1
|
Zhou G, Wang X, Chen Y, Kang D. Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2. Genes (Basel) 2024; 15:1454. [PMID: 39596654 PMCID: PMC11594492 DOI: 10.3390/genes15111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cashmere, known as "soft gold", is a highly prized fiber from Cashmere goats, produced by secondary hair follicles. Dermal papilla cells, located at the base of these follicles, regulate the proliferation and differentiation of hair matrix cells, which are essential for hair growth and cashmere formation. Recent studies emphasize the role of microRNAs (miRNAs) in controlling gene expression within these processes. METHODS This study centered on exploring the targeted regulatory interaction between miR-144 and the Lhx2 gene. Utilizing methodologies like miRNA target prediction, luciferase reporter assays, and quantitative PCR, they assessed the interplay between miR-144 and Lhx2. Dermal papilla cells derived from Cashmere goats were cultured and transfected with either miR-144 mimics or inhibitors to observe the subsequent effects on Lhx2 expression. RESULTS The results demonstrated that miR-144 directly targets the Lhx2 gene by binding to its mRNA, leading to a decrease in Lhx2 expression. This modulation of Lhx2 levels influenced the behavior of dermal papilla cells, affecting their ability to regulate hair matrix cell proliferation and differentiation. Consequently, the manipulation of miR-144 levels had a significant impact on the growth cycle of cashmere wool. CONCLUSIONS The findings suggest miR-144 regulates hair follicle dynamics by targeting Lhx2, offering insights into hair growth mechanisms. This could lead to innovations in enhancing cashmere production, fleece quality, and addressing hair growth disorders. Future research may focus on adjusting miR-144 levels to optimize Lhx2 expression and promote hair follicle activity.
Collapse
Affiliation(s)
- Guangxian Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.W.); (Y.C.)
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.W.); (Y.C.)
| | - Danju Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
2
|
Leović M, Jakovčević A, Mumlek I, Zagorac I, Sabol M, Leović D. A Pilot Immunohistochemical Study Identifies Hedgehog Pathway Expression in Sinonasal Adenocarcinoma. Int J Mol Sci 2024; 25:4630. [PMID: 38731849 PMCID: PMC11083810 DOI: 10.3390/ijms25094630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.
Collapse
Affiliation(s)
- Matko Leović
- Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Antonija Jakovčević
- Department of Pathology, Cllinical Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| | - Ivan Mumlek
- Department of Maxillofacial and Oral Surgery, Clinical Hospital Center Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Irena Zagorac
- Department of Pathology, Clinical Hospital Center Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Dinko Leović
- Maxillofacial Surgery Unit, Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Ding G, Yu H, Jin J, Qiao X, Ma J, Zhang T, Cheng X. Reciprocal relationship between cancer stem cells and myeloid-derived suppressor cells: implications for tumor progression and therapeutic strategies. Future Oncol 2024; 20:215-228. [PMID: 38390682 DOI: 10.2217/fon-2023-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Recently, there has been an increased focus on cancer stem cells (CSCs) due to their resilience, making them difficult to eradicate. This resilience often leads to tumor recurrence and metastasis. CSCs adeptly manipulate their surroundings to create an environment conducive to their survival. In this environment, myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting epithelial-mesenchymal transition and bolstering CSCs' stemness. In response, CSCs attract MDSCs, enhancing their infiltration, expansion and immunosuppressive capabilities. This interaction between CSCs and MDSCs increases the difficulty of antitumor therapy. In this paper, we discuss the interplay between CSCs and MDSCs based on current research and highlight recent therapeutic strategies targeting either CSCs or MDSCs that show promise in achieving effective antitumor outcomes.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jason Jin
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tong Zhang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
4
|
Zeng Y, Wang F, Li S, Song B. Regulatory Network of Methyltransferase-Like 3 in Stem Cells: Mechanisms and Medical Implications. Cell Transplant 2024; 33:9636897241282792. [PMID: 39466679 PMCID: PMC11528761 DOI: 10.1177/09636897241282792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024] Open
Abstract
Stem cells have the potential to replace defective cells in several human diseases by depending on their self-renewal and differentiation capacities that are controlled by genes. Currently, exploring the regulation mechanism for stem cell capacities from the perspective of methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine modification has obtained great advance, which functions by regulating target genes post-transcriptionally. However, reviews that interpret the regulatory network of METTL3 in stem cells are still lacking. In this review, we systematically analyze the available publications that report the role and mechanisms of METTL3 in stem cells, including embryonic stem cells, pluripotent stem cells, mesenchymal stem cells, and cancer stem cells. The analysis of such publications suggests that METTL3 controls stem cell fates and is indispensable for maintaining its normal capacities. However, its dysfunction induces various pathologies, particularly cancers. To sum up, this review suggests METTL3 as a key regulator for stem cell capacities, with further exploration potential in translational and clinical fields. In conclusion, this review promotes the understanding of how METTL3 functions in stem cells, which provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Fengyang Wang
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Silu Li
- Department of Pediatrics, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| | - Bin Song
- Department of Nephrology, People’s Hospital of Deyang City, Affiliated Hospital of Chengdu Medical College, Deyang, China
| |
Collapse
|
5
|
Quintero M, Bangi E. Disruptions in cell fate decisions and transformed enteroendocrine cells drive intestinal tumorigenesis in Drosophila. Cell Rep 2023; 42:113370. [PMID: 37924517 PMCID: PMC10841758 DOI: 10.1016/j.celrep.2023.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Most epithelial tissues are maintained by stem cells that produce the different cell lineages required for proper tissue function. Constant communication between different cell types ensures precise regulation of stem cell behavior and cell fate decisions. These cell-cell interactions are often disrupted during tumorigenesis, but mechanisms by which they are co-opted to support tumor growth in different genetic contexts are poorly understood. Here, we introduce PromoterSwitch, a genetic platform we established to generate large, transformed clones derived from individual adult Drosophila intestinal stem/progenitor cells. We show that cancer-driving genetic alterations representing common colon tumor genome landscapes disrupt cell fate decisions within transformed tissue and result in the emergence of abnormal cell fates. We also show that transformed enteroendocrine cells, a differentiated, hormone-secreting cell lineage, support tumor growth by regulating intestinal stem cell proliferation through multiple genotype-dependent mechanisms, which represent potential vulnerabilities that could be exploited for therapy.
Collapse
Affiliation(s)
- Maria Quintero
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
6
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
7
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
8
|
Hyperbaric Oxygen Therapy and Tissue Regeneration: A Literature Survey. Biomedicines 2022; 10:biomedicines10123145. [PMID: 36551901 PMCID: PMC9775938 DOI: 10.3390/biomedicines10123145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
By addressing the mechanisms involved in transcription, signaling, stress reaction, apoptosis and cell-death, cellular structure and cell-to-cell contacts, adhesion, migration as well as inflammation; HBO upregulates processes involved in repair while mechanisms perpetuating tissue damage are downregulated. Many experimental and clinical studies, respectively, cover wound healing, regeneration of neural tissue, of bone and cartilage, muscle, and cardiac tissue as well as intestinal barrier function. Following acute injury or in chronic healing problems HBO modulates proteins or molecules involved in inflammation, apoptosis, cell growth, neuro- and angiogenesis, scaffolding, perfusion, vascularization, and stem-cell mobilization, initiating repair by a variety of mechanisms, some of them based on the modulation of micro-RNAs. HBO affects the oxidative stress response via nuclear factor erythroid 2-related factor 2 (Nrf2) or c-Jun N-terminal peptide and downregulates inflammation by the modulation of high-mobility group protein B1 (HMGB-1), toll-like receptor 4 and 2 (TLR-4, TLR-2), nuclear factor kappa-B (NFκB), hypoxia-inducible factor (HIF-1α) and nitric oxide (NO•). HBO enhances stem-cell homeostasis via Wnt glycoproteins and mammalian target of rapamycin (mTOR) and improves cell repair, growth, and differentiation via the two latter but also by modulation of extracellular-signal regulated kinases (ERK) and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway. The HBO-induced downregulation of matrix metalloproteinases-2 and 9 (MMP-2/-9), rho-associated protein kinase (ROCK) and integrins improve healing by tissue remodeling. Interestingly, the action of HBO on single effector proteins or molecules may involve both up- or downregulation, respectively, depending on their initial level. This probably mirrors a generally stabilizing potential of HBO that tends to restore the physiological balance rather than enhancing or counteracting single mechanisms.
Collapse
|
9
|
Upadhyay TK, Trivedi R, Khan F, Pandey P, Sharangi AB, Goel H, Saeed M, Park MN, Kim B. Potential Therapeutic Role of Mesenchymal-Derived Stem Cells as an Alternative Therapy to Combat COVID-19 through Cytokines Storm. Cells 2022; 11:2686. [PMID: 36078094 PMCID: PMC9455060 DOI: 10.3390/cells11172686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Medical health systems continue to be challenged due to newly emerging COVID-19, and there is an urgent need for alternative approaches for treatment. An increasing number of clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach that can treat several diseases that were considered incurable in the past. It may be possible to develop novel methods to treat various diseases by identifying stem cells' growth and differentiation factors. Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The present review article is organized to put forward the positive arguments and implications in support of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19. Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and counterbalance the cytokine storm.
Collapse
Affiliation(s)
- Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur 741252, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 110023, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 34464, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
10
|
Jackson AR, Narla ST, Bates CM, Becknell B. Urothelial progenitors in development and repair. Pediatr Nephrol 2022; 37:1721-1731. [PMID: 34471946 PMCID: PMC8942604 DOI: 10.1007/s00467-021-05239-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Urothelium is a specialized multilayer epithelium that lines the urinary tract from the proximal urethra to the kidney. In addition to proliferation and differentiation during development, urothelial injury postnatally triggers a robust regenerative capacity to restore the protective barrier between the urine and tissue. Mounting evidence supports the existence of dedicated progenitor cell populations that give rise to urothelium during development and in response to injury. Understanding the cellular and molecular basis for urothelial patterning and repair will inform tissue regeneration therapies designed to ameliorate a number of structural and functional defects of the urinary tract. Here, we review the current understanding of urothelial progenitors and the signaling pathways that govern urothelial development and repair. While most published studies have focused on bladder urothelium, we also discuss literature on upper tract urothelial progenitors. Furthermore, we discuss evidence supporting existence of context-specific progenitors. This knowledge is fundamental to the development of strategies to regenerate or engineer damaged or diseased urothelium.
Collapse
Affiliation(s)
- Ashley R Jackson
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, W308, Columbus, 43205, OH, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sridhar T Narla
- Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Rangos Research Building, 4401 Penn Avenue, Pittsburgh, 15224, PA, USA
| | - Carlton M Bates
- Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Rangos Research Building, 4401 Penn Avenue, Pittsburgh, 15224, PA, USA.
- Division of Nephrology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Brian Becknell
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute At Nationwide Children's Hospital, 700 Children's Drive, W308, Columbus, 43205, OH, USA.
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA.
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
11
|
Barbaro V, Orvieto A, Alvisi G, Bertolin M, Bonelli F, Liehr T, Harutyunyan T, Kankel S, Joksic G, Ferrari S, Daniele E, Ponzin D, Bettio D, Salviati L, Di Iorio E. Analysis and pharmacological modulation of senescence in human epithelial stem cells. J Cell Mol Med 2022; 26:3977-3994. [PMID: 35706382 PMCID: PMC9279594 DOI: 10.1111/jcmm.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022] Open
Abstract
Human epithelial stem cells (ESCs) are characterized by long‐term regenerative properties, much dependent on the tissue of origin and varying during their lifespan. We analysed such variables in cultures of ESCs isolated from the skin, conjunctiva, limbus and oral mucosa of healthy donors and patients affected by ectrodactyly‐ectodermal dysplasia‐clefting syndrome, a rare genetic disorder caused by mutations in the p63 gene. We cultured cells until exhaustion in the presence or in the absence of DAPT (γ‐secretase inhibitor; N‐[N‐(3, 5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine T‐butyl ester). All cells were able to differentiate in vitro but exhibited variable self‐renewal potential. In particular, cells carrying p63 mutations stopped prematurely, compared with controls. Importantly, administration of DAPT significantly extended the replicative properties of all stem cells under examination. RNA sequencing analysis revealed that distinct sets of genes were up‐ or down‐regulated during their lifetime, thus allowing to identify druggable gene networks and off‐the‐shelf compounds potentially dealing with epithelial stem cell senescence. These data will expand our knowledge on the genetic bases of senescence and potentially pave the way to the pharmacological modulation of ageing in epithelial stem cells.
Collapse
Affiliation(s)
| | - Antonio Orvieto
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
| | - Stefanie Kankel
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Gordana Joksic
- Department of Physical Chemistry, Vinča Institue of Nuclear Sciences, University of Belgrade, Vinča, Serbia
| | | | - Elena Daniele
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy.,Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Clinical Genetics Unit, University Hospital of Padua, Padua, Italy
| |
Collapse
|
12
|
Connexin 43 and Sonic Hedgehog Pathway Interplay in Glioblastoma Cell Proliferation and Migration. BIOLOGY 2021; 10:biology10080767. [PMID: 34439999 PMCID: PMC8389699 DOI: 10.3390/biology10080767] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Glioblastoma is the product of accumulated genetic and epigenetic alteration where tumor cells support each other through cellular communication mechanisms and deregulated signalling processes. The autocrine and paracrine pathways between the intracellular and extracellular milieu is mediated by connexin 43, the main gap junction-forming protein driving glioblastoma progression. In this scenario, sonic hedgehog pathway, a key deregulated pathway involved in cell network signalling may affect connexin 43 expression, promoting glioblastoma pathobiology. In this study, we sought to explore how the modulation of the sonic hedgehog affects connexin 43 inducing glioblastoma hallmarks. To do this we evaluated biological effects of sonic hedgehog pathway modulation by purmorphamine and cyclopamine, a smoothened agonist and antagonist, respectively. We revealed that cell migration and proliferation are associated with connexin 43 expression upon sonic hedgehog modulation. Our study suggests that sonic hedgehog and connexin 43 axis may represent a potential therapeutic strategy for glioblastoma. Abstract Glioblastoma (GBM) represents the most common primary brain tumor within the adult population. Current therapeutic options are still limited by high rate of recurrences and signalling axes that promote GBM aggressiveness. The contribution of gap junctions (GJs) to tumor growth and progression has been proven by experimental evidence. Concomitantly, tumor microenvironment has received increasing interest as a critical process in dysregulation and homeostatic escape, finding a close link between molecular mechanisms involved in connexin 43 (CX43)-based intercellular communication and tumorigenesis. Moreover, evidence has come to suggest a crucial role of sonic hedgehog (SHH) signalling pathway in GBM proliferation, cell fate and differentiation. Herein, we used two human GBM cell lines, modulating SHH signalling and CX43-based intercellular communication in in vitro models using proliferation and migration assays. Our evidence suggests that modulation of the SHH effector smoothened (SMO), by using a known agonist (i.e., purmorphamine) and a known antagonist (i.e., cyclopamine), affects the CX43 expression levels and therefore the related functions. Moreover, SMO activation also increased cell proliferation and migration. Importantly, inhibition of CX43 channels was able to prevent SMO-induced effects. SHH pathway and CX43 interplay acts inducing tumorigenic program and supporting cell migration, likely representing druggable targets to develop new therapeutic strategies for GBM.
Collapse
|
13
|
Yoon G, Davidson LA, Goldsby JS, Mullens DA, Ivanov I, Donovan SM, Chapkin RS. Exfoliated epithelial cell transcriptome reflects both small and large intestinal cell signatures in piglets. Am J Physiol Gastrointest Liver Physiol 2021; 321:G41-G51. [PMID: 33949197 PMCID: PMC8321797 DOI: 10.1152/ajpgi.00017.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assessing intestinal development and host-microbe interactions in healthy human infants requires noninvasive approaches. We have shown that the transcriptome of exfoliated epithelial cells in feces can differentiate breast-fed and formula-fed infants and term and preterm infants. However, it is not fully understood which regions of the intestine that the exfoliated cells represent. Herein, the transcriptional profiles of exfoliated cells with that of the ileal and colonic mucosa were compared. We hypothesized that exfoliated cells in the distal colon would reflect mucosal signatures of more proximal regions of the gut. Two-day-old piglets (n = 8) were fed formulas for 20 days. Luminal contents and mucosa were collected from ileum (IL), ascending colon (AC), and descending (DC) colon, and mRNA was extracted and sequenced. On average, ∼13,000 genes were mapped in mucosal tissues and ∼10,000 in luminal contents. The intersection of detected genes between three mucosa regions and DC exfoliome indicated an approximately 99% overlap. On average, 49% of the genes in IL, AC, and DC mucosa were present in the AC and DC exfoliome. Genes expressed predominantly in specific anatomic sites (stomach, pancreas, small intestine, colon) were detectable in exfoliated cells. In addition, gene markers for all intestinal epithelial cell types were expressed in the exfoliome representing a diverse array of cell types arising from both the small and large intestine. Genes were mapped to nutrient absorption and transport and immune function. Thus, the exfoliome represents a robust reservoir of information in which to assess intestinal development and responses to dietary interventions.NEW & NOTEWORTHY The transcriptome of exfoliated epithelial cells in stool contain gene signatures from both small and large intestinal mucosa affording a noninvasive approach to assess gut health and function.
Collapse
Affiliation(s)
- Grace Yoon
- 1Department of Statistics, Texas A&M University, College Station, Texas
| | - Laurie A. Davidson
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Jennifer S. Goldsby
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Destiny A. Mullens
- 3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas,4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- 4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Sharon M. Donovan
- 5Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois
| | - Robert S. Chapkin
- 2Department of Nutrition, Texas A&M University, College Station Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| |
Collapse
|
14
|
Ahn JH, Kim J, Hong SP, Choi SY, Yang MJ, Ju YS, Kim YT, Kim HM, Rahman MDT, Chung MK, Hong SD, Bae H, Lee CS, Koh GY. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 2021; 131:148517. [PMID: 34003804 PMCID: PMC8245175 DOI: 10.1172/jci148517] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.
Collapse
Affiliation(s)
- Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - JungMo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sung Yong Choi
- Department of Otorhinolaryngology – Head and Neck Surgery, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Biomolecular and Cellular Structure, IBS, Daejeon, Republic of Korea
| | - MD Tazikur Rahman
- Department of Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk, National University Hospital, Jeonju, Republic of Korea
| | - Man Ki Chung
- Department of Otorhinolaryngology – Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology – Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Chang-Seop Lee
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk, National University Hospital, Jeonju, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
15
|
Yaglova N, Obernikhin S, Nazimova S, Yaglov V. Developmental exposure to endocrine disrupter dichlorodiphenyltrichloroethane alters transcriptional regulation of postnatal morphogenesis of adrenal zona fasciculata. Saudi J Biol Sci 2020; 27:3655-3659. [PMID: 33304177 PMCID: PMC7714961 DOI: 10.1016/j.sjbs.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The present study is aimed to validate expression of transcriptional factors mediating postnatal development of adrenal zona fasciculata in rats exposed to low doses of endocrine disrupter dichlorodiphenyltrichloroethane prenatally and postnatally. Histological and immunohistochemical examination of the adrenals was performed. Impaired blood circulation, dystrophy and cell death were found in zona fasciculata of pubertal rats after developmental exposure to low doses of dichlorodiphenyltrichloroethane. Reparation of zona fasciculata was associated with increased number of Sonic hedgehog- and Oct4-expressing adrenal cortical cells but not in areas of regeneration. These data suggest that cell death may promote upregulation of factors inducing and maintaining pluripotent state in fasciculata cells for restoration of tissue homeostasis. Termination of growth of the adrenals after puberty was associated with upregulation of antiproliferative factor Hhex and decrease of cell proliferation. Dichlorodiphenyltrichloroethane exposure disrupted transcriptional control of cell proliferation by downregulation of Hhex expression in fasciculata cells. Decrease of proliferation in the exposed rats was mediated by inhibition of Sonic hedgehog and Oct4 expression and suppression of canonical Wnt signaling. The present study elucidated an alternative mechanism of proliferation control activated by endocrine disrupter dichlorodiphenyltrichloroethane through transition of fasciculata cells from pluripotent state and higher proliferative potential to differentiation. Activation of the alternative mechanism of growth control may probably affect maintenance of tissue homeostasis of zona fasciculata in postnatal development.
Collapse
Affiliation(s)
- Nataliya Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Sergey Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Svetlana Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Valentin Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| |
Collapse
|
16
|
Nosrati H, Alizadeh Z, Nosrati A, Ashrafi-Dehkordi K, Banitalebi-Dehkordi M, Sanami S, Khodaei M. Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue Cell 2020; 68:101470. [PMID: 33248403 DOI: 10.1016/j.tice.2020.101470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Any significant loss of vision or blindness caused by corneal damages is referred to as corneal blindness. Corneal blindness is the fourth most common cause of blindness worldwide, representing more than 5% of the total blind population. Currently, corneal transplantation is used to treat many corneal diseases. In some cases, implantation of artificial cornea (keratoprosthesis) is suggested after a patient has had a donor corneal transplant failure. The shortage of donors and the side effects of keratoprosthesis are limiting these approaches. Recently, researchers have been actively pursuing new approaches for corneal regeneration because of these limitations. Nowadays, tissue engineering of different corneal layers (epithelium, stroma, endothelium, or full thickness tissue) is a promising approach that has attracted a great deal of interest from researchers and focuses on regenerative strategies using different cell sources and biomaterials. Various sources of corneal and non-corneal stem cells have shown significant advantages for corneal epithelium regeneration applications. Pluripotent stem cells (embryonic stem cells and iPS cells), epithelial stem cells (derived from oral mucus, amniotic membrane, epidermis and hair follicle), mesenchymal stem cells (bone marrow, adipose-derived, amniotic membrane, placenta, umbilical cord), and neural crest origin stem cells (dental pulp stem cells) are the most promising sources in this regard. These cells could also be used in combination with natural or synthetic scaffolds to improve the efficacy of the therapeutic approach. As the ocular surface is exposed to external damage, the number of studies on regeneration of the corneal epithelium is rising. In this paper, we reviewed the stem cell-based strategies for corneal epithelium regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| |
Collapse
|
17
|
Chen ZH, Luo XC, Yu CR, Huang L. Matrix metalloprotease-mediated cleavage of neural glial-related cell adhesion molecules activates quiescent olfactory stem cells via EGFR. Mol Cell Neurosci 2020; 108:103552. [PMID: 32918999 DOI: 10.1016/j.mcn.2020.103552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Quiescent stem cells have been found in multiple adult organs, and activation of these stem cells is critical to the restoration of damaged tissues in response to injury or stress. Existing evidence suggests that extrinsic cues from the extracellular matrix or supporting cells of various stem cell niches may interact with intrinsic components to initiate stem cell differentiation, but the molecular and cellular mechanisms regulating their activation are not fully understood. In the present study, we find that olfactory horizontal basal cells (HBCs) are stimulated by neural glial-related cell adhesion molecules (NrCAMs). NrCAM activation requires matrix metalloproteases (MMPs) and epidermal growth factor receptors (EGFRs). Inhibiting MMP activity or EGFR activation not only blocks HBC proliferation in the cultured olfactory organoids, but also severely suppresses HBC proliferation in the olfactory epithelium following methimazole-induced injury, resulting in a delay of olfactory mucosa reconstitution and functional recovery of the injured mice. Both NrCAMs and EGFR are expressed by the HBCs and their expression increases upon injury. Our data indicate that MMP-mediated cleavage of NrCAMs serves as an autocrine or paracrine signal that activates EGFRs on HBCs to trigger HBC proliferation and differentiation to reconstruct the entire olfactory epithelium following injury.
Collapse
Affiliation(s)
- Zhen-Huang Chen
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Cui Luo
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Liquan Huang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310027, China; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Wang Y, Jiang Z, Yu M, Yang G. Roles of circular RNAs in regulating the self-renewal and differentiation of adult stem cells. Differentiation 2020; 113:10-18. [PMID: 32179373 DOI: 10.1016/j.diff.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
19
|
Kim JT, Li C, Weiss HL, Zhou Y, Liu C, Wang Q, Evers BM. Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells. Cells 2019; 8:cells8091106. [PMID: 31546785 PMCID: PMC6770209 DOI: 10.3390/cells8091106] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin pathway plays a crucial role in development and renewal of the intestinal epithelium. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme in the synthesis of ketone body β-hydroxybutyrate (βHB), contributes to the regulation of intestinal cell differentiation. Here, we have shown that HMGCS2 is a novel target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cancer cell lines and normal intestinal organoids. Inhibition of the Wnt/β-catenin pathway resulted in increased protein and mRNA expression of HMGCS2 and βHB production in human colon cancer cell lines LS174T and Caco2. In addition, Wnt inhibition increased expression of PPARγ and its target genes, FABP2 and PLIN2, in these cells. Conversely, activation of Wnt/β-catenin signaling decreased protein and mRNA levels of HMGCS2, βHB production, and expression of PPARγ and its target genes in LS174T and Caco2 cells and mouse intestinal organoids. Moreover, inhibition of PPARγ reduced HMGCS2 expression and βHB production, while activation of PPARγ increased HMGCS2 expression and βHB synthesis. Furthermore, PPARγ bound the promoter of HMGCS2 and this binding was enhanced by β-catenin knockdown. Finally, we showed that HMGCS2 inhibited, while Wnt/β-catenin stimulated, glycolysis, which contributed to regulation of intestinal cell differentiation. Our results identified HMGCS2 as a downstream target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cells. Moreover, our findings suggest that Wnt/β-catenin/PPARγ signaling regulates intestinal cell differentiation, at least in part, through regulation of ketogenesis.
Collapse
Affiliation(s)
- Ji Tae Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Chang Li
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA.
- Department of Surgery, University of Kentucky, Lexington, KY 40536 USA.
| |
Collapse
|