1
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues, age and disease. Nat Commun 2025; 16:1068. [PMID: 39870615 PMCID: PMC11772838 DOI: 10.1038/s41467-024-55607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that splicing inaccuracies occur at different rates across introns and tissues and are affected by the abundance of core components of the spliceosome assembly and its regulators. We find that age is positively correlated with a global decline in splicing fidelity, mostly affecting genes implicated in neurodegenerative diseases. We find support for the latter by observing a genome-wide increase in splicing inaccuracies in samples affected with Alzheimer's disease as compared to neurologically normal individuals. In this work, we provide an in-depth characterisation of splicing accuracy, with implications for our understanding of the role of inaccuracies in ageing and neurodegenerative disorders.
Collapse
Affiliation(s)
- S García-Ruiz
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - E K Gustavsson
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - M Grant-Peters
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A Fairbrother-Browne
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - J W Brenton
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A L Gil-Martínez
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - M Ryten
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
2
|
Alrajeh S, Naveed Khan M, Irhash Putra A, Al-Ugaili DN, Alobaidi KH, Al Dossary O, Al-Obaidi JR, Jamaludin AA, Allawi MY, Al-Taie BS, Abdul Rahman N, Rahmad N. Mapping proteomic response to salinity stress tolerance in oil crops: Towards enhanced plant resilience. J Genet Eng Biotechnol 2024; 22:100432. [PMID: 39674646 PMCID: PMC11555348 DOI: 10.1016/j.jgeb.2024.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 12/16/2024]
Abstract
Exposure to saline environments significantly hampers the growth and productivity of oil crops, harmfully affecting their nutritional quality and suitability for biofuel production. This presents a critical challenge, as understanding salt tolerance mechanisms in crops is key to improving their performance in coastal and high-salinity regions. Our content might be read more properly: This review assembles current knowledge on protein-level changes related to salinity resistance in oil crops. From an extensive analysis of proteomic research, featured here are key genes and cellular pathways which react to salt stress. The literature evinces that cutting-edge proteomic approaches - such as 2D-DIGE, IF-MS/MS, and iTRAQ - have been required to reveal protein expression patterns in oil crops under salt conditions. These studies consistently uncover dramatic shifts in protein abundance associated with important physiological activities including antioxidant defence, stress-related signalling pathways, ion homeostasis, and osmotic regulation. Notably, proteins like ion channels (SOS1, NHX), osmolytes (proline, glycine betaine), antioxidant enzymes (SOD, CAT), and stress-related proteins (HSPs, LEA) play central roles in maintaining cellular balance and reducing oxidative stress. These findings underline the complex regulatory networks that govern oil crop salt tolerance. The application of this proteomic information can inform breeding and genetic engineering strategies to enhance salt resistance. Future research should aim to integrate multiple omics data to gain a comprehensive view of salinity responses and identify potential markers for crop improvement.
Collapse
Affiliation(s)
- Sarah Alrajeh
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Muhammad Naveed Khan
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Aidhya Irhash Putra
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Dhafar N Al-Ugaili
- Department of Molecular and Medical Biotechnology, College of Biotechnology, AL-Nahrain University, Jadriya, Baghdad, Iraq
| | - Khalid H Alobaidi
- Department of Plant Biotechnology, College of Biotechnology, AL-Nahrain University, Baghdad, Iraq
| | - Othman Al Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Mohammed Yahya Allawi
- Environmental Health Department, College of Environmental Sciences, University of Mosul, 41002 Mosul, Iraq
| | - Bilal Salim Al-Taie
- Environmental Health Department, College of Environmental Sciences, University of Mosul, 41002 Mosul, Iraq
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608 Canterbury, New Zealand
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia, Jalan Bioteknologi, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Xie Y, Yang Z, Chen W, Zhong C, Li M, Zhang L, Cheng T, Deng Q, Wang H, Ju J, Du Z, Liang H. Splicing factor SRSF1 attenuates cardiomyocytes apoptosis via regulating alternative splicing of Bcl2L12. Cell Biosci 2024; 14:142. [PMID: 39578852 PMCID: PMC11585136 DOI: 10.1186/s13578-024-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) events, triggered by the alterations in serine/arginine splicing factor 1 (SRSF1), a member of the SR protein family, have been implicated in various pathological processes. However, the function and mechanism of SRSF1 in cardiovascular diseases remain unclear. RESULTS In this study, we found that the expression of SRSF1 was significantly down-regulated in the hearts of mice with acute myocardial infarction (AMI) and H9C2 cells exposed to H2O2. Moreover, in vivo experiments utilizing adeno-associated virus serotype 9-mediated SRSF1 overexpression improved cardiac function and reduced infarct size in AMI mice. Mechanistically, we employed RNA-seq assay to identify AS aberrations associated with altered SRSF1 level in cardiomyocytes, and found that SRSF1 regulates the splice switching of Bcl2L12. Further study showed that silencing SRSF1 inhibits the inclusion of exon7 in Bcl2L12. Importantly, the truncated Bcl2L12 lacked the necessary structural elements and failed to interact with p53, thus compromising its ability to suppress apoptosis. CONCLUSIONS Our study unraveled the role of SRSF1 as a splicing factor involved in the regulation of Bcl2L12 splice switching, thereby exerting an anti-apoptotic effect through the p53 pathway, which provides new insights into potential approaches targeting cardiomyocyte apoptosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Yilin Xie
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhenbo Yang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wenxian Chen
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Changsheng Zhong
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengyang Li
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Lei Zhang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Ting Cheng
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Qin Deng
- College of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huifang Wang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jin Ju
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zhimin Du
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau , 999078, China.
| | - Haihai Liang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
5
|
Chen Q, Mi S, Xing Y, An S, Chen S, Tang Y, Wang Y, Yu Y. Transcriptome analysis identifies the NR4A subfamily involved in the alleviating effect of folic acid on mastitis induced by high concentration of Staphylococcus aureus lipoteichoic acid. BMC Genomics 2024; 25:1051. [PMID: 39506684 PMCID: PMC11542246 DOI: 10.1186/s12864-024-10895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) mastitis results in economic losses during dairy production. Understanding the biological progression of bovine S. aureus mastitis is vital for its prevention. Lipoteichoic acid is a key virulence factor of S. aureus (aLTA), but the main biological pathways involved in its effect on bovine mammary epithetionallial cells (Mac-T) apoptosis and necrosis have not been fully explored. Folic acid (FA) has anti-inflammatory and anti-apoptotic effects. However, the role of FA in mediating the effects of aLTA on apoptosis and necrosis remains unknown. RESULTS We found that low concentration of aLTA inhibited apoptosis and necrosis and that high concentration promoted the apoptosis and necrosis of Mac-T. FA pretreatment alleviated high concentration of aLTA induced apoptosis. Through transcriptomic analysis, we found that nuclear receptor subfamily 4 group A (NR4A), which alters the expression of downstream genes involved in apoptosis, proliferation, and inflammation, decreased under stimulation with a low concentration of aLTA and increased under stimulation with a high concentration of aLTA. Under stimulation with a high concentration of aLTA, the expression of the NR4A subfamily could be inhibited by FA. The results showed that aLTA may affect apoptosis and necrosis through the NR4A subfamily by targeting genes involved in bacterial invasion of epithelial cells, the IL-17 signaling pathway, DNA replication, longevity regulation, the cell cycle, and tight junction pathways. We further found that the expression trends of NR4A1 and the target genes of the NR4A subfamily (PTGS2, ESPL1, MCM5, and BUB1B) in the blood of healthy cows (Healthy), subclinical mastitis cows (SCM), and SCM supplemented with FA (SCM_FA) were consistent with those observed at the cellular level in this study. CONCLUSIONS Our study revealed that low and high concentrations of aLTA have opposite effects on apoptosis and necrosis of Mac-T and that FA can alleviate the apoptosis induced by high concentration of aLTA. Transcriptome analysis revealed that the NR4A subfamily play a role in the ability of FA to alleviate the apoptosis and necrosis induced by high concentration of aLTA.
Collapse
Affiliation(s)
- Quanzhen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Songyan An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Steijns JSJJ, Green D, Peeters LCW, Emans PJ, Boymans TA, Stassen RH, van den Akker GGH, Cremers A, Jutten LMC, Anderson JR, Peffers MJ, Caron MMJ, Welting TJM. Proteomic characterization of regenerated cartilage following knee joint distraction; a human case-study. Connect Tissue Res 2024; 65:486-496. [PMID: 39688003 DOI: 10.1080/03008207.2024.2440716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE Knee joint distraction is a surgical procedure with cartilage-regenerating properties. The composition of joint distraction-regenerated cartilage in human patients is poorly documented. In this case-study, provided a unique opportunity to biomolecularly characterize the regenerated tissue from a patient who underwent bilateral distraction and later knee replacements. METHODS Knee joint distraction was conducted using an external fixation frame and total knee arthroplasty was performed several years later. Radiographic imaging was performed to assess the status of the knee joint prior, during and after clinical interventions. Following total knee replacement, cartilage biopsies were collected and processed for tissue sectioning and histochemical staining. Tandem mass-spectrometry proteomics analysis was used to characterize and compare the proteomic composition. RESULTS Both knee joints showed joint-space improvement pre- and post-knee joint distraction. Regenerated cartilage was white with an irregular surface, while native (lateral) cartilage had a yellow appearance and smooth surface. Histochemical staining showed higher Safranin-O positivity in native cartilage compared to regenerated cartilage, and differences in collagen structure. Proteomic analysis did not reveal major differences in cartilage extracellular matrix protein abundance. Bioinformatic analyses revealed enrichment in ribosomal proteins (regenerated cartilage) and RNA Polymerase II Transcription Termination (native cartilage). CONCLUSION Histologically, knee joint distraction-regenerated cartilage showed less glycosaminoglycans and disorganized collagen compared to native cartilage. However, mass-spectrometry has no major differences in extracellular matrix protein abundance, with proteomic clues suggesting protein translation regulation as a potential mechanism for regeneration.
Collapse
Affiliation(s)
- Jessica S J J Steijns
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Daniel Green
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Laura C W Peeters
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Translational Mobility Research (CTMR), Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim A Boymans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Translational Mobility Research (CTMR), Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Roderick H Stassen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Liesbeth M C Jutten
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Center for Translational Mobility Research (CTMR), Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - James R Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Mandy J Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Wang L, Yang X, Xie Y, Xu C, Dai X, Wang M, Liu Y. Nanoparticle-Protein Corona-Based Tissue Proteomics for the Aging Mouse Proteome Atlas. Anal Chem 2024; 96:14363-14371. [PMID: 39192740 DOI: 10.1021/acs.analchem.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
8
|
Yao D, Wang X, Liu J, Xu XQ. Rbm24 modulates neuronal RNA splicing to restrict cognitive dysfunction. Int J Biol Macromol 2024; 276:133853. [PMID: 39004256 DOI: 10.1016/j.ijbiomac.2024.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Synaptic dysfunction is associated with early neurodegenerative changes and cognitive deficits. Neuronal cell-specific alternative splicing (AS) programs exclusively encode unique neuron- and synapse-specific proteins. However, it remains unclear whether splicing disturbances in neurons influence the pathogenesis of cognitive impairment. Here, we observed that RNA-binding motif protein 24 (RBM24) expression was decreased in Alzheimer's disease (AD) patients. Using conditional RBM24 knockout mice, we demonstrated that deletion of RBM24 in the brain resulted in learning and memory impairment. Electrophysiological recordings from hippocampal slices from mice lacking RBM24 revealed multiple defects in excitatory synaptic function and plasticity. Furthermore, RNA sequencing and splicing analysis showed that RBM24 regulates a network of genes related to cognitive function. Deletion of RBM24 disrupted the AS of synapse-associated genes, including GluR2 and Prrt1, the major disease genes involved in cognitive impairment and memory loss, leading to cognitive dysfunction. Together, our results suggest that the regulation of mRNA splicing by RBM24 is a key process involved in maintaining normal synaptic function and provide novel mechanistic insights into the pathogenesis of AD.
Collapse
Affiliation(s)
- Dongbo Yao
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiaoxia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| |
Collapse
|
9
|
Luo YW, Zhou JP, Ji H, Xu D, Zheng A, Wang X, Dai Z, Luo Z, Cao F, Wang XY, Bai Y, Chen D, Chen Y, Wang Q, Yang Y, Zhang X, Chiu S, Peng X, Huang AL, Tang KF. SARS-CoV-2 N protein-induced Dicer, XPO5, SRSF3, and hnRNPA3 downregulation causes pneumonia. Nat Commun 2024; 15:6964. [PMID: 39138195 PMCID: PMC11322655 DOI: 10.1038/s41467-024-51192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.
Collapse
Grants
- 81972648 National Natural Science Foundation of China (National Science Foundation of China)
- CSTB2023NSCQ-BHX0134 Chongqing Postdoctoral Science Foundation
- 82172915 National Natural Science Foundation of China (National Science Foundation of China)
- 81773011 National Natural Science Foundation of China (National Science Foundation of China)
- I01 HX000134 HSRD VA
- The National Key Research and Development Program is aimed at addressing major scientific and technological issues that are crucial to the national economy, people's livelihood, public welfare, industrial core competitiveness, overall capability for independent innovation, and national security. It aims to overcome technological bottlenecks in key areas of national economic and social development. This program integrates several initiatives previously managed by different departments, including the National Basic Research Program of Ministry of Science and Technology, the National High-Tech Research and Development Program, the National Science and Technology Support Program, special projects for international science and technology cooperation and exchange, industrial technology research and development funds co-managed by the National Development and Reform Commission and the Ministry of Industry and Information Technology, as well as public welfare industry scientific research special projects managed by 13 departments including the Ministry of Agriculture and the National Health and Family Planning Commission, into a unified national key R&D program.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiang-Peng Zhou
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hongyu Ji
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Doudou Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhizheng Dai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhicheng Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Fang Cao
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xing-Yue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yunfang Bai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Di Chen
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qi Wang
- Department of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, PR China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, PR China
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, PR China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
10
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
11
|
Alkhatabi HA. Deciphering aging-associated molecular mechanisms in bone marrow derived hematopoietic stem cells in the elderly using NGS data. Bioinformation 2024; 20:180-189. [PMID: 38497076 PMCID: PMC10941783 DOI: 10.6026/973206300200180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Aging is a complex process that is not yet fully understood. Despite advancements in research, a deeper understanding of the underlying biological mechanisms is necessary to develop interventions that promote healthy longevity. The aim of this study was to elucidate the complex mechanisms associated with healthy aging and longevity in healthy elderly individuals. The RNA sequencing (RNA-seq) data used in this study was obtained from the Gene Expression Omnibus (GEO) database (accession number GSE104406), which was collected from Fluorescent Activated Cell Sorting (FACS) of human bone marrow derived human hematopoietic stem cells (BM-HSCs) (Lineage-, CD34+, CD38-) young (18-30 years old) and aged (65-75 years old) donors who had no known hematological malignancy, with 10 biological replicates per group. The GEO RNA-seq Experiments Interactive Navigator (GREIN) software was used to obtain raw gene-level counts and filtered metadata for this dataset. Next generation knowledge discovery (NGKD) tools provided by BioJupies were used to obtain differentially regulated pathways, gene ontologies (GO), and gene signatures in the BM-HSCs. Finally, the L1000 Characteristic Direction Signature Search Engine (L1000CDS2) tool was used to identify specific drugs that reverse aging-associated gene signatures in old but healthy individuals. The down-regulation of signaling pathways such as longevity regulation, proteasome, Notch, apoptosis, nuclear factor kappa B (NFkB), and peroxisome proliferator-activated receptors (PPAR) signaling pathways in the BM-HSCs of healthy elderly. GO functions related to negative regulation of bone morphogenetic protein (BMP), telomeric DNA binding, nucleoside binding, calcium -dependent protein binding, chromatin-DNA binding, SMAD binding, and demethylase activity were significantly downregulated in the BM-HSCs of the elderly compared to the healthy young group. Importantly, potential drugs such as salermide, celestrol, cercosporin, dorsomorphin dihydrochloride, and LDN-193189 monohydrochloride that can reverse the aging-associated signatures in HSCs from healthy elderly were identified. The analysis of RNA-seq data based on NGKD techniques revealed a plethora of differentially regulated pathways, gene ontologies, and drugs with anti-aging potential to promote healthspan in the elderly.
Collapse
Affiliation(s)
- Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Naro C, Antonioni A, Medici V, Caggiano C, Jolly A, de la Grange P, Bielli P, Paronetto MP, Sette C. Splicing targeting drugs highlight intron retention as an actionable vulnerability in advanced prostate cancer. J Exp Clin Cancer Res 2024; 43:58. [PMID: 38413979 PMCID: PMC10898177 DOI: 10.1186/s13046-024-02986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. METHOD By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. RESULTS Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3'-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. CONCLUSIONS Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | - Ambra Antonioni
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy
| | | | | | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
- University of Rome Foro Italico, 00135, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168, Rome, Italy.
- GSTeP Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168, Rome, Italy.
| |
Collapse
|
13
|
Baum E, Huang W, Vincent-Delorme C, Brunelle P, Antebi A, Dafsari HS. Novel Genetic and Phenotypic Expansion in Ameliorated PUF60-Related Disorders. Int J Mol Sci 2024; 25:2053. [PMID: 38396730 PMCID: PMC10889399 DOI: 10.3390/ijms25042053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.
Collapse
Affiliation(s)
- Emily Baum
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Wenming Huang
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | | | - Perrine Brunelle
- Institut de Génétique Médicale, University of Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Pediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
14
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Kwon HC, Bae Y, Lee SJV. The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans. Mol Cells 2023; 46:664-671. [PMID: 37968980 PMCID: PMC10654458 DOI: 10.14348/molcells.2023.0103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 11/17/2023] Open
Abstract
The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.
Collapse
Affiliation(s)
- Hyunwoo C. Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yunkyu Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
16
|
Zhang M, Wang H, Han J, Wang H, Jia Y, Hong W, Tang F, Li Z. Specific recognition and sensitive quantification of mRNA splice variants via one-pot ligation-dependent loop-mediated isothermal amplification. Analyst 2023; 148:5605-5611. [PMID: 37818948 DOI: 10.1039/d3an01382k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Specific recognition and sensitive quantification of mRNA alternative splice variants have been a necessity for exploring the regulatory mechanism of RNA splicing and revealing the association between pre-mRNA splicing and transcriptome function, as well as disease diagnosis. However, their wide abundance range and high sequence homology pose enormous challenges for high sensitivity and selectivity quantification of splice variants. Herein, taking advantage of the excellent specificity of ligation and the powerful nucleic acid replication feature of loop-mediated isothermal amplification (LAMP), we developed a one-pot method (termed one-pot ligation-LAMP) for specific recognition and sensitive quantification of mRNA splicing variants based on two splicing junction-specific stem-loop DNA probe ligation and the subsequently initiating LAMP. The one-pot ligation-LAMP can specifically detect as low as 100 aM mRNA splice variants without any nonspecific signals and quantify them with a wide dynamics range spanning at least six orders of magnitude. We have demonstrated that the one-pot ligation-LAMP is a versatile and practical strategy for accurately quantifying different splicing variants in complex biological samples with high sensitivity all in one tube within 90 min, thereby providing an attractive tool for mRNA splice variant-related studies.
Collapse
Affiliation(s)
- Mai Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Jun Han
- National Textile and Leather Product Quality Inspection and Testing Centre, 15 Xili-Balizhuang, Chaoyang District, Beijing 100025, China
| | - Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Yuting Jia
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Weixiang Hong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Fu Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
17
|
Tsitsipatis D, Martindale JL, Mazan‐Mamczarz K, Herman AB, Piao Y, Banskota N, Yang J, Cui L, Anerillas C, Chang M, Kaileh M, Munk R, Yang X, Ubaida‐Mohien C, Chia CW, Karikkineth AC, Zukley L, D'Agostino J, Abdelmohsen K, Basisty N, De S, Ferrucci L, Gorospe M. Transcriptomes of human primary skin fibroblasts of healthy individuals reveal age-associated mRNAs and long noncoding RNAs. Aging Cell 2023; 22:e13915. [PMID: 37462262 PMCID: PMC10652340 DOI: 10.1111/acel.13915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 09/27/2023] Open
Abstract
Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age. Gene set enrichment analysis (GSEA) revealed select transcription factors implicated in coordinating the transcription of subsets of differentially abundant mRNAs, while long noncoding RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to participate in the age-associated lncRNA profiles. In summary, we report age-associated changes in the global transcriptome, coding and noncoding, from healthy human skin fibroblasts and propose that these transcripts may serve as biomarkers and therapeutic targets in aging skin.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Krystyna Mazan‐Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Linna Cui
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Ming‐Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Ceereena Ubaida‐Mohien
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Chee W. Chia
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Ajoy C. Karikkineth
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Linda Zukley
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Jarod D'Agostino
- Clinical Research Core, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research ProgramNational Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
18
|
Zimmerman KD, Chan J, Glenn JP, Birnbaum S, Li C, Nathanielsz PW, Olivier M, Cox LA. Moderate maternal nutrient reduction in pregnancy alters fatty acid oxidation and RNA splicing in the nonhuman primate fetal liver. J Dev Orig Health Dis 2023; 14:381-388. [PMID: 36924159 PMCID: PMC10202844 DOI: 10.1017/s204017442300003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation [dG], term in the baboon is ∼185 dG) was used to quantify MNR effects on the fetal liver transcriptome. 28 transcripts demonstrated different expression patterns between MNR and control livers during the second half of gestation, a developmental period when the fetus undergoes rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched for fatty acid oxidation and RNA splicing-related pathways. Increased RNA splicing activity in MNR was reflected in greater abundances of transcript splice variant isoforms in the MNR group. It can be hypothesized that the increase in splice variants is deployed in an effort to adapt to the poor in utero environment and ensure near-normal development and energy metabolism. This study is the first to study developmental programming across four critical gestational stages during primate fetal liver development and reveals a potentially novel cellular response mechanism mediating fetal programming in response to MNR.
Collapse
Affiliation(s)
- Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeremy P. Glenn
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Shifra Birnbaum
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Cun Li
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter W. Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| |
Collapse
|
19
|
Kleissl L, Weinmüllner R, Lämmermann I, Dingelmaier-Hovorka R, Jafarmadar M, El Ghalbzouri A, Stary G, Grillari J, Dellago H. PRPF19 modulates morphology and growth behavior in a cell culture model of human skin. FRONTIERS IN AGING 2023; 4:1154005. [PMID: 37214773 PMCID: PMC10196211 DOI: 10.3389/fragi.2023.1154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
The skin provides one of the most visual aging transformations in humans, and premature aging as a consequence of oxidative stress and DNA damage is a frequently seen effect. Cells of the human skin are continuously exposed to endogenous and exogenous DNA damaging factors, which can cause DNA damage in all phases of the cell cycle. Increased levels of DNA damage and/or defective DNA repair can, therefore, accelerate the aging process and/or lead to age-related diseases like cancer. It is not yet clear if enhanced activity of DNA repair factors could increase the life or health span of human skin cells. In previous studies, we identified and characterized the human senescence evasion factor (SNEV)/pre-mRNA-processing factor (PRPF) 19 as a multitalented protein involved in mRNA splicing, DNA repair pathways and lifespan regulation. Here, we show that overexpression of PRPF19 in human dermal fibroblasts leads to a morphological change, reminiscent of juvenile, papillary fibroblasts, despite simultaneous expression of senescence markers. Moreover, conditioned media of this subpopulation showed a positive effect on keratinocyte repopulation of wounded areas. Taken together, these findings indicate that PRPF19 promotes cell viability and slows down the aging process in human skin.
Collapse
Affiliation(s)
- Lisa Kleissl
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Regina Weinmüllner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ingo Lämmermann
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | | | - Mohammad Jafarmadar
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | | | - Georg Stary
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology in cooperation with AUVA, Vienna, Austria
| | - Hanna Dellago
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
20
|
Anczuków O, Airhart S, Chuang JH, Coussens LM, Kuchel GA, Korstanje R, Li S, Lucido AL, McAllister SS, Politi K, Polyak K, Ratliff T, Ren G, Trowbridge JJ, Ucar D, Palucka K. Challenges and opportunities for modeling aging and cancer. Cancer Cell 2023; 41:641-645. [PMID: 37001528 PMCID: PMC10185379 DOI: 10.1016/j.ccell.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Age is among the main risk factors for cancer, and any cancer study in adults is faced with an aging tissue and organism. Yet, pre-clinical studies are carried out using young mice and are not able to address the impact of aging and associated comorbidities on disease biology and treatment outcomes. Here, we discuss the limitations of current mouse cancer models and suggest strategies for developing novel models to address these major gaps in knowledge and experimental approaches.
Collapse
Affiliation(s)
- Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Susie Airhart
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ron Korstanje
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Anna Lisa Lucido
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sandra S McAllister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Katerina Politi
- Departments of Pathology, and Medicine (Section of Medical Oncology), Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Ludwig Center at Harvard, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Timothy Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Gary Ren
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
21
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
22
|
Harries LW. Dysregulated RNA processing and metabolism: a new hallmark of ageing and provocation for cellular senescence. FEBS J 2023; 290:1221-1234. [PMID: 35460337 DOI: 10.1111/febs.16462] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
The human genome is capable of producing hundreds of thousands of different proteins and non-coding RNAs from <20 000 genes, in a co-ordinated and regulated fashion. This is achieved by a collection of phenomena known as mRNA processing and metabolism, and encompasses events in the life cycle of an RNA from synthesis to degradation. These factors are critical determinants of cellular adaptability and plasticity, which allows the cell to adjust its transcriptomic output in response to its internal and external environment. Evidence is building that dysfunctional RNA processing and metabolism may be a key contributor to the development of cellular senescence. Senescent cells by definition have exited cell cycle, but have gained functional features such as the secretion of the senescence-associated secretory phenotype (SASP), a known driver of chronic disease and perhaps even ageing itself. In this review, I will outline the impact of dysregulated mRNA processing and metabolism on senescence and ageing at the level of genes, cells and systems, and describe the mechanisms by which progressive deterioration in these processes may impact senescence and organismal ageing. Finally, I will present the evidence implicating this important process as a new hallmark of ageing, which could be harnessed in the future to develop new senotherapeutic interventions for chronic disease.
Collapse
|
23
|
Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. SLU7: A New Hub of Gene Expression Regulation—From Epigenetics to Protein Stability in Health and Disease. Int J Mol Sci 2022; 23:ijms232113411. [PMID: 36362191 PMCID: PMC9658179 DOI: 10.3390/ijms232113411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3′ splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.
Collapse
Affiliation(s)
- María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Carla Rojo
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194717
| |
Collapse
|
24
|
Liu J, Jin T, Ran L, Zhao Z, Zhu R, Xie G, Bi X. Profiling ATM regulated genes in Drosophila at physiological condition and after ionizing radiation. Hereditas 2022; 159:41. [PMID: 36271387 PMCID: PMC9587650 DOI: 10.1186/s41065-022-00254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background ATM (ataxia-telangiectasia mutated) protein kinase is highly conserved in metazoan, and plays a critical role at DNA damage response, oxidative stress, metabolic stress, immunity, RNA biogenesis etc. Systemic profiling of ATM regulated genes, including protein-coding genes, miRNAs, and long non-coding RNAs, will greatly improve our understanding of ATM functions and its regulation. Results 1) differentially expressed protein-coding genes, miRNAs, and long non-coding RNAs in atm mutated flies were identified at physiological condition and after X-ray irradiation. 2) functions of differentially expressed genes in atm mutated flies, regardless of protein-coding genes or non-coding RNAs, are closely related with metabolic process, immune response, DNA damage response or oxidative stress. 3) these phenomena are persistent after irradiation. 4) there is a cross-talk regulation towards miRNAs by ATM, E2f1, and p53 during development and after irradiation. 5) knock-out flies or knock-down flies of most irradiation-induced miRNAs were sensitive to ionizing radiation. Conclusions We provide a valuable resource of protein-coding genes, miRNAs, and long non-coding RNAs, for understanding ATM functions and regulations. Our work provides the new evidence of inter-dependence among ATM-E2F1-p53 for the regulation of miRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00254-9.
Collapse
Affiliation(s)
- Jun Liu
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Tianyu Jin
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Lanxi Ran
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Ze Zhao
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Rui Zhu
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Gangcai Xie
- School of Medicine, Nantong University, Nantong, 226001, China.
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong, 226001, China. .,College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
25
|
Wan L, Deng M, Zhang H. SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms. Genes (Basel) 2022; 13:1659. [PMID: 36140826 PMCID: PMC9498594 DOI: 10.3390/genes13091659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Substantial emerging evidence supports that dysregulated RNA metabolism is associated with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultraconserved and structurally related proteins that contain a characteristic RS domain rich in arginine and serine residues. SR proteins perform a critical role in spliceosome assembling and conformational transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing, such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been reported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve as potential therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Ledong Wan
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Min Deng
- Department of Pathology, First Peoples Hospital Fuyang, Hangzhou 311400, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
26
|
Identification of Human Global, Tissue and Within-Tissue Cell-Specific Stably Expressed Genes at Single-Cell Resolution. Int J Mol Sci 2022; 23:ijms231810214. [PMID: 36142130 PMCID: PMC9499411 DOI: 10.3390/ijms231810214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Stably Expressed Genes (SEGs) are a set of genes with invariant expression. Identification of SEGs, especially among both healthy and diseased tissues, is of clinical relevance to enable more accurate data integration, gene expression comparison and biomarker detection. However, it remains unclear how many global SEGs there are, whether there are development-, tissue- or cell-specific SEGs, and whether diseases can influence their expression. In this research, we systematically investigate human SEGs at single-cell level and observe their development-, tissue- and cell-specificity, and expression stability under various diseased states. A hierarchical strategy is proposed to identify a list of 408 spatial-temporal SEGs. Development-specific SEGs are also identified, with adult tissue-specific SEGs enriched with the function of immune processes and fetal tissue-specific SEGs enriched in RNA splicing activities. Cells of the same type within different tissues tend to show similar SEG composition profiles. Diseases or stresses do not show influence on the expression stableness of SEGs in various tissues. In addition to serving as markers and internal references for data normalization and integration, we examine another possible application of SEGs, i.e., being applied for cell decomposition. The deconvolution model could accurately predict the fractions of major immune cells in multiple independent testing datasets of peripheral blood samples. The study provides a reliable list of human SEGs at the single-cell level, facilitates the understanding on the property of SEGs, and extends their possible applications.
Collapse
|
27
|
Lu P, Chen D, Qi Z, Wang H, Chen Y, Wang Q, Jiang C, Xu JR, Liu H. Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus. THE NEW PHYTOLOGIST 2022; 235:674-689. [PMID: 35451076 DOI: 10.1111/nph.18164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) contribute significantly to the regulation of gene expression in higher eukaryotes. Their biological impact in filamentous fungi, however, is largely unknown. Here we combine PacBio Isoform-Sequencing and strand-specific RNA-sequencing of multiple tissues and mutant characterization to reveal the landscape and regulation of AS and APA in Fusarium graminearum. We generated a transcript annotation comprising 51 617 isoforms from 17 189 genes. In total, 4997 and 11 133 genes are alternatively spliced and polyadenylated, respectively. Majority of the AS events alter coding sequences. Unexpectedly, the AS transcripts containing premature-termination codons are not sensitive to nonsense-mediated messenger RNA decay. Unlike in yeasts and animals, distal APA sites have strong signals, but proximal APA isoforms are highly expressed in F. graminearum. The 3'-end processing factors FgRNA15, FgHRP1, and FgFIP1 play roles in promoting proximal APA site usage and intron splicing. A genome-wide increase in intron inclusion and distal APA site usage and downregulation of the spliceosomal and 3'-end processing factors were observed in older and quiescent tissues, indicating intron inclusion and 3'-untranslated region lengthening as novel mechanisms in regulating aging and dormancy in fungi. This study provides new insights into the complexity and regulation of AS and APA in filamentous fungi.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhaomei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
28
|
Imbalance in Sirt1 Alternative Splicing in Response to Chronic Stress during the Adolescence Period in Female Mice. Int J Mol Sci 2022; 23:ijms23094945. [PMID: 35563336 PMCID: PMC9104080 DOI: 10.3390/ijms23094945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Stressful unpredictable life events have been implicated in numerous diseases. It is now becoming clear that some life periods are more vulnerable than others. As adolescence is a sensitive period in brain development, the long-term effects of stress during this period could be significant. We investigated the long-term effects of exposure to unpredictable chronic mild stress in adolescent mice on alternative splicing of Sirtuin 1. One-month-old mice were exposed to 4 weeks of UCMS and examined for anxiety and cognition at the age of 2, 4 and 6 months. We found a rise in anxious behavior immediately after the exposure to stress. Notably, there was a long-term impairment of performance in cognitive tasks and an imbalance in Sirtuin 1 and TrkB receptor alternative splicing in the stress-exposed mice compared with controls. To conclude, our results show that exposure to unpredictable chronic mild stress during adolescence affects cognition in adulthood. Understanding pathways affiliated with stress may help minimize the long-term emotional effects of an unpredictable, stressful event.
Collapse
|
29
|
Kong W, Lu C, Ding Y, Meng Y. Molecular environment and atypical function: What do we know about enzymes associated with Mucopolysaccharidoses? Orphanet J Rare Dis 2022; 17:112. [PMID: 35246201 PMCID: PMC8895820 DOI: 10.1186/s13023-022-02211-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidoses are a group of lysosomal storage disorders caused by deficiency of enzymes involved in glycosaminoglycans degradation. Relationship between mucopolysaccharidoses and related enzymes has been clarified clearly. Based on such relationship, lots of therapies have been commercialized or are in the process of research and development. However, many potential treatments failed, because those treatments did not demonstrate expected efficacy or safety data. Molecular environment of enzyme, which is essential for their expression and activity, is fundamental for efficacy of therapy. In addition to enzyme activities, mucopolysaccharidoses-related enzymes have other atypical functions, such as regulation, which may cause side effects. This review tried to discuss molecular environment and atypical function of enzymes that are associated with mucopolysaccharidoses, which is very important for the efficacy and safety of potential therapies.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
30
|
Ruiz-Gabarre D, Carnero-Espejo A, Ávila J, García-Escudero V. What's in a Gene? The Outstanding Diversity of MAPT. Cells 2022; 11:840. [PMID: 35269461 PMCID: PMC8909800 DOI: 10.3390/cells11050840] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
Tau protein is a microtubule-associated protein encoded by the MAPT gene that carries out a myriad of physiological functions and has been linked to certain pathologies collectively termed tauopathies, including Alzheimer's disease, frontotemporal dementia, Huntington's disease, progressive supranuclear palsy, etc. Alternative splicing is a physiological process by which cells generate several transcripts from one single gene and may in turn give rise to different proteins from the same gene. MAPT transcripts have been proven to be subjected to alternative splicing, generating six main isoforms in the central nervous system. Research throughout the years has demonstrated that the splicing landscape of the MAPT gene is far more complex than that, including at least exon skipping events, the use of 3' and 5' alternative splice sites and, as has been recently discovered, also intron retention. In addition, MAPT alternative splicing has been showed to be regulated spatially and developmentally, further evidencing the complexity of the gene's splicing regulation. It is unclear what would drive the need for the existence of so many isoforms encoded by the same gene, but a wide range of functions have been ascribed to these Tau isoforms, both in physiology and pathology. In this review we offer a comprehensive up-to-date exploration of the mechanisms leading to the outstanding diversity of isoforms expressed from the MAPT gene and the functions in which such isoforms are involved, including their potential role in the onset and development of tauopathies such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Ruiz-Gabarre
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (D.R.-G.); (A.C.-E.)
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
- Graduate Program in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Almudena Carnero-Espejo
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (D.R.-G.); (A.C.-E.)
- Graduate Program in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Vega García-Escudero
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (D.R.-G.); (A.C.-E.)
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
- Graduate Program in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To review available data on the relationship of MDS and aging and to address the question if biological changes of (premature) aging are a prerequisite for the development of MDS. RECENT FINDINGS Whereas the association of MDS with advanced age and some common biologic features of aging and MDS are well established, additional evidence for both, especially on the role of stem cells, the stem cell niche, and inflammation, has been recently described. Biologically, many but not all drivers of aging also play a role in the development and propagation of MDS and vice versa. As a consequence, aging contributes to the development of MDS which can be seen as an interplay of clonal disease and normal and premature aging. The impact of aging may be different in specific MDS subtypes and risk groups.
Collapse
Affiliation(s)
- Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, Wels, Austria
- Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Stauder
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Pfeilstöcker
- 3rd Medical Department, Hanusch Hospital, H.Collinstr 30, 1140, Vienna, Austria.
| |
Collapse
|
32
|
Zhang Q, Zhang J, Ye J, Li X, Liu H, Ma X, Wang C, He K, Zhang W, Yuan J, Zhao Y, Xu H, Liu Q. Nuclear speckle specific hnRNP D-like prevents age- and AD-related cognitive decline by modulating RNA splicing. Mol Neurodegener 2021; 16:66. [PMID: 34551807 PMCID: PMC8456587 DOI: 10.1186/s13024-021-00485-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aberrant alternative splicing plays critical role in aging and age-related diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) reportedly regulate RNA splicing process. Whether and how hnRNPs contribute to age-related neurodegenerative diseases, especially Alzheimer's disease (AD), remain elusive. METHODS Immunoblotting and immunostaining were performed to determine expression patterns and cellular/subcellular localization of the long isoform of hnRNP D-like (L-DL), which is a hnRNP family member, in mouse hippocampus. Downregulation of L-DL in WT mice was achieved by AAV-mediated shRNA delivery, followed by memory-related behavioural tests. L-DL interactome was analysed by affinity-precipitation and mass spectrometry. Alternative RNA splicing was measured by RNA-seq and analyzed by bioinformatics-based approaches. Downregulation and upregulation of L-DL in APP/PS1 mice were performed using AAV-mediated transduction. RESULTS We show that L-DL is specifically localized to nuclear speckles. L-DL levels are decreased in the hippocampus of aged mouse brains and downregulation of L-DL impairs cognition in mice. L-DL serves as a structural component to recruit other speckle proteins, and regulates cytoskeleton- and synapse-related gene expression by altering RNA splicing. Mechanistically, these splicing changes are modulated via L-DL-mediated interaction of SF3B3, a core component of U2 snRNP, and U2AF65, a U2 spliceosome protein that guides U2 snRNP's binding to RNA. In addition, L-DL levels are decreased in APP/PS1 mouse brains. While downregulation of L-DL deteriorates memory deficits and overexpression of L-DL improves cognitive function in AD mice, by regulating the alternative splicing and expression of synaptic gene CAMKV. CONCLUSIONS Our findings define a molecular mechanism by which hnRNP L-DL regulates alternative RNA splicing, and establish a direct role for L-DL in AD-related synaptic dysfunction and memory decline.
Collapse
Affiliation(s)
- Qingyang Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Ye
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China
| | - Hongda Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolin Ma
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ji Yuan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yingjun Zhao
- The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiamen University, Xiamen, 361000, China
| | - Huaxi Xu
- The First Affiliated Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiamen University, Xiamen, 361000, China.
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
33
|
Solovyeva EM, Ibebunjo C, Utzinger S, Eash JK, Dunbar A, Naumann U, Zhang Y, Serluca FC, Demirci S, Oberhauser B, Black F, Rausch M, Hoersch S, Meyer AS. New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence. Mech Ageing Dev 2021; 197:111510. [PMID: 34019916 DOI: 10.1016/j.mad.2021.111510] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Progressive loss of muscle mass and function due to muscle fiber atrophy and loss in the elderly and chronically ill is now defined as sarcopenia. It is a major contributor to loss of independence, disability, need of long-term care as well as overall mortality. Sarcopenia is a heterogenous disease and underlying mechanisms are not completely understood. Here, we newly identified and used Tmem158, alongside Cdkn1a, as relevant senescence and denervation markers (SDMs), associated with muscle fiber atrophy. Subsequent application of laser capture microdissection (LCM) and RNA analyses revealed age- and disease-associated differences in gene expression and alternative splicing patterns in a rodent sarcopenia model. Of note, genes exhibiting such differential alternative splicing (DAS) are mainly involved in the contractile function of the muscle. Many of these splicing events are also found in a mouse model for myotonic dystrophy type 1 (DM1), underscoring the premature aging phenotype of this disease. We propose to add differential alternative splicing to the hallmarks of aging.
Collapse
Affiliation(s)
- Elizaveta M Solovyeva
- NIBR Informatics, 4056, Basel, Switzerland; V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | | | - Stephan Utzinger
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland
| | - John K Eash
- NIBR, Musculoskeletal Diseases, Cambridge, MA, 02139, USA
| | - Andrew Dunbar
- NIBR, Analytical Sciences and Imaging, 4056, Basel, Switzerland
| | - Ulrike Naumann
- NIBR, Chemical Biology & Therapeutics, 4056, Basel, Switzerland
| | - Yunyu Zhang
- NIBR, Musculoskeletal Diseases, Cambridge, MA, 02139, USA
| | | | - Sabrina Demirci
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland
| | | | - Frederique Black
- NIBR, Cardiovascular & Metabolic Diseases, Cambridge, MA02139, USA
| | - Martin Rausch
- NIBR, Analytical Sciences and Imaging, 4056, Basel, Switzerland
| | | | - Angelika S Meyer
- Novartis Institute for Biomedical Research (NIBR), Musculoskeletal Diseases, 4056, Basel, Switzerland.
| |
Collapse
|