cytoprotective role of mesenchymal stem Cell-Derived exosomes in chronic liver Fibrosis: Insights into the Nrf2/Keap1/p62 signaling pathway. Int Immunopharmacol 2024; 141:112934. [PMID: 39178516 DOI: 10.1016/j.intimp.2024.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.
Collapse
Affiliation(s)
- Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia.
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Egypt.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Nashwa H Aborayah
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Egypt, Department of Pharmacology, Mutah University, Mutah 61710, Jordan.
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Egypt.
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah City, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha Universit, Egypt.
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Stem Cell Unit, Egypt.
| |
Collapse
|
2
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Yang F, Zhang Q, Wang X, Hu Y, Chen S. Forsythiaside A ameliorates bleomycin-induced pulmonary fibrosis by inhibiting oxidative stress and apoptosis. Immun Inflamm Dis 2024; 12:e70006. [PMID: 39172055 PMCID: PMC11340632 DOI: 10.1002/iid3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common clinically critical disease characterized by high morbidity and high mortality. Forsythiaside A (FA) is a phenylethanol glycoside component in Forsythia suspensa, which has anti-inflammatory, antioxidant, and antiviral activities. However, the effects of FA on bleomycin (BLM)-induced PF are unclear. PURPOSE The present study explored the role of FA in the amelioration of oxidative stress and apoptosis in BLM-induced PF as well as the possible underlying mechanisms, in vivo and in vitro. METHODS Network pharmacology was used to collect the effects of FA on BLM-induced PF. Subsequently, further observation of the effects of FA on mice with PF by pulmonary pathological changes, transmission electron microscopy, real-time polymerase chain reaction, Western blot analysis, immunofluorescence, and immunohistochemistry. An in vitro model was constructed by inducing A549 with transforming growth factor beta-1 (TGF-β1) to observe the effect of FA on epithelial cell apoptosis. RESULTS Network pharmacology predicted signaling pathways such as IL-17 signaling pathway and Relaxin signaling pathway. The results of in vivo studies showed that FA ameliorated BLM-induced PF through inhibition of fibrosis, modulation of apoptosis, and oxidative stress. In addition, FA promoted TGF-β1-induced apoptosis in A549 cells. CONCLUSIONS The results of our study suggested that FA could protect mice against BLM-induced PF by regulating oxidative stress and apoptosis as well as the Epithelial mesenchymal transition pathway.
Collapse
Affiliation(s)
- Fan Yang
- Henan University of Chinese MedicineZhengzhouChina
- Henan Key Laboratory of Chinese Medicine Resources and ChemistryZhengzhouChina
| | - Qinqin Zhang
- Henan University of Chinese MedicineZhengzhouChina
- Henan Key Laboratory of Chinese Medicine Resources and ChemistryZhengzhouChina
| | - Xi Wang
- Henan University of Chinese MedicineZhengzhouChina
| | - Yingbo Hu
- Henan University of Chinese MedicineZhengzhouChina
| | - Suiqing Chen
- Henan University of Chinese MedicineZhengzhouChina
- Henan Key Laboratory of Chinese Medicine Resources and ChemistryZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoHenan University of Chinese MedicineZhengzhouHenan ProvinceChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R.Henan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
4
|
Xuan L, Zi-Ming J, Xue-Yan T, Wen-Xuan H, Fa-Xuan W. LncRNA MRAK052509 competitively adsorbs miR-204-3p to regulate silica dust-induced EMT process. ENVIRONMENTAL TOXICOLOGY 2024; 39:3628-3640. [PMID: 38491797 DOI: 10.1002/tox.24218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Silicosis is a systemic disease caused by long-term inhalation of free SiO2 and retention in the lungs. At present, it is still the most important occupational health hazard disease in the world. Existing studies have shown that non-coding RNA can also participate in complex fibrosis regulatory networks. However, its role in regulating silicotic fibrosis is still unclear. In this study, we constructed a NR8383/RLE-6TN co-culture system to simulate the pathogenesis of silicosis in vitro. Design of miR-204-3p mimics and inhibitors to overexpress or downregulate miR-204-3p in RLE-6TN cells. Design of short hairpin RNA (sh-RNA) to downregulate MRAK052509 in RLE-6TN cells. The regulatory mechanism of miR-204-3p and LncRNA MRAK052509 on EMT process was studied by Quantitative real-time PCR, Western blotting, Immunofluorescence and Cell scratch test. The results revealed that miR-204-3p affects the occurrence of silica dust-induced cellular EMT process mainly through regulating TGF-βRΙ, a key molecule of TGF-β signaling pathway. In contrast, Lnc MRAK052509 promotes the EMT process in epithelial cells by competitively adsorbing miR-204-3p and reducing its inhibitory effect on the target gene TGF-βRΙ, which may influence the development of silicosis fibrosis. This study perfects the targeted regulation relationship between LncRNA MRAK052509, miR-204-3p and TGF-βRΙ, and may provide a new strategy for the study of the pathogenesis and treatment of silicosis.
Collapse
Affiliation(s)
- Liu Xuan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Jiao Zi-Ming
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Tian Xue-Yan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Hu Wen-Xuan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Wang Fa-Xuan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| |
Collapse
|
5
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
6
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
7
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Tang J, Zhao H, Li K, Zhou H, Chen Q, Wang H, Li S, Xu J, Sun Y, Chang X. Intestinal microbiota promoted NiONPs-induced liver fibrosis via effecting serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115943. [PMID: 38194811 DOI: 10.1016/j.ecoenv.2024.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Collapse
Affiliation(s)
- Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongjun Zhao
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Pulmonary Hospital of Lanzhou, Public Health Department, Lanzhou 730000, China
| | - Jianguang Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
9
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Alhusaini AM, Alsoghayer R, Alhushan L, Alanazi AM, Hasan IH. Acetyl-L-Carnitine and Liposomal Co-Enzyme Q 10 Attenuate Hepatic Inflammation, Apoptosis, and Fibrosis Induced by Propionic Acid. Int J Mol Sci 2023; 24:11519. [PMID: 37511276 PMCID: PMC10380200 DOI: 10.3390/ijms241411519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Propionic acid (PRA) is a metabolic end-product of enteric bacteria in the gut, and it is commonly used as a food preservative. Despite the necessity of PRA for immunity in the body, excessive exposure to this product may result in disruptive effects. The purpose of this study is to examine the hepatoprotective effects of acetyl-L-carnitine (A-CAR) and liposomal-coenzyme Q10 (L-CoQ10) against PRA-induced injury. Liver injury in rats was induced by oral administration of PRA, and A-CAR and L-CoQ10 were administered concurrently with PRA for 5 days. Oxidative stress, inflammatory, apoptotic, and fibrotic biomarkers were analyzed; the histology of liver tissue was assessed as well to further explore any pathological alterations. PRA caused significant increases in the levels of serum liver enzymes and hepatic oxidative stress, inflammatory, and apoptotic biomarker levels, along with histopathological alterations. Concurrent treatment with A-CAR and/or L-CoQ10 with PRA prevented tissue injury and decreased the levels of oxidative stress, proinflammatory cytokines, and apoptotic markers. Additionally, A-CAR and/or L-CoQ10 modulated the expression of high-mobility group box-1, cytokeratin-18, transforming growth factor-beta1, and SMAD3 in liver tissue. In conclusion, A-CAR and/or L-CoQ10 showed hepatoprotective efficacy by reducing oxidative stress, the inflammatory response, apoptosis, and fibrosis in liver tissue.
Collapse
Affiliation(s)
- Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Rahaf Alsoghayer
- Pharm D Program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Lina Alhushan
- Pharm D Program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Abeer M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| |
Collapse
|
11
|
Hu Z, Zhao Y, Jiang J, Li W, Su G, Li L, Ran J. Exosome-derived miR-142-5p from liver stem cells improves the progression of liver fibrosis by regulating macrophage polarization through CTSB. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37209404 DOI: 10.1002/tox.23813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND This study aims to explore the effect of liver stem cells (LSCs)-derived exosomes and the miR-142a-5p carried by them on the process of fibrosis by regulating macrophages polarization. METHODS In this study, CCL4 was used to establish liver fibrosis model. The morphology and purity of exosomes (EVs) were verified by transmission electron microscopy, western blotting (WB) and nanoparticle tracing analysis (NTA). Real-time quantitative PCR (qRT-PCR), WB and enzyme-linked immunoadsorption (ELISA) were used to detect liver fibrosis markers, macrophage polarization markers and liver injury markers. Histopathological assays were used to verify the liver injury morphology in different groups. The cell co-culture model and liver fibrosis model were constructed to verify the expression of miR-142a-5p and ctsb. RESULTS Immunofluorescence of LSCs markers CK-18, epithelial cell adhesion molecule (EpCam), and AFP showed that these markers were up-regulated in LSCs. In addition, we evaluated the ability of LSCs to excrete EVs by labeling LSCs-EVs with PKH67. We found that CCL4 and EVs were simultaneously treated at 50 and 100 μg doses, and both doses of EVs could reduce the degree of liver fibrosis in mice. We tested markers of M1 or M2 macrophage polarization and found that EVs reduced M1 marker expression and promoted M2 marker expression. Further, ELISA was used to detect the secreted factors related to M1 and M2 in tissue lysates, which also verified the above views. Further analysis showed that the expression of miR-142a-5p increased significantly with the increase of EVs treatment concentration and time. Further, in vitro and in vivo LSCs-EVs regulate macrophage polarization through miR-142a-5p/ctsb pathway and affect the process of liver fibrosis. CONCLUSION Our data suggest that EVs-derived miR-142-5p from LSCs improves the progression of liver fibrosis by regulating macrophage polarization through ctsb.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingpeng Zhao
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Jiang
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wang Li
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gang Su
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- First People's Hospital of Kunming City, Kunming, China
- The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianghua Ran
- First People's Hospital of Kunming City, Kunming, China
| |
Collapse
|
12
|
Hu Z, Chen G, Yan C, Li Z, Wu T, Li L, Zhang S. Autophagy affects hepatic fibrosis progression by regulating macrophage polarization and exosome secretion. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37186334 DOI: 10.1002/tox.23795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND In this study, the role of autophagy in hepatic fibrosis and its effects on macrophage polarization and exosomes (EVs) were verified by establishing hepatic fibrosis model and co-culture model, providing evidence for treatment. METHODS In this study, CCL4 was used to establish hepatic fibrosis model. The morphology and purity of exosomes (EVs) were verified by transmission electron microscopy, western blotting (WB), and nanoparticle tracing analysis (NTA). Real-time quantitative PCR (qRT-PCR), WB and enzyme-linked immunoadsorption (ELISA) were used to detect hepatic fibrosis markers, macrophage polarization markers and liver injury markers. Histopathological assays were used to verify the liver injury morphology in different groups. The cell co-culture model and hepatic fibrosis model were constructed to verify the expression of miR-423-5p. RESULTS Hepatic fibrosis model showed that CCL4 promoted early autophagy increase but inhibited autophagy flux in liver. mRFP-GFP-LC3 detection showed that both LPS group and Baf group inhibited autophagy flux. This inhibitory effect was reversed by Rap combination therapy. The M1/M2 markers of macrophage polarization were further tested, and it was found that LPS and Baf could promote M1 polarization and inhibit M2 polarization. Rap processing reverses this phenomenon. These data suggest that autophagy can regulate the polarization process of liver macrophages. WB and NTA showed that LPS induced EVs generation. In addition, LPS-induced EVs could promote HSC proliferation, cell cycle, migration, and the expression of fibrosis markers. Macrophage-EVs could affect the fibrosis process of stellate cells through the secretion of miR-423a-5p expression. The hepatic fibrosis model was further established to verify the regulation of autophagy and EVs on the fibrosis process. CONCLUSION This study was showed that autophagy could regulate fibrosis by promoting HSC activation by regulating macrophage polarization and exosome secretion.
Collapse
Affiliation(s)
- Zongqiang Hu
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Gang Chen
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuntao Yan
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhiqiang Li
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Wu
- Department of Infectious Diseases, First People's Hospital of Kunming City, Kunming, China
- Department of Infectious Diseases, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shengning Zhang
- Department of Hepato-pancreato-biliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan, China
- Department of Hepato-pancreato-biliary Surgery, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Guo M, Wang Z, Dai J, Fan H, Yuan N, Gao L, Peng H, Cheng X. Glycyrrhizic acid alleviates liver fibrosis in vitro and in vivo via activating CUGBP1-mediated IFN-γ/STAT1/Smad7 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154587. [PMID: 36805480 DOI: 10.1016/j.phymed.2022.154587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatic fibrosis, a common pathological feature of chronic liver injuries, is a serious public health problem and lacks effective therapy. Glycyrrhizic acid (GA) is a bioactive ingredient in the root of traditional Chinese medicine licorice, and exhibits remarkable anti-viral, anti-inflammatory and hepatoprotective actions. PURPOSE Here we aimed to investigated whether GA provided a therapeutic efficacy in hepatic fibrosis and uncover its molecular mechanisms. STUDY DESIGN AND METHODS We investigated the anti-fibrosis effects of GA using CCl4-induced mouse mode of liver fibrosis as well as TGF-β1-activated human LX-2 cells and primary hepatic stellate cells (HSCs). CUGBP1-mediated IFN-γ/STAT1/Smad7 signaling was examined with immunofluorescence staining and western blot analysis. We designed and studied the binding of GA to CUGBP1 using in silico docking, and validated by microscale thermophoresis (MST) assay. RESULTS GA obviously attenuated CCl4-induced liver histological damage, and reduced serum ALT and AST levels. Meanwhile, GA decreased liver fibrogenesis markers such as α-SMA, collagen α1, HA, COL-III, and LN in the hepatic tissues. Mechanistically, GA remarkably elevated the levels of IFN-γ, p-STAT1, Smad7, and decreased CUGBP1 in vivo and in vitro. Over-expression of CUGBP1 completely abolished the anti-fibrotic effect of GA and regulation on IFN-γ/STAT1/Smad7 pathway in LX-2 cells and primary HSCs, confirming CUGBP1 played a pivotal role in the protection by GA from liver fibrosis. Further molecular docking and MST assay indicated that GA had a good binding affinity with the CUGBP1 protein. The dissociation constant (Kd) of GA and CUGBP1 was 0.293 μM. CONCLUSION Our study demonstrated for the first time that GA attenuated liver fibrosis and hepatic stellate cell activation by promoting CUGBP1-mediated IFN-γ/STAT1/Smad7 signalling pathways. GA may be a potential candidate compound for preventing or reliving liver fibrosis.
Collapse
Affiliation(s)
- Manman Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Kunshan Hospital affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Zhongda Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jinya Dai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Haizhen Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ningning Yuan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Liming Gao
- Department of Gastroenterology, Kunshan Hospital affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Huiping Peng
- Department of Gastroenterology, Kunshan Hospital affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Xiaolan Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Zhang Y, Wang Z, Zong C, Gu X, Fan S, Xu L, Cai B, Lu S. Platelet-rich plasma attenuates the severity of joint capsule fibrosis following post-traumatic joint contracture in rats. Front Bioeng Biotechnol 2023; 10:1078527. [PMID: 36686225 PMCID: PMC9845589 DOI: 10.3389/fbioe.2022.1078527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Post-traumatic joint contracture (PTJC) mainly manifests as excessive inflammation leading to joint capsule fibrosis. Transforming growth factor (TGF)-β1, a key regulator of inflammation and fibrosis, can promote fibroblast activation, proliferation, migration, and differentiation into myofibroblasts. Platelet-rich plasma (PRP) is considered to have strong potential for improving tissue healing and regeneration, the ability to treat joint capsule fibrosis remains largely unknown. Methods: In this study, we aimed to determine the antifibrotic potential of PRP in vivo or in vitro and its possible molecular mechanisms. The TGF-β1-induced primary joint capsule fibroblast model and rat PTJC model were used to observe several fibrotic markers (TGF-β1, α-SMA, COL-Ⅰ, MMP-9) and signaling transduction pathway (Smad2/3) using histological staining, qRT-PCR and western blot. Results: Fibroblasts transformed to myofibroblasts after TGF-β1 stimulation with an increase of TGF-β1, α-SMA, COL-Ⅰ, MMP-9 and the activation of Smad2/3 in vitro. However, TGF-β1-induced upregulation or activation of these fibrotic markers or signaling could be effectively suppressed by the introduction of PRP. Fibrotic markers' similar changes were observed in the rat PTJC model and PRP effectively reduced inflammatory cell infiltration and collagen fiber deposition in the posterior joint capsule. Interestingly, HE staining showed that articular cartilage was degraded after rat PTJC, and PRP injection also have the potential to protect articular cartilage. Conclusion: PRP can attenuate pathological changes of joint capsule fibrosis during PTJC, which may be implemented by inhibiting TGF-β1/Smad2/3 signaling and downstream fibrotic marker expression in joint capsule fibroblasts.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China,Department of Rehabilitation Medicine, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoding Gu
- Department of Rehabilitation Medicine, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Fan
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Xu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Bin Cai, ; Shenji Lu,
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Rehabilitation Medicine, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Bin Cai, ; Shenji Lu,
| |
Collapse
|
15
|
Li K, Zheng J, Liu H, Gao Q, Yang M, Tang J, Wang H, Li S, Sun Y, Chang X. Whole-transcriptome sequencing revealed differentially expressed mRNAs and non-coding RNAs played crucial roles in NiONPs-induced liver fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114308. [PMID: 36410144 DOI: 10.1016/j.ecoenv.2022.114308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Nickel oxide nanoparticles (NiONPs) induced liver fibrosis, while its mechanisms associated with transcriptome remained unclear. This study aimed to investigate the roles of differentially expressed (DE) messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) in NiONPs-induced liver fibrosis, and further confirm whether JNK/c-Jun pathway enriched by the DE RNAs was involved in the regulation of the disease. A liver fibrosis rat model was established by intratracheal perfusion of NiONPs twice a week for 9 weeks. Whole-transcriptome sequencing was applied to obtain expression profiles of mRNAs, long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) in the model rat and control liver tissues. Comparing the RNA expression profiles of the model and control liver tissues, we identified 324 DE mRNAs, 129 DE lncRNAs, 24 DE miRNAs and 33 DE circRNAs, and the potential interactions among them were revealed by constructing two co-expression networks, including lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks. Using RT-qPCR, we verified the sequencing results of some RNAs in the networks and obtained similar expression profiles, indicating our sequencing results were reliable and referable. Through Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we predicted the biological functions and signaling pathways potentially related to NiONPs-induced liver fibrosis, such as "positive regulation of JNK cascade", "inflammatory response", "transcription factor binding", and MAPK, Wnt, PI3K-Akt signaling pathways. JNK/c-Jun pathway, a subclass of MAPK signal, was selected for further investigation because it was significantly enriched by fibrosis-related DE genes and activated in animal models. In vitro, we detected the cytotoxicity of NiONPs on LX-2 cells and treated the cells with 5 μg/ml NiONPs for 12 h. The results showed NiONPs induced the up-regulated protein expression of fibrotic factors collagen-1a1 (Col-1a1) and matrix metalloproteinas2 (MMP2) and JNK/c-Jun pathway activation. While these effects were reversed after JNK/c-Jun pathway was blocked by SP600125 (JNK pathway inhibitor), indicating the pathway was involved in NiONPs-induced excessive collagen formation. In conclusion, our results revealed the DE mRNAs and ncRNAs played crucial roles in NiONPs-induced liver fibrosis, and JNK/c-Jun pathway mediated the development of the disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou 730000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
16
|
Sundram S, Baskar S, Subramanian A. Green synthesized nickel doped cobalt ferrite nanoparticles exhibit antibacterial activity and induce reactive oxygen species mediated apoptosis in MCF-7 breast cancer cells through inhibition of PI3K/Akt/mTOR pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2877-2888. [PMID: 36073959 DOI: 10.1002/tox.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to synthesize the nickel (Ni) doped cobalt ferrite (CFO) nanoparticles and to determine its anticancer effect on breast cancer MCF-7 cells. The various concentrations of Ni (0.2%, 0.4%, 0.6%, 0.8%, and 1%) doped CFO nanoparticles were synthesized using Coriandrum sativum extracts by precipitation technique. The synthesized Ni-CFO was characterized by X-ray diffraction, Fourier transform infrared spectroscopic, transmission electron microscopy, and vibrating sample magnetometer analyses. The results show that 0.8% Ni-CFO nanoparticles showed good magnetic properties and antioxidant activity than other concentrations of Ni-CFO. The results showed that the administration of 0.8% Ni-CFO nanoparticles promoted apoptosis, and reduced cell adhesion and migration of MCF-7 cells, as demonstrated by increased lipid peroxidation, decreased antioxidant levels such as superoxide dismutase, catalase, and glutathione peroxidase, and increased formation of reactive oxygen species. Moreover, administration of 0.8% Ni-CFO nanoparticles decreased the Bcl-2 expression while activating the expression of p53, Bax, and cleaved caspase 3, 8 and 9 protein expression. Notably, 0.8% Ni-CFO treatment reduced phospho-PI3K, phospho-Akt, and phospho-mTOR expression levels. As a result, via altering apoptotic related proteins, 0.8% Ni-CFO induced cell death. Therefore, the 0.8% Ni-CFO could be utilized to treat breast cancer.
Collapse
Affiliation(s)
- Sobana Sundram
- Department of Physics, H.H. The Rajah's College (Autonomous), Pudukkottai, (Affiliated to Bharathidasan university), Tiruchirappalli, Tamilnadu, India
| | - Suganya Baskar
- Department of Botany, H.H. The Rajah's College (Autonomous), Pudukkottai, (Affiliated to Bharathidasan university), Tiruchirappalli, Tamilnadu, India
| | - Alagumanian Subramanian
- Department of Botany, H.H. The Rajah's College (Autonomous), Pudukkottai, (Affiliated to Bharathidasan university), Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
17
|
Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022; 13:895242. [PMID: 35795649 PMCID: PMC9250967 DOI: 10.3389/fphys.2022.895242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Fibrosis can occur in many organs, and severe cases leading to organ failure and death. No specific treatment for fibrosis so far. In recent years, microRNA-34a (miR-34a) has been found to play a role in fibrotic diseases. MiR-34a is involved in the apoptosis, autophagy and cellular senescence, also regulates TGF-β1/Smad signal pathway, and negatively regulates the expression of multiple target genes to affect the deposition of extracellular matrix and regulate the process of fibrosis. Some studies have explored the efficacy of miR-34a-targeted therapies for fibrotic diseases. Therefore, miR-34a has specific potential for the treatment of fibrosis. This article reviews the important roles of miR-34a in fibrosis and provides the possibility for miR-34a as a novel therapeutic target in fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Acupuncture-Moxibustion, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shimin Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Rong Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Jing Chai
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Handan Zheng
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| | - Huirong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Huangan Wu, ; Huirong Liu,
| |
Collapse
|
18
|
Yang X, Jiang Z, Li Y, Zhang Y, Han Y, Gao L. Non-coding RNAs regulating epithelial-mesenchymal transition: Research progress in liver disease. Biomed Pharmacother 2022; 150:112972. [PMID: 35447551 DOI: 10.1016/j.biopha.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic liver injury could gradually progress to liver fibrosis, cirrhosis, and even hepatic carcinoma without effective treatment. The massive production and activation of abnormal cell differentiation is vital to the procession of liver diseases. Epithelial-mesenchymal transformation (EMT) is a biological process in which differentiated epithelial cells lose their epithelial characteristics and acquire mesenchymal cell migration capacity. Emerging evidence suggests that EMT not only occurs in the process of hepatocellular carcinogenesis, but also appears in liver cells transforming to myofibroblasts, a core event of liver disease. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are important regulatory factors in EMT, which can regulate target gene expression by binding with RNA single-stranded. Various studies had shown that ncRNA regulation of EMT plays a key role in liver disease development, and many effective ncRNAs have been identified as promising biomarkers for the diagnosis and treatment of liver disease. In this review, we focus on the relationship between the different ncRNAs and EMT as well as the specific molecular mechanism in the liver diseases to enrich the pathological progress of liver diseases and provide reference for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingchun Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
19
|
Pathogenesis of Liver Fibrosis and Its TCM Therapeutic Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5325431. [PMID: 35529927 PMCID: PMC9071861 DOI: 10.1155/2022/5325431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
Collapse
|
20
|
Liu Q, Sun Y, Zhu Y, Qiao S, Cai J, Zhang Z. Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci 2022; 301:120622. [PMID: 35537548 DOI: 10.1016/j.lfs.2022.120622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
AIMS Nickel(Ni) accumulates in the environment due to human activities such as electroplating, alloy production, stainless steel, Ni‑cadmium batteries and industrial production. Ni enriched in humans and animals through food chains, poses a serious health threat. Txnrd3, as a member of the thioredoxin reductase family, has long been thought to be testicular specific and involved in sperm maturation. However, its role in liver diseases still unknown. Melatonin exerts its antioxidant effects directly through its ability to clear free radicals and protects the liver from oxidative damage. Hepatic fibrosis with an ever-increasing incidence year by year, is correlating with outcome and risk of hepatocellular carcinoma. MATERIALS AND METHODS In this study, 60 8-week-old male C57BL/6 wild-type mice and 60 Txnrd3-/- mice were randomly divided into three groups, respectively. Control group was gavaged with distilled water, 10 mg/kg NiCl2 in Ni group, Ni + Mel group treated with 2 mg/kg melatonin in the morning, 10 mg/kg NiCl2 in the afternoon, serum and tissue was extracted after 21 days. KEY FINDINGS Results showed that liver function was significantly worse after Ni exposure, morphological and masson staining showed more significant liver fibrosis in Txnrd3-/- mice, damage of organelles in hepatocytes was observed. qPCR and WB results showed activation of the IRE1/Nuclear factor-kappa B/NLRP3 axis during Ni exposure lead to hepatocyte pyroptosis, while upregulation of PERK/TGF-β promoted liver fibrosis process and Txnrd3 knockout exacerbated liver damage during Ni exposure. SIGNIFICANCE The above results will lay the theoretical foundation for the monitoring and clinical treatment of Ni exposure.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Shu G, Dai C, Yusuf A, Sun H, Deng X. Limonin relieves TGF-β-induced hepatocyte EMT and hepatic stellate cell activation in vitro and CCl 4-induced liver fibrosis in mice via upregulating Smad7 and subsequent suppression of TGF-β/Smad cascade. J Nutr Biochem 2022; 107:109039. [PMID: 35533902 DOI: 10.1016/j.jnutbio.2022.109039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Liver fibrosis is a pathological process as a result of intrahepatic deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) of hepatocytes and activation of hepatic stellate cells (HSCs) both play important roles in the etiology of liver fibrosis. Here, we found that limonin repressed transforming growth factor-β1 (TGF-β)-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. In both kinds of cells, limonin suppressed TGF-β-provoked Smad2/3 C-terminal phosphorylation and subsequent nuclear translocation. Transcription of Smad2/3-downstream genes was in turn reduced. However, limonin exerted few effects on Smad2/3 phosphorylation at linker region. Mechanistically, limonin increased Smad7 at mRNA level in both AML-12 and LX-2 cells. Knockdown of Smad7 abrogated inhibitory effects of limonin on TGF-β-induced EMT in AML-12 cells and activation of LX-2 cells. Further studies revealed that limonin alleviated mouse liver fibrosis induced by CCl4. In livers of model mice, limonin upregulated Smad7 and declined C-terminal phosphorylation and nuclear translocation of Smad2/3. Transcription of Smad2/3-responsive genes was also attenuated. Our findings indicated that limonin inhibits TGF-β-induced EMT of hepatocytes and activation of HSCs in vitro and CCl4-induced liver fibrosis in mice. Upregulated Smad7 which suppresses Smad2/3-dependent gene transcription is implicated in the hepatoprotective activity of limonin.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Yang M, Chang X, Gao Q, Gong X, Zheng J, Liu H, Li K, Zhan H, Wang X, Li S, Sun X, Feng S, Sun Y. LncRNA MEG3 ameliorates NiO nanoparticles-induced pulmonary inflammatory damage via suppressing the p38 mitogen activated protein kinases pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1058-1070. [PMID: 35006638 DOI: 10.1002/tox.23464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The lung inflammatory damage could result from the nickel oxide nanoparticles (NiO NPs), in which the underlying mechanism is still unclear. This article explored the roles of long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) and p38 mitogen activated protein kinases (p38 MAPK) pathway in pulmonary inflammatory injury induced by NiO NPs. Wistar rats were treated with NiO NPs suspensions (0.015, 0.06, and 0.24 mg/kg) by intratracheal instillation twice-weekly for 9 weeks. Meanwhile, A549 cells were treated with NiO NPs suspensions (25, 50, and 100 μg/ml) for 24 h. It can be concluded that the NiO NPs did trigger pulmonary inflammatory damage, which was confirmed by the histopathological examination, abnormal changes of inflammatory cells and inflammatory cytokines (IL-1β, IL-6, TGF-β1, TNF-α, IFN-γ, IL-10, CXCL-1 and CXCL-2) in bronchoalveolar lavage fluid (BALF), pulmonary tissue and cell culture supernatant. Furthermore, NiO NPs activated the p38 MAPK pathway and downregulated MEG3 in vivo and in vitro. However, p38 MAPK pathway inhibitor (10 μM SB203580) reversed the alterations in the expression levels of inflammatory cytokines induced by NiO NPs. Meanwhile, over-expressed MEG3 significantly suppressed NiO NPs-induced p38 MAPK pathway activation and inflammatory cytokines changes. Overall, the above results proved that over-expression of lncRNA MEG3 reduced NiO NPs-induced inflammatory damage by preventing the activation of p38 MAPK pathway.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xingchang Sun
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Scorpion Venom Polypeptide Inhibits Pulmonary Epithelial-Mesenchymal Transition in Systemic Sclerosis-Interstitial Lung Disease Model Mice by Intervening TGF- β1/Smad Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6557486. [PMID: 35463079 PMCID: PMC9020946 DOI: 10.1155/2022/6557486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
Abstract
Objective Interstitial lung disease (ILD) is an important complication of systemic sclerosis (SSc). The aim of this study was to investigate the effect and possible mechanism of polypeptide extract of scorpion venom (PESV) on SSc-ILD. Methods C57/BL6 mice were injected with bleomycin to establish a SSc-ILD model. Different concentrations of PESV solution were administered to SSc-ILD mice, and dexamethasone was used as a positive control. H&E staining and Masson staining were used to observe the pathological changes. The TGF-β1 expression level was detected by immunohistochemistry. The expression of epithelial-mesenchymal transition (EMT)-related proteins was detected by Western blot, and the expression of TGF-β1/Smad pathway-related proteins was also detected. The content of inflammatory cytokines in serum and BALF was determined by ELISA. Results Pathological analysis showed that PESV could alleviate SSc-ILD-induced pulmonary inflammation and fibrosis. Compared with the model group, the content of inflammatory cytokines IL-6 and TNF-α significantly decreased after PESV treatment. PESV could increase the expression of epithelial marker (E-cadherin) and reduce the expression of interstitial markers (collagen I, vimentin, N-cadherin, and a-SMA). In addition, PESV could reduce the expression level of TGF-β1/Smad pathway-related protein. Conclusion PESV can attenuate SSc-ILD by regulating EMT, and the effect was linked to the TGF-β1/Smad signaling pathway, which indicated that PESV may serve as a candidate drug for SSc-ILD.
Collapse
|
24
|
Shang Q, Yang Y, Li H. LINC01605 knockdown induces apoptosis in human Tenon's capsule fibroblasts by inhibiting autophagy. Exp Ther Med 2022; 23:343. [PMID: 35401799 PMCID: PMC8988162 DOI: 10.3892/etm.2022.11273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022] Open
Abstract
Glaucoma is an irreversible disease that causes blindness. Formation of a hypertrophic scar (HS) is the main cause of failure of glaucoma surgery. The long non-coding RNA LINC01605 is closely associated with the formation of HS; however, the function of LINC01605 in the formation and development of HS remains unclear. For this study, firstly, human Tenon's capsule fibroblasts (HTFs) and corneal epithelial cells (control cells) were collected from patients (n=5) with POAG who underwent glaucoma filtration surgery at Fuyang People's Hospital. Immunofluorescence analysis was performed to detect the expression levels of vimentin (one of the main components of medium fiber and plays an important role in the cytoskeleton and motility), keratin (the main component of cytoskeletal proteins) and LC3 (an autophagy marker). In addition, reverse transcription-quantitative PCR analysis was performed to detect LINC01605 expression. Besides, the Cell Counting Kit-8 assay was performed to assess the viability of human Tenon's capsule fibroblasts (HTFs). Next, flow cytometry was performed to detect HTF apoptosis. Furthermore, western blot analysis was performed for Bax, Bcl-2, Pro-caspase-3, cleaved caspase-3, phosphorylated (p-)Smad2, Smad2, α-SMA, MMP9, ATG7, p62, beclin 1, p-AMPK and AMPK in HTFs to determine the mechanism by which LINC01605 regulates the formation and development of HS. Moreover, a Transwell assay was performed to detect the migratory ability of HTFs. The results demonstrated that LINC01605 was significantly upregulated in HS tissues compared with that in normal (control/healthy) tissues. In addition, vimentin was highly expressed in HTFs, whereas keratin was expressed at a low level. Also, in HTFs, LINC01605 knockdown inhibited cell viability by inducing apoptosis, decreasing Smad2 activation and inhibiting autophagy. Furthermore, LINC01605 knockdown significantly inhibited the migratory ability of HTFs. Transfection with LINC01605 small interference RNAs significantly downregulated the expression levels of p-Smad2, α-SMA and MMP9 in HTFs. Furthermore, LINC01605 knockdown notably inhibited the viability and migration, and induced the apoptosis of HTFs, the effects of which were reversed following treatment with TGF-β. Taken together, the results of the present study suggested that LINC01605 knockdown may inhibit the viability of HTFs by inducing the apoptotic pathway. These findings may provide novel directions for the treatment of HS.
Collapse
Affiliation(s)
- Qifei Shang
- Department of Ophthalmology, Fuyang People's Hospital, Hangzhou, Zhejiang 311400, P.R. China
| | - Yanhua Yang
- Department of Ophthalmology, Fuyang People's Hospital, Hangzhou, Zhejiang 311400, P.R. China
| | - Hangzhu Li
- Department of Ophthalmology, Fuyang People's Hospital, Hangzhou, Zhejiang 311400, P.R. China
| |
Collapse
|
25
|
Li L, Xu M, He C, Wang H, Hu Q. Polystyrene nanoplastics potentiate the development of hepatic fibrosis in high fat diet fed mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:362-372. [PMID: 34755918 DOI: 10.1002/tox.23404] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/30/2021] [Accepted: 10/30/2021] [Indexed: 05/27/2023]
Abstract
Polystyrene nanoparticles (PS-NPs) as an issue of global environmental concern, have been shown to induce hepatic toxicity via triggering oxidative injury and inflammation. Non-alcoholic fatty liver disease (NAFLD) is initiated when excessive lipid is accumulated in the liver and will proceed to liver fibrosis with repeatedly chronic liver injury. In this study, we examined whether intravenous injection of PS-NPs could enhance the hepatic toxicity and potentiate the development of liver fibrosis in experimental high fat diet (HFD)-induced mice. The results demonstrated that PS-NPs could aggravate chronic hepatitis by interfere with liver lipid metabolism in HFD induced mice. Further, hepatic tissue in PS-NPs treated HFD mice displayed substantially lowered superoxide dismutase (SOD) activity, which confirming the oxidative stress induced by PS-NPs. PS-NPs exposure also resulted in the up-regulation of inflammation response in liver, as evidenced by the enhanced infiltration of Kupffer cells (KCs) and elevated expression of pro-inflammatory related indicators. Meanwhile, Masson trichrome staining revealed that PS-NPs could aggravate steatohepatitis with higher collagen fiber in HFD fed mice. Our data suggests that PS-NPs can induce oxidative stress and inflammation in HDF-induced experimental mice and further aggravate liver fibrosis, which highlight the potential health risks of PS-NPs.
Collapse
Affiliation(s)
- Ling Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chao He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hui Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Jin XW, Wang QZ, Zhao Y, Liu BK, Zhang X, Wang XJ, Lu GL, Pan JW, Shao Y. An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis. Transl Androl Urol 2022; 10:4120-4131. [PMID: 34984178 PMCID: PMC8661263 DOI: 10.21037/tau-21-392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background Suitable in vitro models are needed to investigate urothelial epithelial to mesenchymal transition (EMT) and pro-fibrogenesis phenotype in bladder pain syndrome/interstitial cystitis (BPS/IC). This study is to establish a novel experimental BPS/IC cell model and explore how different concentrations of tumor necrosis factor (TNF)-α influence the EMT and pro-fibrogenesis phenotype of urothelial cells. Methods SV-HUC-1 urothelial cells were cultured with 2, 10, or 50 ng/mL TNF-α to mimic chronic inflammatory stimulation. The EMT and pro-fibrogenesis phenotype, including production of collagen I and pro-fibrosis cytokines, were estimated after 72 h of culture. Results The bladder urothelial cells of BPS/IC exhibited upregulated vimentin, TNF-α and TNF receptor, downregulated E-cadherin, and increased collagen I. Higher concentrations of TNF-α (10 and 50 ng/mL) produced an obvious mesenchymal morphology, enhanced invasion and migratory capacity, increased expression of vimentin, and decreased expression of E-cadherin. Collagen I was increased in cells treated with 2 and 10 ng/mL TNF-α after 72 h. Secretion of interleukin (IL)-6 and IL-8 was promoted with 10 and 50 ng/mL TNF-α, while that of IL-1β or transforming growth factor-β was unaffected. Slug and Smad2 were upregulated by TNF-α after 72 h. The Smad pathway was activated most strongly with 10 ng/mL TNF-α and Slug pathway activation was positively correlated with the concentration of TNF-α. Conclusions Sustained 10 ng/mL TNF-α stimulation induced the EMT and pro-fibrogenesis phenotype resembling BPS/IC in SV-HUC-1 cells. Minor inflammatory stimulation induced the pro-fibrogenesis phenotype while severe inflammatory stimulation was more likely to produce significant EMT changes. Different degrees of activation of the Slug and Smad pathways may underlie this phenomenon.
Collapse
Affiliation(s)
- Xing-Wei Jin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Zhang Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Ke Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Jin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Wei Pan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Huang W, Tao Y, Zhang X, Zhang X. TGF-β1/SMADs signaling involved in alleviating inflammation induced by nanoparticulate titanium dioxide in BV2 cells. Toxicol In Vitro 2022; 80:105303. [PMID: 34990773 DOI: 10.1016/j.tiv.2021.105303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
There are increasing safety concerns accompanying the widespread use of nanoparticulate titanium dioxide (nano-TiO2). It has been demonstrated that nano-TiO2 can cross the blood-brain barrier and enter the brain, causing damage to the nervous system, consisting mainly of neuroinflammation and neuronal apoptosis. Several studies have linked the TGF-β1/SMADs signaling to the development of inflammatory response in various organs. However, no studies have connected the induction of microglial inflammation by nano-TiO2 to this signaling. Therefore, this study aimed to investigate the role of TGF-β1/SMADs signaling in microglia inflammatory response induced by nano-TiO2. The results showed that nano-TiO2 increased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) and decreased the expressions of TGF-β1 and SMAD1/2/3 proteins in BV2 cells. When TGF-β1/SMADs signaling was inhibited, the inflammatory effect induced by nano-TiO2 increased, suggesting a suppressive effect of this signaling on the inflammation. In addition, exogenous TGF-β1 upregulated the expressions of TGF-β1 and SMADs1/2/3 proteins as well as decreased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) compared to BV2 cells treated with only nano-TiO2. Our results suggest that nano-TiO2 may inhibit the TGF-β1/SMADs signaling by suppressing the intracellular secretion of active TGF-β1, leading to microglial activation and the induction or exacerbation of inflammatory responses.
Collapse
Affiliation(s)
- Wendi Huang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yifan Tao
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiuwen Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaoqiang Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
28
|
Shu G, Yusuf A, Dai C, Sun H, Deng X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4: roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct 2021; 12:11686-11703. [PMID: 34730139 DOI: 10.1039/d1fo02657g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piperine (PIP) is an alkaloid derived from peppercorns. Herein, we assessed its effects on hepatocyte EMT and HSC activation in vitro and CCl4-elicited liver fibrosis in mice. Further experiments were performed to unveil the molecular mechanisms underlying the hepatoprotective activity of PIP. We found that PIP inhibited TGF-β1-provoked AML-12 hepatocyte EMT and LX-2 HSC activation. Mechanistically, in AML-12 and LX-2 cells, PIP evoked Nrf2 nuclear translocation and increased transcriptions of Nrf2-responsive antioxidative genes. These events decreased TGF-β1-induced production of ROS. Moreover, PIP increased the expression of Smad7, suppressed phosphorylation and nuclear translocation of Smad2/3, and decreased the transcriptions of Smad2/3-downstream genes. Knockdown of Nrf2 abrogated the protective activity of PIP against TGF-β1. Modulatory effects of PIP on the TGF-β1/Smad cascade were also crippled, which suggested that activation of Nrf2 played critical roles in the regulatory effects of PIP on TGF-β1/Smad signaling. Experiments in vivo unveiled that PIP ameliorated mouse liver fibrosis provoked by CCl4. PIP modulated the intrahepatic contents of the markers of EMT and HSC activation. In mouse livers, PIP activated Nrf2 signaling and reduced Smad2/3-dependent gene transcriptions. Our findings collectively suggested PIP as a new chemical entity with the capacity of alleviating liver fibrosis. The activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis are implicated in the hepatoprotective activity of PIP.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of combination of monoammonium glycyrrhizinate and cysteine hydrochloride induced by CCl 4. Eur J Pharmacol 2021; 913:174628. [PMID: 34774851 DOI: 10.1016/j.ejphar.2021.174628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Combination of monoammonium glycyrrhizinate and cysteine hydrochloride (MG-CH) has been used in the treatment of chronic liver disease for decades, however, its mechanism is still unclear. Our previous studies showed that MG-CH confers the optimal therapeutic effect at the ratio of 2:1 to against acute liver damage. In this study, it was used to investigate the anti-fibrotic effect induced by CCl4. The results showed that injection of MG-CH produced anti-fibrotic effect ranged from 30 mg/kg to 60 mg/kg, evidenced by decreased the collagens deposition and inhibited the production of hydroxyproline. Mechanism study found that Nrf2/ARE signaling pathway was activated by MG-CH, whereas loss of hepatocytic Nrf2 abolished its anti-fibrotic effect significantly. Furthermore, it was demonstrated that MG-CH is a non-canonical NRF2 inducer, which promoted the autophagy activity and release the Nrf2 from keap 1 by promoting the phosphorylation of p62 at Ser351. Knockdown of p62 abolished the enhancement of nuclear accumulation of Nrf2 by MG-CH. All of these results suggested that up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of MG-CH, which provide a rational explanation for the usage of MG-CH in the treatment of fibrosis.
Collapse
|
30
|
Blockade of TGF-βR improves the efficacy of doxorubicin by modulating the tumor cell motility and affecting the immune cells in a melanoma model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2309-2322. [PMID: 34499199 DOI: 10.1007/s00210-021-02134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
TGF-β contributes to drug resistance and the invasiveness of tumor cells and weakens the anti-tumor immune responses. The present study aimed at examining the efficacy of the combination of SB431542, as a specific inhibitor of TGF-βR, and doxorubicin in controlling the melanoma tumor in mice. The impact of the combination of the doxorubicin and SB431542 on the cell growth, apoptosis, migration, and invasiveness of B16-F10 cells was examined. Besides, the B16-F10 tumor was induced in C57BL/6 mice, and the effects of the mentioned treatment on the tumor volume, survival, and the exhaustion state of T cells were evaluated. Although the combination of doxorubicin and SB431542 did not exhibit synergism in the inhibition of cell growth and apoptosis induction, it efficiently prohibited the migration and the epithelial to mesenchymal transition of B16-F10 cells, and the combination of doxorubicin and SB431542 caused an increase in mRNA levels of E-cadherin and, on the other hand, led to a decline in the expression of Vimentin. Tumor volume and the survival of tumor-bearing mice were efficiently controlled by the combination therapy. This treatment also eventuated in a decrease in the percentage of PD-L1+, TCD4+, and TCD8+ cells as indicators of exhausted T cells within the spleens of tumor-bearing mice. Blockade of TGF-βR also propelled the RAW 264.7 cells towards an anti-tumor M1 macrophage phenotype. The inhibition of TGF-βR demonstrated a potential to increase the efficacy of doxorubicin chemotherapy by the means of affecting cellular motility and restoring the anti-tumor immune responses.
Collapse
|
31
|
Kwon HC, Sohn H, Kim DH, Shin DM, Jeong CH, Chang YH, Yune JH, Kim YJ, Kim DW, Kim SH, Han SG. In Vitro and In Vivo Study on the Toxic Effects of Propiconazole Fungicide in the Pathogenesis of Liver Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7399-7408. [PMID: 34170130 DOI: 10.1021/acs.jafc.1c01086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Propiconazole (PCZ) is a hepatotoxic triazole fungicide. There are insufficient data on how PCZ induces liver fibrosis in humans. This study aimed to investigate the effect of PCZ on liver fibrosis and its underlying mechanisms. HepG2 cells and Sprague-Dawley rats were exposed to PCZ at doses of 0-160 μM (3-72 h) and 0.5-50 mg/kg body weight/day (28 days), respectively. PCZ-treated cells activated intracellular oxidative stress via cytochrome P450 and had higher mRNA levels of interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, MMP-9, and transforming growth factor-β (TGF-β) than the control. PCZ treatment in cells induced a morphological transition with E-cadherin decrease and vimentin and Snail increase via the oxidative stress and TGF-β/Smad pathways. PCZ administration in rats induced liver fibrosis through pathological changes, epithelial-mesenchymal transition, and collagen deposition. Thus, our data suggest that exposure of PCZ to humans may be a risk factor for the functional integrity of the liver.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejin Sohn
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Min Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - You Hyun Chang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hyeok Yune
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Wook Kim
- Department of Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sang Ho Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
32
|
Zhang Q, Chang X, Wang X, Zhan H, Gao Q, Yang M, Liu H, Li S, Sun Y. A metabolomic-based study on disturbance of bile acids metabolism induced by intratracheal instillation of nickel oxide nanoparticles in rats. Toxicol Res (Camb) 2021; 10:579-591. [PMID: 34141172 DOI: 10.1093/toxres/tfab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Nickel oxide nanoparticles (Nano NiO) evoke hepatotoxicity, while whether it affects the hepatic metabolism remains unclear. The aim of this study was to explore the differential metabolites and their metabolic pathways in rat serum and to further verify the potential mechanism of bile acids' (BAs) metabolism dysregulation after Nano NiO exposure. Sixteen male Wistar rats were intratracheally instilled with Nano NiO (0.24 mg/kg body weight) twice a week for 9 weeks. Liquid chromatography/mass spectrometry was applied to filter the differentially expressed metabolites in rat serum. Western blot was employed to detect the protein contents. Twenty-one differential metabolites that associated with BAs, lipid and phospholipid metabolism pathways were identified in rat serum after Nano NiO exposure. Decreased cholic acid and deoxycholic acid implied that the BAs metabolism was disturbed. The nickel content increased in liver after Nano NiO exposure. The protein expression of cholesterol 7α-hydroxylase (CYP7A1) was down-regulated, and the bile salt export pump was up-regulated after Nano NiO administration in rat liver. Moreover, dehydroepiandrosterone sulphotransferase (SULT2A1) and cytochrome P450 (CYP) 3A4 were elevated in the exposure group. In conclusion, Nano NiO might trigger the disturbances of BAs, lipid and phospholipid metabolism pathways in rats. The diminished serum BAs induced by Nano NiO might be related to the down-regulation of synthetase and to the overexpression of transmembrane protein and detoxification enzymes in BAs metabolism.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, 199 Donggang West Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
33
|
Zou ML, Chen ZH, Teng YY, Liu SY, Jia Y, Zhang KW, Sun ZL, Wu JJ, Yuan ZD, Feng Y, Li X, Xu RS, Yuan FL. The Smad Dependent TGF-β and BMP Signaling Pathway in Bone Remodeling and Therapies. Front Mol Biosci 2021; 8:593310. [PMID: 34026818 PMCID: PMC8131681 DOI: 10.3389/fmolb.2021.593310] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bone remodeling is a continuous process that maintains the homeostasis of the skeletal system, and it depends on the homeostasis between bone-forming osteoblasts and bone-absorbing osteoclasts. A large number of studies have confirmed that the Smad signaling pathway is essential for the regulation of osteoblastic and osteoclastic differentiation during skeletal development, bone formation and bone homeostasis, suggesting a close relationship between Smad signaling and bone remodeling. It is known that Smads proteins are pivotal intracellular effectors for the members of the transforming growth factor-β (TGF-β) and bone morphogenetic proteins (BMP), acting as transcription factors. Smad mediates the signal transduction in TGF-β and BMP signaling pathway that affects both osteoblast and osteoclast functions, and therefore plays a critical role in the regulation of bone remodeling. Increasing studies have demonstrated that a number of Smad signaling regulators have potential functions in bone remodeling. Therefore, targeting Smad dependent TGF-β and BMP signaling pathway might be a novel and promising therapeutic strategy against osteoporosis. This article aims to review recent advances in this field, summarizing the influence of Smad on osteoblast and osteoclast function, together with Smad signaling regulators in bone remodeling. This will facilitate the understanding of Smad signaling pathway in bone biology and shed new light on the modulation and potential treatment for osteoporosis.
Collapse
Affiliation(s)
- Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Institute of Integrated Chinese and Western Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Ying-Ying Teng
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zi-Li Sun
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Yi Feng
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Rui-Sheng Xu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
34
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
35
|
Chen C, Gu J, Wang J, Wu Y, Yang A, Chen T, Zhou T, Liu Z. Physcion 8-O-β-glucopyranoside ameliorates liver fibrosis through inflammation inhibition by regulating SIRT3-mediated NF-κB P65 nuclear expression. Int Immunopharmacol 2021; 90:107206. [PMID: 33246826 DOI: 10.1016/j.intimp.2020.107206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Physcion 8-O-β-glucopyranoside (PSG), an anthraquinone extracted from Rumex japonicus Houtt, has various pharmacological effects, however, the effect of PSG on liver fibrosis and its related mechanism remain to be determined. We here showed that PSG ameliorated liver injury and liver fibrosis, decreased collagen deposition and inhibited inflammation in carbon tetrachloride (CCl4)-induced rats. Consistent with the in vivo results, PSG suppressed the transforming growth factor-β1 (TGF-β1)-induced cell viability, liver fibrosis and secretion of inflammatory factors in hepatic stellate cells (HSCs). Interestingly, PSG increased the enzyme activity and promoter activity of sirtuin 3 (SIRT3) in fibrotic liver and activated HSCs. In addition, PSG notably increased the mRNA and protein expression of SIRT3 both in vivo and in vitro. Depletion of SIRT3 either by using 3-TYP (SIRT3 selective inhibitor) or SIRT3 siRNA attenuated the anti-inflammatory effect of PSG in activated HSCs. Further study found that TGF-β1 increased the nuclear expression of NF-κB p65, but showed no obvious effect on the total NF-κB p65 expression. Compared to the control adenovirus (Ad.mk), overexpression of SIRT3 by infecting adenovirus encoding SIRT3 (Ad.SIRT3) notably decreased the nuclear expression of NF-κB p65 in activated HSCs. Our results demonstrated that PSG attenuated inflammation by regulating SIRT3-mediated NF-κB P65 nuclear expression in liver fibrosis, providing novel molecular insights into the anti-fibrotic effect of PSG.
Collapse
Affiliation(s)
- Chang Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jingya Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jue Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yu Wu
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226001, China
| | - Aihua Yang
- Department of Pharmacy, Nantong Maternal and Children Health Care Service Hospital, Nantong 226018, China
| | - Tingting Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Tingting Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Zhaoguo Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
36
|
Preparation, Biosafety, and Cytotoxicity Studies of a Newly Tumor-Microenvironment-Responsive Biodegradable Mesoporous Silica Nanosystem Based on Multimodal and Synergistic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7152173. [PMID: 33488930 PMCID: PMC7803173 DOI: 10.1155/2020/7152173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
Patients with triple negative breast cancer (TNBC) often suffer relapse, and clinical improvements offered by radiotherapy and chemotherapy are modest. Although targeted therapy and immunotherapy have been a topic of significant research in recent years, scientific developments have not yet translated to significant improvements for patients with TNBC. In view of these current clinical treatment shortcomings, we designed a silica nanosystem (SNS) with Nano-Ag as the core and a complex of MnO2 and doxorubicin (Dox) as the surrounding mesoporous silica shell. This system was coated with anti-PD-L1 to target the PD-L1 receptor, which is highly expressed on the surface of tumor cells. MnO2 itself has been shown to act as chemodynamic therapy (CDT), and Dox is cytotoxic. Thus, the full SNS system presents a multimodal, potentially synergistic strategy for the treatment of TNBC. Given potential interest in the clinical translation of SNS, the biological safety and antitumor activity of SNS were evaluated in a series of studies that included physicochemical characterization, particle stability, blood compatibility, and cytotoxicity. We found that the particle size and zeta potential of SNS were 94.6 nm and -22.1 mV, respectively. Ultraviolet spectrum analysis showed that Nano-Ag, Dox, and MnO2 were successfully loaded into SNS, and the drug loading ratio of Dox was about 10.2%. Stability studies found that the particle size of SNS did not change in different solutions. Hemolysis tests showed that SNS, at levels far exceeding the anticipated physiologic concentrations, did not induce red blood cell lysis. Further in vitro and in vivo experiments found that SNS did not activate platelets or cause coagulopathy and had no significant effects on the total number of blood cells or hepatorenal function. Cytotoxicity experiments suggested that SNS significantly inhibited the growth of tumor cells by damaging cell membranes, increasing intracellular ROS levels, inhibiting the release of TGF-β1 cytokines by macrophages, and inhibiting intracellular protein synthesis. In general, SNS appeared to have favorable biosafety and antitumor effects and may represent an attractive new therapeutic approach for the treatment of TNBC.
Collapse
|
37
|
Guo H, Liu H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L, He R, Tang H. Immunotoxicity of nickel: Pathological and toxicological effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111006. [PMID: 32684520 DOI: 10.1016/j.ecoenv.2020.111006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Nickel (Ni) is a widely distributed metal in the environment and an important pollutant because of its many industrial applications. With increasing incidences of Ni contamination, Ni toxicity has become a global public health concern and recent evidence suggests that Ni adversely affects the immune system. Hence, this paper reviews the literature on immune-related effects of Ni exposure, the immunotoxicological effects of Ni, and the underlying mechanism of Ni immunotoxicity. The main focus was on the effect of Ni on the development of organs of immune system, lymphocyte subpopulations, cytokines, immunoglobulins, natural killer (NK) cells, and macrophages. Moreover, Ni toxicity also induces inflammation and several studies demonstrated that Ni could induce immunotoxicity. Excessive Ni exposure can inhibit the development of immune organs by excessively inducing apoptosis and inhibiting proliferation. Furthermore, Ni can decrease T and B lymphocytes, the specific mechanism of which requires further research. The effects of Ni on immunoglobulin A (IgA), IgG, and IgM remain unknown and while Ni inhibited IgA, IgG, and IgM levels in an animal experiment, the opposite result was found in research on humans. Ni inhibits the production of cytokines in non-inflammatory responses. Cytokine levels increased in Ni-induced inflammation responses, and Ni activates inflammation through toll like (TL)4-mediated nuclear factor-κB (NF-κB) and signal transduction cascades mitogen-activated protein kinase (MAPK) pathways. Ni has been indicated to inactivate NK cells and macrophages both in vitro and in vivo. Identifying the mechanisms underlying the Ni-induced immunotoxicity may help to explain the growing risk of infections and cancers in human populations that have been exposed to Ni for a long time. Such knowledge may also help to prevent and treat Ni-related carcinogenicity and toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
38
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
39
|
Padberg F, Hering H, Luch A, Zellmer S. Indirect co-cultivation of HepG2 with differentiated THP-1 cells induces AHR signalling and release of pro-inflammatory cytokines. Toxicol In Vitro 2020; 68:104957. [PMID: 32739440 DOI: 10.1016/j.tiv.2020.104957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
HepG2 and THP-1 cells, the latter differentiated by phorbol 12-myristate 13-acetate (PMA), were co-cultured and characterized for typical liver-specific functions, such as xenobiotic detoxification, lipid and cholesterol metabolism. Furthermore, liver injury-associated pathways, such as inflammation, were studied. In general, the co-cultivation of these cells produced a pro-inflammatory system, as indicated by increased levels of cytokines (IL-8, TGF-α, IL-6, GM-CSF, G-CSF, TGF-β, and hFGF) in the respective supernatant. Increased expression levels of target genes of the aryl hydrocarbon receptor (AHR), e.g., CYP1A1, CYP1A2 and CYP1B1, were detected, accompanied by the increased enzyme activity of CYP1A1. Moreover, transcriptome analyses indicated a significant upregulation of cholesterol biosynthesis, which could be reduced to baseline levels by lovastatin. In contrast, total de novo lipid synthesis was reduced in co-cultured HepG2 cells. Key events of the adverse outcome pathway (AOP) for fibrosis were activated by the co-cultivation, however, no increase in the concentration of extracellular collagen was detected. This indicates, that AOP should be used with care. In summary, the indirect co-culture of HepG2/THP-1 cells results in an increased release of pro-inflammatory cytokines, an activation of the AHR pathway and an increased enzymatic CYP1A activity.
Collapse
Affiliation(s)
- Florian Padberg
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Henrik Hering
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Zellmer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
40
|
Yang F, Deng L, Li J, Chen M, Liu Y, Hu Y, Zhong W. Emodin Retarded Renal Fibrosis Through Regulating HGF and TGFβ-Smad Signaling Pathway. Drug Des Devel Ther 2020; 14:3567-3575. [PMID: 32943844 PMCID: PMC7478377 DOI: 10.2147/dddt.s245847] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal fibrosis is a frequently occurring type of chronic kidney disease that can cause end-stage renal disease. It has been verified that emodin or HGF can inhibit the development of renal fibrosis. However, the antifibrotic effect of emodin in combination with HGF remains unclear. METHODS Cell viability was detected with CCK8. Gene and protein expression in HK2 cells was detected by qRT-PCR and Western blot, respectively. Moreover, a unilateral ureteral obstruction-induced mouse model of renal fibrosis was established for investigating the antifibrotic effect of emodin in combination with HGF in vivo. RESULTS HGF notably increased the expression of collagen II in TGFβ-treated HK2 cells. In addition, HGF-induced increase in collagen II expression was further enhanced by emodin. In contrast, fibronectin, αSMA and Smad2 expression in TGFβ-stimulated HK2 cells was significantly inhibited by HGF and further decreased by combination treatment (emodin plus HGF). Moreover, we found that combination treatment exhibited better antifibrotic effects compared with emodin or HGF in vivo. CONCLUSION These data demonstrated that emodin plus HGF exhibited better antifibrotic effects compared with emodin or HGF. As such, emodin in combination with HGF may serve as a new possibilty for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Lu Deng
- Department of Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - JinPeng Li
- Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei430071, People’s Republic of China
| | - MuHu Chen
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Ying Liu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - YingChun Hu
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
| | - Wu Zhong
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, People’s Republic of China
- Correspondence: Wu Zhong Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan646000, People’s Republic of China Email
| |
Collapse
|