1
|
Blažetić S, Krajina V, Labak I, Viljetić B, Pavić V, Ivić V, Balog M, Schnaar RL, Heffer M. Sialyltransferase Mutations Alter the Expression of Calcium-Binding Interneurons in Mice Neocortex, Hippocampus and Striatum. Int J Mol Sci 2023; 24:17218. [PMID: 38139047 PMCID: PMC10743413 DOI: 10.3390/ijms242417218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.
Collapse
Affiliation(s)
- Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (S.B.); (V.P.)
| | - Vinko Krajina
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (V.I.); (M.B.); (M.H.)
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (S.B.); (V.P.)
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (S.B.); (V.P.)
| | - Vedrana Ivić
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (V.I.); (M.B.); (M.H.)
| | - Marta Balog
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (V.I.); (M.B.); (M.H.)
| | - Ronald L. Schnaar
- Department of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Marija Heffer
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (V.I.); (M.B.); (M.H.)
| |
Collapse
|
2
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
3
|
Ruggiero FM, Martínez-Koteski N, Fidelio GD, Vilcaes AA, Daniotti JL. Golgi Phosphoprotein 3 Regulates the Physical Association of Glycolipid Glycosyltransferases. Int J Mol Sci 2022; 23:10354. [PMID: 36142273 PMCID: PMC9499508 DOI: 10.3390/ijms231810354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and β3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/β3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.
Collapse
Affiliation(s)
- Fernando M. Ruggiero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Natalia Martínez-Koteski
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gerardo D. Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Jose L. Daniotti
- CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
4
|
Ilic K, Lin X, Malci A, Stojanović M, Puljko B, Rožman M, Vukelić Ž, Heffer M, Montag D, Schnaar RL, Kalanj-Bognar S, Herrera-Molina R, Mlinac-Jerkovic K. Plasma Membrane Calcium ATPase-Neuroplastin Complexes Are Selectively Stabilized in GM1-Containing Lipid Rafts. Int J Mol Sci 2021; 22:ijms222413590. [PMID: 34948386 PMCID: PMC8708829 DOI: 10.3390/ijms222413590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- BRAIN Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King’s College London, London SE5 9NU, UK
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Ayse Malci
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Mario Stojanović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia;
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
| | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Rodrigo Herrera-Molina
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8307993, Chile
- Center for Behavioral Brain Sciences, 39120 Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
5
|
Mlinac-Jerkovic K, Ilic K, Zjalić M, Mandić D, Debeljak Ž, Balog M, Damjanović V, Maček Hrvat N, Habek N, Kalanj-Bognar S, Schnaar RL, Heffer M. Who's in, who's out? Re-evaluation of lipid raft residents. J Neurochem 2021; 158:657-672. [PMID: 34081780 PMCID: PMC8363533 DOI: 10.1111/jnc.15446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Lipid rafts, membrane microdomains enriched with (glyco)sphingolipids, cholesterol, and select proteins, act as cellular signalosomes. Various methods have been used to separate lipid rafts from bulk (non‐raft) membranes, but most often, non‐ionic detergent Triton X‐100 has been used in their isolation. However, Triton X‐100 is a reported disruptor of lipid rafts. Histological evidence confirmed raft disruption by Triton X‐100, but remarkably revealed raft stability to treatment with a related polyethylene oxide detergent, Brij O20. We report isolation of detergent‐resistant membranes from mouse brain using Brij O20 and its use to determine the distribution of major mammalian brain gangliosides, GM1, GD1a, GD1b and GT1b. A different distribution of gangliosides—classically used as a raft marker—was discovered using Brij O20 versus Triton X‐100. Immunohistochemistry and imaging mass spectrometry confirm the results. Use of Brij O20 results in a distinctive membrane distribution of gangliosides that is not all lipid raft associated, but depends on the ganglioside structure. This is the first report of a significant proportion of gangliosides outside raft domains. We also determined the distribution of proteins functionally related to neuroplasticity and known to be affected by ganglioside environment, glutamate receptor subunit 2, amyloid precursor protein and neuroplastin and report the lipid raft populations of these proteins in mouse brain tissue. This work will enable more accurate lipid raft analysis with respect to glycosphingolipid and membrane protein composition and lead to improved resolution of lipid–protein interactions within biological membranes.
Collapse
Affiliation(s)
- Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia.,Department of Pharmacology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Vladimir Damjanović
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikola Habek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
6
|
Cawley JL, Jordan LR, Wittenberg NJ. Detection and Characterization of Vesicular Gangliosides Binding to Myelin-Associated Glycoprotein on Supported Lipid Bilayers. Anal Chem 2021; 93:1185-1192. [PMID: 33296186 DOI: 10.1021/acs.analchem.0c04412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the nervous system, a myelin sheath that originates from oligodendrocytes or Schwann cells wraps around axons to facilitate electrical signal transduction. The interface between an axon and myelin is maintained by a number of biomolecular interactions. Among the interactions are those between GD1a and GT1b gangliosides on the axon and myelin-associated glycoprotein (MAG) on myelin. Interestingly, these interactions can also inhibit neuronal outgrowth. Ganglioside-MAG interactions are often studied in cellular or animal models where their relative concentrations are not easily controlled or in assays where the gangliosides and MAG are not presented as part of fluid lipid bilayers. Here, we present an approach to characterize MAG-ganglioside interactions in real time, where MAG, GD1a, and GT1b contents are controlled and they are in their in vivo orientation within fluid lipid bilayers. Using a quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor functionalized with a supported lipid bilayer (SLB) and MAG, we detect vesicular GD1a and GT1b binding and determine the interaction kinetics as a function of vesicular ganglioside content. MAG-bound vesicles are deformed similarly, regardless of the ganglioside or its mole fraction. We further demonstrate how MAG-ganglioside interactions can be disrupted by antiganglioside antibodies that override MAG-based neuron growth inhibition.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Lim H, Lee J, You B, Oh JH, Mok HJ, Kim YS, Yoon BE, Kim BG, Back SK, Park JS, Kim KP, Schnaar RL, Lee SJ. GT1b functions as a novel endogenous agonist of toll-like receptor 2 inducing neuropathic pain. EMBO J 2020; 39:e102214. [PMID: 32030804 DOI: 10.15252/embj.2019102214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Spinal cord microglia contribute to nerve injury-induced neuropathic pain. We have previously demonstrated that toll-like receptor 2 (TLR2) signaling is critical for nerve injury-induced activation of spinal cord microglia, but the responsible endogenous TLR2 agonist has not been identified. Here, we show that nerve injury-induced upregulation of sialyltransferase St3gal2 in sensory neurons leads to an increase in expression of the sialylated glycosphingolipid, GT1b. GT1b ganglioside is axonally transported to the spinal cord dorsal horn and contributes to characteristics of neuropathic pain such as mechanical and thermal hypersensitivity. Spinal cord GT1b functions as an TLR2 agonist and induces proinflammatory microglia activation and central sensitization. Pharmacological inhibition of GT1b synthesis attenuates nerve injury-induced spinal cord microglia activation and pain hypersensitivity. Thus, the St3gal2-GT1b-TLR2 axis may offer a novel therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| | - Byunghyun You
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jae Hoon Oh
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Byung Gon Kim
- Department of Brain Science and Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| | - Jong-Sang Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin, Korea
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Canerina-Amaro A, Pereda D, Diaz M, Rodriguez-Barreto D, Casañas-Sánchez V, Heffer M, Garcia-Esparcia P, Ferrer I, Puertas-Avendaño R, Marin R. Differential Aggregation and Phosphorylation of Alpha Synuclein in Membrane Compartments Associated With Parkinson Disease. Front Neurosci 2019; 13:382. [PMID: 31068782 PMCID: PMC6491821 DOI: 10.3389/fnins.2019.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson’s disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.
Collapse
Affiliation(s)
- Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Diaz
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Deiene Rodriguez-Barreto
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Casañas-Sánchez
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Marija Heffer
- Department of Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
9
|
Ilic K, Auer B, Mlinac-Jerkovic K, Herrera-Molina R. Neuronal Signaling by Thy-1 in Nanodomains With Specific Ganglioside Composition: Shall We Open the Door to a New Complexity? Front Cell Dev Biol 2019; 7:27. [PMID: 30899760 PMCID: PMC6416198 DOI: 10.3389/fcell.2019.00027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023] Open
Abstract
Thy-1 is a small membrane glycoprotein and member of the immunoglobulin superfamily of cell adhesion molecules. It is abundantly expressed in many cell types including neurons and is anchored to the outer membrane leaflet via a glycosyl phosphatidylinositol tail. Thy-1 displays a number of interesting properties such as fast lateral diffusion, which allows it to get in and out of membrane nanodomains with different lipid composition. Thy-1 displays a broad expression in different cell types and plays confirmed roles in cell development, adhesion and differentiation. Here, we explored the functions of Thy-1 in neuronal signaling, initiated by extracellular binding of αVβ3 integrin, may strongly dependent on the lipid content of the cell membrane. Also, we assort literature suggesting the association of Thy-1 with specific components of lipid rafts such as sialic acid containing glycosphingolipids, called gangliosides. Furthermore, we argue that Thy-1 positioning in nanodomains may be influenced by gangliosides. We propose that the traditional conception of Thy-1 localization in rafts should be reconsidered and evaluated in detail based on the potential diversity of neuronal nanodomains.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Rodrigo Herrera-Molina
- Laboratory of Neuronal and Synaptic Signals, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
10
|
Guimarães AJ, de Cerqueira MD, Zamith-Miranda D, Lopez PH, Rodrigues ML, Pontes B, Viana NB, DeLeon-Rodriguez CM, Rossi DCP, Casadevall A, Gomes AMO, Martinez LR, Schnaar RL, Nosanchuk JD, Nimrichter L. Host membrane glycosphingolipids and lipid microdomains facilitate Histoplasma capsulatum internalisation by macrophages. Cell Microbiol 2018; 21:e12976. [PMID: 30427108 DOI: 10.1111/cmi.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Recognition and internalisation of intracellular pathogens by host cells is a multifactorial process, involving both stable and transient interactions. The plasticity of the host cell plasma membrane is fundamental in this infectious process. Here, the participation of macrophage lipid microdomains during adhesion and internalisation of the fungal pathogen Histoplasma capsulatum (Hc) was investigated. An increase in membrane lateral organisation, which is a characteristic of lipid microdomains, was observed during the first steps of Hc-macrophage interaction. Cholesterol enrichment in macrophage membranes around Hc contact regions and reduced levels of Hc-macrophage association after cholesterol removal also suggested the participation of lipid microdomains during Hc-macrophage interaction. Using optical tweezers to study cell-to-cell interactions, we showed that cholesterol depletion increased the time required for Hc adhesion. Additionally, fungal internalisation was significantly reduced under these conditions. Moreover, macrophages treated with the ceramide-glucosyltransferase inhibitor (P4r) and macrophages with altered ganglioside synthesis (from B4galnt1-/- mice) showed a deficient ability to interact with Hc. Coincubation of oligo-GM1 and treatment with Cholera toxin Subunit B, which recognises the ganglioside GM1, also reduced Hc association. Although purified GM1 did not alter Hc binding, treatment with P4 significantly increased the time required for Hc binding to macrophages. The content of CD18 was displaced from lipid microdomains in B4galnt1-/- macrophages. In addition, macrophages with reduced CD18 expression (CD18low ) were associated with Hc at levels similar to wild-type cells. Finally, CD11b and CD18 colocalised with GM1 during Hc-macrophage interaction. Our results indicate that lipid rafts and particularly complex gangliosides that reside in lipid rafts stabilise Hc-macrophage adhesion and mediate efficient internalisation during histoplasmosis.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Mariana Duarte de Cerqueira
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo H Lopez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marcio L Rodrigues
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathan B Viana
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,LPO-COPEA, Institute of Physics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M DeLeon-Rodriguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Diego Conrado Pereira Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andre M O Gomes
- Program of Structural Biology, Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis R Martinez
- Biological Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Leonardo Nimrichter
- Department of General Microbiology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Ruggiero FM, Vilcaes AA, Yuki N, Daniotti JL. Membrane binding, endocytic trafficking and intracellular fate of high-affinity antibodies to gangliosides GD1a and GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:80-93. [DOI: 10.1016/j.bbamem.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022]
|
12
|
Gangliosides of the Vertebrate Nervous System. J Mol Biol 2016; 428:3325-3336. [PMID: 27261254 DOI: 10.1016/j.jmb.2016.05.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Gangliosides, sialylated glycosphingolipids, found on all vertebrate cells and tissues, are major molecular determinants on the surfaces of vertebrate nerve cells. Composed of a sialylated glycan attached to a ceramide lipid, the same four structures-GM1, GD1a, GD1b, and GT1b-represent the vast majority (>90%) of gangliosides in the brains of all mammals and birds. Primarily found on the outer surface of the plasma membrane with their glycans facing outward, gangliosides associate laterally with each other, sphingomyelin, cholesterol, and select proteins in lipid rafts-the dynamic functional subdomains of the plasma membrane. The functions of gangliosides in the human nervous system are revealed by congenital mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5, which codes for an enzyme early in brain ganglioside biosynthesis, result in an early-onset seizure disorder with profound motor and cognitive decay, whereas mutations in B4GALNT1, a gene encoding a later step, result in hereditary spastic paraplegia accompanied by intellectual deficits. The molecular functions of brain gangliosides include regulation of receptors in the same membrane via lateral (cis) associations and regulation of cell-cell recognition by trans interaction with ganglioside binding proteins on apposing cells. Gangliosides also affect the aggregation of Aβ (Alzheimer's disease) and α-synuclein (Parkinson's Disease). As analytical, biochemical, and genetic tools advance, research on gangliosides promises to reveal mechanisms of molecular control related to nerve and glial cell differentiation, neuronal excitability, axon outgrowth after nervous system injury, and protein folding in neurodegenerative diseases.
Collapse
|
13
|
Sialylated intravenous immunoglobulin suppress anti-ganglioside antibody mediated nerve injury. Exp Neurol 2016; 282:49-55. [PMID: 27208700 DOI: 10.1016/j.expneurol.2016.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/23/2022]
Abstract
The precise mechanisms underlying the efficacy of intravenous immunoglobulin (IVIg) in autoimmune neurological disorders including Guillain-Barré syndrome (GBS) are not known. Anti-ganglioside antibodies have been reported to be pathogenic in some variants of GBS, and we have developed passive transfer animal models to study anti-ganglioside antibody mediated-endoneurial inflammation and associated neuropathological effects and to evaluate the efficacy of new therapeutic approaches. Some studies indicate that IVIg's anti-inflammatory activity resides in a minor sialylated IVIg (sIVIg) fractions and is dependent on an innate Th2 response via binding to a specific ICAM3-grabbing nonintegrin related 1 receptor (SIGN-R1). Therefore the efficacy of IVIg, IVIg fractions with various IgG Fc sialylation status, and the involvement of Th2 pathway were examined in one of our animal model of antibody-mediated inhibition of axonal regeneration. We demonstrate that both IVIg and sIVIg ameliorated anti-glycan antibody mediated-pathological effect, whereas, the unsialylated fractions of IVIg were not beneficial in our model. Tenfold lower doses of sIVIg compared to whole IVIg provided equivalent efficacy in our studies. Moreover, we found that whole IVIg and sIVIg significantly upregulates the gene expression of IL-33, which itself can provide protection from antibody-mediated nerve injury in our model. Our results support that the SIGN-R1-Th2 pathway is involved in the anti-inflammatory effects of IVIg on endoneurium in our model and elements of this pathway including IL-33 can provide novel therapeutics in inflammatory neuropathies.
Collapse
|
14
|
Asthana P, Vong JSL, Kumar G, Chang RCC, Zhang G, Sheikh KA, Ma CHE. Dissecting the Role of Anti-ganglioside Antibodies in Guillain-Barré Syndrome: an Animal Model Approach. Mol Neurobiol 2015; 53:4981-91. [PMID: 26374552 DOI: 10.1007/s12035-015-9430-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022]
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune polyneuropathy disease affecting the peripheral nervous system (PNS). Most of the GBS patients experienced neurological symptoms such as paresthesia, weakness, pain, and areflexia. There are also combinations of non-neurological symptoms which include upper respiratory tract infection and diarrhea. One of the major causes of GBS is due largely to the autoantibodies against gangliosides located on the peripheral nerves. Gangliosides are sialic acid-bearing glycosphingolipids consisting of a ceramide lipid anchor with one or more sialic acids attached to a neutral sugar backbone. Molecular mimicry between the outer components of oligosaccharide of gangliosides on nerve membrane and lipo-oligosaccharide of microbes is thought to trigger the autoimmunity. Intra-peritoneal implantation of monoclonal ganglioside antibodies secreting hybridoma into animals induced peripheral neuropathy. Recent studies demonstrated that injection of synthesized anti-ganglioside antibodies raised by hybridoma cells into mice initiates immune response against peripheral nerves, and eventually failure in peripheral nerve regeneration. Accumulating evidences indicate that the conjugation of anti-ganglioside monoclonal antibodies to activating FcγRIII present on the circulating macrophages inhibits axonal regeneration. The activation of RhoA signaling pathways is also involved in neurite outgrowth inhibition. However, the link between these two molecular events remains unresolved and requires further investigation. Development of anti-ganglioside antagonists can serve as targeted therapy for the treatment of GBS and will open a new approach of drug development with maximum efficacy and specificity.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China
| | - Joaquim Si Long Vong
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Chi Him Eddie Ma
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China. .,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China. .,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong, People's Republic of China.
| |
Collapse
|
15
|
Villanueva-Cabello TM, Mollicone R, Cruz-Muñoz ME, López-Guerrero DV, Martínez-Duncker I. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters. Glycobiology 2015; 25:1454-64. [PMID: 26263924 DOI: 10.1093/glycob/cwv062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/07/2015] [Indexed: 01/08/2023] Open
Abstract
CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells.
Collapse
Affiliation(s)
- Tania M Villanueva-Cabello
- Laboratorio de Glicobiología Humana, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Rosella Mollicone
- INSERM U1197, Paris Sud Université XI, Paul Brousse Hôpital, Villejuif 94807, France
| | | | - Delia V López-Guerrero
- Laboratorio de Inmunología Viral, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| |
Collapse
|
16
|
Anti-Ganglioside Antibodies Induce Nodal and Axonal Injury via Fcγ Receptor-Mediated Inflammation. J Neurosci 2015; 35:6770-85. [PMID: 25926454 DOI: 10.1523/jneurosci.4926-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is a postinfectious autoimmune neuropathy and anti-ganglioside antibodies (Abs) are strongly associated with this disorder. Several studies have implied that specific anti-ganglioside Abs induce neuropathy in patients with axonal forms of GBS. To study the mechanisms of anti-ganglioside Abs-induced neuropathy, we established a new passive transfer mouse model by L5 spinal nerve transection (L5SNT; modified Chung's model) and systemic administration of anti-ganglioside Abs. L5SNT causes degeneration of a small proportion of fibers that constitute sciatic nerve and its branches, but importantly breaks the blood-nerve barrier, which allows access to circulating Abs and inflammatory cells. Our studies indicate that, in this mouse model, anti-ganglioside Abs induce sequential nodal and axonal injury of intact myelinated nerve fibers, recapitulating pathologic features of human disease. Notably, our results showed that immune complex formation and the activating Fc gamma receptors (FcγRs) were involved in the anti-ganglioside Abs-mediated nodal and axonal injury in this model. These studies provide new evidence that the activating FcγRs-mediated inflammation plays a critical role in anti-ganglioside Abs-induced neuropathy (injury to intact nerve fibers) in GBS.
Collapse
|
17
|
Abstract
Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10(-4)), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans.
Collapse
|
18
|
Vajn K, Viljetić B, Degmečić IV, Schnaar RL, Heffer M. Differential distribution of major brain gangliosides in the adult mouse central nervous system. PLoS One 2013; 8:e75720. [PMID: 24098718 PMCID: PMC3787110 DOI: 10.1371/journal.pone.0075720] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022] Open
Abstract
Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies.
Collapse
Affiliation(s)
- Katarina Vajn
- Department of Medical Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, University of Osijek School of Medicine, Osijek, Croatia
| | | | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marija Heffer
- Department of Medical Biology, University of Osijek School of Medicine, Osijek, Croatia
- * E-mail:
| |
Collapse
|
19
|
Mountney A, Zahner MR, Sturgill ER, Riley CJ, Aston JW, Oudega M, Schramm LP, Hurtado A, Schnaar RL. Sialidase, chondroitinase ABC, and combination therapy after spinal cord contusion injury. J Neurotrauma 2013; 30:181-90. [PMID: 22934782 DOI: 10.1089/neu.2012.2353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Axon regeneration in the central nervous system is severely hampered, limiting functional recovery. This is in part because of endogenous axon regeneration inhibitors that accumulate at the injury site. Therapeutic targeting of these inhibitors and their receptors may facilitate axon outgrowth and enhance recovery. A rat model of spinal cord contusion injury was used to test the effects of two bacterial enzyme therapies that target independent axon regeneration inhibitors, sialidase (Vibrio cholerae) and chondroitinase ABC (ChABC, Proteus vulgaris). The two enzymes, individually and in combination, were infused for 2 weeks via implanted osmotic pumps to the site of a moderate thoracic spinal cord contusion injury. Sialidase was completely stable, whereas ChABC retained>30% of its activity in vivo over the 2 week infusion period. Immunohistochemistry revealed that infused sialidase acted robustly throughout the spinal cord gray and white matter, whereas ChABC activity was more intense superficially. Sialidase treatment alone resulted in improved behavioral and anatomical outcomes. Rats treated exclusively with sialidase showed significantly increased hindlimb motor function, evidenced by higher Basso Beattie and Bresnahan (BBB) and BBB subscores, and fewer stepping errors on a horizontal ladder. Sialidase-treated rats also had increased serotonergic axons caudal to the injury. ChABC treatment, in contrast, did not enhance functional recovery or alter axon numbers after moderate spinal cord contusion injury, and dampened the response of sialidase in the dual enzyme treatment group. We conclude that sialidase infusion enhanced recovery from spinal cord contusion injury, and that combining sialidase with ChABC failed to improve outcomes.
Collapse
Affiliation(s)
- Andrea Mountney
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sturgill ER, Aoki K, Lopez PHH, Colacurcio D, Vajn K, Lorenzini I, Majić S, Yang WH, Heffer M, Tiemeyer M, Marth JD, Schnaar RL. Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology 2012; 22:1289-301. [PMID: 22735313 DOI: 10.1093/glycob/cws103] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gangliosides-sialylated glycosphingolipids-are the major glycoconjugates of nerve cells. The same four structures-GM1, GD1a, GD1b and GT1b-comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2-3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.
Collapse
Affiliation(s)
- Elizabeth R Sturgill
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Essaka DC, Prendergast J, Keithley RB, Hindsgaul O, Palcic MM, Schnaar RL, Dovichi NJ. Single cell ganglioside catabolism in primary cerebellar neurons and glia. Neurochem Res 2012; 37:1308-14. [PMID: 22407243 DOI: 10.1007/s11064-012-0733-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 12/14/2022]
Abstract
Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5 to 6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents analyzed by capillary electrophoresis with quantitative laser-induced fluorescent detection of metabolites. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMR-GM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The lysed culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain.
Collapse
Affiliation(s)
- David C Essaka
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Viljetić B, Labak I, Majić S, Stambuk A, Heffer M. Distribution of mono-, di- and trisialo gangliosides in the brain of Actinopterygian fishes. Biochim Biophys Acta Gen Subj 2011; 1820:1437-43. [PMID: 22206893 DOI: 10.1016/j.bbagen.2011.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mono-, di- and trisialo gangliosides are major glycosphingolipids in the brain of higher vertebrates involved in lipid raft assembly. In contrast, the fish brain is abundant in polisialo-gangliosides, whose function is implicated in the modulation of repulsive and attractive intercellular interactions during embryonic development and a temperature adaptation process. The histological distribution of gangliosides is usually studied in rodent and mammalian brains, but to date it has not been described in the case of fish brain. METHODS Gangliosides were extracted from adult brains of trout, carp and zebrafish and separated by TLC. High-affinity anti-ganglioside (GM1, GD1a, GD1b, GT1b) IgG antibodies were used for immunohistochemistry. RESULTS In trout and carp brains GM1 and GT1b are expressed in the same neuronal cell bodies from the telencephalon to the spinal cord. In zebrafish brain GM1 was not detected, whereas GT1b is a general neuropil staining. GD1a is specific for unmyelinated parallel fibers in carp and zebrafish brains as well as parallel fibers in the molecular layer of all cerebellar divisions. In trout brain GD1b is found in parallel fibers of the cerebellum, but not in the tectum mesencephali. GD1b is expressed in zebrafish neuronal cell bodies. CONCLUSIONS Each studied species has a different expression of complex gangliosides. GT1b is widely present, whereas GD1a and GD1b appear in a specific group of unmyelinated fibers and could be used as their specific marker. GENERAL SIGNIFICANCE This is the first report on mono-, di- and trisialo ganglioside (GM1, GD1a, GD1b and GT1b) distribution in the brain of adult Actinopterygian fishes. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Barbara Viljetić
- Department of Chemistry and Biochemistry, University of Osijek, School of Medicine, J. Huttlera 4, Osijek, Croatia.
| | | | | | | | | |
Collapse
|
23
|
Susuki K, Yuki N, Schafer DP, Hirata K, Zhang G, Funakoshi K, Rasband MN. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp Neurol 2011; 233:534-42. [PMID: 22178332 DOI: 10.1016/j.expneurol.2011.11.039] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/21/2011] [Accepted: 11/25/2011] [Indexed: 01/23/2023]
Abstract
Autoantibodies against gangliosides GM1 or GD1a are associated with acute motor axonal neuropathy (AMAN) and acute motor-sensory axonal neuropathy (AMSAN), whereas antibodies to GD1b ganglioside are detected in acute sensory ataxic neuropathy (ASAN). These neuropathies have been proposed to be closely related and comprise a continuous spectrum, although the underlying mechanisms, especially for sensory nerve involvement, are still unclear. Antibodies to GM1 and GD1a have been proposed to disrupt the nodes of Ranvier in motor nerves via complement pathway. We hypothesized that the disruption of nodes of Ranvier is a common mechanism whereby various anti-ganglioside antibodies found in these neuropathies lead to nervous system dysfunction. Here, we show that the IgG monoclonal anti-GD1a/GT1b antibody injected into rat sciatic nerves caused deposition of IgG and complement products on the nodal axolemma and disrupted clusters of nodal and paranodal molecules predominantly in motor nerves, and induced early reversible motor nerve conduction block. Injection of IgG monoclonal anti-GD1b antibody induced nodal disruption predominantly in sensory nerves. In an ASAN rabbit model associated with IgG anti-GD1b antibodies, complement-mediated nodal disruption was observed predominantly in sensory nerves. In an AMAN rabbit model associated with IgG anti-GM1 antibodies, complement attack of nodes was found primarily in motor nerves, but occasionally in sensory nerves as well. Periaxonal macrophages and axonal degeneration were observed in dorsal roots from ASAN rabbits and AMAN rabbits. Thus, nodal disruption may be a common mechanism in immune-mediated neuropathies associated with autoantibodies to gangliosides GM1, GD1a, or GD1b, providing an explanation for the continuous spectrum of AMAN, AMSAN, and ASAN.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.
Collapse
|
25
|
Abstract
Axons fail to regenerate in the injured spinal cord, limiting motor and autonomic recovery and contributing to long-term morbidity. Endogenous inhibitors, including those on residual myelin, contribute to regeneration failure. One inhibitor, myelin-associated glycoprotein (MAG), binds to sialoglycans and other receptors on axons. MAG inhibition of axon outgrowth in some neurons is reversed by treatment with sialidase, an enzyme that hydrolyzes sialic acids and eliminates MAG-sialoglycan binding. We delivered recombinant sialidase intrathecally to rats following a spinal cord contusive injury. Sialidase (or saline solution) was infused to the injury site continuously for 2 wk and then motor behavior, autonomic physiology, and anatomic outcomes were determined 3 wk later. Sialidase treatment significantly enhanced hindlimb motor function, improved bulbospinally mediated autonomic reflexes, and increased axon sprouting. These findings validate sialoglycans as therapeutic targets and sialidase as a candidate therapy for spinal cord injury.
Collapse
|
26
|
Lopez PHH, Zhang G, Bianchet MA, Schnaar RL, Sheikh KA. Structural requirements of anti-GD1a antibodies determine their target specificity. Brain 2008; 131:1926-39. [PMID: 18487279 DOI: 10.1093/brain/awn074] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acute motor axonal neuropathy (AMAN) variant of Guillain-Barré syndrome (GBS) is associated with anti-GD1a and anti-GM1 IgG antibodies. The basis of preferential motor nerve injury in this disease is not clear, however, because biochemical studies demonstrate that sensory and motor nerves express similar quantities of GD1a and GM1 gangliosides. To elucidate the pathophysiology of AMAN, we have developed several monoclonal antibodies (mAbs) with GD1a reactivity and reported that one mAb, GD1a-1, preferentially stained motor axons in human and rodent nerves. To understand the basis of this preferential motor axon staining, several derivatives of GD1a were generated by various chemical modifications of N-acetylneuraminic (sialic) acid residues (GD1a NeuAc 1-amide, GD1a NeuAc ethyl ester, GD1a NeuAc 1-alcohol, GD1a NeuAc 1-methyl ester, GD1a NeuAc 7-alcohol, GD1a NeuAc 7-aldehyde) on this ganglioside. Binding of anti-GD1a mAbs and AMAN sera with anti-GD1a Abs to these derivatives was examined. Our results indicate that mAbs with selective motor axon staining had a distinct pattern of reactivity with GD1a-derivatives compared to mAbs that stain both motor and sensory axons. The fine specificity of the anti-GD1a antibodies determines their motor selectivity, which was validated by cloning a new mAb (GD1a-E6) with a chemical and immunocytochemical binding pattern similar to that of GD1a-1 but with two orders of magnitude higher affinity. Control studies indicate that selective binding of mAbs to motor nerves is not due to differences in antibody affinity or ceramide structural specificity. Since GD1a-reactive mAb with preferential motor axon staining showed similar binding to sensory- and motor nerve-derived GD1a in a solid phase assay, we generated computer models of GD1a based on binding patterns of different GD1a-reactive mAbs to different GD1a-derivatives. These modelling studies suggest that critical GD1a epitopes recognized by mAbs are differentially expressed in motor and sensory nerves. The GD1a-derivative binding patterns of AMAN sera resembled those with motor-specific mAbs. On the basis of these findings we postulate that both the fine specificity and ganglioside orientation/exposure in the tissues contribute to target recognition by anti-ganglioside antibodies and this observation provides one explanation for preferential motor axon injury in AMAN.
Collapse
Affiliation(s)
- Pablo H H Lopez
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
27
|
Membrane Raft Disruption Promotes Axonogenesis in N2a Neuroblastoma Cells. Neurochem Res 2008; 34:29-37. [DOI: 10.1007/s11064-008-9625-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
|
28
|
Buchwald B, Zhang G, Vogt-Eisele AK, Zhang W, Ahangari R, Griffin JW, Hatt H, Toyka KV, Sheikh KA. Anti-ganglioside antibodies alter presynaptic release and calcium influx. Neurobiol Dis 2007; 28:113-21. [PMID: 17720506 PMCID: PMC2094038 DOI: 10.1016/j.nbd.2007.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/28/2007] [Accepted: 07/01/2007] [Indexed: 10/23/2022] Open
Abstract
Acute motor axonal neuropathy (AMAN) variant of Guillain-Barré syndrome is often associated with IgG anti-GM1 and -GD1a antibodies. The pathophysiological basis of antibody-mediated selective motor nerve dysfunction remains unclear. We investigated the effects of IgG anti-GM1 and -GD1a monoclonal antibodies (mAbs) on neuromuscular transmission and calcium influx in hemidiaphragm preparations and in cultured neurons, respectively, to elucidate mechanisms of Ab-mediated muscle weakness. Anti-GM1 and -GD1a mAbs depressed evoked quantal release to a significant yet different extent, without affecting postsynaptic currents. At equivalent concentrations, anti-GD1b, -GT1b, or sham mAbs did not affect neuromuscular transmission. At fourfold higher concentration, an anti-GD1b mAb (specificity described in immune sensory neuropathies) induced completely reversible blockade. In neuronal cultures, anti-GM1 and -GD1a mAbs significantly reduced depolarization-induced calcium influx. In conclusion, different anti-ganglioside mAbs induce distinct effects on presynaptic transmitter release by reducing calcium influx, suggesting that this is one mechanism of antibody-mediated muscle weakness in AMAN.
Collapse
Affiliation(s)
- Brigitte Buchwald
- Research Group Neurophysiology, Section Neurology, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Heffer-Lauc M, Viljetić B, Vajn K, Schnaar RL, Lauc G. Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections. J Histochem Cytochem 2007; 55:805-12. [PMID: 17409378 PMCID: PMC2386956 DOI: 10.1369/jhc.7a7195.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Marija Heffer-Lauc
- Department of Medical Biology, University of Osijek School of Medicine, J. Huttlera 4, 31000, Osijek, Croatia
| | | | | | | | | |
Collapse
|
30
|
Perera VN, Nachamkin I, Ung H, Patterson JH, McConville MJ, Coloe PJ, Fry BN. Molecular mimicry in Campylobacter jejuni: role of the lipo-oligosaccharide core oligosaccharide in inducing anti-ganglioside antibodies. ACTA ACUST UNITED AC 2007; 50:27-36. [PMID: 17374131 DOI: 10.1111/j.1574-695x.2007.00225.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is recognized as the most common identifiable pathogen associated with the development of Guillain-Barré syndrome (GBS), an acute autoimmune-mediated disease affecting the peripheral nervous system. The immune response to ganglioside-like structures in lipo-oligosaccharides (LOSs) of certain C. jejuni strains is thought to cross-react with human nerve gangliosides and induce GBS. To study the involvement of LOSs in the pathogenesis of Campylobacter-induced GBS, we created truncated LOS molecules by inactivating the waaF gene in a GBS-associated isolate of C. jejuni. Gas Chromatography-MS analysis of the waaF mutant LOSs revealed a marked reduction in sugar content, including sialic acid and galactose. GM1 and GD1a-like mimicry was not detected in the waaF mutant by Western blot analysis with cholera toxin B and anti-GD1a antibodies. Mice immunized with the waaF mutant failed to develop anti-GM1 or anti-GD1a antibodies. The waaF mutant also showed reduced adherence to and invasion of INT-407 cells. The results indicate that the LOS of C. jejuni HB93-13 is essential for adherence and invasion as well as for anti-ganglioside antibody induction.
Collapse
Affiliation(s)
- Viraj N Perera
- Department of Biotechnology and Environmental Biology, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Glycolipids are found on all eukaryotic cells. Their expression varies among tissues, with the highest density found in the brain, where glycolipids are the most abundant of all glycoconjugate classes. In addition to playing roles in membrane structure, glycolipids also act as cell surface recognition molecules, mediating cell-cell interactions, as well as binding certain pathogens and toxins. Because of their amphipathic nature, underivatized glycolipids are amenable to immobilization on hydrophobic surfaces, where they can be probed with lectins, antibodies, pathogens, toxins, and intact cells to reveal their binding specificities and affinities. Three particularly useful methods to probe specific glycolipid-mediated recognition events are microwell adsorption (ELISA), thin layer chromatography overlay, and surface plasmon resonance (SPR) spectroscopy.
Collapse
Affiliation(s)
- Pablo H H Lopez
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
32
|
Goodfellow JA, Bowes T, Sheikh K, Odaka M, Halstead SK, Humphreys PD, Wagner ER, Yuki N, Furukawa K, Furukawa K, Plomp JJ, Willison HJ. Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated injury in a model of acute motor axonal neuropathy. J Neurosci 2005; 25:1620-8. [PMID: 15716397 PMCID: PMC6725939 DOI: 10.1523/jneurosci.4279-04.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/23/2004] [Accepted: 12/25/2004] [Indexed: 02/02/2023] Open
Abstract
Anti-GD1a ganglioside antibodies (Abs) are the serological hallmark of the acute motor axonal form of the post-infectious paralysis, Guillain-Barre syndrome. Development of a disease model in mice has been impeded by the weak immunogenicity of gangliosides and the apparent resistance of GD1a-containing neural membranes to anti-GD1a antibody-mediated injury. Here we used mice with altered ganglioside biosynthesis to generate such a model at motor nerve terminals. First, we bypassed immunological tolerance by immunizing GD1a-deficient, beta-1,4-N-acetylgalactosaminyl transferase knock-out mice with GD1a ganglioside-mimicking antigens from Campylobacter jejuni and generated high-titer anti-GD1a antisera and complement fixing monoclonal Abs (mAbs). Next, we exposed ex vivo nerve-muscle preparations from GD1a-overexpressing, GD3 synthase knock-out mice to the anti-GD1a mAbs in the presence of a source of complement and investigated morphological and electrophysiological damage. Dense antibody and complement deposits were observed only over presynaptic motor axons, accompanied by severe ultrastructural damage and electrophysiological blockade of motor nerve terminal function. Perisynaptic Schwann cells and postsynaptic membranes were unaffected. In contrast, normal mice were not only unresponsive to immunization with GD1a but also resistant to neural injury during anti-GD1a Ab exposure, demonstrating the central role of membrane antigen density in modulating both immune tolerance to GD1a and axonal susceptibility to anti-GD1a Abmediated injury. Identical paralyzing effects were observed when testing mouse and human anti-GD1a-positive sera. These data indicate that anti-GD1a Abs arise via molecular mimicry and are likely to be clinically relevant in injuring peripheral nerve axonal membranes containing sufficiently high levels of GD1a.
Collapse
Affiliation(s)
- John A Goodfellow
- Division of Clinical Neurosciences, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sheikh KA, Zhang G, Gong Y, Schnaar RL, Griffin JW. An anti-ganglioside antibody-secreting hybridoma induces neuropathy in mice. Ann Neurol 2004; 56:228-39. [PMID: 15293275 DOI: 10.1002/ana.20173] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune responses against gangliosides are strongly implicated in the pathogenesis of some variants of Guillain-Barré syndrome (GBS). For example, IgG antibodies against GM1, GD1a, and related gangliosides are frequently present in patients with post-Campylobacter acute motor axonal neuropathy (AMAN) variant of GBS, and immunization of rabbits with GM1 has produced a model of AMAN. However, the role of anti-ganglioside antibodies in GBS continues to be debated because of lack of a passive transfer model. We recently have raised several monoclonal IgG anti-ganglioside antibodies. We passively transfer these antibodies by intraperitoneal hybridoma implantation and by systemic administration of purified anti-ganglioside antibodies in mice. Approximately half the animals implanted with an intraperitoneal clone of anti-ganglioside antibody-secreting hybridoma developed a patchy, predominantly axonal neuropathy affecting a small proportion of nerve fibers. In contrast to hybridoma implantation, passive transfer with systemically administered anti-ganglioside antibodies did not cause nerve fiber degeneration despite high titre circulating antibodies. Blood-nerve barrier studies indicate that animals implanted with hybridoma had leaky blood-nerve barrier compared to mice that received systemically administered anti-ganglioside antibodies. Our findings suggest that in addition to circulating antibodies, factors such as antibody accessibility and nerve fiber resistance to antibody-mediated injury play a role in the development of neuropathy.
Collapse
Affiliation(s)
- Kazim A Sheikh
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
34
|
Schnaar RL. Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys 2004; 426:163-72. [PMID: 15158667 DOI: 10.1016/j.abb.2004.02.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/12/2004] [Indexed: 12/19/2022]
Abstract
Cell surface complex carbohydrates have emerged as key recognition molecules, mediating physiological interactions between cells. Typically, glycans on one cell surface are engaged by complementary carbohydrate binding proteins (lectins) on an apposing cell, initiating appropriate cellular responses. Although many cell surface lectins have been identified in vertebrates, only a few of their endogenous carbohydrate ligands have been established. Each major class of cell surface glycans-glycoproteins, glycolipids, and proteoglycans-has been implicated as physiologically relevant lectin ligands. The current minireview focuses on findings that implicate glycosphingolipids as especially important molecules in cell-cell recognition in two different systems: the recognition of human leukocytes by E-selectin on the vascular endothelium during inflammation and the recognition of nerve cell axons by myelin-associated glycoprotein in myelin-axon stabilization and the regulation of axon regeneration.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Departments of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Gong Y, Tagawa Y, Lunn MPT, Laroy W, Heffer-Lauc M, Li CY, Griffin JW, Schnaar RL, Sheikh KA. Localization of major gangliosides in the PNS: implications for immune neuropathies. Brain 2002; 125:2491-506. [PMID: 12390975 DOI: 10.1093/brain/awf258] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibodies targeting major gangliosides that are broadly distributed in the nervous system are sometimes associated with clinical symptoms that imply selective nerve damage. For example, anti-GD1a antibodies are associated with acute motor axonal neuropathy (AMAN), a form of Guillain-Barré syndrome that selectively affects motor nerves, despite reports that GD1a is present in human axons and myelin and is not expressed differentially in motor versus sensory roots. We used a series of high-affinity monoclonal antibodies (mAbs) against the major nervous system gangliosides GM1, GD1a, GD1b and GT1b to test whether any of them bind motor or sensory fibres differentially in rodent and human peripheral nerves. The following observations were made. (i) Some of the anti-GD1a antibodies preferentially stained motor fibres, supporting the association of human anti-GD1a antibodies with predominant motor neuropathies such as AMAN. (ii) A GD1b antibody preferentially stained the large dorsal root ganglion (DRG) neurones, in keeping with the proposed role of human anti-GD1b antibodies in sensory ataxic neuropathies. (iii) Two mAbs with broad structural cross-reactivity bound to both gangliosides and peripheral nerve proteins. (iv) Myelin was poorly stained; all clones stained axons nearly exclusively. Our findings suggest that anti-ganglioside antibody fine specificity as well as differences in ganglioside accessibility in axons and myelin influence the selectivity of injury to different fibre systems and cell types in human autoimmune neuropathies.
Collapse
Affiliation(s)
- Y Gong
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tagawa Y, Laroy W, Nimrichter L, Fromholt SE, Moser AB, Moser HW, Schnaar RL. Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids. Neurochem Res 2002; 27:847-55. [PMID: 12374222 DOI: 10.1023/a:1020221410895] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gangliosides function in both physiological and pathological molecular recognition. Although much research has focused on the role of ganglioside glycans in recognition, fewer studies have addressed the role of the ceramide moiety. Ceramides of major brain gangliosides are composed predominantly of monounsaturated 18-carbon and 20-carbon long chain bases with a saturated 18-carbon fatty acid amide. In contrast, gangliosides of X-linked adrenoleukodystrophy patients are characterized by abnormal very long chain fatty acids that are proposed to be associated with autoimmune inflammation. In the current study we synthesized and characterized derivatives of the major brain ganglioside GD1a bearing defined very long chain fatty acid amides (C24:0, C24:1, and C26:0). When tested in a solid phase binding assay in the presence of auxiliary membrane lipids, GD1a species with long chain fatty acids were up to 8-fold more potent than normal brain GD1a in binding four different anti-GD1a monoclonal antibodies. These data support the hypothesis that gangliosides bearing very long chain fatty acids are differentially displayed on membranes, which may lead to altered antigenicity.
Collapse
Affiliation(s)
- Yumi Tagawa
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002; 99:8412-7. [PMID: 12060784 PMCID: PMC123081 DOI: 10.1073/pnas.072211699] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering.
Collapse
Affiliation(s)
- Alka A Vyas
- Departments of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002. [DOI: 10.1073/pnas.072211699 99/12/8412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|