1
|
Vakili N, Ashengroph M, Sharifi A, Zorab MM. Eco-friendly synthesis of copper nanoparticles by using Ralstonia sp. and their antibacterial, anti-biofilm, and antivirulence activities. Biochem Biophys Rep 2025; 42:101978. [PMID: 40160516 PMCID: PMC11954117 DOI: 10.1016/j.bbrep.2025.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Biosynthesized nanoparticles (NPs) created through environmentally friendly and low-toxicity methods show great potential for various nanotechnology applications. In particular, copper nanoparticles (Cu-NPs) are promising for medical uses. This study aims to explore the eco-friendly synthesis of Cu-NPs and their potential as a novel strategy to combat antimicrobial resistance. Cu-NPs were synthesized using Ralstonia sp. KF264453 and characterized with techniques including ultraviolet-visible (UV-Vis) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), zeta potential analysis, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The antibacterial properties of the NPs and their synergistic effects with common antibiotics were assessed. The study also investigated their impact on bacterial cell membrane disruption, biofilm formation, efflux pump activity, and motility. UV-Vis analysis indicated a significant absorption peak at 552 nm, confirming surface plasmon resonance (SPR) for Cu-NPs. FESEM images revealed predominantly spherical NPs with an average size of 69.7 nm. DLS measurements indicated a hydrodynamic diameter of 78.2 nm due to stabilizing biomolecules. A zeta potential of -5.1 mV suggested moderate colloidal stability, suitable for short-term biomedical applications. XRD analysis confirmed a face-centered cubic (FCC) crystalline structure with an average crystallite size of 45 nm. FT-IR spectra detected functional groups, indicating that proteins, carbohydrates, lipids, and amino acids may have contributed to the synthesis and stabilization of the NPs. Cu-NPs showed notable antibacterial efficacy, with minimum inhibitory concentrations (MIC) between 0.625 and 5 μg/mL and minimum bactericidal concentrations (MBC) ranging from 5 to 20 μg/mL. They improved the effectiveness of penicillin and cefixime, enhanced membrane permeability, inhibited biofilm formation, disrupted efflux pump activity in Staphylococcus aureus SA-1199B, and decreased swarming motility in Pseudomonas aeruginosa. Cu-NPs demonstrate strong antimicrobial activity, inhibit biofilm formation and efflux pump function, and enhance the effectiveness of conventional antibiotics. While they show promise in combating antimicrobial resistance, further research is needed to assess their clinical potential and safety for medical use.
Collapse
Affiliation(s)
- Narges Vakili
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
- Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Aram Sharifi
- Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Musa Moetasam Zorab
- Department of Physics, College of science, University of Halabja, Kurdistan region, Iraq
| |
Collapse
|
2
|
Nath J, Banerjee G, De J, Dsouza N, Sur S, Scott JW, Banerjee P. Nanoplastics-mediated physiologic and genomic responses in pathogenic Escherichia coli O157:H7. J Nanobiotechnology 2025; 23:304. [PMID: 40259296 PMCID: PMC12013119 DOI: 10.1186/s12951-025-03369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
The widespread occurrence of microplastics (MP) and nanoplastics (NP) in the environment is commonly thought to negatively impact living organisms; however, there remains a considerable lack of understanding regarding the actual risks associated with exposure. Microorganisms, including pathogenic bacteria, frequently interact with MPs/NPs in various ecosystems, triggering physiological responses that warrant a deeper understanding. The present study experimentally demonstrated the impact of surface-functionalized differentially charged polystyrene (PS) NPs on the physiology of human pathogenic Escherichia coli O157:H7 and their influence on biofilm formation. Our results suggest that charged NPs can influence the growth, viability, virulence, physiological stress response, and biofilm lifestyle of the pathogen. Positively-charged NPs were found to have a bacteriostatic effect on planktonic cell growth and affect cellular viability and biofilm initiation compared to negatively charged and uncharged NPs. The transcriptomic and gene expression data indicated significant changes in the global gene expression profile of cells exposed to NPs, including the differential expression of genes encoding several metabolic pathways associated with stress response and virulence. Significant upregulation of Shiga-like toxin (stx1a), quorum sensing, and biofilm initiation genes was observed in NP-exposed biofilm samples. Overall, exposure to NPs did not significantly affect the survival of pathogens but affected their growth and biofilm development pattern, and most importantly, their virulence traits.
Collapse
Affiliation(s)
- Jayashree Nath
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jayita De
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Noella Dsouza
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - John W Scott
- Prairie Research Institute, Illinois Sustainable Technology Center, University of Illinois, Champaign, IL, 61820, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Nyandoro VO, Ismail EA, Tageldin A, Gafar MA, Peters XQ, Mautsoe R, Omolo CA, Govender T. Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. Expert Opin Drug Deliv 2025; 22:347-365. [PMID: 39949087 DOI: 10.1080/17425247.2025.2459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems. AREAS COVERED The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus. EXPERT OPINION Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Pharmacy, Kabarak University, Kabarak, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Relebohile Mautsoe
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Zare-Zardini H, Alizadeh A, Saberian E, Jenča A, Jenca A, Petrášová A, Jenčová J, Hasani ST, Heidari MA, Sahraei N. Enhanced antimicrobial efficacy and biocompatibility of albumin nanoparticles loaded with Mentha extract against methicillin resistant Staphylococcus aureus. Sci Rep 2025; 15:6548. [PMID: 39994285 PMCID: PMC11850703 DOI: 10.1038/s41598-025-90825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
In an effort to combat methicillin-resistant Staphylococcus aureus (MRSA), this study investigates the potential of mentha-loaded albumin nanoparticles (MLAN) as a novel antimicrobial agent. MLAN was synthesized by a desolvation method in which the mentha extract was encapsulated in albumin nanoparticles to increase stability and reduce toxicity. Characterization of the nanoparticles by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray Diffraction (XRD) confirmed their spherical morphology, a size range of 100-200 nm and uniform distribution. The encapsulation efficiency (EE%) and loading capacity (LC%) of MLAN were determined to be 80% and 72.73%, respectively, indicating a high effectiveness of the encapsulation process. Evaluation of cytotoxicity using the MTT assay revealed that MLAN exhibited significantly higher biocompatibility compared to aqueous Mentha extract and maintained cell viability at 85.1 ± 3.5% at the highest concentration tested (250 µg/mL). Antimicrobial evaluations against MRSA showed that MLAN had larger zones of inhibition and lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values (0.39 mg/mL and 0.78 mg/mL, respectively) compared to the aqueous extract (MIC: 0.78 mg/mL, MBC: 1.56 mg/mL). In addition, real-time PCR showed that MLAN significantly downregulated the expression of key virulence genes (icaA, icaD and ebps) in MRSA, indicating a potential reduction in bacterial virulence. These results suggest that MLAN could be a promising alternative to conventional antibiotics with improved antimicrobial efficacy and reduced cytotoxicity. The study underlines the potential of combining plant extracts with nanotechnology for the development of new therapeutic approaches against antibiotic-resistant pathogens such as MRSA. Further in vivo studies are warranted to validate the clinical applicability of MLAN.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Ameneh Alizadeh
- Department of Applied Chemistry, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, 75918-74831, Iran.
| | - Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery, Košice Bacikova, Pavol Jozef Šafárik University LF, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery, Košice Bacikova, Pavol Jozef Šafárik University LF, Kosice, Slovakia
| | - Andrej Jenca
- Klinika of Stomatology and Maxillofacial Surgery, Košice Bacikova, Pavol Jozef Šafárik University LF, Kosice, Slovakia.
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery, Košice Bacikova, Pavol Jozef Šafárik University LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery, Košice Bacikova, Pavol Jozef Šafárik University LF, Kosice, Slovakia
| | | | - Mohammad Amin Heidari
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Islamic Republic of Iran
| | - Nafiseh Sahraei
- Pharmaceutical Science Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Liu X, Xu W, Feng J, Wang Y, Li K, Chen Y, Wang W, Zhao W, Ge S, Li J. Adoptive cell transfer of piezo-activated macrophage rescues immunosuppressed rodents from life-threating bacterial infections. Nat Commun 2025; 16:1363. [PMID: 39905015 PMCID: PMC11794888 DOI: 10.1038/s41467-025-56460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Bacterial infections pose a significant threat to human health. Catalytic antibacterial nanoparticles that generate reactive oxygen species (ROS) are emerging, as a promising therapeutic approach in treating bacterial infection by boosting the innate immune defenses. However, the interaction between innate immune cells and these catalytic nanoparticles remains poorly understood. Here, by using rodent models of bacterial infection, we test the antimicrobial properties of ultrasound-responsive piezo-catalytic nanoparticles (piezoNP). We show that piezoNPs strongly interact with macrophages within subcutaneous abscesses caused by Staphylococcus aureus (S. aureus) infections, and demonstrate that this interaction enhances the macrophage-mediated antibacterial phagocytosis and killing activity through intracellular piezocatalysis. Moreover, we test the use of these piezo-activated macrophages (piezoMϕ) as adoptive cell therapy (ACT) for treating various immunosuppressive bacterial infections, including sepsis, pneumonia and peritonitis. Our study thus highlights the potential application of catalytic nanoparticles as a promising alternative to conventional infection treatment to effectively modulate the innate immune responses and to engineer macrophages for immunotherapy purposes.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Wenxiu Xu
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Junkun Feng
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Ying Wang
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Kai Li
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yi Chen
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Wenjun Wang
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Weiwei Zhao
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Shaohua Ge
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Jianhua Li
- Department of Biomaterials & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
6
|
Dokuz S, Coksu I, Acar S, Ozbek T. A precise targeting of Staphylococcus aureus with phage RBP-decorated antibiotic-loaded nanoparticles. Biotechnol J 2025; 20:e2300520. [PMID: 39973473 DOI: 10.1002/biot.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 02/21/2025]
Abstract
Resistant strains of Staphylococcus aureus, which have emerged due to the excessive and indiscriminate use of antibiotics, have become one of the most significant causes of hospital-acquired infections, highlighting the necessity for specific and effective alternative methods in combating them. Leveraging the therapeutic potential of bacteriophage receptor binding protein (RBP), which occurs unique and irreversible binding of its host, in recognizing bacteria renders them valuable components in the development of targeted nanoparticle-based drug delivery systems, and offers promising approach to combat antibiotic resistance. In this study, synthesis and characterization of rifampicin-loaded PLGA nanoparticle (RIF-NP) were conducted and for selective targeting of S. aureus, rGp144, the RBP derived from Bacteriophage K, was conjugated onto the surface of the synthesized RIF-NP (RIF144-NP). While RIF-NP initially exhibited approximately a zeta potential of -26 mV and a size of 250 nm, after the conjugation with rGp144 led to an increase in zeta potential to -11 mV and a size to 300 nm. FT-IR analysis after conjugation confirmed the presence of primary amide bands in the regions of 1650 cm-1 and 1550 cm-1. Furthermore, the nanoparticles exhibited an encapsulation efficiency of 35.26% and a drug loading capacity of 26.64%. When the antimicrobial activities were evaluated, it was observed that compared to free RIF, the nano systems reduced the MIC value by twofold for all S. aureus strains. Incorporating a targeting strategy based on phage RBP in decoration to the surface of nanoparticular drug carriers represents a noteworthy and innovative treatment when combating bacterial infections.
Collapse
Affiliation(s)
- Senanur Dokuz
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Irem Coksu
- Faculty of Chemical and Metallurgical, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Tulin Ozbek
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
7
|
Al-Fakeh MS, O. Alsaedi R, Aldoghaim M, Ibrahim ABM, Mostafa AM. Nickel Oxide Nanoparticles Derived from Coordination Polymer of PVA and Aminobenzoic Acid Derivative: Synthesis, Characterization and Antimicrobial Activity. Polymers (Basel) 2025; 17:301. [PMID: 39940502 PMCID: PMC11819888 DOI: 10.3390/polym17030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
This study focused on the synthesis, properties, and antibiological activity of NiO nanoparticles derived from polyvinyl alcohol (PVA) and aminobenzoic acid (P-ABA) derivatives by calcination method. The nanoparticles were synthesized using a simple, cost-effective method that involved the thermal decomposition of PVA and the incorporation of aminobenzoic acid. Characterization techniques such as X-ray diffraction (XRD), Kinetic analysis, and the thermal properties of nickel(II) metal complex in dynamic air were analyzed via TG and DTG. The kinetic analyses and thermodynamic parameters (∆H*, ∆G*, and ∆S*) for this compound were calculated by the Coats-Redfern and Horowitz-Metzger methods. The obtained kinetic parameters displayed the kinetic compensation effect. Electron microscopy (SEM and TEM) and (FT-IR) were employed to confirm the formation, morphology, and structural properties of the nanoparticles. The results indicated the successful synthesis of NiO nanoparticles with distinct crystalline phases and difference distributions. XRD confirmed that the resulting oxide was pure single-crystalline NiO nanoparticles. Scanning electron microscopy indicated that the crystallite size of nickel oxide nano-crystals was in the range of 26-36 nm. The magnetic moment was 2.59 B.M for Ni(II) complex. The antibiological activity of the synthesized nanoparticles was evaluated against bacterial strains, both Gram-positive and Gram-negative bacteria. The findings revealed significant antimicrobial properties, with the NiO nanoparticles demonstrating higher inhibitory effects against bacterial and fungal strains. This study highlights the potential of PVA and aminobenzoic acid derivatives as effective precursors for producing metal oxide nanoparticles with promising applications in antimicrobial treatments and materials science.
Collapse
Affiliation(s)
- Maged S. Al-Fakeh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Roaa O. Alsaedi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Maryam Aldoghaim
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ahmed B. M. Ibrahim
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Ayman M. Mostafa
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
8
|
Shaw JR, Vaidya R, Xu F, Dharmaraj S, Pearson RM. Microfluidics-generated PLA nanoparticles: impact of purification method on macrophage interactions, anti-inflammatory effects, biodistribution, and protein corona formation. RSC PHARMACEUTICS 2025; 2:135-146. [PMID: 39650739 PMCID: PMC11615567 DOI: 10.1039/d4pm00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Polymeric nanoparticles (NPs) are traditionally formulated using batch methodologies that are poorly scalable and require time consuming, hands-on purification procedures. Here, we prepared poly(lactic acid) (PLA)-based polymeric NPs using a scalable microfluidics-based method and systematically investigated the impact of purification method (centrifugation versus tangential flow filtration (TFF)) to remove poly(vinyl alcohol) (PVA) on macrophage uptake, anti-inflammatory effects, biodistribution, and protein corona formation. TFF purification demonstrated significantly higher recovery of NPs compared to the centrifugation method, with little-to-no aggregation observed. PVA removal efficiency was superior with centrifugation, although TFF was comparable. NP cellular association, in vitro anti-inflammatory activity, and in vivo biodistribution studies suggested purification method-dependent alterations, which were correlated with protein corona profiles. This study underscores the potential of TFF, combined with microfluidics, as an efficient and high-yield purification method for NPs, and reveals the need for extensive confirmation of NP biological activity alongside physicochemical properties when developing NP therapeutics at-scale.
Collapse
Affiliation(s)
- Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine 685 W. Baltimore Street Baltimore MD 21201 USA
| | - Radha Vaidya
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Fanny Xu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine 685 W. Baltimore Street Baltimore MD 21201 USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N. Pine Street Baltimore MD 21201 USA +410-706-3257
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine 22 S. Greene Street Baltimore MD 21201 USA
| |
Collapse
|
9
|
Zhang R, Li G, Wu Y, Wang X, Luan Q. Pathogenic mechanisms and potential applications of extracellular vesicles from periodontal pathogens in periodontitis. Front Immunol 2024; 15:1513983. [PMID: 39759521 PMCID: PMC11695242 DOI: 10.3389/fimmu.2024.1513983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Periodontitis is a multifactorial disease characterized by chronic destruction of the periodontal supporting tissues and is closely associated with the dysbiosis of the plaque biofilm. It is the leading cause of tooth loss in adults. Bacterial extracellular vesicles (BEVs) are released from bacteria, which range in size from 20 to 400 nm. These vesicles contain various components derived from their parent bacteria, including nucleic acids, proteins, lipids, and other molecules, which facilitate functions such as molecular transfer, metabolic regulation, bacterial interactions, biofilm formation, and immune modulation. BEVs participated in the pathophysiological process of periodontitis. Recently emerging evidence also showed that the contents of EVs in saliva and gingival crevicular fluid (miRNAs, mRNAs, and proteins) could be used as potential biomarkers for periodontitis. While most current research focuses on human-derived components, much less is known about BEVs. Therefore, this review introduces the formation mechanisms and components of BEVs related to periodontitis. Then, this review summarizes the current information about the mechanism, the diagnostic and theraputic value of periodontal pathogen-derived extracellular vesicles in the development of periodontitis. Furthermore, the future challenges of exploring the role of BEVs in periodontitis are also discussed.
Collapse
Affiliation(s)
- Ruiqing Zhang
- Department of Periodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Guoliang Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yingtao Wu
- Department of Periodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Xiaoxuan Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
10
|
Tohamy HAS. Cellulosic schiff base hydrogel biosensor for bacterial detection with pH/thermo-responsitivity: DFT calculations and molecular docking. Int J Biol Macromol 2024; 283:137389. [PMID: 39537077 DOI: 10.1016/j.ijbiomac.2024.137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A facile green hydrothermal method was developed for the preparation of fluorescent carbon dots (CDs) using sugarcane bagasse (SB) as a raw material. The incorporation of CDs within the hydroxyethyl cellulose-acrylamide hydrogel (HEC-AM) in the presence of glutardehyde (GA) as a crosslinking agent showed bright red emission under fluorescence microscope. The hydroxyethyl cellulose-N-CDs-acrylamide hydrogel (HEC-AM@N-CDs) were used as alternative biocompatible fluorescent probes for imaging and suppression of Gram-negative bacteria such as Escherichia coli (with inhibition zones 13 mm for HEC-AM to 17 mm for HEC-AM@N-CDs) & Helicobacter pylori (with inhibition zones 16 mm for HEC-AM to 13 mm for HEC-AM@N-CDs) and Gram-positive bacteria such as Micrococcus luteus (with inhibition zones 15 mm for HEC-AM to 16 mm for HEC-AM@N-CDs) & Staphylococcus aureus (with inhibition zones 13 mm for HEC-AM to 14 mm for HEC-AM@N-CDs). The N-CDs promote bacterial binding and internalization, leading to differential fluorescence emission depending on the bacteria's cell wall composition. DFT calculations support strong interactions between the bacteria and HEC-AM@N-CDs.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
11
|
Mukherjee S, Kumar D, Guha D. Insights of probiotics as an alternative medicine for cancer therapy, mechanism, and applications. MEDICINE IN MICROECOLOGY 2024; 22:100111. [DOI: 10.1016/j.medmic.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
12
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
13
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Medic BS, Tomic N, Lagopati N, Gazouli M, Pojskic L. Advances in Metal and Metal Oxide Nanomaterials for Topical Antimicrobial Applications: Insights and Future Perspectives. Molecules 2024; 29:5551. [PMID: 39683711 PMCID: PMC11643765 DOI: 10.3390/molecules29235551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has seen significant growth in the past few decades, with the use of nanomaterials reaching a wide scale. Given that antimicrobial resistance is peaking, nanotechnology holds distinct potential in this area. This review discusses recent applications of metal and metal oxide nanoparticles as antibacterial, antifungal, and antiviral agents, particularly focusing on their topical applications and their role in chronic wound therapy. We explore their use in various forms, including coated, encapsulated, and incorporated in hydrogels or as complexes, proposing them as topical antimicrobials with promising properties. Some studies have shown that metal and metal oxide nanoparticles can exhibit cytotoxic and genotoxic effects, while others have found no such properties. These effects depend on factors such as nanoparticle size, shape, concentration, and other characteristics. It is essential to establish the dose or concentration associated with potential toxic effects and to investigate the severity of these effects to determine a threshold below which metal or metal oxide nanoparticles will not produce negative outcomes. Therefore, further research should focus on safety assessments, ensuring that metal and metal oxide nanoparticles can be safely used as therapeutics in biomedical sciences.
Collapse
Affiliation(s)
- Belmina Saric Medic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nikolina Tomic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece
| | - Lejla Pojskic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| |
Collapse
|
15
|
Chang L, Gan R, Huang X, Zheng D, Su C, Lu Y, Feng Y. Application of novel nanomaterials with dual functions of antimicrobial and remineralization in mouthwashes. Sci Rep 2024; 14:29027. [PMID: 39578530 PMCID: PMC11584742 DOI: 10.1038/s41598-024-80703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024] Open
Abstract
The study aims to improve the antimicrobial and remineralization-promoting properties of mouthwash by synthesizing novel Ag/ZnO/Oyster Shells nanocomposites and evaluating their anti-caries properties and biosafety in vitro and in vivo, so as to reduce the incidence of caries. The antimicrobial properties of the synthesized Ag/ZnO/Oyster Shell nanocomposites were examined by bacterial inhibition zone, minimum inhibitory concentration, minimum bactericidal concentration, fluorescence staining and scanning electron microscopy. The potential of the materials to promote remineralization of demineralized enamel was detected by scanning electron microscopy, surface microhardness and depth of hard tissue defects, and laser confocal electron microscopy analysis. The synthesized materials were then incorporated into mouthwash, and their effects on antimicrobial properties, remineralization-promoting properties were evaluated. Furthermore, an oral mucosal contact model was established to assess local irritation and systemic effects. The results showed that the novel Ag/ZnO/Oyster Shell nanocomposites possessed strong antimicrobial activity, remineralization-promoting ability and good biosafety, and the mouthwash containing Ag/ZnO/Oyster Shell possessed strong antimicrobial performance and remineralization-promoting ability, and showed no obvious abnormalities in local mucosal tissues, blood indices, and histopathology of the liver and kidneys in the oral exposure model of the SD rats. These findings indicate that Ag/ZnO/Oyster shell incorporated into mouthwash has strong antimicrobial activity, good remineralization-promoting properties and good biosafety in vivo. It is therefore expected to be used in clinical applications.
Collapse
Affiliation(s)
- Lin Chang
- Department of Rende Road, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Ruihuan Gan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Chen Su
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| | - Yan Feng
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
16
|
Mardikasari SA, Katona G, Budai-Szűcs M, Kiricsi Á, Rovó L, Csóka I. Mucoadhesive in situ nasal gel of amoxicillin trihydrate for improved local delivery: Ex vivo mucosal permeation and retention studies. Eur J Pharm Sci 2024; 202:106897. [PMID: 39243910 DOI: 10.1016/j.ejps.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Orally administered amoxicillin is recommended as the first-line treatment of acute bacterial rhinosinusitis (ABR) and given in a high-dose regimen. However, the risk of various systemic adverse reactions and low oral bioavailability are unbearable, increasing the threat of antibiotic resistance. Therefore, nasal delivery of amoxicillin can be a potential approach for effectively treating ABR locally, as well as overcoming those drawbacks. In a way to guarantee the effectiveness for local therapy in nasal cavity, the permeation and retention properties are of significant importance considerations. Accordingly, the present work aimed to investigate the characteristics with respect to the nasal applicability of the in situ gelling amoxicillin trihydrate (AMT) and further evaluate its permeability and retention properties through human nasal mucosa. The lyophilized formulations were characterized utilizing the Differential Scanning Calorimetry (DSC) and X-ray Powder Diffraction (XRPD), and also evaluated for its polarity, reconstitution time, droplet size distribution, mucoadhesive properties, and ex vivo permeability and retention studies. The results confirmed that the in situ gelling AMT formulations possess adequate mucoadhesive behavior, especially the formulation containing 0.3 % of gellan gum. Substantially, the in situ gelling AMT formulations were able to retain the drug on the surface of nasal mucosa instead of permeating across the membrane; thus, suitable for treating nasal infections locally. Altogether, the in situ gelling systems demonstrates promising abilities as a delivery platform to enhance local application of AMT within the nasal cavity.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, Szeged H-6725, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, Szeged H-6720, Hungary
| |
Collapse
|
17
|
Jha G, Malasani S, Barakat A, Sola SC, Gera K, Gupta G. Innovative Nanotechnological Approaches in Trauma and Orthopaedic Surgery: A Comprehensive Review. Cureus 2024; 16:e72838. [PMID: 39552742 PMCID: PMC11568882 DOI: 10.7759/cureus.72838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
The application of nanotechnology to health has been one of the revolutionizing factors in the field of trauma and orthopaedic surgery over the last decade. Advances in nanomedicine, in comparison to conventional modes of treatment, have influenced immensely the approach towards trauma and orthopaedic surgery and provided some unique answers to some very complex problems like bone reconstruction, soft tissue repair, and prevention of infection. The current narrative review intends to underpin an extensive analysis of modern applications and recent advances in nanotechnology-driven therapies in orthopaedics. Having leveraged unique properties inherent in nanoparticles and nanoscale materials, novel interventions, such as nanostructured scaffolds, drug delivery systems, and bioactive coatings, have flourished into a variety of promising means to enhance osseointegration, accelerate the healing process, and reduce postoperative complications. This review at once acknowledges the huge potential of these technologies and some of the problems impeding their wide-range clinical application, including long-term safety, main regulatory hurdles, and scale-up issues. The following review aims to give orthopaedic surgeons, researchers, and biomedical engineers an overview of the present status and perspectives for the future regarding nanomedicine in trauma and orthopaedic surgery, pointing out the expectations of a much-improved outcome in patients and overall quality of life.
Collapse
Affiliation(s)
- Gaurav Jha
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Trauma and Orthopaedics, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Surya Malasani
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Ahmed Barakat
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Siri Chandana Sola
- Geriatrics, University Hospitals of Leicester NHS Trust, Leicester, GBR
- Internal Medicine, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Kashish Gera
- Trauma and Orthopaedics, University Hospitals of Leicester NHS Trust, Leicester, GBR
| | - Garima Gupta
- Cardiology, University Hospitals of Leicester NHS Trust, Leicester, GBR
| |
Collapse
|
18
|
Lv J, Tian H, Pan L, Chen Z, Li M, Ghiladi RA, Qin Z, Yin X. Biomass derived carbon dots with antibacterial and anti-inflammatory properties for the treatment of wound healing. Chem Eng Sci 2024; 295:120084. [DOI: 10.1016/j.ces.2024.120084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
20
|
Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, Burger JC, Ye M, Tong Y, Gong S. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. NATURE NANOTECHNOLOGY 2024; 19:1032-1043. [PMID: 38632494 DOI: 10.1038/s41565-024-01648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.
Collapse
Affiliation(s)
- Jingcheng Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruixuan Gao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisakorn Yodsanit
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacobus C Burger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yao Tong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Wang Z, Zeng S, Hao Y, Cai W, Sun W, Du J, Long S, Fan J, Wang J, Chen X, Peng X. Gram-negative bacteria recognition and photodynamic elimination by Zn-DPA based sensitizers. Biomaterials 2024; 308:122571. [PMID: 38636132 DOI: 10.1016/j.biomaterials.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.
Collapse
Affiliation(s)
- Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, PR China
| | - Yifu Hao
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, PR China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Jingyun Wang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, PR China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
22
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Revealing the therapeutic properties of gut microbiota: transforming cancer immunotherapy from basic to clinical approaches. Med Oncol 2024; 41:175. [PMID: 38874788 DOI: 10.1007/s12032-024-02416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The immune system plays a pivotal role in the battle against cancer, serving as a formidable guardian in the ongoing fight against malignant cells. To combat these malignant cells, immunotherapy has emerged as a prevalent approach leveraging antibodies and peptides such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 to inhibit immune checkpoints and activate T lymphocytes. The optimization of gut microbiota plays a significant role in modulating the defense system in the body. This study explores the potential of certain gut-resident bacteria to amplify the impact of immunotherapy. Contemporary antibiotic treatments, which can impair gut flora, may diminish the efficacy of immune checkpoint blockers. Conversely, probiotics or fecal microbiota transplantation can help re-establish intestinal microflora equilibrium. Additionally, the gut microbiome has been implicated in various strategies to counteract immune resistance, thereby enhancing the success of cancer immunotherapy. This paper also acknowledges cutting-edge technologies such as nanotechnology, CAR-T therapy, ACT therapy, and oncolytic viruses in modulating gut microbiota. Thus, an exhaustive review of literature was performed to uncover the elusive link that could potentiate the gut microbiome's role in augmenting the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
23
|
Ridha DM, Al-Awady MJ, Abd Al-Zwaid AJ, Balakit AA, Al-Dahmoshi HOM, Alotaibi MH, El-Hiti GA. Antibacterial and antibiofilm activities of selenium nanoparticles-antibiotic conjugates against anti-multidrug-resistant bacteria. Int J Pharm 2024; 658:124214. [PMID: 38723732 DOI: 10.1016/j.ijpharm.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The crucial demand to overcome the issue of multidrug resistance is required to refine the performance of antibiotics. Such a process can be achieved by fastening them to compatible nanoparticles to obtain effective pharmaceuticals at a low concentration. Thus, selenium nanoparticles (Se NPs) are considered biocompatible agents that are applied to prevent infections resulting from bacterial resistance to multi-antibiotics. The current evaluated the effectiveness of Se NPs and their conjugates with antibiotics such as amikacin (AK), levofloxacin (LEV), and piperacillin (PIP) against Pseudomonas aeruginosa (P. aeruginosa). In addition, the study determined the antibacterial and antibiofilm properties of Se NPs and their conjugates with LEV against urinary tract pathogens such as Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), P. aeruginosa, and Escherichia coli (E. coli). The result of minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for eight isolates of P. aeruginosa revealed that the conjugation of Se NPs with AK, LEV, and PIP resulted in a reduction in the concentration of antibiotic-conjugated Se NPs. The concentration was found to be about 10-20 times lower than that of bare antibiotics. The MIC of the Se NPs with LEV (i.e., Se NPs:LEV) for S. aureus, E. faecalis, P. aeruginosa, and E. coli was found to be 1.4:0.5, 0.7:0.25, 22:8, and 11:4 µg/mL, respectively. The results of the half-maximal inhibitory concentration (IC50) demonstrated that Se NPs:LEV conjugate have inhibited 50 % of the mature biofilms of S. aureus, E. faecalis, P. aeruginosa, and E. coli at a concentration of 27.5 ± 10.5, 18.8 ± 3.1, 40.6 ± 10.7, and 21.6 ± 3.3 µg/mL, respectively compared to the control. It has been suggested that the antibiotic-conjugated Se NPs have great potential for biomedical applications. The conjugation of Se NPs with AK, LEV, and PIP increases the antibacterial potency against resistant pathogens at a low concentration.
Collapse
Affiliation(s)
- Dalal M Ridha
- Department of Biology, College of Science, University of Babylon, Iraq
| | - Mohammed J Al-Awady
- Department of Medical Biotechnology Faculty of Biotechnology, Al Qasim Green University Babylon, Iraq
| | - Afrah J Abd Al-Zwaid
- Mirjan Teaching Hospital, Babylon, Iraq; Medical Laboratories Techniques Department, College of Health and Medical Technologies, Al-Mustaqbal University, Babylon 51001, Iraq
| | - Asim A Balakit
- College of Pharmacy, University of Babylon, Babylon, Iraq
| | | | - Mohammad Hayal Alotaibi
- Institute of Waste Management and Recycling Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
24
|
Mundra S, Kabra A. Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential. Biomolecules 2024; 14:668. [PMID: 38927071 PMCID: PMC11202043 DOI: 10.3390/biom14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
Collapse
Affiliation(s)
- Surbhi Mundra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
25
|
Sun L, Wang D, Feng K, Zhang JA, Gao W, Zhang L. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv Drug Deliv Rev 2024; 209:115320. [PMID: 38643841 DOI: 10.1016/j.addr.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailin Feng
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiayuan Alex Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
U Din M, Batool A, Ashraf RS, Yaqub A, Rashid A, U Din NM. Green Synthesis and Characterization of Biologically Synthesized and Antibiotic-Conjugated Silver Nanoparticles followed by Post-Synthesis Assessment for Antibacterial and Antioxidant Applications. ACS OMEGA 2024; 9:18909-18921. [PMID: 38708285 PMCID: PMC11064210 DOI: 10.1021/acsomega.3c08927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
The paper presents the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) when conjugated with two antibiotics levofloxacin and ciprofloxacin as well as biologically synthesized nanoparticles from Moringa oleifera and Curcuma longa. Leaves of Moringa and powder of Curcuma were used in the green synthesis of silver nanoparticles. Ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used for the characterization of the synthesized silver nanoparticles. Comparison of levofloxacin and ciprofloxacin and their conjugated AgNPs was also studied for antibacterial and antioxidant activity. The synthesis of Moringa-AgNPs, turmeric-AgNPs, levofloxacin-AgNPs, and ciprofloxacin-AgNPs was confirmed by UV spectroscopy. An absorption peak value of 400-450 nm was observed, and light to dark brown color indicated the synthesis of AgNPs. Moringa-AgNPs revealed high antioxidant activity (80.3 ± 3.14) among all of the synthesized AgNPs. Lev-AgNPs displayed the highest zone of inhibition for Staphylococcus aureus, while in Escherichia coli, Cip-AgNPs showed high antibacterial activity. Furthermore, AgNPs synthesized using green methods exhibit high and efficient antimicrobial activities against two food-borne pathogens. Biologically synthesized nanoparticles exhibited antibacterial activity against E. coli (13.73 ± 0.46 with Tur-AgNPs and 13.53 ± 0.32 with Mor-AgNPs) and S. aureus (14.16 ± 0.24 with Tur-AgNPs and 13.36 ± 0.77 with Mor-AgNPs) by using a well diffusion method with significant shrinkage and damage of the bacterial cell wall, whereas antibiotic-conjugated nanoparticles showed high antibacterial activity compared to biologically synthesized nanoparticles with 14.4 ± 0.37 for Cip-AgNPs and 13.93 ± 0.2 for Lev-AgNPs for E. coli and 13.3 ± 0.43 for Cip-AgNPs and 14.33 ± 0.12 for Lev-AgNPs for S. aureus. The enhanced efficiency of conjugated silver nanoparticles is attributed to their increased surface area compared to larger particles. Conjugation of different functional groups contributes to improved reactivity, creating active sites for catalytic reactions. Additionally, the precise control over the size and shape of green-synthesized nanoparticles further augments their catalytic and antibiotic activities.
Collapse
Affiliation(s)
- Mehwish
Mohy U Din
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Andleeb Batool
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Raja Shahid Ashraf
- Department
of Chemistry, Institute of Chemical Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Atif Yaqub
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Aneeba Rashid
- Department
of Botany, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Nazish Mohy U Din
- Sustainable
Development Study Center, Government College
University, Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
27
|
Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, Kumar A, Kumar S, Kyzas GZ. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169815. [PMID: 38184262 DOI: 10.1016/j.scitotenv.2023.169815] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO2 NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance. Recent research efforts have specifically focused on understanding the anatase and rutile phases of TiO2 NPs and evaluating their potential in various domains, including photocatalytic processes, antibacterial properties, antioxidant effects, and nanohybrid applications. The hypothesis guiding this research is that by exploring different synthesis methods, particularly chemical and environmentally friendly approaches, and incorporating doping and co-doping techniques, the properties of TiO2 NPs can be significantly improved for diverse applications. The study employs a comprehensive approach, investigating the effects of nanoparticle size, shape, dose, and exposure time on performance. The synthesis methods considered encompass both conventional chemical processes and environmentally friendly alternatives, with a focus on how doping and co-doping can enhance the properties of TiO2 NPs. The research unveils valuable insights into the distinct phases of TiO2 NPs and their potential across various applications. It sheds light on the improved properties achieved through doping and co-doping, showcasing advancements in photocatalytic processes, antibacterial efficacy, antioxidant capabilities, and nanohybrid applications. The study concludes by emphasizing regulatory aspects and offering suggestions for product enhancement. It provides recommendations for the reliable application of TiO2 NPs, addressing a comprehensive spectrum of critical aspects in TiO2 NP research and application. Overall, this research contributes to the evolving landscape of TiO2 NP utilization, offering valuable insights for the development of innovative and high-performance products.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India.
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India
| | - Anil Kumar
- School of chemical and metallurgical engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Susheel Kalia
- Department of Chemistry, ACC Wing (Academic Block) Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, Shahpur, Himachal Pradesh 176206, India
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, Kavala, Greece.
| |
Collapse
|
28
|
Bhuyan T, Mohanta YK, Patowary K, Maity S, Nayak D, Deka K, Meenakshi Sundaram K, Muthupandian S, Sarma H. Therapeutic potential of lipopeptide biosurfactant-fabricated copper oxide nanoparticles: Mechanistic insight into their biocompatibility using zebra fish. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100227. [DOI: 10.1016/j.crbiot.2024.100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
29
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
30
|
Mohsin MH, Khashan KS, Sulaiman GM, Mohammed HA, Qureshi KA, Aspatwar A. A novel facile synthesis of metal nitride@metal oxide (BN/Gd 2O 3) nanocomposite and their antibacterial and anticancer activities. Sci Rep 2023; 13:22749. [PMID: 38123673 PMCID: PMC10733422 DOI: 10.1038/s41598-023-49895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, a novel core/shell nanocomposite structure (h-BN@Gd2O3 NCs) was created for the first time by combining hexagonal boron nitride (h-BN) with doped gadolinium oxide (Gd2O3) using different laser pulse numbers, i.e., 150, 338, and 772 pulses. We employed various analytical techniques, including mapping analysis, FE-SEM, EDS, HRTEM, SAED, XRD, zeta potential analysis, DLS, FTIR, Raman spectroscopy, and PL measurements, to characterize the synthesized h-BN, c-Gd2O3, and h-BN@Gd2O3 NCs (338 pulses). XRD results indicated hexagonal and cubic crystal structures for BN and Gd2O3, respectively, while EDS confirmed their chemical composition and elemental mapping. Chemical bonds between B-N-Gd, B-N-O, and Gd-O bands at 412, 455, 474, and 520 cm-1 were identified by FTIR analysis. The antimicrobial and anticancer activities of these NCs using agar well diffusion and MTT assays. They exhibited potent antibacterial properties against both Gram-positive and Gram-negative pathogens. Furthermore, NCs have reduced the proliferation of cancerous cells, i.e., human colon adenocarcinoma cells (HT-29) and human breast cancer cells (MCF-7), while not affecting the proliferation of the normal breast cell line (MCF-10). The anticancer efficacy of NCs was validated by the AO/EtBr assay, which confirmed apoptotic cell death. Blood compatibility on human erythrocytes was also confirmed by hemolytic and in vitro toxicity assessments. The compiled results of the study proposed these nanoparticles could be used as a promising drug delivery system and potentially in healthcare applications.
Collapse
Affiliation(s)
- Mayyadah H Mohsin
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Khawla S Khashan
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Kamal A Qureshi
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| |
Collapse
|
31
|
da Silva JT, Dantas de Sousa PH, Costa AF, de Menezes LB, Alves SF, Pellegrini F, Amaral AC. Fluconazole and propolis co-encapsulated in chitosan nanoparticles for the treatment of vulvovaginal candidiasis in a murine model. Med Mycol 2023; 61:myad113. [PMID: 37947253 DOI: 10.1093/mmy/myad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is a fungal infection caused mainly by Candida albicans. The treatment of VVC with azoles has been impaired due to the increased cases of resistance presented by this pathogen. The aim of the present study was to investigate the antifungal activity of mucoadhesive chitosan nanoparticles encapsulating both green propolis and fluconazole for topical use in the treatment of VVC. The nanoparticles were prepared by the ionic gelation method, resulting in a size of 316.5 nm containing 22 mg/kg of green propolis and 2.4 mg/kg of fluconazole. The nanoparticles were non-toxic in vitro using red blood cells or in vivo in a Galleria mellonella toxicity model. The treatment of female BALB/c mice infected by C. albicans ATCC 10231 with topical nanoparticles co-encapsulating fluconazole and green propolis was effective even using a fluconazole amount 20 times lower than the amount of miconazole nitrate 2% cream. Considering that the mucoadhesive property of chitosan, which is known to allow a prolonged retention time of the compounds at the mucous epithelia, the antifungal potential of the phenols and flavonoids present in green propolis may have favored the effectiveness of this treatment. These results indicate that this formulation of topical use for fluconazole associated with green propolis can be used as a promising approach to therapy for the treatment of VVC, thus contributing to reducing the development of resistance to azoles.
Collapse
Affiliation(s)
- Jacqueline Teixeira da Silva
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Paulo Henrique Dantas de Sousa
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Adelaide Fernandes Costa
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Laboratory of Pathology, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| | - Suzana Ferreira Alves
- Pharmacy Course, School of Medical Sciences, Pharmaceuticals and Biomedical Sciences, Pontifícia Universidade Católica de Goiás, Av university, 1440, Goiânia, GO, 74175-120, Brazil
| | - Flavio Pellegrini
- Company Citrinitas, St Pedroso Alvarenga, 505, São Paulo, SP, 04531-930, Brazil
| | - Andre Correa Amaral
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, St 235 university sector, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
32
|
Sharma A, Mohapatra H, Arora K, Babbar R, Arora R, Arora P, Kumar P, Algın Yapar E, Rani K, Meenu M, Babu MA, Kaur M, Sindhu RK. Bioactive Compound-Loaded Nanocarriers for Hair Growth Promotion: Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:3739. [PMID: 37960095 PMCID: PMC10649697 DOI: 10.3390/plants12213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.
Collapse
Affiliation(s)
- Arvind Sharma
- School of Pharmaceutical and Health Sciences, Bhoranj (Tikker–Kharwarian), Hamirpur 176041, India;
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Türkiye;
| | - Kailash Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Maninder Meenu
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute, Mohali 143005, India;
| | | | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Rakesh K. Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201306, India
| |
Collapse
|
33
|
Alamri H, Chen G, Huang SD. Development of Biocompatible Ga 2(HPO 4) 3 Nanoparticles as an Antimicrobial Agent with Improved Ga Resistance Development Profile against Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:1578. [PMID: 37998780 PMCID: PMC10668710 DOI: 10.3390/antibiotics12111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/25/2023] Open
Abstract
Ga(III) can mimic Fe(III) in the biological system due to its similarities in charge and ionic radius to those of Fe(III) and can exhibit antimicrobial activity by disrupting the acquisition and metabolism of Fe in bacterial cells. For example, Ga(NO3)3 has been proven to be effective in treating chronic lung infections by Pseudomonas aeruginosa (P. aeruginosa) in cystic fibrosis patients in a recent phase II clinical trial. However, Ga(NO3)3 is an ionic compound that can hydrolyze to form insoluble hydroxides at physiological pH, which not only reduces its bioavailability but also causes potential renal toxicity when it is used as a systemic drug. Although complexion with suitable chelating agents has offered a varying degree of success in alleviating the hydrolysis of Ga(III), the use of nanotechnology to deliver this metallic ion should constitute an ultimate solution to all the above-mentioned problems. Thus far, the development of Ga-based nanomaterials as metalloantibiotics is an underexploited area of research. We have developed two different synthetic routes for the preparation of biocompatible Ga2(HPO4)3 NPs and shown that both the PVP- or PEG-coated Ga2(HPO4)3 NPs exhibit potent antimicrobial activity against P. aeruginosa. More importantly, such polymer-coated NPs do not show any sign of Ga-resistant phenotype development after 30 passes, in sharp contrast to Ga(NO3)3, which can rapidly develop Ga-resistant phenotypes of P. aeruginosa, indicating the potential of using Ga2(HPO4)3 NPs a new antimicrobial agent in place of Ga(NO3)3.
Collapse
Affiliation(s)
- Huda Alamri
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA;
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA;
| | - Songping D. Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA;
| |
Collapse
|
34
|
Toader G, Diacon A, Rusen E, Mangalagiu II, Alexandru M, Zorilă FL, Mocanu A, Boldeiu A, Gavrilă AM, Trică B, Pulpea D, Necolau MI, Istrate M. Peelable Alginate Films Reinforced by Carbon Nanofibers Decorated with Antimicrobial Nanoparticles for Immediate Biological Decontamination of Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2775. [PMID: 37887926 PMCID: PMC10609245 DOI: 10.3390/nano13202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Blvd., 700506 Iasi, Romania
| | - Mioara Alexandru
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
| | - Florina Lucica Zorilă
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Ana Mihaela Gavrilă
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trică
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Daniela Pulpea
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Mădălina Ioana Necolau
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
35
|
Mardikasari SA, Katona G, Budai-Szűcs M, Sipos B, Orosz L, Burián K, Rovó L, Csóka I. Quality by design-based optimization of in situ ionic-sensitive gels of amoxicillin-loaded bovine serum albumin nanoparticles for enhanced local nasal delivery. Int J Pharm 2023; 645:123435. [PMID: 37741560 DOI: 10.1016/j.ijpharm.2023.123435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - László Orosz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6725 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| |
Collapse
|
36
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
37
|
Ayatollahi Mousavi SA, Mokhtari A, Barani M, Izadi A, Amirbeigi A, Ajalli N, Amanizadeh A, Hadizadeh S. Advances of liposomal mediated nanocarriers for the treatment of dermatophyte infections. Heliyon 2023; 9:e18960. [PMID: 37583758 PMCID: PMC10424084 DOI: 10.1016/j.heliyon.2023.e18960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Due to the adverse effects associated with long-term administration of antifungal drugs used for treating dermatophytic lesions like tinea unguium, there is a critical need for novel antifungal therapies that exhibit improved absorption and minimal adverse effects. Nanoformulations offer a promising solution in this regard. Topical formulations may penetrate the upper layers of the skin, such as the stratum corneum, and release an appropriate amount of drugs in therapeutic quantities. Liposomes, particularly nanosized ones, used as topical medication delivery systems for the skin, may have various roles depending on their size, lipid and cholesterol content, ingredient percentage, lamellarity, and surface charge. Liposomes can enhance permeability through the stratum corneum, minimize systemic effects due to their localizing properties, and overcome various challenges in cutaneous drug delivery. Antifungal medications encapsulated in liposomes, including fluconazole, ketoconazole, croconazole, econazole, terbinafine hydrochloride, tolnaftate, and miconazole, have demonstrated improved skin penetration and localization. This review discusses the traditional treatment of dermatophytes and liposomal formulations. Additionally, promising liposomal formulations that may soon be available in the market are introduced. The objective of this review is to provide a comprehensive understanding of dermatophyte infections and the role of liposomes in enhancing treatment.
Collapse
Affiliation(s)
- Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abnoos Mokhtari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Azam Amanizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Hadizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
39
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
40
|
Ersanli C, Tzora A, Skoufos I, Voidarou CC, Zeugolis DI. Recent Advances in Collagen Antimicrobial Biomaterials for Tissue Engineering Applications: A Review. Int J Mol Sci 2023; 24:ijms24097808. [PMID: 37175516 PMCID: PMC10178232 DOI: 10.3390/ijms24097808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Biomaterial-based therapies have been receiving attention for treating microbial infections mainly to overcome the increasing number of drug-resistant bacterial strains and off-target impacts of therapeutic agents by conventional strategies. A fibrous, non-soluble protein, collagen, is one of the most studied biopolymers for the development of antimicrobial biomaterials owing to its superior physicochemical, biomechanical, and biological properties. In this study, we reviewed the different approaches used to develop collagen-based antimicrobial devices, such as non-pharmacological, antibiotic, metal oxide, antimicrobial peptide, herbal extract-based, and combination approaches, with a particular focus on preclinical studies that have been published in the last decade.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Chrysoula Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
41
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
42
|
Zhou Z, Kai M, Wang S, Wang D, Peng Y, Yu Y, Gao W, Zhang L. Emerging nanoparticle designs against bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1881. [PMID: 36828801 DOI: 10.1002/wnan.1881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/26/2023]
Abstract
The rise of antibiotic resistance has caused the prevention and treatment of bacterial infections to be less effective. Therefore, researchers turn to nanomedicine for novel and effective antibacterial therapeutics. The effort resulted in the first-generation antibacterial nanoparticles featuring the ability to improve drug tolerability, circulation half-life, and efficacy. Toward developing the next-generation antibacterial nanoparticles, researchers have integrated design elements that emphasize physical, broad-spectrum, biomimetic, and antivirulence mechanisms. This review highlights four emerging antibacterial nanoparticle designs: inorganic antibacterial nanoparticles, responsive antibacterial nanocarriers, virulence nanoscavengers, and antivirulence nanovaccines. Examples in each design category are selected and reviewed, and their structure-function relationships are discussed. These emerging designs open the door to nontraditional antibacterial nanomedicines that rely on mechano-bactericidal, function-driven, nature-inspired, or virulence-targeting mechanisms to overcome antibiotic resistance for more effective antibacterial therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Mingxuan Kai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Shuyan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yifei Peng
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
43
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
44
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
45
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
46
|
Shuaishuai W, Tongtong Z, Dapeng W, Mingran Z, Xukai W, Yue Y, Hengliang D, Guangzhi W, Minglei Z. Implantable biomedical materials for treatment of bone infection. Front Bioeng Biotechnol 2023; 11:1081446. [PMID: 36793442 PMCID: PMC9923113 DOI: 10.3389/fbioe.2023.1081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The treatment of bone infections has always been difficult. The emergence of drug-resistant bacteria has led to a steady decline in the effectiveness of antibiotics. It is also especially important to fight bacterial infections while repairing bone defects and cleaning up dead bacteria to prevent biofilm formation. The development of biomedical materials has provided us with a research direction to address this issue. We aimed to review the current literature, and have summarized multifunctional antimicrobial materials that have long-lasting antimicrobial capabilities that promote angiogenesis, bone production, or "killing and releasing." This review provides a comprehensive summary of the use of biomedical materials in the treatment of bone infections and a reference thereof, as well as encouragement to perform further research in this field.
Collapse
Affiliation(s)
- Wang Shuaishuai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhu Tongtong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Dapeng
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Zhang Mingran
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wang Xukai
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Yue
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dong Hengliang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wu Guangzhi
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| | - Zhang Minglei
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Wu Guangzhi, ; Zhang Minglei,
| |
Collapse
|
47
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
48
|
Garapati C, HS. Boddu S, Jacob S, Ranch KM, Patel C, Jayachandra Babu R, Tiwari AK, Yasin H. Photodynamic Therapy: A Special Emphasis on Nanocarrier-mediated Delivery of Photosensitizers in Antimicrobial Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
49
|
Shukla MK, Dubey A, Pandey S, Singh SK, Gupta G, Prasher P, Chellappan DK, Oliver BG, Kumar D, Dua K. Managing Apoptosis in Lung Diseases using Nano-assisted Drug Delivery System. Curr Pharm Des 2022; 28:3202-3211. [PMID: 35422206 DOI: 10.2174/1381612828666220413103831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 01/28/2023]
Abstract
Several factors exist that limit the efficacy of lung cancer treatment. These may be tumor-specific delivery of therapeutics, airway geometry, humidity, clearance mechanisms, presence of lung diseases, and therapy against tumor cell resistance. Advancements in drug delivery using nanotechnology based multifunctional nanocarriers, have emerged as a viable method for treating lung cancer with more efficacy and fewer adverse effects. This review does a thorough and critical examination of effective nano-enabled approaches for lung cancer treatment, such as nano-assisted drug delivery systems. In addition, to therapeutic effectiveness, researchers have been working to determine several strategies to produce nanotherapeutics by adjusting the size, drug loading, transport, and retention. Personalized lung tumor therapies using sophisticated nano modalities have the potential to provide great therapeutic advantages based on individual unique genetic markers and disease profiles. Overall, this review provides comprehensive information on newer nanotechnological prospects for improving the management of apoptosis in lung cancer.
Collapse
Affiliation(s)
- Monu K Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus Pvt. Ltd., Kushinagar-274203, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.,School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, NSW 2037, Australia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, NSW 2037, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
50
|
Smith M, Roberts M, Al-Kassas R. Implantable drug delivery systems for the treatment of osteomyelitis. Drug Dev Ind Pharm 2022; 48:511-527. [PMID: 36222433 DOI: 10.1080/03639045.2022.2135729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteomyelitis is an infection of the bone tissue and bone marrow which is becoming increasingly difficult to treat due to the infection causing pathogens associated. Staphylococcus aureus is one of the main bacteria that causes this infection, which has a broad spectrum of antibiotic resistance making it extremely difficult to treat. Conventional metal implants used in orthopaedic applications often have the drawback of implant induced osteomyelitis as well as the requirement of a second surgery to remove the implant once it is no longer required. Recently, attention has been focused on the design and fabrication of biodegradable implants for the treatment of bone infection. The main benefit of biodegradable implants over polymethylmethacrylate (PMMA) based non-degradable systems is that they do not require a second surgery for removal and so making degradable implants safer and easier to use. The main purpose of a biodegradable implant is to provide the necessary support and conductivity to allow the bone to regenerate whilst themselves degrading at a rate that is compatible with the rate of formation of new bone. They must be highly biocompatible to ensure there is no inflammation or irritation within the surrounding tissue. During this review, the latest research into antibiotic loaded biodegradable implants will be explored. Their benefits and drawbacks will be compared with those non-degradable PMMA beads, which is the stable material used within antibiotic loaded implants. Biodegradable implants most frequently used are based on biodegradable natural and synthetic polymers. Implants can take the form of many different structures; the most commonly fabricated structure is a scaffold. Other structures that will be explored within this review are hydrogels, nanoparticles and surface coatings, all with their own benefits/drawbacks.
Collapse
Affiliation(s)
- Megan Smith
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom St, Liverpool, L3 3AF, UK
| | - Matthew Roberts
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom St, Liverpool, L3 3AF, UK
| | - Raida Al-Kassas
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|