1
|
Braun J, Fischer S, Xu ZZ, Sun H, Ghoneim DH, Gimbel AT, Plessmann U, Urlaub H, Mathews DH, Weigand JE. Identification of new high affinity targets for Roquin based on structural conservation. Nucleic Acids Res 2019; 46:12109-12125. [PMID: 30295819 PMCID: PMC6294493 DOI: 10.1093/nar/gky908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional gene regulation controls the amount of protein produced from a specific mRNA by altering both its decay and translation rates. Such regulation is primarily achieved by the interaction of trans-acting factors with cis-regulatory elements in the untranslated regions (UTRs) of mRNAs. These interactions are guided either by sequence- or structure-based recognition. Similar to sequence conservation, the evolutionary conservation of a UTR’s structure thus reflects its functional importance. We used such structural conservation to identify previously unknown cis-regulatory elements. Using the RNA folding program Dynalign, we scanned all UTRs of humans and mice for conserved structures. Characterizing a subset of putative conserved structures revealed a binding site of the RNA-binding protein Roquin. Detailed functional characterization in vivo enabled us to redefine the binding preferences of Roquin and identify new target genes. Many of these new targets are unrelated to the established role of Roquin in inflammation and immune responses and thus highlight additional, unstudied cellular functions of this important repressor. Moreover, the expression of several Roquin targets is highly cell-type-specific. In consequence, these targets are difficult to detect using methods dependent on mRNA abundance, yet easily detectable with our unbiased strategy.
Collapse
Affiliation(s)
- Johannes Braun
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Sandra Fischer
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Zhenjiang Z Xu
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongying Sun
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dalia H Ghoneim
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anna T Gimbel
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Uwe Plessmann
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Henning Urlaub
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center, 37073 Göttingen, Germany
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Julia E Weigand
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
2
|
A novel SP1/SP3 dependent intronic enhancer governing transcription of the UCP3 gene in brown adipocytes. PLoS One 2013; 8:e83426. [PMID: 24391766 PMCID: PMC3877035 DOI: 10.1371/journal.pone.0083426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Uncoupling protein (UCP) 3 is a mitochondrial inner membrane protein implicated in lipid handling and metabolism of reactive oxygen species. Its transcription is mainly regulated by peroxisome proliferator-activated receptors (PPAR), a family of nuclear hormone receptors. Employing bandshift assays, RNA interference and reporter gene assays we examine an intronic region in the UCP3 gene harboring a cis-element essential for expression in brown adipocytes. We demonstrate binding of SP1 and SP3 to this element which is adjacent to a direct repeat 1 element mediating activation of UCP3 expression by PPARγ agonists. Transactivation mediated by these elements is interdependent and indispensable for UCP3 expression. Systematic deletion uncovered a third binding element, a putative NF1 site, in close proximity to the SP1/3 and PPARγ binding elements. Data mining demonstrated binding of MyoD and Myogenin to this third element in C2C12 cells, and, furthermore, revealed recruitment of p300. Taken together, this intronic region is the main enhancer driving UCP3 expression with SP1/3 and PPARγ as the core factors required for expression.
Collapse
|
3
|
Lee MS, Kim IH, Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2)C(12) muscle cells. Nutrients 2013; 5:1660-71. [PMID: 23698161 PMCID: PMC3708343 DOI: 10.3390/nu5051660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022] Open
Abstract
Uncoupling protein 3 (UCP3) is a mitochondrial membrane transporter that is expressed mainly in skeletal muscle where it plays an important role in energy expenditure and fat oxidation. In this study, we investigated the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on UCP3 gene expression in C2C12 muscle cells. EPA and DHA up-regulated UCP3 mRNA level in a dose-dependent manner and similarly increased UCP3 promoter activity in C2C12 muscle cells. To determine whether AMP-activated protein kinase (AMPK) signaling may also directly regulate UCP3 expression, 5′-amino-4-imidazolecarboxamide-ribonucleoside (AICAR), an AMP analog that activates AMPK, was treated in C2C12 muscle cells. AICAR showed additive effects with EPA or DHA on the UCP3 promoter activation. These results indicate that EPA and DHA directly regulate the gene expression of UCP3, potentially through AMPK-mediated pathway in C2C12 muscle cells.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea; E-Mail:
| | - In-Hwan Kim
- Department of Food and Nutrition, College of Health Sciences, Korea University, Seoul 136-703, Korea; E-Mail:
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-2-3277-3101; Fax: +82-2-3277-4425
| |
Collapse
|
4
|
Hesselink MKC, Mensink M, Schrauwen P. Human Uncoupling Protein-3 and Obesity: An Update. ACTA ACUST UNITED AC 2012; 11:1429-43. [PMID: 14694206 DOI: 10.1038/oby.2003.192] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cloning of the uncoupling protein (UCP)1 homologs UCP2 and UCP3 has raised considerable interest in the mechanism. The expression of UCP3 mainly in skeletal muscle mitochondria and the potency of the skeletal muscle as a thermogenic organ made UCP3 an attractive target for studies toward manipulation of energy expenditure to fight disorders such as obesity and type 2 diabetes. Overexpressing UCP3 in mice resulted in lean, hyperphagic mice. However, the lack of an apparent phenotype in mice lacking UCP3 triggered the search for alternative functions of UCP3. The observation that fatty acid levels significantly affect UCP3 expression has given UCP3 a position in fatty acid handling and/or oxidation. Emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than the regulation of energy expenditure through thermogenesis. It has been proposed that UCP3 functions to export fatty acid anions away from the mitochondrial matrix. In doing so, fatty acids are exchanged with protons, explaining the uncoupling activity of UCP3. The exported fatty acid anions may originate from hydrolysis of fatty acid esters by a mitochondrial thioesterase, or they may have entered the mitochondria as nonesterified fatty acids by incorporating into and flip-flopping across the mitochondrial inner membrane. Regardless of the origin of the fatty acid anions, this putative function of UCP3 might be of great importance in protecting mitochondria against fatty acid accumulation and may help to maintain muscular fat oxidative capacity.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Movement Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
5
|
Kase ET, Nikolić N, Hessvik NP, Fjeldheim ÅK, Jensen J, Thoresen GH, Rustan AC. Dietary Supplementation with 22-S-Hydroxycholesterol to Rats Reduces Body Weight Gain and the Accumulation of Liver Triacylglycerol. Lipids 2012; 47:483-93. [DOI: 10.1007/s11745-012-3663-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/29/2012] [Indexed: 01/08/2023]
|
6
|
Villarroya F, Iglesias R, Giralt M. PPARs in the Control of Uncoupling Proteins Gene Expression. PPAR Res 2011; 2007:74364. [PMID: 17389766 PMCID: PMC1779581 DOI: 10.1155/2007/74364] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/18/2006] [Accepted: 10/18/2006] [Indexed: 11/17/2022] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial membrane transporters involved in the control of energy conversion in mitochondria. Experimental and genetic evidence relate dysfunctions of UCPs with metabolic syndrome and obesity. The PPAR subtypes mediate to a large extent the transcriptional regulation of the UCP genes, with a distinct relevance depending on the UCP gene and the tissue in which it is expressed. UCP1 gene is under the dual control of PPARγ and PPARα in relation to brown adipocyte differentiation and lipid oxidation, respectively. UCP3 gene is regulated by PPARα and PPARδ in the muscle, heart, and adipose tissues. UCP2 gene is also under the control of PPARs even in tissues in which it is the predominantly expressed UCP (eg, the pancreas and liver). This review summarizes the current understanding of the role of PPARs in UCPs gene expression in normal conditions and also in the context of type-2 diabetes or obesity.
Collapse
Affiliation(s)
- Francesc Villarroya
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona 585 08007, Spain
- *Francesc Villarroya:
| | - Roser Iglesias
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona 585 08007, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona 585 08007, Spain
| |
Collapse
|
7
|
Brennan KM, Michal JJ, Ramsey JJ, Johnson KA. Body weight loss in beef cows: I. The effect of increased β-oxidation on messenger ribonucleic acid levels of uncoupling proteins two and three and peroxisome proliferator-activated receptor in skeletal muscle. J Anim Sci 2009; 87:2860-6. [DOI: 10.2527/jas.2008-1302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Mujahid A, Akiba Y, Toyomizu M. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2009; 297:R690-8. [DOI: 10.1152/ajpregu.90974.2008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens ( Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34°C, 12 h) or kept at a thermoneutral temperature (25°C). Skeletal muscle mitochondrial ROS (measured as H2O2) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.
Collapse
|
9
|
Girousse A, Tavernier G, Tiraby C, Lichtenstein L, Iacovoni JS, Mairal A, Villarroya F, Langin D. Transcription of the human uncoupling protein 3 gene is governed by a complex interplay between the promoter and intronic sequences. Diabetologia 2009; 52:1638-46. [PMID: 19468707 DOI: 10.1007/s00125-009-1385-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/17/2009] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Uncoupling protein (UCP) 3 is an inner mitochondrial membrane transporter mainly produced in skeletal muscle in humans. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. In humans, UCP3 content is higher in fast-twitch glycolytic muscle than in slow-twitch oxidative muscle and is dysregulated in type 2 diabetes. Here, we studied the molecular mechanisms determining human UCP3 levels in skeletal muscle and their regulation by fasting in transgenic mice. METHODS We produced a series of transgenic lines with constructs bearing different putative regulatory regions of the human UCP3 gene, including promoter and intron sequences. UCP3 mRNA and reporter gene expression and activity were measured in different skeletal muscles and tissues. RESULTS The profile of expression and the response to fasting and thyroid hormone of human UCP3 mRNA in transgenic mice with 16 kb of the human UCP3 gene were similar to that of the endogenous human gene. Various parts of the UCP3 promoter did not confer expression in transgenic lines. Inclusion of intron 1 resulted in an expression profile in skeletal muscle that was identical to that of human UCP3 mRNA. Further dissection of intron 1 revealed that distinct regions were involved in skeletal muscle expression, distribution among fibre types and response to fasting. CONCLUSIONS/INTERPRETATION The control of human UCP3 transcription in skeletal muscle is not solely conferred by the promoter, but depends on several cis-acting elements in intron 1, suggesting a complex interplay between the promoter and intronic sequences.
Collapse
Affiliation(s)
- A Girousse
- Inserm U858, Institut de Médecine Moléculaire de Rangueil, Laboratoire de recherches sur les obésités, Equipe 4, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dridi S, Temim S, Derouet M, Tesseraud S, Taouis M. Acute cold- and chronic heat-exposure upregulate hepatic leptin and muscle uncoupling protein (UCP) gene expression in broiler chickens. ACTA ACUST UNITED AC 2008; 309:381-8. [PMID: 18473347 DOI: 10.1002/jez.461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Emerging evidence showed that variations in environmental temperature affect both leptin and uncoupling protein (UCP) gene expression in mammals, whereas a little is known about such interactions in birds. Thus, we conducted the present study to investigate the influence of acute (2 hours) cold (4 degrees C) and chronic (10 days) heat (32 degrees C) exposure on hepatic leptin and muscle UCP gene expression in 5-wk-old broiler chickens. Both cold- and heat-exposure significantly (P < 0.05 to P < 0.001) upregulated hepatic leptin (by 35 and 46%, respectively) and muscle UCP mRNA levels (by 71 and 71%, respectively) compared to the thermoneutrality (22 degrees C). This result suggests that leptin and UCP may be involved in the thermoregulation response of chickens to extreme climate (cold and hot temperatures). The upregulation of hepatic leptin gene expression was accompanied by an increase in plasma leptin levels, indicating that leptin may be regulated at transcriptional level. The increase of leptin and UCP mRNA abundance, and leptinemia we report here were not related to plasma glucose or insulin levels. In conclusion, the exposure of broiler chickens to extreme ambient temperatures (cold and heat) increases hepatic leptin and muscle UCP gene expression.
Collapse
Affiliation(s)
- Sami Dridi
- INRA, UR83 RecherchesAvicoles, Nouzilly, France.
| | | | | | | | | |
Collapse
|
11
|
Ramsay TG, Mitchell AD, Richards MP. Uncoupling protein expression in skeletal muscle and adipose tissue in response to in vivo porcine somatotropin treatment. Domest Anim Endocrinol 2008; 35:130-41. [PMID: 18638661 DOI: 10.1016/j.domaniend.2007.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 11/08/2007] [Accepted: 12/05/2007] [Indexed: 11/25/2022]
Abstract
These experiments examined the potential roles of somatropin (pST) and IGF-I in the regulation of uncoupling protein (UCP)2 and UCP3 and their regulatory proteins peroxisome proliferator activated receptor (PPAR) alpha, gamma and delta using in vivo pST treatment of swine and in vitro supplementation of pST or IGF-I to adipose slices. Six, 90kg barrows were treated with recombinant pST (10mg) for 2 week while another six pigs were injected with buffer. Total RNA from outer subcutaneous adipose (OSQ) and middle subcutaneous adipose (MSQ) tissues, leaf fat, liver and longissimus (LM) was amplified by reverse transcription-PCR with quantification of transcripts by capillary electrophoresis with laser-induced fluorescence detection. UCP2 mRNA abundance increased in liver (P<0.001) and all three adipose tissues by pST treatment (P<0.05). Administration of pST increased UCP3 mRNA abundance by 42% in LM (P<0.01). PPARalpha mRNA abundance increased with pST treatment by 29% in liver (P<0.05), while decreasing 25% in LM (P<0.05). PPARgamma mRNA abundance decreased 32% (P<0.01) while PPARdelta increased 48% in LM (P<0.01) with pST administration. In vitro, pST reduced UCP2 mRNA abundance in OSQ and MSQ tissue slices (P<0.05). UCP3 mRNA abundance decreased in OSQ (P<0.05) but increased in MSQ (P<0.05) with pST. In contrast, IGF-I increased UCP2 and UCP3 mRNA abundance in both MSQ and OSQ slices (P<0.05). These experiments suggest pST, IGF-I and metabolic adaptations to pST contribute to regulating UCP2 and UCP3.
Collapse
Affiliation(s)
- T G Ramsay
- Growth Biology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
12
|
Kim D, Jitrapakdee S, Thompson M. Differential regulation of the promoter activity of the mouse UCP2 and UCP3 genes by MyoD and myogenin. BMB Rep 2008; 40:921-7. [PMID: 18047787 DOI: 10.5483/bmbrep.2007.40.6.921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UCP2 and UCP3 are members of the uncoupling protein family, which may play roles in energy homeostasis. In order to determine the regulation of the predominant expression of UCP3 in skeletal muscle, the effects of differentiation and myogenic regulatory factors on the promoter activities of the mouse UCP2 and UCP3 genes were studied. Reporter plasmids, containing approximately 3 kb of the 5'-upstream region of the mouse UCP2 and UCP3 genes, were transfected into C2C12 myoblasts, which were then induced to differentiate. Differentiation positively induced the reporter expression about 20-fold via the UCP3 promoter, but by only 2-fold via the UCP2 promoter. C2C12 myoblasts were cotransfected with expression vectors for myogenin and/or MyoD as well as reporter constructs. The simultaneous expression of myogenin and MyoD caused an additional 20-fold increase in the reporter expression via the UCP3 promoter, but only a weak effect via the UCP2 promoter. In L6 myoblasts, only MyoD activated the UCP3 promoter, but in 3T3-L1 cells neither factor activated the UCP3 promoter, indicating that additional cofactors are required, which are present only in C2C12 myoblasts. The expression of UCP2 and UCP3 is differentially regulated during muscle differentiation due to the different responsiveness of their promoter regions to myogenin and MyoD.
Collapse
Affiliation(s)
- Dongho Kim
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
13
|
Fromme T, Reichwald K, Platzer M, Li XS, Klingenspor M. Chicken ovalbumin upstream promoter transcription factor II regulates uncoupling protein 3 gene transcription in Phodopus sungorus. BMC Mol Biol 2007; 8:1. [PMID: 17204145 PMCID: PMC1779797 DOI: 10.1186/1471-2199-8-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 01/04/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ucp3 is an integral protein of the inner mitochondrial membrane with a role in lipid metabolism preventing deleterious effects of fatty acids in states of high lipid oxidation. Ucp3 is expressed in brown adipose tissue and skeletal muscle and controlled by a transcription factor complex including PPARalpha, MyoD and the histone acetyltransferase p300. Several studies have demonstrated interaction of these factors with chicken ovalbumin upstream promoter transcription factor II (Coup-TFII). This nuclear receptor is involved in organogenesis and other developmental processes including skeletal muscle development, but also co-regulates a number of metabolic genes. In this study we in silico analyzed the upstream region of Ucp3 of the Djungarian hamster Phodopus sungorus and identified several putative response elements for Coup-TFII. We therefore investigated whether Coup-TFII is a further player in the transcriptional control of the Ucp3 gene in rodents. RESULTS By quantitative PCR we demonstrated a positive correlation of Coup-TFII and Ucp3 mRNA expression in skeletal muscle and brown adipose tissue in response to food deprivation and cold exposure, respectively. In reporter gene assays Coup-TFII enhanced transactivation of the Ucp3 promoter conveyed by MyoD, PPARalpha, RXRalpha and/or p300. Using deletions and mutated constructs, we identified a Coup-TFII enhancer element 816-840 bp upstream of the transcriptional start site. Binding of Coup-TFII to this upstream enhancer was confirmed in electrophoretic mobility shift and supershift assays. CONCLUSION Transcriptional regulation of the Coup-TFII gene in response to starvation and cold exposure seems to be the regulatory mechanism of Ucp3 mRNA expression in brown adipose and skeletal muscle tissue determining the final appropriate rate of transcript synthesis. These findings add a crucial component to the complex transcriptional machinery controlling expression of Ucp3. Given the substantial evidence for a function of Ucp3 in lipid metabolism, Coup-TFII may not only be a negative regulator of glucose responsive genes but also transactivate genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Tobias Fromme
- Department of Animal Physiology, Faculty of Biology, Philipps-University, D-35043 Marburg, Germany
| | - Kathrin Reichwald
- Genome Analysis, Leibniz-Institute for Age Research – Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz-Institute for Age Research – Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Xing-Sheng Li
- Department of Animal Physiology, Faculty of Biology, Philipps-University, D-35043 Marburg, Germany
| | - Martin Klingenspor
- Department of Animal Physiology, Faculty of Biology, Philipps-University, D-35043 Marburg, Germany
| |
Collapse
|
14
|
Pearen MA, Ryall JG, Maxwell MA, Ohkura N, Lynch GS, Muscat GEO. The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic signaling in skeletal muscle. Endocrinology 2006; 147:5217-27. [PMID: 16901967 DOI: 10.1210/en.2006-0447] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)- and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Homeostasis
- Ion Channels/physiology
- Isoproterenol/pharmacology
- Lipid Metabolism
- Mice
- Mitochondrial Proteins/physiology
- Muscle Development
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myostatin
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Small Interfering/pharmacology
- Receptors, Adrenergic, beta/physiology
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/physiology
- Signal Transduction/physiology
- Transcription Factors/physiology
- Transforming Growth Factor beta/genetics
- Uncoupling Protein 2
- Uncoupling Protein 3
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, Division of Molecular Genetics and Development, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Busquets S, Almendro V, Barreiro E, Figueras M, Argilés JM, López-Soriano FJ. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia. FEBS Lett 2005; 579:717-22. [PMID: 15670834 DOI: 10.1016/j.febslet.2004.12.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/15/2022]
Abstract
Implantation of a fast growing tumour to mice (Lewis lung carcinoma) resulted in a clear cachectic state characterized by a profound muscle wasting. This was accompanied by a significant increase in both UCP2 and UCP3 gene expression in skeletal muscle and heart. Interestingly, this increase in gene expression was not linked to a rise in circulating fatty acids or in a decrease in food intake, as previously reported in other pathophysiological states. These results question the concept that hyperlipaemia is the only factor controlling UCP gene expression in different pathophysiological conditions. In addition, the present work suggests that UCPs might participate in a counter-regulatory mechanism to lower the production of ROS.
Collapse
Affiliation(s)
- Sílvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Sanders PM, Tisdale MJ. Effect of zinc-alpha2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett 2004; 212:71-81. [PMID: 15246563 DOI: 10.1016/j.canlet.2004.03.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2003] [Revised: 03/09/2004] [Accepted: 03/16/2004] [Indexed: 11/17/2022]
Abstract
The plasma protein zinc-alpha2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the beta3-adrenergic receptor (beta3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 microM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a beta3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 microM ZAG. This effect was not mediated through the beta3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia.
Collapse
Affiliation(s)
- Paul M Sanders
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
17
|
Thompson MP, Kim D. Links between fatty acids and expression of UCP2 and UCP3 mRNAs. FEBS Lett 2004; 568:4-9. [PMID: 15196910 DOI: 10.1016/j.febslet.2004.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 05/03/2004] [Indexed: 12/31/2022]
Abstract
Physiological and pathological states that are associated with elevated plasma fatty acids (FAs) increase uncoupling protein 2 (UCP2) mRNA in white adipose tissue and UCP3 mRNA in skeletal muscle and heart. A direct effect of unsaturated fatty acids from all classes has been shown in various cultured cells. There is evidence that FAs could induce expression of UCPs by acting as ligands for peroxisome proliferator-activated receptors, influencing the function of sterol responsive element binding protein or activating 5'-AMP-activated protein kinase. Oleic acid has been shown to stimulate the activity of the promoter regions of UCP2 and UCP3 genes and the FA responsive regions are beginning to be characterised.
Collapse
Affiliation(s)
- Mary P Thompson
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
18
|
Affiliation(s)
- Tim R Nagy
- Department of Nutrition Sciences and the Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-3360, USA.
| | | | | |
Collapse
|
19
|
Masuda Y, Haramizu S, Oki K, Ohnuki K, Watanabe T, Yazawa S, Kawada T, Hashizume SI, Fushiki T. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol (1985) 2003; 95:2408-15. [PMID: 12959953 DOI: 10.1152/japplphysiol.00828.2002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.
Collapse
Affiliation(s)
- Yoriko Masuda
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto Univ., Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun X, Wray C, Tian X, Hasselgren PO, Lu J. Expression of uncoupling protein 3 is upregulated in skeletal muscle during sepsis. Am J Physiol Endocrinol Metab 2003; 285:E512-20. [PMID: 12721157 DOI: 10.1152/ajpendo.00446.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncoupling protein 3 (UCP3) is a member of the mitochondrial transporter superfamily that is expressed primarily in skeletal muscle. UCP3 is upregulated in various conditions characterized by skeletal muscle atrophy, including hyperthyroidism, fasting, denervation, diabetes, cancer, lipopolysaccharide (LPS), and treatment with glucocorticoids (GCs). The influence of sepsis, another condition characterized by muscle cachexia, on UCP3 expression and activity is not known. We examined UCP3 gene and protein expression in skeletal muscles from rats after cecal ligation and puncture and from sham-operated control rats. Sepsis resulted in a two- to threefold increase in both mRNA and protein levels of UCP3 in skeletal muscle. Treatment of rats with the glucocorticoid receptor antagonist RU-38486 prevented the sepsis-induced increase in gene and protein expression of UCP3. The UCP3 mRNA and protein levels were increased 2.4- to 3.6-fold when incubated muscles from normal rats were treated with dexamethasone (DEX) and/or free fatty acids (FFA) ex vivo. In addition, UCP3 mRNA and protein levels were significantly increased in normal rat muscles in vivo with treatment of either DEX or FFA. The results suggest that sepsis upregulates the gene and protein expression of UCP3 in skeletal muscle, which may at least in part be mediated by GCs and FFA.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Mail Location 0558, Cincinnati, Ohio 45267-0558, USA.
| | | | | | | | | |
Collapse
|
21
|
Moreno M, Lombardi A, De Lange P, Silvestri E, Ragni M, Lanni A, Goglia F. Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. FASEB J 2003; 17:1112-4. [PMID: 12692085 DOI: 10.1096/fj.02-0839fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the role of uncoupling protein 3 (UCP3) during fasting and examined the effect of triiodothyronine (T3) administration in such a condition. The possible involvement of mitochondrial thioesterase (MTE I) and the role of putative cofactors, such as coenzyme Q (CoQ), was also examined. Here, we report that fasting induced a more than twofold elevation in the expression and activity of MTE I, and an increase in UCP3 expression, without any associated uncoupling activity. Administration of T3 to fasting rats further up-regulated UCP3 as well as MTE I expression, markedly enhanced MTE I enzyme activity and prevented the impairment of the uncoupling activity of UCP3 normally seen during fasting. Indeed, T3-treatment induced an UCP3-dependent decrease in mitochondrial membrane potential, which was abolished by the addition of either GDP or superoxide dismutase (SOD). T3 administration also prevented the marked decrease of CoQ levels observed in fasting rats and this provides evidence that also, in vivo, CoQ represents an essential cofactor for the UCP3-mediated uncoupling. The data also show that MTE I and UCP3 are likely involved in the same biochemical mechanism and that UCP3 postulated functions, such as lipid handling and uncoupling, are not mutually exclusive but may coexist in vivo.
Collapse
Affiliation(s)
- Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italia
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
AIMS The regulation of uncoupling protein-3 (UCP-3) expression in muscle remains unclear, specifically in relation to dietary and drug treatments. The present study evaluated the effects of oleic acid and rosiglitazone on UCP-3 mRNA expression in differentiated L6 myotubes. METHODS L6 myocytes were cultured and differentiated prior to exposure to rosiglitazone 10 micro mol/l, oleic acid 100 micro mol/l, or the combination, for 24 h, prior to semiquantitative evaluation of UCP-3 mRNA relative to GAPDH mRNA by RT-PCR. RESULTS Exposure to oleic acid produced a significant increase in UCP-3 mRNA (0.012 +/- 0.007 vs. 0.0011 +/- 0.0006 for untreated cells, relative to GAPDH mRNA, p < 0.001). Rosiglitazone alone had no effect on UCP-3 expression and nor did the glitazone affect oleic-acid-induced upregulation of UCP-3. CONCLUSIONS In L6 myotubes, 24-h exposure to oleic acid produced a 10-fold increase in UCP-3 mRNA expression, but rosiglitazone had no effect. Oleic-acid-induced upregulation of UCP-3 was not affected (positively or negatively) by glitazone exposure.
Collapse
Affiliation(s)
- A Costello
- School of Medical and Surgical Sciences, University of Nottingham
| | | | | |
Collapse
|
23
|
Noland RC, Hickner RC, Jimenez-Linan M, Vidal-Puig A, Zheng D, Dohm GL, Cortright RN. Acute endurance exercise increases skeletal muscle uncoupling protein-3 gene expression in untrained but not trained humans. Metabolism 2003; 52:152-8. [PMID: 12601624 DOI: 10.1053/meta.2003.50021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In rodents, acute exercise increases skeletal muscle uncoupling protein (UCP) gene expression and is associated with elevations in serum nonesterified fatty acids (NEFA). To test whether contractions increase UCP mRNA levels in humans, vastus lateralis biopsies were obtained 1 hour postexercise from untrained and trained subjects and analyzed for UCP-2 and UCP-3 long (UCP-3(L)) and short (UCP-3(S)) isoforms. The acute exercise bout (graded cycling protocol; 65% to 85% relative VO(2)max) induced significant (P <.01) elevations in serum NEFA in both untrained and trained subjects, but the increase in untrained subjects was significantly (P <.05) greater (60% v 30%). Ribonuclease protection assay demonstrated that basal levels of all UCP isoforms measured were similar between the 2 groups. However, acute exercise induced a significant increase (P <.02) in both UCP-3(L) and UCP-3(S), but not UCP-2 mRNA levels in untrained, but not trained subjects. Correlation analysis did not show a significant relationship between exercise-induced changes in NEFA and UCP-3 levels. These results demonstrate that acute endurance exercise increases UCP-3 gene expression only in untrained skeletal muscle, but this effect does not seem to be tightly linked to the exercise-induced fluctuations in serum NEFA levels.
Collapse
Affiliation(s)
- Robert C Noland
- Department of Exercise and Sport Science (Human Performance Laboratory), Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Guigal N, Rodriguez M, Cooper RN, Dromaint S, Di Santo JP, Mouly V, Boutin JA, Galizzi JP. Uncoupling protein-3 (UCP3) mRNA expression in reconstituted human muscle after myoblast transplantation in RAG2-/-/gamma c/C5(-) immunodeficient mice. J Biol Chem 2002; 277:47407-11. [PMID: 12351640 DOI: 10.1074/jbc.m208048200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uncoupling protein-3 (UCP3), which is expressed abundantly in skeletal muscle, is one of the carrier proteins dissipating the transmitochondrial electrochemical gradient as heat and has therefore been implicated in the regulation of energy metabolism. Myoblasts or differentiated muscle cells in vitro expressed little if any UCP3, compared with the levels detected in biopsies of skeletal muscle. In the present report, we sought to investigate UCP3 mRNA expression in human muscle generated by myoblast transplantation in the skeletal muscle of an immunodeficient mouse model. Time course experiments demonstrated that 7-8 weeks following transplantation fully differentiated human muscle fibers were formed. The presence of differentiated human muscle fibers was assessed by quantitative PCR measurement of the human alpha-actin mRNA together with immunohistochemical staining using specific antibodies for spectrin and the slow adult myosin heavy chain. Interestingly, we found that the expression of UCP3 mRNA was dependant on human muscle differentiation and that the UCP3 mRNA level was comparable with that found in human muscle biopsies. Moreover, the human UCP3 (hUCP3) promoter seems to be fully functional, since triiodothyronine treatment of the mice not only stimulated the mouse UCP3 (mUCP3) mRNA expression but also strongly stimulated the hUCP3 mRNA expression in human fibers formed after myoblast transplantation. To our knowledge, this is the first time that primary myoblasts could be induced to express the UCP3 gene at a level comparable of that found in human muscle fibers.
Collapse
Affiliation(s)
- Nolwen Guigal
- Institut de Recherches Servier, Division de Pharmacologie Moléculaire et Cellulaire, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Evock-Clover CM, Poch SM, Richards MP, Ashwell CM, McMurtry JP. Expression of an uncoupling protein gene homolog in chickens. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:345-58. [PMID: 12208305 DOI: 10.1016/s1095-6433(02)00113-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An avian uncoupling protein (UCP) gene homolog was recently sequenced from skeletal muscle and was proposed to have a role in thermogenesis in chickens, ducks and hummingbirds. Since mammalian UCP 2 and UCP 3 also appear to have functions associated with energy and substrate partitioning and body weight regulation, the purpose of this study was to further characterize chicken UCP under conditions of nutritional stress and/or leptin administration. Male 3-week-old chickens were starved for 24 or 48 h and then half of each group was refed for an additional 24 h. In a follow-up experiment, chickens were fed or starved for 48 h with or without leptin administration. Feed deprivation increased UCP mRNA expression in skeletal muscle by up to 260% (P<0.001), and in a time-dependent manner in pectoralis muscle. Refeeding for 24 h normalized muscle UCP mRNA levels. Leptin administration had no effect on muscle UCP. Chicken muscle UCP mRNA levels were highly correlated with plasma triglyceride and non-esterified fatty acid (NEFA) concentrations, and with circulating levels of insulin, insulin-like growth factor (IGF)-I and IGF-II. These results suggest that, as in mammals, avian UCP is up-regulated during feed deprivation and is highly correlated with increased fatty acid oxidation and flux into skeletal muscle.
Collapse
Affiliation(s)
- Christina M Evock-Clover
- Growth Biology Laboratory, US Department of Agriculture - Agricultural Research Service, ANRI, GBL, B-200, R-217, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Five mitochondrial uncoupling proteins exist in the human gemone: UCP2, expressed ubiquitously; UCP1, exclusively in brown adipose tissue (BAT); UCP3, predominantly in muscle; UCP4 and BMCP (UCP5), in brain. UCP4 is the ancestral prototype from which the other UCPn diverged. Findings on the level of organism and reconstituted recombinant proteins demonstrated that UCPn exhibit a protonophoric function, documented by overexpression in mice, L6 myotubes, INS1 cells, muscle, and yeast. In a few cases (yeast), this protonophoric function was correlated with elevated fatty acid (FA) levels. Reconstituted UCPn exhibited nucleotide-sensitive FA induced H(+) uniport. Two mechanisms, local buffering or FA cycling were suggested as an explanation. A basic UCPn role with mild uncoupling is to accelerate metabolism and reduce reactive oxygen species. UCP2 (UCP3) roles were inferred from transcriptional up-regulation mediated by FAs via peroxisome proliferator-activated receptors, cytokines, leptin signalling via hypothalamic pathway, and by thyroide and beta2 adrenergic stimulation. The latter indicated a role in catecholamine-induced thermogenesis in skeletal muscle. UCP2 (UCP3) may contribute to body weight regulation, although obesity was not induced in knockout (KO) mice. An obesity reduction in middle-aged humans was associated with the less common allele of -866 G/A polymorphism in the ucp2 gene promoter enhancing the exon 8 insertion: deletion transcript ratio. Up-regulated UCP2 transcription by pyrogenic cytokines (tumour necrosis factor alpha (TNFalpha)) suggested a role in fever. UCP2 could induce type 2 diabetes as developed from obesity due to up-regulated UCP2 transcription by FAs in pancreatic beta-cells. UCPn might be pro-apoptotic as well as anti-apoptotic, depending on transcriptional and biochemical regulation.
Collapse
Affiliation(s)
- Petr Jezek
- Department of Membrane Transport Biophysics No. 375, Institute of Physiology, Academy of Sciences, Vídenská 1083, Prague 4, Czech Republic.
| |
Collapse
|
27
|
Sbraccia P, D'Adamo M, Leonetti F, Buongiorno A, Silecchia G, Basso MS, Tamburrano G, Lauro D, Federici M, Di Daniele N, Lauro R. Relationship between plasma free fatty acids and uncoupling protein-3 gene expression in skeletal muscle of obese subjects: in vitro evidence of a causal link. Clin Endocrinol (Oxf) 2002; 57:199-207. [PMID: 12153598 DOI: 10.1046/j.1365-2265.2002.01593.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate whether skeletal muscle uncoupling protein-2 (UCP2) and uncoupling protein-3 (UCP3) gene expression is altered in massive obesity and whether it correlates with in vivo insulin sensitivity and with metabolic and hormonal status. DESIGN Quantification of UCP2 and UCP3 gene expression in skeletal muscle of obese and lean subjects displaying different degrees of insulin sensitivity. PATIENTS Fourteen obese and 10 age- and sex-matched healthy control subjects with a mean body mass index (BMI) of 43.6 +/- 1.4 and 22.8 +/- 1.8 (+/- SEM), respectively. MEASUREMENTS Insulin sensitivity by glucose clamp, body composition by bio-impedance, fasting plasma glucose, insulin, leptin and free fatty acids (FFA). Skeletal muscle UCP2 and UCP3 mRNA levels by quantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS No significant differences in UCP2 or UCP3 mRNA levels were found between obese and control subjects. No significant correlation was observed, in both groups, between UCP2 or UCP3 mRNA levels and both anthropometrical and metabolic parameters. In contrast, a highly significant correlation was observed between skeletal muscle UCP3, but not UCP2, mRNA levels and plasma FFA in the obese, but not in the lean, group. Furthermore, exposure of human myocytes to FFA for 24 h strongly induced both UCP3 and peroxisome proliferator-activated receptor-gamma (PPARgamma) but not UCP2 gene expression. CONCLUSIONS FFA levels correlate strongly with skeletal muscle UCP3 mRNA levels in obese, but not in lean, subjects; in addition, in human myocytes, high FFA concentrations promote UCP3 expression. Our studies therefore provide evidence that supports a role for increased plasma FFA concentrations in the regulation of human skeletal muscle UCP3 gene expression.
Collapse
Affiliation(s)
- Paolo Sbraccia
- Loboratory of Molecular Medicine, Department of Internal Medicine, University of Rome 'Tor Vergata', Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Argilés JM, Busquets S, López-Soriano FJ. The role of uncoupling proteins in pathophysiological states. Biochem Biophys Res Commun 2002; 293:1145-52. [PMID: 12054495 DOI: 10.1016/s0006-291x(02)00355-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Until very recently, the uncoupling protein-1 (UCP1), present only in brown adipose tissue (BAT), was considered to be the only mitochondrial carrier protein that stimulated heat production by dissipating the proton gradient generated during respiration across the inner mitochondrial membrane and therefore uncoupling respiration from ATP synthesis. Recently, new uncoupling proteins, UCP2, UCP3, and UCP4, and brain mitochondrial carrier protein-1 (BMCP-1) have been described in mammalian tissues. The present review deals with the possible role of these proteins in different pathological conditions involving alterations in energy balance such as obesity or cachexia. In conclusion, the emergence of the UCP family has altered the approaches to bioenergetics and stressed the importance of uncoupling respiration in different pathophysiological conditions. An extensive qualitative and quantitative characterization of the new members of the UCP family in mammalian tissues will allow a better understanding of the molecular and regulatory mechanisms of thermogenesis and energy metabolism. At this point, we hope that the knowledge presented in the present review will not only stimulate a debate about the role of the UCP family in disease but also lead to applications beneficial for human health.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Kogure A, Sakane N, Takakura Y, Umekawa T, Yoshioka K, Nishino H, Yamamoto T, Kawada T, Yoshikawa T, Yoshida T. Effects of caffeine on the uncoupling protein family in obese yellow KK mice. Clin Exp Pharmacol Physiol 2002; 29:391-4. [PMID: 12010181 DOI: 10.1046/j.1440-1681.2002.03675.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The hypothesis that caffeine upregulates uncoupling protein (UCP)-1, UCP-2 and UCP-3 expression, which contribute to thermogenesis, was investigated in obese mice. 2. The mRNA levels of UCP-1, -2 and -3 in brown adipose tissue (BAT), UCP-2 in white adipose tissue (WAT), and UCP-2 and -3 in skeletal muscle were measured using real-time quantitative reverse transcription-polymerase chain reaction analysis in obese yellow KK mice 4 h after the subcutaneous administration of either 60 mg/kg caffeine or physiological saline. Plasma free fatty acids, adrenaline, noradrenaline and dopamine levels were also measured. 3. In caffeine-injected obese mice, UCP-1 mRNA levels were significantly increased by 1.5-fold in BAT, UCP-2 mRNA levels were increased by 1.8- and 2.5-fold in BAT and skeletal muscles, respectively, and UCP-3 mRNA levels were increased 1.7- and 3.4-fold in BAT and skeletal muscles, respectively, compared with control mice injected with physiological saline. There was no difference in UCP-2 mRNA levels in WAT between the two groups. 4. Plasma free fatty acids and adrenaline levels were significantly elevated in mice treated with caffeine compared with those injected with physiological saline. 5. It was concluded that caffeine upregulates the expression of UCP-1, UCP-2 and UCP-3 in BAT and UCP-2 and UCP-3 in skeletal muscles, which may contribute to thermogenesis in obese mice.
Collapse
Affiliation(s)
- Akinori Kogure
- First Department of Internal Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bing C, Russell ST, Beckett EE, Collins P, Taylor S, Barraclough R, Tisdale MJ, Williams G. Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor. Br J Cancer 2002; 86:612-8. [PMID: 11870545 PMCID: PMC2375279 DOI: 10.1038/sj.bjc.6600101] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2001] [Revised: 10/23/2001] [Accepted: 11/23/2001] [Indexed: 12/04/2022] Open
Abstract
The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.
Collapse
Affiliation(s)
- C Bing
- Diabetes and Endocrinology Research Group, Department of Medicine, University of Liverpool, Liverpool L69 3G, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Collins P, Bing C, McCulloch P, Williams G. Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans. Br J Cancer 2002; 86:372-5. [PMID: 11875702 PMCID: PMC2375209 DOI: 10.1038/sj.bjc.6600074] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Revised: 11/05/2001] [Accepted: 11/14/2001] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial uncoupling proteins-2 and -3 are putative mediators of thermogenesis and energy expenditure. We measured the mRNA levels of uncoupling proteins-2 and -3 in skeletal muscle from 12 gastrointestinal adenocarcinoma patients, of whom six had stable weight and six had lost 2-18 kg, and from six healthy controls undergoing elective surgery. Uncoupling proteins-3 mRNA levels were significantly higher in the muscle of the cancer patients with weight loss (2.2 +/- 0.47 arbitrary units) compared both with controls (0.39 +/- 0.20) and with cancer patients who had not lost weight (0.47 +/- 0.23; P<0.02). Uncoupling proteins-2 mRNA levels did not differ significantly between groups. Elevations in muscle uncoupling proteins-3 activity may enhance energy expenditure and this in turn could contribute to tissue catabolism.
Collapse
Affiliation(s)
- P Collins
- Gastroenterology Unit, University Hospital Aintree, Longmoor Lane, Liverpool L9 7AL, UK.
| | | | | | | |
Collapse
|
32
|
Rodríguez VM, Portillo MP, Picó C, Macarulla MT, Palou A. Olive oil feeding up-regulates uncoupling protein genes in rat brown adipose tissue and skeletal muscle. Am J Clin Nutr 2002; 75:213-20. [PMID: 11815310 DOI: 10.1093/ajcn/75.2.213] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Some nutrients, such as carotenoids, retinoic acid, and certain types of fatty acids, increase thermogenic capacity. OBJECTIVE The influence of 4 dietary lipid sources (olive oil, sunflower oil, palm oil, and beef tallow) on the content of uncoupling proteins 1, 2, and 3 (UCP1, UCP2, and UCP3) and their messenger RNA (mRNA) expression in several tissues of rats was compared. DESIGN Wistar rats were randomly divided into 4 groups and fed ad libitum diets containing 40% of energy as fat. UCP1, UCP2, and UCP3 mRNA and protein were assessed by Northern blot and Western blot, respectively. Oxygen consumption in tissues was measured by polarography. Total-body oxygen consumption was assessed in an open-circuit chamber system. Circulating fuels (fatty acids and glucose) and hormones (triiodothyronine, thyroxine, corticosterone, and insulin) were measured. RESULTS Olive oil feeding induced the highest UCP1, UCP2, and UCP3 mRNA expression in interscapular brown adipose tissue. An analogous effect was observed in gastrocnemius muscle UCP3 mRNA. No significant differences were observed in perirenal white adipose tissue UCP2 mRNA. Changes in mRNAs were not accompanied by close changes in the protein content of UCPs and were not associated with changes in adipose tissue oxygen consumption. Nevertheless, total-body oxygen consumption was higher in rats fed olive oil than in those fed the other 3 diets. No significant differences were found in body and tissue weights or in serum indexes. CONCLUSION Olive oil induced an up-regulating effect on UCP mRNA that was probably not mediated by systemic metabolic changes, but rather related to a local effect on interscapular brown adipose tissue and skeletal muscle.
Collapse
Affiliation(s)
- Víctor M Rodríguez
- Department of Nutrition and Food Science, the University of País Vasco, Vitoria, Spain
| | | | | | | | | |
Collapse
|
33
|
Zimmerman AW, Veerkamp JH. Fatty-acid-binding proteins do not protect against induced cytotoxicity in a kidney cell model. Biochem J 2001; 360:159-65. [PMID: 11696003 PMCID: PMC1222213 DOI: 10.1042/0264-6021:3600159] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intracellular accumulation of fatty acids (FAs) is a well-described consequence of renal ischaemia and may lead to lethal cell injury. Fatty-acid-binding proteins (FABPs) are small cytosolic proteins with high affinity for FAs. They may protect vital cellular functions by binding to and promoting the metabolism of FAs, thereby reducing their intracellular concentration. In this study we investigated the putative cytoprotective role of FABPs in a Madin-Darby canine kidney (MDCK) cell model for renal damage. We studied the effects of transfection with cDNA encoding heart FABP, adipocyte FABP or liver FABP on cytotoxicity induced by chemical anoxia or FAs. Transfection of MDCK type II cells with these cDNA types caused a 5-20-fold increase in FABP content, but did not change the rate or extent of palmitate uptake. After 1 h of incubation with KCN, all cell types showed reduced viability and cellular ATP content and an intracellular accumulation of non-esterified FAs. High extracellular concentrations of oleate, but not palmitate, caused a markedly decreased cell viability and cellular ATP content. Oleate accumulated in non-esterified form in these cells. Simultaneous addition of glucose ameliorated the damaging effects of KCN or oleate, indicating that glycolytic ATP could substitute for uncoupled oxidative phosphorylation. No significant differences in the effects of chemical anoxia or oleate were observed between non-transfected, mock-transfected and FABP-cDNA-transfected cells. Non-esterified FA accumulation was not reduced in any of the FABP-cDNA-transfected cell lines. In conclusion, our data do not provide evidence for a cytoprotective role of FABP in this kidney cell model.
Collapse
Affiliation(s)
- A W Zimmerman
- Department of Biochemistry, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
34
|
Hatakeyama Y, Scarpace PJ. Transcriptional regulation of uncoupling protein-2 gene expression in L6 myotubes. Int J Obes (Lond) 2001; 25:1619-24. [PMID: 11753581 DOI: 10.1038/sj.ijo.0801812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Revised: 04/23/2001] [Accepted: 05/08/2001] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To increase the understanding of the transcriptional regulation of UCP2 gene expression in skeletal muscle cells, we examined the effect of all-trans-retinoic acid (tRA), a ligand (after the conversion to 9-cis-RA) of the retinoid X receptor (RXR), and linolenic acid, a polyunsaturated fatty acid and peroxisome proliferator-activated receptors (PPARs) ligand, on the expression of UCP2 mRNA in cultured L6 myotubes. RESEARCH METHODS AND PROCEDURES UCP2 gene expression in L6 myotubes was confirmed by Northern blot analysis. The time- and concentration-dependency of tRA and linolenic acid on UCP2 gene expression was assessed by dot blot quantification. The mRNA levels of PPAR subtypes (alpha, gamma and delta) were determined by RT-PCR. RESULTS tRA induced UCP2 gene expression in a time- and concentration-dependent manner. Similar to tRA, UCP2 mRNA was markedly increased by 0.5 mM linolenic acid. In L6 myotubes, PPARdelta mRNA was abundant, whereas PPARalpha mRNA was lower and PPARgamma mRNA was minimal. CONCLUSIONS UCP2 mRNA expression in L6 myotubes is up-regulated by tRA and linolenic acid, possibly through a mechanism involving PPAR and RXRs.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- DNA Primers
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Ion Channels
- Membrane Transport Proteins
- Mitochondrial Proteins
- Muscle, Skeletal/cytology
- Proteins/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Rats
- Receptors, Cytoplasmic and Nuclear/administration & dosage
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Retinoid X Receptors
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/administration & dosage
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcription Factors/pharmacology
- Transcription, Genetic
- Tretinoin/administration & dosage
- Tretinoin/pharmacology
- Uncoupling Protein 2
- alpha-Linolenic Acid/administration & dosage
- alpha-Linolenic Acid/pharmacology
Collapse
Affiliation(s)
- Y Hatakeyama
- Department of Metabolic Diseases, Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd, Osaka, Japan.
| | | |
Collapse
|
35
|
Gustafsson H, Adamson L, Hedander J, Walum E, Forsby A. Insulin-like growth factor type 1 upregulates uncoupling protein 3. Biochem Biophys Res Commun 2001; 287:1105-11. [PMID: 11587536 DOI: 10.1006/bbrc.2001.5702] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study the expression of uncoupling protein 3 (UCP3) and its regulation by insulin-like growth factor 1 (IGF-I) and insulin in human neuroblastoma SH-SY5Y cells were characterized. Reverse transcriptase-PCR, Western blot, and immunofluorescence analysis showed that SH-SY5Y cells express UCP3 natively. IGF-I induced a time- and concentration-dependent induction of UCP3 protein reaching a twofold expression after 72 h with 10 nM IGF-I. Extremely high insulin concentrations (860 nM) and 10 nM trIGF-I, a truncated form of IGF-I with the same affinity for the IGF-I receptor as the full-length IGF-I, but with lower activity on the insulin receptor, also upregulated UCP3. We conclude that SH-SY5Y cells express UCP3 natively and that the expression is regulated by IGF-I via the IGF-I receptor.
Collapse
Affiliation(s)
- H Gustafsson
- Department of Neurochemistry & Neurotoxicology, Stockholm University, Stockholm, SE-106 91, Sweden
| | | | | | | | | |
Collapse
|
36
|
Busquets S, Carbó N, Almendro V, Figueras M, López-Soriano FJ, Argilés JM. Hyperlipemia: a role in regulating UCP3 gene expression in skeletal muscle during cancer cachexia? FEBS Lett 2001; 505:255-8. [PMID: 11566186 DOI: 10.1016/s0014-5793(01)02815-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rats bearing the Yoshida AH-130 ascites hepatoma showed an increased expression of both uncoupling protein-2 (UCP2) (two-fold) and UCP3 (three- to four-fold) in skeletal muscle (both soleus and gastrocnemius). The increase in mRNA content was associated with increased circulating concentrations of fatty acids (two-fold), triglyceride (two-fold) and cholesterol (1.9-fold). Administration of nicotinic acid to tumor-bearing rats abolishes the hyperlipidemic increase associated with tumor burden. The vitamin treatment also resulted in a decreased UCP3 gene expression in soleus muscle but not in gastrocnemius. It is concluded that circulating fatty acids may be involved in the regulation of UCP3 gene expression in aerobic muscles during experimental cancer cachexia. Since the UCP3 protein could have a role in energy expenditure, it may be suggested that hypolipidemic agents may have a beneficial role in the treatment of the cachectic syndrome.
Collapse
Affiliation(s)
- S Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Kratky D, Strauss JG, Zechner R. Tissue-specific activity of lipoprotein lipase in skeletal muscle regulates the expression of uncoupling protein 3 in transgenic mouse models. Biochem J 2001; 355:647-52. [PMID: 11311126 PMCID: PMC1221779 DOI: 10.1042/bj3550647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uncoupling protein (UCP)-2 and UCP-3 are two recently discovered proteins similar to UCP-1, which regulates thermogenesis in brown adipose tissue (BAT). Whereas UCP-1 expression is restricted to BAT, UCP-2 is widely expressed. UCP-3 is found mainly in skeletal muscle and BAT. A large body of evidence exists that the expression of UCP-2 and UCP-3 in skeletal muscle of mice is regulated by feeding/fasting, and some studies have suggested that this effect might be caused by the changing concentration of plasma non-esterified fatty acids (NEFAs). In an attempt to determine whether the increased import of triacylglycerol-derived NEFAs can also affect UCP expression, we determined the mRNA levels of UCP-1, UCP-2 and UCP-3 in BAT and muscle of induced mutant mouse lines that overexpressed or lacked lipoprotein lipase (LPL) in these tissues. The expression levels of UCP-1 and UCP-2 in BAT and in skeletal and cardiac muscle respectively were not affected by variations in tissue LPL activities. In contrast, UCP-3 mRNA levels were induced 3.4-fold in mice with high levels of LPL in skeletal muscle, and down-regulated in mice that lacked LPL in skeletal muscle. The presence or absence of LPL in BAT had no effect on UCP-3 expression levels. The response of UCP-3 mRNA expression to variations in LPL activity in skeletal muscle was independent of the feeding status or of plasma NEFA concentrations. These findings indicated that NEFAs as lipolytic products of LPL-mediated triacylglycerol hydrolysis markedly affect UCP-3 expression and that increased LPL activities occurring during fasting in skeletal muscle contribute to the induction of UCP-3 expression by promoting the increased uptake of NEFAs. In addition, our results demonstrate that UCP-2 and UCP-3 are differentially regulated in response to LPL-mediated NEFA uptake in skeletal muscle of mice.
Collapse
Affiliation(s)
- D Kratky
- Institute of Molecular Biology, Biochemistry and Microbiology, Karl-Franzens University of Graz, Heinrichstrasse 31a, A-8010 Graz, Austria
| | | | | |
Collapse
|
38
|
Nagase I, Yoshida T, Saito M. Up-regulation of uncoupling proteins by beta-adrenergic stimulation in L6 myotubes. FEBS Lett 2001; 494:175-80. [PMID: 11311236 DOI: 10.1016/s0014-5793(01)02341-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catecholamine-induced and beta-adrenergic receptor (beta-AR)-mediated thermogenesis in skeletal muscle is a significant component of whole-body energy expenditure. Skeletal muscle expresses uncoupling protein (UCP) 2 and UCP3, which can dissipate the transmitochondrial electrochemical gradient and thereby may be involved in regulation of energy metabolism. We investigated the effects of beta-AR stimulation on UCP2 and UCP3 expression in L6 myotubes. Stimulation of the cells with epinephrine increased the UCP3 mRNA level transiently at 6 h, and also the UCP2 mRNA level at 6-24 h. The stimulatory effects of epinephrine were also observed in the presence of carbacyclin and 9-cis retinoic acid, and mimicked by isoproterenol and salbutamol (beta2-AR agonists), but abolished by propranolol and ICI-118,551 (beta2-AR antagonists). Pharmacological and mRNA analyses revealed the existence of beta2-AR, but not beta1- and beta3-ARs, in L6 myotubes. These results suggested that catecholamines up-regulate UCP2 and UCP3 expression through direct action on the beta2-AR in skeletal muscle.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Albuterol/pharmacology
- Alitretinoin
- Animals
- Carrier Proteins/genetics
- Cell Line
- Cyclic AMP/metabolism
- Energy Metabolism
- Epinephrine/pharmacology
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Ion Channels
- Isoproterenol/pharmacology
- Membrane Transport Proteins
- Mitochondrial Proteins
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Propanolamines/pharmacology
- Propranolol/pharmacology
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Time Factors
- Transcription Factors/metabolism
- Tretinoin/pharmacology
- Uncoupling Protein 2
- Uncoupling Protein 3
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- I Nagase
- Department of Biomedical Sciences, Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | |
Collapse
|
39
|
Chevillotte E, Rieusset J, Roques M, Desage M, Vidal H. The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor beta. J Biol Chem 2001; 276:10853-60. [PMID: 11278377 DOI: 10.1074/jbc.m008010200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids have been postulated to regulate uncoupling protein (UCP) gene expression in skeletal muscle in vivo. We have identified, at least in part, the mechanism by which polyunsaturated fatty acids increase UCP-2 expression in primary culture of human muscle cells. omega-6 fatty acids and arachidonic acid induced a 3-fold rise in UCP-2 mRNA levels possibly through transcriptional activation. This effect was prevented by indomethacin and mimicked by prostaglandin (PG) E(2) and carbaprostacyclin PGI(2), consistent with a cyclooxygenase-mediated process. Incubation of myotubes for 6 h with 100 micrometer arachidonic acid resulted in a 150-fold increase in PGE(2) and a 15-fold increase in PGI(2) in the culture medium. Consistent with a role of cAMP and protein kinase A, both prostaglandins induced a marked accumulation of cAMP in human myotubes, and forskolin reproduced the effect of arachidonic acid on UCP-2 mRNA expression. Inhibition of protein kinase A with H-89 suppressed the effect of PGE(2), whereas cPGI(2) and arachidonic acid were still able to increase ucp-2 gene expression, suggesting additional mechanisms. We found, however, that the MAP kinase pathway was not involved. Prostaglandins, particularly PGI(2), are potent activators of the peroxisome proliferator-activated receptors. A specific agonist of peroxisome proliferator-activated receptor (PPAR) beta (L165041) increased UCP-2 mRNA levels in myotubes, whereas activation of PPARalpha or PPARgamma was ineffective. These results suggest thus that ucp-2 gene expression is regulated by omega-6 fatty acids in human muscle cells through mechanisms involving at least protein kinase A and the nuclear receptor PPARbeta.
Collapse
Affiliation(s)
- E Chevillotte
- INSERM U449, Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, and CRNHL Faculté de Médecine René Laennec, Université Claude Bernard Lyon-1, 69372 Lyon, France
| | | | | | | | | |
Collapse
|
40
|
Halsall DJ, Luan J, Saker P, Huxtable S, Farooqi IS, Keogh J, Wareham NJ, O'Rahilly S. Uncoupling protein 3 genetic variants in human obesity: the c-55t promoter polymorphism is negatively correlated with body mass index in a UK Caucasian population. Int J Obes (Lond) 2001; 25:472-7. [PMID: 11319649 DOI: 10.1038/sj.ijo.0801584] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2000] [Revised: 10/30/2000] [Accepted: 11/29/2000] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate whether genetic variation at the UCP3 locus contributes to human obesity. SUBJECTS Ninety-one obese children (BMI>4 standard deviations from age related mean) and 419 Caucasian adults from the Isle of Ely Study. DESIGN Single strand conformation polymorphism (SSCP) analysis was used to scan the coding region of the UCP3 gene in 91 severely obese children. A common polymorphism identified in this gene (c-55t) has been shown to associate with lower UCP3 mRNA expression. Polymerase chain reaction-based forced restriction digestion was used to detect this allele in Caucasian adults. Multiple regression analysis was used to determine associations between the c-55t genotype and anthropometric, energetic and biochemical indices relevant to obesity. MEASUREMENTS For the obese children, SSCP analysis and sequencing of variants were carried out. For the Isle of Ely Study, c-55t genotype and anthropometric (body mass index, waist-hip ratio, percentage body fat), energetic (dietary fat intake, physical activity index, adjusted metabolic rate, maximum oxygen consumption) and biochemical indices (pre- and post-glucose challenge plasma triglycerides, non-esterified fatty acids, insulin and glucose) were determined. RESULTS A previously reported missense mutation (V102I) was detected in a single obese Afro-Carribean child. Twenty-one percent of the genes examined in the Isle of Ely study carried the c-55t promoter variant. Age-adjusted body mass index (BMI) was significantly (P=0.0037) lower in carriers of this variant. CONCLUSION Mutations in the coding sequence of UCP3 are unlikely to be a common monogenic cause of severe human obesity. In a Caucasian population the UCP3 c-55t polymorphism is negatively associated with BMI.
Collapse
Affiliation(s)
- D J Halsall
- University Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Spurlock ME, Ji SQ, Godat RL, Kuske JL, Willis GM, Frank GR, Cornelius SG. Changes in the expression of uncoupling proteins and lipases in porcine adipose tissue and skeletal muscle during feed deprivation*(1). J Nutr Biochem 2001; 12:81-87. [PMID: 11182550 DOI: 10.1016/s0955-2863(00)00128-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hormone-sensitive and lipoprotein lipases are critical determinants of the metabolic adaptation to starvation. Additionally, the uncoupling proteins have emerged with potential roles in the metabolic adaptations required by energy deficiency. The objective of this study was to evaluate the expression (mRNA abundance) of uncoupling proteins 2 and 3 and that of hormone-sensitive and lipoprotein lipase in the adipose tissue and skeletal muscle of the pig in relationship to feed deprivation. Thirty-two male castrates (87 kg +/- 5%) were assigned at random to fed and feed-deprived treatment groups. After 96 hr, the pigs were euthanized and adipose and skeletal muscle tissue obtained for total RNA extraction and nuclease protection assays. Feed deprivation increased uncoupling protein 3 mRNA abundance 103-237% (P < 0.01) in longissimus and red and white semitendinosus muscle. In contrast, the increase in uncoupling protein 3 mRNA in adipose tissue was only 23% (P < 0.06), and adipose uncoupling protein 2 mRNA was not influenced (P > 0.66) by feed deprivation. The increased abundance of uncoupling protein 2 mRNA in the longissimus muscle of feed-deprived pigs was small (22%), but significant (P < 0.04). The expression of hormone-sensitive lipase was increased 46% and 64% (P < 0.04) in adipose tissue and longissimus muscle, respectively, by feed deprivation, whereas adipose lipoprotein lipase expression was reduced (P < 0.01) to 20% of that of the fed group. Longissimus lipoprotein lipase expression in the feed-deprived group was 37% of that of the fed group (P < 0.01), and similar reductions were detected in red and white semitendinosus muscle. Overall, these findings indicate that uncoupling protein 3 expression in skeletal muscle is quite sensitive to starvation in the pig, whereas uncoupling protein 2 changes are minimal. Furthermore, we conclude that hormone-sensitive lipase is upregulated at the mRNA level with prolonged feed deprivation, whereas lipoprotein lipase is downregulated.
Collapse
|
42
|
Barbe P, Larrouy D, Boulanger C, Chevillotte E, Viguerie N, Thalamas C, Oliva Trastoy M, Roques M, Vidal H, Langin D. Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J 2001; 15:13-15. [PMID: 11099489 DOI: 10.1096/fj.00-0502fje] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Triiodothyronine (T3) increases mitochondrial respiration and promotes the uncoupling between oxygen consumption and ATP synthesis. T3 effect is mediated partly through transcriptional control of genes encoding mitochondrial proteins. We determined the effect of T3 on mRNA levels of uncoupling proteins (UCP) and proteins involved in the biogenesis of the respiratory chain in human skeletal muscle and on UCP2 mRNA expression in adipose tissue. Ten young, healthy males received 75 to 100 5g of T3 per day for 14 days. The increase in plasma-free T3 levels was associated with an increase of resting metabolic rate and a decrease of respiratory quotient. In skeletal muscle, treatment with T3 induced a twofold increase of both UCP2 and UCP3 mRNA levels (p c oxidase subunits 2 and 4, nuclear respiratory factor 1, mitochondrial transcription factor A, and the co-activator PGC1 did not change during the treatment. In adipose tissue, UCP2 mRNA levels increased threefold. The direct effect of T3 on skeletal muscle an d adipose tissue UCP2 and UCP3 mRNA expression was demonstrated in vitro in human primary cultures. Our data show that T3 induces UCP2 and UCP3 mRNA expression in humans. In skeletal muscle, UCP regulation by T3 is not associated with the transcriptional regulation of respiratory chain proteins.
Collapse
Affiliation(s)
- P Barbe
- INSERM Unit 317, Institut Louis Bugnard, Université Paul Sabatier, Hôpital Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pedersen SB, Kristensen K, Bruun JM, Flyvbjerg A, Vinter-Jensen L, Richelsen B. Systemic administration of epidermal growth factor increases UCP3 mRNA levels in skeletal muscle and adipose tissue in rats. Biochem Biophys Res Commun 2000; 279:914-9. [PMID: 11162449 DOI: 10.1006/bbrc.2000.4022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that systemic epidermal growth factor (EGF) treatment in rats reduces the amount of adipose tissue despite an unaltered food intake. The mitochondrial uncoupling proteins (UCP2 and UCP3) are thought to uncouple the respiratory chain and thus to increase energy expenditure. In order to find out whether the UCP system was involved in the EGF-induced weight loss, the effects of EGF on UCP2 and UCP3 in adipose tissue and skeletal muscle were investigated in the present study. Eight rats were treated with placebo or EGF (150 microg/kg/day) for seven days via mini-osmotic pumps. The EGF-treated rats gained significantly less body weight during the study period than the placebo-treated animals and had significantly less adipose tissue despite a similar food intake. The placebo group and the EGF group had similar UCP2 mRNA expression (in both adipose tissue and skeletal muscle), whereas the EGF-treated group compared to the placebo group had significantly higher UCP3 mRNA expression in both skeletal muscle (3.76 +/- 0.90 vs 8.41 +/- 0.87, P < 0.05) and in adipose tissue (6.38 +/- 0.71 vs 12.48 +/- 1.79, P < 0.05). In vitro studies with adipose tissue fragments indicated that the EGF effect probably is mediated indirectly as incubations with EGF (10 microM) were unable to affect adipose tissue UCP expression, whereas incubations with bromopalmitate stimulated both UCP2 and UCP3 mRNA expression twofold. Thus, EGF treatment in vivo was found to enhance UCP3 mRNA expression in both adipose tissue and skeletal muscle, which may indicate that the EGF effect on body composition might involve up-regulation of UCP3 in skeletal muscle and adipose tissue.
Collapse
Affiliation(s)
- S B Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus Kommunehospital, Aarhus C, DK-8000, Denmark.
| | | | | | | | | | | |
Collapse
|
44
|
Oberkofler H, Neschen S, Esterbauer H, Waldhäusl W, Patsch W, Fürnsinn C. UCP3 gene expression does not correlate with muscle oxidation rates in troglitazone-treated Zucker fatty rats. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1517:113-8. [PMID: 11118623 DOI: 10.1016/s0167-4781(00)00270-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Uncoupling protein-3 (UCP3), a mitochondrial carrier protein predominantly expressed in muscle, has been suggested to release stored energy as heat. The insulin-sensitizing thiazolidinediones enhance glucose disposal in skeletal muscle and have been reported to increase the expression of uncoupling proteins in various experimental systems. We therefore studied the effect of troglitazone treatment on UCP3 gene expression in muscles from lean and obese Zucker rats. In comparison with obese littermates, basal UCP3 mRNA levels in lean Zucker rats tended to be higher in white and red gastrocnemius muscles, but were lower in soleus (P<0.001) muscle and heart (P<0.01). In lean rats, troglitazone significantly increased UCP3 gene expression in white and red gastrocnemius and heart muscles (all P<0.01). In contrast, the drug reduced UCP3 mRNA expression in red gastrocnemius and soleus muscles of obese littermates (all P<0.001). The troglitazone-dependent decrease in UCP3 gene expression was accompanied by an increased weight gain in obese rats, while no such effect was observed in lean rats. In obese rats, improvement of insulin resistance by troglitazone was associated with increased rates of basal and insulin-stimulated CO(2) production from glucose measured in soleus muscle. These studies demonstrate that effects of troglitazone on UCP3 gene expression depend on the phenotype of Zucker rats and that troglitazone-induced metabolic improvements are not related to increased uncoupling resulting from upregulation of UCP3 mRNA expression in muscle.
Collapse
Affiliation(s)
- H Oberkofler
- Department of Laboratory Medicine, Landeskrankenanstalten, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Jucker BM, Ren J, Dufour S, Cao X, Previs SF, Cadman KS, Shulman GI. 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression. J Biol Chem 2000; 275:39279-86. [PMID: 10995775 DOI: 10.1074/jbc.m007760200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the relationship between mitochondrial energy coupling in skeletal muscle and change in uncoupling protein 3 (UCP3) expression during the transition from the fed to fasted state, we used a novel noninvasive (31)P/(13)C NMR spectroscopic approach to measure the degree of mitochondrial energy coupling in the hind limb muscles of awake rats before and after a 48-h fast. Compared with fed levels, UCP3 mRNA and protein levels in the gastrocnemius increased 1.7- (p < 0.01) and 2.9-fold (p < 0.001), respectively, following a 48-h fast. Tricarboxylic acid cycle flux measured using (13)C NMR as an index of mitochondrial substrate oxidation was 212 +/- 23 and 173 +/- 25 nmol/g/min (p not significant) in the fed and 48-h fasted groups, respectively. Unidirectional ATP synthesis flux measured using (31)P NMR was 79 +/- 15 and 57 +/- 9 nmol/g/s (p not significant) in the fed and 48-h fasted groups, respectively. Mitochondrial energy coupling as expressed by the ratio of ATP synthesis to tricarboxylic acid cycle flux was not different between the fed and fasted states. To test the hypothesis that UCP3 may be involved in the translocation of long chain free fatty acids (FFA) into the mitochondrial matrix under conditions of elevated FFA availability, [U-(13)C]palmitate/albumin was administered in a separate group of rats with (+) or without (-) etomoxir (an inhibitor of carnitine palmitoyltransferase I). The ratio of glutamate enrichment ((+) etomoxir/(-) etomoxir) in the hind limb muscles was the same between groups, indicating that UCP3 does not appear to function as a translocator for long chain FFA in skeletal muscle following a 48-h fast. In summary, these data demonstrate that despite a 2-3-fold increase in UCP3 mRNA and protein expression in skeletal muscle during the transition from the fed to fasted state, mitochondrial energy coupling does not change. Furthermore, UCP3 does not appear to have a major role in FFA translocation into the mitochondria. The physiological role of UCP3 following a 48-h fast in skeletal muscle remains to be elucidated.
Collapse
Affiliation(s)
- B M Jucker
- Howard Hughes Medical Institute and the Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Reilly JM, Thompson MP. Dietary fatty acids Up-regulate the expression of UCP2 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2000; 277:541-5. [PMID: 11061990 DOI: 10.1006/bbrc.2000.3705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
States characterised by elevated plasma fatty acid levels are accompanied by increased UCP2 expression but the physiological regulation of UCP2 expression in white adipose tissue is not fully understood. We used 3T3-L1 preadipocytes to determine whether various dietary fatty acids (20:5, 18:3, 18:2, 18:1, 18:0) directly regulate UCP2 expression. Physiological concentrations of each class of polyunsaturated fatty acid and the monounsaturated fatty acid dramatically up-regulated UCP2 mRNA levels 5- to 8-fold, but the saturated fatty acid was not so effective (1.5-fold). The up-regulation occurred in a time- and dose-dependent manner, was evident by 4 h and maximum between 18 and 24 h, and was prevented by actinomycin D. Synthetic ligands selective for each PPAR isoform did not induce UCP2 expression, which suggests that fatty acids might not be acting solely via PPAR transcription factors. In conclusion, dietary unsaturated fatty acids may be physiological signals to alter energy balance by direct induction of UCP2.
Collapse
Affiliation(s)
- J M Reilly
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
47
|
Cabrero A, Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M. Down-regulation of uncoupling protein-3 and -2 by thiazolidinediones in C2C12 myotubes. FEBS Lett 2000; 484:37-42. [PMID: 11056218 DOI: 10.1016/s0014-5793(00)02125-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uncoupling proteins (UCPs) are mitochondrial membrane proton transporters that uncouple respiration from oxidative phosphorylation by dissipating the proton gradient across the membrane. We studied the direct effect of several peroxisome proliferator-activated receptor (PPAR) ligands on UCP-3 and UCP-2 mRNA expression in C2C12 myotubes for 24 h. In the absence of exogenous fatty acids, treatment of C2C12 cells with a selective PPARalpha activator (Wy-14,643) or a non-selective PPAR activator (bezafibrate) did not affect the expression of UCP-3 mRNA levels, whereas UCP-2 expression was slightly increased. In contrast, troglitazone, a thiazolidinedione which selectively activates PPARgamma, strongly decreased UCP-3 and UCP-2 mRNA levels. Another thiazolidinedione, ciglitazone, had the same effect, but to a lower extent, suggesting that PPARgamma activation is involved. Further, the presence of 0.5 mM oleic acid strongly increased UCP-3 mRNA levels and troglitazone addition failed to block the effect of this fatty acid. The drop in UCP expression after thiazolidinedione treatment correlated well with a reduction in PPARalpha mRNA levels produced by this drug, linking the reduction in PPARalpha mRNA levels with the down-regulation of UCP mRNA in C2C12 myotubes after thiazolidinedione treatment.
Collapse
Affiliation(s)
- A Cabrero
- Unidad de Farmacología, Departamento de Farmacología y Química Terapéutica, Facultad de Farmacia, Universidad de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2000; 279:E622-9. [PMID: 10950831 DOI: 10.1152/ajpendo.2000.279.3.e622] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncoupling protein 3 (UCP-3), a member of the mitochondrial transporter superfamily, is expressed primarily in skeletal muscle where it may play a role in altering metabolic function under conditions of fuel depletion caused, for example, by fasting and exercise. Here, we show that treadmill running by rats rapidly (30 min) induces skeletal muscle UCP-3 mRNA expression (sevenfold after 200 min), as do hypoxia and swimming in a comparably rapid and substantial fashion. The expression of the mitochondrial transporters, carnitine palmitoyltransferase 1 and the tricarboxylate carrier, is unaffected under these conditions. Hypoxia and exercise-mediated induction of UCP-3 mRNA result in a corresponding four- to sixfold increase in rat UCP-3 protein. We treated extensor digitorum longus (EDL) muscle with 5'-amino-4-imidazolecarboxamide ribonucleoside (AICAR), a compound that activates AMP-activated protein kinase (AMPK), an enzyme known to be stimulated during exercise and hypoxia. Incubation of rat EDL muscle in vitro for 30 min with 2 mM AICAR causes a threefold increase in UCP-3 mRNA and a 1.5-fold increase of UCP-3 protein compared with untreated muscle. These data are consistent with the notion that activation of AMPK, presumably as a result of fuel depletion, rapidly regulates UCP-3 gene expression.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Animals
- Blotting, Northern
- Carrier Proteins/biosynthesis
- DNA Probes/metabolism
- Electrophoresis, Polyacrylamide Gel
- Fatty Acids, Nonesterified/metabolism
- Hypoxia/enzymology
- Hypoxia/metabolism
- In Vitro Techniques
- Ion Channels
- Male
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins
- Multienzyme Complexes/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Physical Exertion/physiology
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Rats
- Rats, Sprague-Dawley
- Running/physiology
- Swimming/physiology
- Uncoupling Protein 3
Collapse
Affiliation(s)
- M Zhou
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
49
|
Yu XX, Barger JL, Boyer BB, Brand MD, Pan G, Adams SH. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. Am J Physiol Endocrinol Metab 2000; 279:E433-46. [PMID: 10913045 DOI: 10.1152/ajpendo.2000.279.2.e433] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Linking tissue uncoupling protein (UCP) homolog abundance with functional metabolic outcomes and with expression of putative genetic regulators promises to better clarify UCP homolog physiological function. A murine endotoxemia model characterized by marked alterations in thermoregulation was employed to examine the association between heat production, UCP homolog expression, and mitochondrial proton leak ("uncoupling"). After intraperitoneal lipopolysaccharide (LPS, approximately 6 mg/kg) injection, colonic temperature (T(c)) in adult female C57BL6/J mice dropped to a nadir of approximately 30 degrees C by 8 h, preceded by a four- to fivefold drop in liver UCP2 and UCP5/brain mitochondrial carrier protein 1 mRNA levels, with no change in their hindlimb skeletal muscle (SKM) expression. SKM UCP3 mRNA rose fivefold during development of hypothermia and was correlated with an LPS-induced increase in plasma free fatty acid concentration. UCP2 and UCP5 transcripts recovered about three- to sixfold in both tissues starting at 6-8 h, preceding a recovery of T(c) between 16 and 24 h. SKM UCP3 followed an opposite pattern. Such results are not consistent with an important influence of UCP3 in driving heat production but do not preclude a role for UCP2 or UCP5 in this process. The transcription coactivator PGC-1 displayed a transient LPS-evoked rise (threefold) or drop (two- to fivefold) in SKM and liver expression, respectively. No differences between control and LPS-treated mouse liver or SKM in vitro mitochondrial proton leak were evident at time points corresponding to large differences in UCP homolog expression.
Collapse
MESH Headings
- Animals
- Body Temperature
- Body Temperature Regulation/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Endotoxemia/chemically induced
- Endotoxemia/metabolism
- Fatty Acids, Nonesterified/blood
- Female
- Ion Channels
- Lipopolysaccharides/pharmacology
- Liver/cytology
- Liver/metabolism
- Membrane Potentials/drug effects
- Membrane Transport Proteins
- Mice
- Mice, Inbred C57BL
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins
- Mitochondrial Swelling
- Mitochondrial Uncoupling Proteins
- Muscle, Skeletal/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oxygen Consumption/drug effects
- Proteins/genetics
- Proteins/metabolism
- Protons
- RNA, Messenger/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Uncoupling Protein 2
- Uncoupling Protein 3
Collapse
Affiliation(s)
- X X Yu
- Department of Endocrinology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hidaka S, Yoshimatsu H, Kakuma T, Sakino H, Kondou S, Hanada R, Oka K, Teshima Y, Kurokawa M, Sakata T. Tissue-specific expression of the uncoupling protein family in streptozotocin-induced diabetic rats. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 224:172-7. [PMID: 10865233 DOI: 10.1046/j.1525-1373.2000.22417.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vulnerability of streptozotocin (STZ)-induced diabetic rats to cold stress has been established. One of the elements controlling body temperature is thermogenesis, in which uncoupling protein (UCP) is known to play an important role. We have examined UCP2 and UCP3 expressions in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle (MSL) during the acute and chronic phases of STZ-induced diabetes in rats. The long-term effect and the effect of insulin treatment thereafter were also unexplored previously and are examined in this study. In the acute phase of diabetes (2.5 days after STZ injection), UCP2 gene expression in BAT, WAT, and MSL, and UCP3 expression in the muscle were significantly increased. In the chronic phase of diabetes (21 days after STZ injection), UCP2 and UCP3 expression in the MSL were restored to the control levels without insulin supplementation. UCP2 in BAT and WAT remained high in the chronic phase, whereas UCP3 expression in BAT and WAT, which did not change in the acute phase, was significantly decreased. Insulin supplementation restored UCP2 expression in BAT and WAT, but over-corrected UCP3 in WAT above the control and did not affect UCP3 expression in BAT. Insulin supplementation depressed UCP3 expression in the MSL below control. These results indicate that the effects of STZ-induced diabetes on UCPs gene expression are tissue-specific as well as dependent on the duration of diabetes.
Collapse
Affiliation(s)
- S Hidaka
- Department of Internal Medicine I, School of Medicine, Oita Medical University, Oita, 879-5593, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|