1
|
Brennan F. The Pathogenesis of CKD-Associated Pruritus: A Theoretical Model and Relevance for Treatment. KIDNEY360 2024; 5:1727-1738. [PMID: 39230964 DOI: 10.34067/kid.0000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Our understanding of the pathogenesis of uremic pruritus (also known as CKD-associated pruritus [CKD-aP]) remains elusive. Although multiple discrete changes in the immunochemical milieu of the skin of patients with CKD-aP have been described, a coherent theory of mechanism is absent. This article proposes a theoretical model of mechanism. It concentrates on the initiation phase of CKD-aP and its three parts: ( 1 ) genesis, triggered by first precipitants; ( 2 ) cascade of cytokine release that follows and the cross-talking of multiple skin cells with each other and afferent nerve fibers; and ( 3 ) enhancement. The limitation of the model will be described and ideas for future research proposed. Implications for management shall be examined.
Collapse
Affiliation(s)
- Frank Brennan
- Department of Nephrology, St George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Shahriari N, Strober B, Shahriari M. Upadacitinib for the treatment of psoriasiform and spongiotic dermatitis: A multicenter case series. JAAD Case Rep 2024; 49:106-109. [PMID: 38952860 PMCID: PMC11214991 DOI: 10.1016/j.jdcr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
- Neda Shahriari
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bruce Strober
- Department of Dermatology, Yale University, New Haven, Connecticut
- Central Connecticut Dermatology, Cromwell, Connecticut
| | - Mona Shahriari
- Department of Dermatology, Yale University, New Haven, Connecticut
- Central Connecticut Dermatology, Cromwell, Connecticut
| |
Collapse
|
3
|
Selmi C, Chimenti MS, Novelli L, Parikh BK, Morello F, de Vlam K, Ciccia F. Pain in axial spondyloarthritis: role of the JAK/STAT pathway. Front Immunol 2024; 15:1341981. [PMID: 38464510 PMCID: PMC10921361 DOI: 10.3389/fimmu.2024.1341981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that is characterized by new bone formation in the axial musculoskeletal system, with X-ray discriminating between radiographic and non-radiographic forms. Current therapeutic options include non-steroidal anti-inflammatory drugs in addition to biological disease-modifying anti-rheumatic drugs that specifically target tumor necrosis factor-alpha (TNFα) or interleukin (IL)-17. Pain is the most critical symptom for axSpA patients, significantly contributing to the burden of disease and impacting daily life. While the inflammatory process exerts a major role in determining pain in the early phases of the disease, the symptom may also result from mechanical and neuromuscular causes that require complex, multi-faceted pharmacologic and non-pharmacologic treatment, especially in the later phases. In clinical practice, pain often persists and does not respond further despite the absence of inflammatory disease activity. Cytokines involved in axSpA pathogenesis interact directly/indirectly with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling cascade, a fundamental component in the origin and development of spondyloarthropathies. The JAK/STAT pathway also plays an important role in nociception, and new-generation JAK inhibitors have demonstrated rapid pain relief. We provide a comprehensive review of the different pain types observed in axSpA and the potential role of JAK/STAT signaling in this context, with specific focus on data from preclinical studies and data from clinical trials with JAK inhibitors.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | | | - Bhumik K. Parikh
- Global Medical Affairs, AbbVie, Inc., Mettawa, IL, United States
| | | | - Kurt de Vlam
- Department of Rheumatology, University Hospital Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KULeuven, Leuven, Belgium
| | - Francesco Ciccia
- Department of Precision Medicine Napoli, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
4
|
Liu F, Huang L, Liu A, Jiang Q, Huang H, Ye H. Identification of a Putative CFSH Receptor Inhibiting IAG Expression in Crabs. Int J Mol Sci 2023; 24:12240. [PMID: 37569617 PMCID: PMC10418988 DOI: 10.3390/ijms241512240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The crustacean female sex hormone (CFSH) is a neurohormone peculiar to crustaceans that plays a vital role in sexual differentiation. This includes the preservation and establishment of secondary female sexual traits, as well as the inhibition of insulin-like androgenic gland factor (IAG) expression in the androgenic gland (AG). There have been no reports of CFSH receptors in crustaceans up to this point. In this study, we identified a candidate CFSH receptor from the mud crab Scylla paramamosain (named Sp-SEFIR) via protein interaction experiments and biological function experiments. Results of GST pull-down assays indicated that Sp-SEFIR could combine with Sp-CFSH. Findings of in vitro and in vivo interference investigations exhibited that knockdown of Sp-SEFIR could significantly induce Sp-IAG and Sp-STAT expression in the AG. In brief, Sp-SEFIR is a potential CFSH receptor in S. paramamosain, and Sp-CFSH controls Sp-IAG production through the CFSH-SEFIR-STAT-IAG axis.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Lin Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| |
Collapse
|
5
|
Li ZC, An F. ERBB2-PTGS2 axis promotes intervertebral disc degeneration by regulating senescence of nucleus pulposus cells. BMC Musculoskelet Disord 2023; 24:504. [PMID: 37340393 DOI: 10.1186/s12891-023-06625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is considered one of the main causes of low back pain and lumbar disc herniation. Various studies have shown that disc cell senescence plays a critical role in this process. however, its role in IDD is yet unclear. In this study, we explored the role of senescence-related genes (SR-DEGs) and its underlying mechanism in IDD. A total of 1325 differentially expressed genes (DEGs) were identified using Gene Expression Omnibus (GEO) database GSE41883. 30 SR-DEGs were identified for further functional enrichment and pathway analysis, and two hub SR-DEGs (ERBB2 and PTGS2) were selected to construct transcription factor (TF)-gene interaction and TF-miRNA coregulatory networks, and 10 candidate drugs were screened for the treatment of IDD. Last but not least, in vitro experiments show that ERBB2 expression decreased and PTGS2 expression increased in human nucleus pulposus (NP) cell senescence model treated with TNF-α. After lentivirus-mediated overexpression of ERBB2, the expression of PTGS2 decreased and the senescence level of NP cells decreased. Overexpression of PTGS2 reversed the anti-senescence effects of ERBB2. The findings in this study suggested that ERBB2 overexpression further reduced NP cell senescence by inhibiting PTGS2 levels, which ultimately alleviated IDD. Taken together, our findings provide new insights into the roles of senescence-related genes in IDD and highlight a novel target of ERBB2-PTGS2 axis for therapeutic strategies.
Collapse
Affiliation(s)
- Zhao-Cheng Li
- Department of Spine Surgery, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, PR China
| | - Fu An
- Department of Spine Surgery, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
6
|
Song C, Cai W, Liu F, Cheng K, Guo D, Liu Z. An in-depth analysis of the immunomodulatory mechanisms of intervertebral disc degeneration. JOR Spine 2022; 5:e1233. [PMID: 36601372 PMCID: PMC9799087 DOI: 10.1002/jsp2.1233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the pathological basis of disc herniation, spinal stenosis, and other related diseases, and the lower back pain it produces lays a heavy financial burden on individuals and society. Thus, it is essential to comprehend IVDD's pathophysiology. Numerous factors, such as inflammatory factors, oxidative stress, apoptosis, matrix metalloproteinases, are linked to IVDD pathogenesis. Despite the fact that many researches has provided explanations for the pathophysiology of IVDD, these studies are typically singular, restricted, and isolated, expound only on one or two components, and do not systematically analyze and summarize the numerous influencing elements. In addition, we discovered that the incidence of many chronic diseases in the field of orthopedics may be thoroughly and systematically defined in terms of immunological systems. In order to provide a theoretical foundation for an in-depth understanding of the pathological process of IVDD and the formulation of more effective prevention and treatment measures, this review provides a comprehensive and systematic account of the pathogenesis of IVDD from the physical to the molecular barriers of the intervertebral disc, from the nucleus pulposus tissue to the cellular to the immune-molecular level.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Daru Guo
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
7
|
Zhu D, Feng T, Mo N, Han R, Lu W, Shao S, Cui Z. New insights for the regulatory feedback loop between type 1 crustacean female sex hormone ( CFSH-1) and insulin-like androgenic gland hormone ( IAG) in the Chinese mitten crab ( Eriocheir sinensis). Front Physiol 2022; 13:1054773. [PMID: 36388120 PMCID: PMC9662296 DOI: 10.3389/fphys.2022.1054773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
To clarify the hormone control on sex determination and differentiation, we studied the Chinese mitten crab, Eriocheir sinensis (Henri Milne Edwards, 1854), a species with importantly economic and ecological significance. The crustacean female sex hormone (CFSH) and the insulin-like androgenic gland hormone (IAG) have been found to be related to the sex determination and/or differentiation. CFSH-1 of E. sinensis (EsCFSH-1) encoded a 227 amino-acid protein including a signal peptide, a CFSH-precursor-related peptide, and a mature CFSH peptide. Normally, EsCFSH-1 was highly expressed in the eyestalk ganglion of adult female crabs, while the expression was declined in the intersex crabs (genetic females). The intersex crabs had the androgenic glands, and the expression level of EsIAG was close to that of male crabs. During the embryogenesis and larval development, the changes of EsCFSH-1 and EsIAG genes expression in male and female individuals were shown after the zoea IV stage. Next, we confirmed the existence of the regulatory feedback loop between EsCFSH-1 and EsIAG by RNA interference experiment. The feminization function of EsCFSH-1 was further verified by examining the morphological change of external reproductive organs after EsCFSH-1 knockdown. The findings of this study reveal that the regulatory interplay between CFSH and IAG might play a pivotal role in the process of sex determination and/or differentiation in decapod crustaceans.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Suyama K, Sakai D, Watanabe M. The Role of IL-17-Mediated Inflammatory Processes in the Pathogenesis of Intervertebral Disc Degeneration and Herniation: A Comprehensive Review. Front Cell Dev Biol 2022; 10:857164. [PMID: 35309927 PMCID: PMC8927779 DOI: 10.3389/fcell.2022.857164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
It has been reported that degenerated and herniated lumbar intervertebral discs show high expression of IL-17, suggesting that local immune reactions occur in patients with low back pain. While clinical sample analyses from different laboratories confirm this, it is not deeply not known on how IL-17 is induced in the pathology and their interactions with other inflammatory responses. This conscience review organizes current laboratory findings on this topic and present trajectory for full understanding on the role of IL-17 in pathology of intervertebral disc disease.
Collapse
Affiliation(s)
- Kaori Suyama
- Department of Anatomy and Cellular Biology, Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Daisuke Sakai,
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
9
|
Liu N, Jiang F, Ye M, Wang B, Ge D, Chang S. HuR confers IL-17a-induced migration and invasion of gastric cancer cells via upregulation of Snail translation. Cytokine 2022; 153:155830. [PMID: 35247650 DOI: 10.1016/j.cyto.2022.155830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Human gastric cancer is a leading cause of cancer mortality in the world wide. We found that the expression of IL-17a was significantly increased in gastric cancer cells. Treatment with recombinant IL-17a (rIL-17a) can increase migration, invasion and epithelial to mesenchymal transition (EMT) of gastric cancer cells. Further, Snail, a key factor to regulate EMT, was significantly increased in rIL-17a-treated gastric cancer cells. While knockdown of Snail can abolish IL-17a-induced EMT of gastric cancer cells. Mechanistically, IL-17a can promote the translation efficiency of Snail, while had no effect on its mRNA expression or protein stability. Further, we found that IL-17a can increase the expression of HuR, which markedly promoted translation of Snail mRNA. While knockdown of HuR can reverse rIL-17a-induced expression of Snail and EMT of gastric cancer cells. Collectively, our data suggested that HuR confers IL-17a induced migration and invasion of gastric cancer cells via upregulation of Snail translation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fan Jiang
- Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Mulin Ye
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bangjie Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Dongsheng Ge
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Shunwu Chang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China.
| |
Collapse
|
10
|
Sun J, Min YQ, Li Y, Sun X, Deng F, Wang H, Ning YJ. Animal Model of Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2022; 12:797189. [PMID: 35087498 PMCID: PMC8787146 DOI: 10.3389/fmicb.2021.797189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), an emerging life-threatening infectious disease caused by SFTS bunyavirus (SFTSV; genus Bandavirus, family Phenuiviridae, order Bunyavirales), has been a significant medical problem. Currently, there are no licensed vaccines or specific therapeutic agents available and the viral pathogenesis remains largely unclear. Developing appropriate animal models capable of recapitulating SFTSV infection in humans is crucial for both the study of the viral pathogenic processes and the development of treatment and prevention strategies. Here, we review the current progress in animal models for SFTSV infection by summarizing susceptibility of various potential animal models to SFTSV challenge and the clinical manifestations and histopathological changes in these models. Together with exemplification of studies on SFTSV molecular mechanisms, vaccine candidates, and antiviral drugs, in which animal infection models are utilized, the strengths and limitations of the existing SFTSV animal models and some important directions for future research are also discussed. Further exploration and optimization of SFTSV animal models and the corresponding experimental methods will be undoubtedly valuable for elucidating the viral infection and pathogenesis and evaluating vaccines and antiviral therapies.
Collapse
Affiliation(s)
- Jiawen Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yunjie Li
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
12
|
Dos Santos TM, Righetti RF, Rezende BG, Campos EC, Camargo LDN, Saraiva-Romanholo BM, Fukuzaki S, Prado CM, Leick EA, Martins MA, Tibério IFLC. Effect of anti-IL17 and/or Rho-kinase inhibitor treatments on vascular remodeling induced by chronic allergic pulmonary inflammation. Ther Adv Respir Dis 2020; 14:1753466620962665. [PMID: 33357114 PMCID: PMC7768836 DOI: 10.1177/1753466620962665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Expansion and morphological dysregulation of the bronchial vascular network occurs in asthmatic airways. Interleukin (IL) -17 and Rho-kinase (ROCK) are known to act in inflammation control and remodeling. Modulation of Rho-kinase proteins and IL-17 may be a promising approach for the treatment of asthma through the control of angiogenesis. Our objective was to analyze the effects of treatment with anti-IL17 and/or Rho-kinase inhibitor on vascular changes in mice with chronic allergic pulmonary inflammation. Methods: Sixty-four BALB/c mice, with pulmonary inflammation induced by ovalbumin were treated with anti-IL17A (7.5/µg per dose, intraperitoneal) and/or Rho-kinase inhibitor (Y-27632-10 mg/kg, intranasal), 1 h before each ovalbumin challenge (22, 24, 26, and 28/days). Control animals were made to inhale saline. At the end of the protocol, lungs were removed, and morphometric analysis was performed to quantify vascular inflammatory, remodeling, and oxidative stress responses. Results: Anti-IL17 or Rho-kinase inhibitor reduced the number of CD4+, CD8+, dendritic cells, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, Rho-kinase 1 and 2, transforming growth factor (TGF-β), vascular endothelial growth factor (VEGF), nuclear factor (NF)-KappaB, iNOS, metalloproteinase (MMP)-9, MMP-12, metalloproteinase inhibitor-1 (TIMP-1), FOXP-3, signal transducer and activator of transcription 1 (STAT1) and phospho-STAT1-positive cells, and actin, endothelin-1, isoprostane, biglycan, decorin, fibronectin and the collagen fibers volume fraction compared with the ovalbumin group (p < 0.05). The combination treatment, when compared with anti-IL17, resulted in potentiation of decrease in the number of IL1β- and dendritic cells-positive cells. When we compared the OVA-RHO inhibitor-anti-IL17 with OVA-RHO inhibitor we found a reduction in the number of CD8+ and IL-17, TGF-β, and phospho-STAT1-positive cells and endothelin-1 in the vessels (p < 0.05). There was an attenuation in the number of ROCK 2-positive cells in the group with the combined treatment when compared with anti-IL17 or Rho-kinase inhibitor-treated groups (p < 0.05). Conclusion: We observed no difference in angiogenesis after treatment with Rho-kinase inhibitor and anti-IL17. Although the treatments did not show differences in angiogenesis, they showed differences in the markers involved in the angiogenesis process contributing to inflammation control and vascular remodeling. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Tabata M Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Renato F Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Bianca G Rezende
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Elaine C Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Hospital Sirio-Libanes, São Paulo, Brazil
| | - Leandro do N Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR. Hospital Sirio-Libanes, São Paulo, Brazil
| | - Beatriz M Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Medicine, University City of São Paulo (UNICID), São Paulo, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla M Prado
- Department of Biosciences, Federal University os Sao Paulo, Santos, SP, Brazil
| | - Edna A Leick
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Milton A Martins
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Iolanda F L C Tibério
- Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455- Sala 1210, São Paulo, SP 01246-903, Brazil
| |
Collapse
|
13
|
Ma K, Du W, Xiao F, Han M, Huang E, Peng N, Tang Y, Deng C, Liu L, Chen Y, Li J, Yuan S, Huang Q, Hong X, Hu D, Cai X, Jiang Q, Liu D, Lu L. IL-17 sustains the plasma cell response via p38-mediated Bcl-xL RNA stability in lupus pathogenesis. Cell Mol Immunol 2020; 18:1739-1750. [PMID: 32917979 DOI: 10.1038/s41423-020-00540-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023] Open
Abstract
Recent studies have demonstrated a central role for plasma cells in the development of autoimmune diseases, such as systemic lupus erythematosus (SLE). Currently, both the phenotypic features and functional regulation of autoreactive plasma cells during SLE pathogenesis remain largely unclear. In this study, we first found that a major subset of IL-17 receptor-expressing plasma cells potently produced anti-dsDNA IgG upon IL-17A (IL-17) stimulation in SLE patients and lupus mice. Using a humanized lupus mouse model, we showed that the transfer of Th17 cell-depleted PBMCs from lupus patients resulted in a significantly reduced plasma cell response and attenuated renal damage in recipient mice compared to the transfer of total SLE PBMCs. Moreover, long-term BrdU incorporation in lupus mice detected highly enriched long-lived BrdU+ subsets among IL-17 receptor-expressing plasma cells. Lupus mice deficient in IL-17 or IL-17 receptor C (IL-17RC) exhibited a diminished plasma cell response and reduced autoantibody production with attenuated renal damage, while the adoptive transfer of Th17 cells triggered the plasma cell response and renal damage in IL-17-deficient lupus mice. In reconstituted chimeric mice, IL-17RC deficiency resulted in severely impaired plasma cell generation but showed no obvious effect on germinal center B cells. Further mechanistic studies revealed that IL-17 significantly promoted plasma cell survival via p38-mediated Bcl-xL transcript stabilization. Together, our findings identified a novel function of IL-17 in enhancing plasma cell survival for autoantibody production in lupus pathogenesis, which may provide new therapeutic strategies for the treatment of SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China.,Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Man Han
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Na Peng
- Department of Rheumatology and Nephrology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Jingjing Li
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qin Huang
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Quan Jiang
- Division of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Hong Kong, China.
| |
Collapse
|
14
|
Camargo LDN, Dos Santos TM, de Andrade FCP, Fukuzaki S, Dos Santos Lopes FDTQ, de Arruda Martins M, Prado CM, Leick EA, Righetti RF, Tibério IDFLC. Bronchial Vascular Remodeling Is Attenuated by Anti-IL-17 in Asthmatic Responses Exacerbated by LPS. Front Pharmacol 2020; 11:1269. [PMID: 33013361 PMCID: PMC7500412 DOI: 10.3389/fphar.2020.01269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Although the major alterations associated with asthma are related to the airways, there is also evidence of the importance of peribronchial vascular inflammation and remodeling in its pathophysiology. Objectives To determine the effects of anti-IL-17 therapy on peribronchial vessels of an asthma model exacerbated by lipopolysaccharide. Methods We evaluated several factors, including lung function, inflammation, oxidative stress, vascular remodeling, and signaling pathways present in the peribronchial vessels of 66 male BALB/c mice exposed to ovalbumin and treated (or not) treated with anti-IL-17. Twenty-four hours before the end of the experimental protocol, groups of sensitized animals (OVA–LPS and OVA–LPS anti-IL-17) also received LPS. Results The OVA–LPS-anti-IL-17 group presented a decrease in several factors [airway resistance and elastance, bronchoalveolar lavage fluid (BALF) cell counts, inflammatory response, eosinophils, TSLP, IL-33, TARC, TNF-α, CD4+, CD8+, IL-4, IL-6, IL-10, IL-17, and VEGF positive cells/104μm2, peribronchovascular edema, and angiogenesis], including remodeling (MMP-9, MMP-12, TIMP-1 and TGF-β positive cells and volume fraction of collagen fibers I, collagen fibers III, collagen fibers V, decorin, lumican, actin, biglycan, fibronectin, and integrin), oxidative stress (iNOS positive cells and volume fraction of PGF2α), and signaling pathways (FoxP3), as well as dendritic cells, NF-kB, ROCK-1, ROCK-2, STAT-1, and phosphor-STAT1-positive cells compared to OVA–LPS (p < 0.05). Conclusions In this model of LPS-induced asthma exacerbation, IL-17 inhibition represents a promising therapeutic strategy, indicating the potential of bronchial vascular control of Th2 and Th17 responses and the activation of the remodeling and oxidative stress pathways, associated with the control of signaling pathways.
Collapse
Affiliation(s)
- Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil.,Serviço de Reabilitação, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Tabata Maruyama Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil.,Serviço de Reabilitação, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | | | | | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | | | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil.,Serviço de Reabilitação, Hospital Sírio-Libanês, São Paulo, Brazil
| | | |
Collapse
|
15
|
Transcriptional Inhibition of Sp-IAG by Crustacean Female Sex Hormone in the Mud Crab, Scylla paramamosain. Int J Mol Sci 2020; 21:ijms21155300. [PMID: 32722594 PMCID: PMC7432471 DOI: 10.3390/ijms21155300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
In crustaceans, the regulation of sex differentiation is mediated by insulin-like androgenic hormone (IAG) and crustacean female sex hormone (CFSH). CFSH is reported to inhibit IAG gene (Sp-IAG) expression in the mud crab Scylla paramamosain, but the regulatory mechanism is not well understood. A 2674 bp 5′ flanking Sp-IAG contains many potential transcription factor binding sites. In this study, analysis of serially deleted 5′ flanking Sp-IAG and site-directed mutation (SDM) of transcription factor binding sites of the same gene showed that the promoter activity of reporter vectors with Sox-5-binding site, signal transducers and activators of transcription (STAT)-binding site and activator protein 1 (AP-1)-binding site were significantly higher than that of vectors without these regions, suggesting that they were involved in transcriptional regulation of Sp-IAG expression. The expression analysis of these transcription factor showed that there was no difference in the level of mRNA in Sox-5 and AP-1 in androgenic gland treated with recombinant CFSH, but expression of Sp-STAT was significantly reduced, suggesting that CFSH regulates the expression of Sp-STAT, inhibiting its function to regulate Sp-IAG. Further experiment revealed that RNAi mediated Sp-STAT gene knockdown reduced the expression of Sp-IAG. These results suggested that Sp-CFSH regulates Sp-IAG by inhibiting STAT. This is a pioneering finding on the transcriptional mechanism of IAG gene in crustaceans.
Collapse
|
16
|
Pacheco Y, Lim CX, Weichhart T, Valeyre D, Bentaher A, Calender A. Sarcoidosis and the mTOR, Rac1, and Autophagy Triad. Trends Immunol 2020; 41:286-299. [PMID: 32122794 DOI: 10.1016/j.it.2020.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
Abstract
Sarcoidosis is an enigmatic multisystem disease characterized by the development and accumulation of granulomas: a compact collection of macrophages that have differentiated into epithelioid cells and which are associated with T helper (Th)1 and Th17 cells. Although no single causative factor has been shown to underlie sarcoidosis in humans, its etiology has been related to microbial, environmental, and genetic factors. We examine how these factors play a role in sarcoidosis pathogenesis. Specifically, we propose that dysfunction of mTOR, Rac1, and autophagy-related pathways not only hampers pathogen or nonorganic particle clearance but also participates in T cell and macrophage dysfunction, driving granuloma formation. This concept opens new avenues for potentially treating sarcoidosis and may serve as a blueprint for other granulomatous disorders.
Collapse
Affiliation(s)
- Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Clarice X Lim
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Dominique Valeyre
- Department of Pulmonology, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), EA-2363, Université Paris 13, Bobigny, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France
| | - Alain Calender
- Inflammation and Immunity of the Respiratory Epithelium - EA7426 (PI3) - South Medical University Hospital - Lyon 1 Claude Bernard University, Pierre-Bénite, France; Department of Molecular and Medical Genetics, Hospices Civils de Lyon, University Hospital, Bron, France.
| |
Collapse
|
17
|
Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, Zhao Y, Xue Y. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:6. [PMID: 30616627 PMCID: PMC6323742 DOI: 10.1186/s13046-018-1003-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE Epithelial to mesenchymal transition (EMT) can contribute to gastric cancer (GC) progression and recurrence following therapy. Tumor-associated neutrophils (TANs) are associated with poor outcomes in a variety of cancers. However, it is not clear whether TANs interact with the EMT process during GC development. METHODS Immunohistochemistry was performed to examine the distribution and levels of CD66 + neutrophils in samples from 327 patients with GC. CD66b + TANs were isolated either directly from GC cell suspensions or were conditioned from healthy donor peripheral blood polymorphonuclear neutrophils (PMNs) stimulated with tumor tissue culture supernatants (TTCS) and placed into co-culture with MKN45 or MKN74 cells, after which migration, invasion and EMT were measured. Interleukin-17a (IL-17a) was blocked with a polyclonal antibody, and the STAT3 pathway was blocked with the specific inhibitor AG490. RESULTS Neutrophils were widely distributed in gastric tissues of patients with GC and were enriched predominantly at the invasion margin. Neutrophil levels at the invasion margin were an independent predictor of poor disease-free survival (DFS) and disease-specific survival (DSS). IL-17a + neutrophils constituted a large portion of IL-17a-producing cells in GC, and IL-17a was produced at the highest levels in co-culture compared with that in TANs not undergoing co-culture. TANs enhanced the migration, invasion and EMT of GC cells through the secretion of IL-17a, which activated the Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in GC cells, while deprivation of IL-17a using a neutralizing antibody or inhibition of the JAK2/STAT3 pathway with AG490 markedly reversed these TAN-induced phenotypes in GC cells induced by TANs. CONCLUSIONS Neutrophils correlate with tumor stage and predict poor prognosis in GC. TANs produce IL-17a, which promotes EMT of GC cells through JAK2/STAT3 signalling. Blockade of IL-17a signalling with a neutralizing antibody inhibits TAN-stimulated activity in GC cells. Therefore, IL-17a-targeted therapy might be used to treat patients with GC.
Collapse
Affiliation(s)
- Sen Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008, China.,Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Xiliang Cong
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Hongyu Gao
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Xiuwen Lan
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Zhiguo Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Wenpeng Wang
- Department of Gynecologic Oncology, Cancer Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shubin Song
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Chunfeng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Hongfeng Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China
| | - Yuzhou Zhao
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008, China.
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Ha Ping Road, Harbin, 150081, China.
| |
Collapse
|
18
|
Li Y, Shen Y, Lin D, Zhang H, Wang T, Liu H, Wang Y. Neutrophils and IL17A mediate flagellar hook protein FlgE-induced mouse acute lung inflammation. Cell Microbiol 2018; 21:e12975. [PMID: 30412932 DOI: 10.1111/cmi.12975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Li
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, College of Medicine; Soochow University; Suzhou China
| | - Ying Shen
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, College of Medicine; Soochow University; Suzhou China
| | - Dandan Lin
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, College of Medicine; Soochow University; Suzhou China
| | - Hongbo Zhang
- Department of Clinical Laboratory; Qilu Hospital of Shandong University (Qingdao); Qingdao China
| | - Ting Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, College of Medicine; Soochow University; Suzhou China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology; National University of Singapore; Singapore Singapore
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, College of Medicine; Soochow University; Suzhou China
| |
Collapse
|
19
|
Profiles of serum cytokines and their clinical implications in patients with peripheral T-cell lymphoma. Cytokine 2018; 113:371-379. [PMID: 30327172 DOI: 10.1016/j.cyto.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
To better predict the outcomes of patients with peripheral T-cell lymphoma (PTCL), we measured the levels of various cytokines in serum samples from patients with PTCL and analyzed their clinical outcomes. We measured 34 cytokines in samples from 121 PTCL patients (55 PTCL-not otherwise specified (NOS), 44 angioimmunoblastic T-cell lymphoma (AITL), and 22 ALK- anaplastic large cell lymphoma) at diagnosis. Their impact on clinical outcomes, including overall survival and complete response rate, were analyzed with other clinical variables. The median age of patients was 58 years (range, 20-85 years) and 81 patients (66.9%) were male. The median overall survival among all patients was 56.1 months (95% CI 21.4-90.8) and median progression-free survival was 19.3 months (95% CI 12.3-26.3). Patients with AITL were more likely to express higher levels of serum cytokines, and 7 cytokines showed mean levels that were significantly higher than those in other subtypes. In this subgroup, IL-10 higher than 3.8 pg/mL was associated with adverse outcomes. In patients with ALK- anaplastic large cell lymphoma, 9 cytokines showed a prognostic impact, with higher levels of interferon γ, interleukin (IL)-8, IL-10, IL-17, IL-23, IP-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and RANTES negatively affecting clinical outcomes. In PTCL-NOS, patients with elevated levels of interferon γ, IL-7, and IL-23 showed poor outcomes. The current analysis demonstrated different cytokine profiles according to histologic subtype, which revealed the heterogeneity of PTCL. In addition, cytokine levels can be used as prognostic markers and may be useful for therapeutic applications in PTCL patients.
Collapse
|
20
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
21
|
Nakai K, He YY, Nishiyama F, Naruse F, Haba R, Kushida Y, Katsuki N, Moriue T, Yoneda K, Kubota Y. IL-17A induces heterogeneous macrophages, and it does not alter the effects of lipopolysaccharides on macrophage activation in the skin of mice. Sci Rep 2017; 7:12473. [PMID: 28963556 PMCID: PMC5622065 DOI: 10.1038/s41598-017-12756-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023] Open
Abstract
Macrophages are central to inflammatory response and become polarized towards the M1 or M2 states upon activation by immunostimulants. In this study, we investigated the effects of lipopolysaccharides (LPS) and interleukin (IL)-17A on the activation of macrophages in in vivo mouse skin. We examined whether macrophages are activated in the skin of imiquimod (IMQ)-treated mice, a model for IL-17A-induced psoriasis-like skin inflammation, and flaky-tail (Flgft) mice, a model for IL-17A-induced chronic atopic dermatitis-like skin inflammation. LPS and IL-17A independently increased the expression levels of iNOS, CX3CR1, CD206, phospho-STAT1 and phospho-STAT3 proteins in the skin of B6 mice, and the effects of LPS was not altered by IL-17A. The expression levels of these proteins were increased in the skin of IMQ-treated and Flgft mice. IL-17A neutralization increased the expressions of iNOS and phospho-STAT1 in the IMQ-treated skin, but it decreased the expressions of CD206 and phospho-STAT3 proteins in the skin of Flgft mice, suggesting that macrophages to change from the M2 to the M1 state in the skin of these mice. These results suggest that IL-17A is involved in the activation of macrophages that are in the process of adopting the heterogeneous profiles of both the M1 and M2 states.
Collapse
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, Kagawa University, Kagawa, Japan.
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, USA
| | | | - Fukiko Naruse
- Department of Dermatology, Kagawa University, Kagawa, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Kagawa University, Kagawa, Japan
| | - Yoshio Kushida
- Department of Diagnostic Pathology, Kagawa University, Kagawa, Japan
| | - Naomi Katsuki
- Department of Diagnostic Pathology, Kagawa University, Kagawa, Japan
| | - Tetsuya Moriue
- Department of Dermatology, Kagawa University, Kagawa, Japan
| | - Kozo Yoneda
- Department of Pharmacology, Osaka Ohtani University, Osaka, Japan
| | - Yasuo Kubota
- Department of Dermatology, Kagawa University, Kagawa, Japan
| |
Collapse
|
22
|
Chen Y, Gong FY, Li ZJ, Gong Z, Zhou Z, Ma SY, Gao XM. A study on the risk of fungal infection with tofacitinib (CP-690550), a novel oral agent for rheumatoid arthritis. Sci Rep 2017; 7:6779. [PMID: 28754958 PMCID: PMC5533717 DOI: 10.1038/s41598-017-07261-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Tofacitinib (CP-690550), an oral Janus kinase inhibitor, has shown significant efficacy in the treatment of rheumatoid arthritis through blocking the signaling pathways of pro-inflammatory cytokines. However, recent evidence suggests that long-term tofacitinib treatment is associated with increased risk of infection (e.g. tuberculosis) in patients. In the present study, we illustrate that tofacitinib administration significantly reduced the survival rate of mice given lethal or sub-lethal dose challenge with Candida albicans. This was related to the ability of tofacitinib to reverse TNFα- and IFNγ-enhanced candidacidal activity of murine polymorph nuclear cells (PMNs) and also to suppress chemokine CXCL5 expression and PMN infiltration in the infected tissues of mice. More importantly, tofacitinib significantly antagonized the ability of TNFα, IFNγ and GM-CSF to boost human PMNs in phagocytosis and direct killing of C. albicans in vitro. It also down-regulated reactive oxygen production and neutrophil extracellular trap formation by human PMNs stimulated with yeast-derived β-glucans in the presence of TNFα, IFNγ or GM-CSF. Our data emphasizes a significantly increased risk for opportunistic fungal infection associated long-term tofacitinib treatment in humans, likely through antagonizing the PMN-boosting effect of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Zhen-Jun Li
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhe Zhou
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shu-Yan Ma
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences (IBMS), School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
23
|
You T, Bi Y, Li J, Zhang M, Chen X, Zhang K, Li J. IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Sci Rep 2017; 7:41779. [PMID: 28281545 PMCID: PMC5345044 DOI: 10.1038/srep41779] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/29/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury is a grave neurological disability resulting in neuron degeneration and permanent paralysis. The inflammation triggered by the injury would promote the spinal cord lesion in turn. Activated astrocytes during inflammatory response could promote glial scar formation and contribute to the progression of the spinal cord injury. Interleukin 17 (IL-17) was upregulated in inflammatory responses to contusion or compression of the spinal cord. in this study, IL-17 could induce reactive astrocytes which was indicated by a well-known hallmark glial fibrillary acidic protein (GFAP) in vitro and in vivo. Moreover, we demonstrated that the upregulation of VEGF was induced by IL-17 human astrocytoma cells. In our further investigation, IL-17 induced the expression of VEGF in spinal cord injury by activating JAK/STAT signaling pathway both in vitro and in vivo. In addition, we also found that IL-17 significantly changed tissue preservation and residual urine volumes and blood-spinal cord-barrier integrity in vivo. This newly found IL-17-JAK/STAT-VEGF axis improves our understanding of the molecular mechanism of spinal cord injury during inflammatory response and provides another potential target of spinal cord injury.
Collapse
Affiliation(s)
- Tao You
- College of Pharmacy, Anhui Medical University, Hefei, China.,Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yihui Bi
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Orthopaedics, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Mingkai Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xuezhou Chen
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Keke Zhang
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G, Du J, Chen C, Jin Y. IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma. Sci Rep 2016; 6:36551. [PMID: 27819281 PMCID: PMC5098156 DOI: 10.1038/srep36551] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
Inflammation and angiogenesis are two hallmarks of carcinoma. The proinflammatory cytokine interleukin-17 (IL-17) facilitates angiogenesis in lung cancer; however, the underlying mechanism is not fully understood. In this study, tumour microvessel density (MVD) was positively associated with IL-17, interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial cell growth factor (VEGF) expression in human lung adenocarcinoma tissues, and it was increased in tumour tissues of A549-IL-17 cell-bearing nude mice. Importantly, positive correlations were also detected between IL-17 expression and IL-6, IL-8 and VEGF expression in human lung adenocarcinoma tissues. Furthermore, IL-6, IL-8 and VEGF production, as well as STAT1 phosphorylation, were increased in tumour tissues of A549-IL-17 cell-bearing nude mice in vivo and in A549 and H292 cells following IL-17 stimulation in vitro. In addition, STAT1 knockdown using an inhibitor and siRNA attenuated the IL-17-mediated increases in IL-6, IL-8 and VEGF expression in A549 and H292 cells. In conclusion, IL-17 may promote the production of the angiogenic inducers IL-6, IL-8 and VEGF via STAT1 signalling in lung adenocarcinoma.
Collapse
Affiliation(s)
- Qi Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xin Qian
- Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, Hubei, 442000, P.R. China
| | - Jinshuo Fan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiuxiu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jieli Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guorong Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jiao Du
- Zhongshan Hospital, Xiamen University, 201-209 Hubin Road, Xiamen, Fujian, 361004, P.R. China
| | - Caiyun Chen
- Department of Respiratory Medicine,the First Hospital of Xi'an City, Xi'an, Shanxi, 710002, P.R. China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
25
|
Alves de Medeiros AK, Speeckaert R, Desmet E, Van Gele M, De Schepper S, Lambert J. JAK3 as an Emerging Target for Topical Treatment of Inflammatory Skin Diseases. PLoS One 2016; 11:e0164080. [PMID: 27711196 PMCID: PMC5053514 DOI: 10.1371/journal.pone.0164080] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
The recent interest and elucidation of the JAK/STAT signaling pathway created new targets for the treatment of inflammatory skin diseases (ISDs). JAK inhibitors in oral and topical formulations have shown beneficial results in psoriasis and alopecia areata. Patients suffering from other ISDs might also benefit from JAK inhibition. Given the development of specific JAK inhibitors, the expression patterns of JAKs in different ISDs needs to be clarified. We aimed to analyze the expression of JAK/STAT family members in a set of prevalent ISDs: psoriasis, lichen planus (LP), cutaneous lupus erythematosus (CLE), atopic dermatitis (AD), pyoderma gangrenosum (PG) and alopecia areata (AA) versus healthy controls for (p)JAK1, (p)JAK2, (p)JAK3, (p)TYK2, pSTAT1, pSTAT2 and pSTAT3. The epidermis carried in all ISDs, except for CLE, a strong JAK3 signature. The dermal infiltrate showed a more diverse expression pattern. JAK1, JAK2 and JAK3 were significantly overexpressed in PG and AD suggesting the need for pan-JAK inhibitors. In contrast, psoriasis and LP showed only JAK1 and JAK3 upregulation, while AA and CLE were characterized by a single dermal JAK signal (pJAK3 and pJAK1, respectively). This indicates that the latter diseases may benefit from more targeted JAK inhibitors. Our in vitro keratinocyte psoriasis model displayed reversal of the psoriatic JAK profile following tofacitinib treatment. This direct interaction with keratinocytes may decrease the need for deep skin penetration of topical JAK inhibitors in order to exert its effects on dermal immune cells. In conclusion, these results point to the important contribution of the JAK/STAT pathway in several ISDs. Considering the epidermal JAK3 expression levels, great interest should go to the investigation of topical JAK3 inhibitors as therapeutic option of ISDs.
Collapse
Affiliation(s)
- Ana Karina Alves de Medeiros
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Department of Dermatology, Ghent University, Ghent, Belgium
- * E-mail:
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Department of Dermatology, Ghent University, Ghent, Belgium
| | - Eline Desmet
- Department of Dermatology, Ghent University, Ghent, Belgium
| | | | - Sofie De Schepper
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Department of Dermatology, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Wendling D, Prati C. Kinases inhibitors and small molecules: A new treatment tool for axial spondyloarthropathy? Joint Bone Spine 2016; 83:473-5. [DOI: 10.1016/j.jbspin.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 01/05/2023]
|
27
|
Hu B, Wang J, Wu X, Chen Y, Yuan W, Chen H. Interleukin-17 upregulates vascular endothelial growth factor by activating the JAK/STAT pathway in nucleus pulposus cells. Joint Bone Spine 2016; 84:327-334. [PMID: 27426446 DOI: 10.1016/j.jbspin.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Intervertebral disc (IVD) related diseases and age-related IVD degeneration are responsible for significant morbidity. Inflammatory mediators and pro-inflammatory cytokines, including interleukin (IL)-17, show elevated expression in degenerated disc tissue. IL-17 is reported to transduce signals across the cell membrane predominantly via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signal transduction pathway, leading to transcriptional activation of target genes. METHODS In this study, we investigated whether the JAK/STAT pathway plays a role in IL-17-mediated signaling in the nucleus pulposus (NP) cells of IVDs. Vascular endothelial growth factor (VEGF) and IL-17 were found to be highly expressed in human degenerated NP tissue. In isolated rat NP cells, IL-17-induced VEGF expression in a time- and dose-dependent manner. Rat NP cells were co-transfected with VEGF promoter plasmid along with constitutively active STAT1, STAT3 or JAK2 plasmid. VEGF promoter activity was found to be increased by STAT1, STAT3 and JAK2 in IL-17-treated cells. Transfection of cultured rat NP cells with STAT1 or STAT3 lentiviral short hairpin RNAs or treatment with the JAK2 inhibitor AG490 significantly reduced IL-17-stimulated VEGF expression. CONCLUSIONS IL-17 upregulated VEGF expression in rat NP cells mediated by the JAK/STAT pathway, and elevated levels of IL-17 and VEGF are present in human degenerated NP tissue. These findings provide new insight into the pathology of IVD degeneration.
Collapse
Affiliation(s)
- Bo Hu
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianxi Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaodong Wu
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yu Chen
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wen Yuan
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Huajiang Chen
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
28
|
Ma HY, Xu J, Liu X, Zhu Y, Gao B, Karin M, Tsukamoto H, Jeste DV, Grant I, Roberts AJ, Contet C, Geoffroy C, Zheng B, Brenner D, Kisseleva T. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:27-35. [PMID: 27239399 PMCID: PMC4878828 DOI: 10.1007/s40139-016-0097-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Jun Xu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Xiao Liu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Yunheng Zhu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National, Institutes of Health, Bethesda, Maryland
| | - Michael Karin
- Department of Pharmacology, UC San Diego, La Jolla, CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, and Department of Veterans Affairs Great Los Angeles Healthcare System, Los Angeles, CA
| | - Dilip V Jeste
- Department of Psychiatry, UC San Diego, La Jolla, CA; Stein Institute for Research on Aging, UC San Diego, La Jolla, CA
| | - Igor Grant
- Department of Psychiatry, UC San Diego, La Jolla, CA
| | - Amanda J Roberts
- Department of Molecular & Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA
| | | | - Binhai Zheng
- Department of Neurosciences, UC San Diego, La Jolla, CA
| | | | | |
Collapse
|
29
|
Graser A, Ekici AB, Sopel N, Melichar VO, Zimmermann T, Papadopoulos NG, Taka S, Ferrazzi F, Vuorinen T, Finotto S. Rhinovirus inhibits IL-17A and the downstream immune responses in allergic asthma. Mucosal Immunol 2016; 9:1183-92. [PMID: 26732679 PMCID: PMC7099698 DOI: 10.1038/mi.2015.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/09/2015] [Indexed: 02/04/2023]
Abstract
The proinflammatory cytokine interleukin-17A (IL-17A) is known to mediate antimicrobial activity, but its role during rhinovirus (RV) infections and in asthma needs further investigation. Therefore, we addressed the role of IL-17A during allergic asthma and antiviral immune response in human and murine immunocompetent cells. In this study we found that asthmatic children with a RV infection in their upper airways have upregulated mRNA levels of the antiviral cytokine interferon type I (IFN)-β and the transcription factor T-box 21 (TBX21) and reduced levels of IL-17A protein in their peripheral blood mononuclear cells (PBMCs). We also found that IL-17A inhibited RV1b replication in infected human lung epithelial cells A549. Furthermore, by using gene array analysis we discovered that targeted deletion of Il17a in murine lung CD4(+) T cells impaired Oas1g mRNA downstream of Ifnβ, independently from RV infection. Additionally, in PBMCs of children with a RV infection in their nasalpharyngeal fluid OAS1 gene expression was found downregulated. Finally RV1b inhibited IL-17A production in lung CD4(+) T cells in a setting of experimental asthma. These results indicate that the RV1b inhibits IL-17A in T helper type 17 cells and IL-17A clears RV1b infection in epithelial cells. In both cases IL-17A contributes to fend off RV1b infection by inducing genes downstream of interferon type I pathway.
Collapse
Affiliation(s)
- A Graser
- grid.411668.c0000 0000 9935 6525Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - A B Ekici
- grid.411668.c0000 0000 9935 6525Institute of Humangenetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - N Sopel
- grid.411668.c0000 0000 9935 6525Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - V O Melichar
- grid.411668.c0000 0000 9935 6525Department of Paediatrics and Adolescent Medicine, Paediatric Pneumology-Allergology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - T Zimmermann
- grid.411668.c0000 0000 9935 6525Department of Paediatrics and Adolescent Medicine, Paediatric Pneumology-Allergology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - N G Papadopoulos
- grid.5216.00000 0001 2155 0800Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - S Taka
- grid.5216.00000 0001 2155 0800Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - F Ferrazzi
- grid.411668.c0000 0000 9935 6525Institute of Humangenetics, Universitätsklinikum Erlangen, Erlangen, Germany
| | - T Vuorinen
- grid.1374.10000 0001 2097 1371Department of Virology, University of Turku, Turku, Finland
| | - S Finotto
- grid.411668.c0000 0000 9935 6525Department of Molecular Pneumology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
He Y, Jouaux A, Ford SE, Lelong C, Sourdaine P, Mathieu M, Guo X. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. FISH & SHELLFISH IMMUNOLOGY 2015; 46:131-144. [PMID: 26004318 DOI: 10.1016/j.fsi.2015.05.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Viruses are highly abundant in the oceans, and how filter-feeding molluscs without adaptive immunity defend themselves against viruses is not well understood. We studied the response of a mollusc Crassostrea gigas to Ostreid herpesvirus 1 µVar (OsHV-1μVar) infections using transcriptome sequencing. OsHV-1μVar can replicate extremely rapidly after challenge of C. gigas as evidenced by explosive viral transcription and DNA synthesis, which peaked at 24 and 48 h post-inoculation, respectively, accompanied by heavy oyster mortalities. At 120 h post-injection, however, viral gene transcription and DNA load, and oyster mortality, were greatly reduced indicating an end of active infections and effective control of viral replication in surviving oysters. Transcriptome analysis of the host revealed strong and complex responses involving the activation of all major innate immune pathways that are equipped with expanded and often novel receptors and adaptors. Novel Toll-like receptor (TLR) and MyD88-like genes lacking essential domains were highly up-regulated in the oyster, possibly interfering with TLR signal transduction. RIG-1/MDA5 receptors for viral RNA, interferon-regulatory factors, tissue necrosis factors and interleukin-17 were highly activated and likely central to the oyster's antiviral response. Genes related to anti-apoptosis, oxidation, RNA and protein destruction were also highly up-regulated, while genes related to anti-oxidation were down-regulated. The oxidative burst induced by the up-regulation of oxidases and severe down-regulation of anti-oxidant genes may be important for the destruction of viral components, but may also exacerbate oyster mortality. This study provides unprecedented insights into antiviral response in a mollusc. The mobilization and complex regulation of expanded innate immune-gene families highlights the oyster genome's adaptation to a virus-rich marine environment.
Collapse
Affiliation(s)
- Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China; Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA
| | - Aude Jouaux
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Susan E Ford
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA
| | - Christophe Lelong
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Pascal Sourdaine
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Michel Mathieu
- UMR BOREA, "Biologie des Organismes et Ecosystèmes Aquatiques", MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 CAEN, France
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08345, USA.
| |
Collapse
|
31
|
Wang Y, Qu A, Wang H. Signal transducer and activator of transcription 4 in liver diseases. Int J Biol Sci 2015; 11:448-55. [PMID: 25798064 PMCID: PMC4366643 DOI: 10.7150/ijbs.11164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/24/2015] [Indexed: 12/14/2022] Open
Abstract
STAT4 is a member of the signal transducer and activator of transcription (STAT) family of molecules that localizes to the cytoplasm. STAT4 regulates various genes expression as a transcription factor after it is phosphorylated, dimerizes and translocates to the nucleus. STAT4 activation is detected virtually in the liver of several mouse models of liver injury, as well as the human liver of chronic liver diseases. STAT4 gene polymorphism has been shown to be associated with the antiviral response in chronic hepatitis C and drug-induced liver injury (DILI), primary biliary cirrhosis (PBC), HCV-associated liver fibrosis and in hepatocellular carcinoma (HCC). However, the roles of STAT4 in the pathogeneses of liver diseases are still not understood entirely. This review summarizes the recent advances on the functional roles of STAT4 and its related cytokines in liver diseases, especially in regulating hepatic anti-viral responses, inflammation, proliferation, apoptosis and tumorigenesis. Targeting STAT4 signaling pathway might be a promising strategy in developing therapeutic approaches for treating hepatitis in order to prevent further injury like cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Yan Wang
- 1. Department of Infectious Diseases, Peking University First Hospital, Beijing 100034
| | - Aijuan Qu
- 3. Institute of Hypoxic Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 ; 4. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hua Wang
- 2. Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032
| |
Collapse
|
32
|
Mathews JA, Wurmbrand AP, Ribeiro L, Neto FL, Shore SA. Induction of IL-17A Precedes Development of Airway Hyperresponsiveness during Diet-Induced Obesity and Correlates with Complement Factor D. Front Immunol 2014; 5:440. [PMID: 25309539 PMCID: PMC4164008 DOI: 10.3389/fimmu.2014.00440] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/30/2014] [Indexed: 12/31/2022] Open
Abstract
Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR), a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high-fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high-fat diet (HFD) and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique) was greater in mice fed HFD versus chow for 24 weeks but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A(+) γδ T cells and IL-17A(+) CD4(+) T (Th17) cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin), a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFα, MIP-1α, and MIP-1β, and classical markers of systemic inflammation of obesity were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided temporally with the development of AHR suggest that systemic inflammation may be one of these factors.
Collapse
Affiliation(s)
- Joel A Mathews
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Allison P Wurmbrand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Luiza Ribeiro
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Felippe Lazar Neto
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| | - Stephanie A Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health , Boston, MA , USA
| |
Collapse
|
33
|
Xu J, Liu X, Gao B, Karin M, Tsukamoto H, Brenner D, Kisseleva T. New Approaches for Studying Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2014; 2:171-183. [PMID: 26594598 DOI: 10.1007/s40139-014-0053-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is major cause of chronic liver injury which results in liver fibrosis and cirrhosis. According to the surveillance report published by the National Institute on Alcohol Abuse and Alcoholism, liver cirrhosis is the 12th leading cause of death in the United States with 48 % of these deaths being attributed to excessive alcohol consumption. ALD includes a spectrum of disorders from simple steatosis to steatohepatitis, fibrosis, and hepatocellular carcinoma. Several mechanisms play a critical role in the pathogenesis of ALD. These include ethanol-induced oxidative stress and depletion of glutathione, pathological methionine metabolism, increased gut permeability and release of endotoxins into the portal blood, recruitment and activation of inflammatory cells including bone marrow-derived and liver resident macrophages (Kupffer cells). Chronic alcohol consumption results in liver damage and activation of hepatic stellate cells (HSCs) and myofibroblasts, leading to liver fibrosis. Here we discuss the current view on factors that are specific for different stages of ALD and those that regulate its progression, including cytokines and chemokines, alcohol-responsive intracellular signaling pathways, and transcriptional factors. We also review recent studies demonstrating that alcohol-mediated changes can be regulated on an epigenetic level, including microRNAs. Finally, we discuss the reversibility of liver fibrosis and inactivation of HSCs as a potential strategy for treating alcohol-induced liver damage.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Xiao Liu
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michael Karin
- Department of Pharmacology, UC San Diego, San Diego, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - David Brenner
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | | |
Collapse
|
34
|
Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci 2014; 105:933-42. [PMID: 24890519 PMCID: PMC4317867 DOI: 10.1111/cas.12459] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/26/2022] Open
Abstract
Although Th17 cells play crucial roles in the pathogenesis of many autoimmune and inflammatory disorders, their roles in malignancies are currently under debate. The role and mechanism of Th17 cells in patients with acute myeloid leukemia (AML) remain poorly understood. Here we demonstrated that the frequency of Th17 cells was significantly increased in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells from AML patients compared with healthy donors. Plasma levels of interleukin (IL)-17, IL-22, IL-23, IL-1β, IL-6, and transforming growth factor (TGF)-β1 were significantly increased in blood and bone marrow in AML patients compared with healthy donors. The in vitro experiments demonstrated that IL-1β, IL-6, IL-23, but not TGF-β1 promoted the generation and differentiation of Th17 cells from naive CD4(+) T cells in humans. IL-17A, a signature cytokine secreted by Th17 cells, induced the proliferation of IL-17 receptor (IL-17R)-positive AML cells via IL-17R, in which activation of PI3K/Akt and Jak/Stat3 signaling pathway may play important roles. In addition, combination of IL-17A and IL-22 significantly reduced the generation of Th1 cells and the production of interferon (IFN)-γ from healthy donor or AML patient peripheral blood mononuclear cells. Patients with high Th17 cell frequency had poor prognosis, whereas patients with high Th1 cell frequency had prolonged survival. Combined analysis of Th1 and Th17 cell frequencies improved the ability to predict patient outcomes. In conclusion, Th17 cells play a crucial role in the pathogenesis of AML and may be an important therapeutic target and prognostic predictor.
Collapse
Affiliation(s)
- Yixiang Han
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Feng D, Wang H, Xu MJ, Park O, Li Y, Gao B. STAT4 knockout mice are more susceptible to concanavalin A-induced T-cell hepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1785-94. [PMID: 24731448 PMCID: PMC4044716 DOI: 10.1016/j.ajpath.2014.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/03/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022]
Abstract
STAT4, which is activated mainly by IL-12, promotes inflammatory responses by inducing Th1 and Th2 cytokines. Recent genome-wide association studies indicate that STAT4 gene variants are associated with risk of various types of liver diseases, but how STAT4 contributes to liver disease pathogenesis remains obscure. In this study, STAT4 activation was detected in liver immune cells from patients with viral hepatitis and autoimmune hepatitis, as well as in a mouse model of concanavalin A (Con A)-induced hepatitis. Such STAT4 activation was detected mainly in T cells, natural killer T cells, and macrophages and Kupffer cells, and was diminished in Il12a(-/-) and Il12b(-/-) mice. As expected, disruption of the Stat4 gene reduced production of Th1 and Th2 cytokines, but surprisingly exacerbated Con A-induced liver injury. Similarly, disruption of Il12a or Il12b also augmented Con A-induced hepatocellular damage. Further studies showed that hepatic natural killer T (NKT) cells from Con A-treated Stat4(-/-) mice had higher levels of FasL expression and increased cytotoxicity against hepatocytes than those from Con A-treated WT mice. In vitro, blocking FasL attenuated Stat4(-/-) NKT cytotoxicity against hepatocytes. In conclusion, despite up-regulation of proinflammatory cytokines, STAT4 protects against acute T-cell hepatitis, which is mediated by direct or indirect down-regulation of FasL expression on NKT cells.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yongmei Li
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
36
|
Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function. J Virol 2014; 88:8479-89. [PMID: 24829345 DOI: 10.1128/jvi.00724-14] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Interleukin-6 (IL-6) plays an important role in the development and progression of inflammatory responses, autoimmune diseases, and cancers. Many viral infections, including Theiler's murine encephalomyelitis virus (TMEV), result in the vigorous production of IL-6. However, the role of IL-6 in the development of virus-induced inflammatory responses is unclear. The infection of susceptible mice with TMEV induces the development of chronic demyelinating disease, which is considered a relevant infectious model for multiple sclerosis. In this study, we demonstrate that resistant C57BL/6 mice carrying an IL-6 transgene (IL-6 Tg) develop a TMEV-induced demyelinating disease accompanied by an increase in viral persistence and an elevated Th17 cell response in the central nervous system. Either IL-6 or IL-17 induced the expression of Bcl-2 and Bcl-xL at a high concentration. The upregulated expression of prosurvival molecules in turn inhibited target cell destruction by virus-specific CD8(+) T cells. More interestingly, IL-6 and IL-17 synergistically promoted the expression of these prosurvival molecules, preventing cellular apoptosis at a much lower (<5-fold) concentration. The signals involved in the synergy appear to include the activation of both STAT3 and NF-κB via distinct cytokine-dependent pathways. Thus, the excessive IL-6 promotes the generation of Th17 cells, and the resulting IL-6 and IL-17 synergistically promote viral persistence by protecting virus-infected cells from apoptosis and CD8(+) T cell-mediated target destruction. These results suggest that blocking both IL-6 and IL-17 functions are important considerations for therapies of chronic viral diseases, autoimmune diseases, and cancers. IMPORTANCE This study indicates that an excessive level of IL-6 cytokine produced following viral infection promotes the development of IL-17-producing pathogenic helper T cells. We demonstrate here for the first time that IL-6 together with IL-17 synergistically enhances the expression of survival molecules to hinder critical host defense mechanisms removing virus-infected cells. This finding has an important implication in controlling not only chronic viral infections but also autoimmune diseases and cancers, which are associated with prolonged cell survival.
Collapse
|
37
|
Chiricozzi A, Chimenti S. Effective topical agents and emerging perspectives in the treatment of psoriasis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer. Oncogene 2013; 34:165-76. [DOI: 10.1038/onc.2013.537] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/12/2013] [Accepted: 11/01/2013] [Indexed: 02/08/2023]
|
39
|
Acetylcholine leads to signal transducer and activator of transcription 1 (STAT-1) mediated oxidative/nitrosative stress in human bronchial epithelial cell line. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1949-58. [DOI: 10.1016/j.bbadis.2013.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/12/2023]
|
40
|
Montalbano AM, Anzalone G, Albano GD, Sano CD, Gagliardo R, Bonanno A, Riccobono L, Nicolini G, Ingrassia E, Gjomarkaj M, Profita M. Beclomethasone dipropionate and formoterol reduce oxidative/nitrosative stress generated by cigarette smoke extracts and IL-17A in human bronchial epithelial cells. Eur J Pharmacol 2013; 718:418-27. [DOI: 10.1016/j.ejphar.2013.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 02/03/2023]
|
41
|
Savage LJ, McGonagle DG. The Role of Biological and Small Molecule Therapy in the Management of Psoriatic Arthritis. BIOLOGICS IN THERAPY 2013. [PMCID: PMC4079095 DOI: 10.1007/s13554-013-0010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The therapy of psoriatic arthritis (PsA) has blossomed in the past decade. Inhibition of tumor necrosis factor (TNF) has been at the fore of this approach and has paved the way for the investigation of many other potential pro-inflammatory and signaling pathways. Most of the initial studies of TNF inhibitors in PsA have been conducted in specific populations, largely focusing on those with established, peripheral joint disease. That said, in excess of 10 years’ worth of real world clinical experience has led to increased confidence in the wider use of these agents. We are now faced with an exciting time of discovery of many new molecules; these not only include new, large protein biological agents, but also smaller synthetic chemical molecules, many of which can be administered orally. Those currently under development are discussed within this article. Whilst there is scarce data about their real world efficacy and safety profile, it is evident that the therapeutic armamentarium for treating PsA will greatly increase in the foreseeable future and this is anticipated to improve patient outcomes.
Collapse
Affiliation(s)
- Laura J. Savage
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, West Yorkshire UK
| | - Dennis G. McGonagle
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, West Yorkshire UK
| |
Collapse
|
42
|
Meephansan J, Komine M, Tsuda H, Karakawa M, Tominaga SI, Ohtsuki M. Expression of IL-33 in the epidermis: The mechanism of induction by IL-17. J Dermatol Sci 2013; 71:107-14. [PMID: 23764374 DOI: 10.1016/j.jdermsci.2013.04.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interleukin (IL)-33 is a dual functional, IL-1 family member cytokine, whose exact roles in inflammatory skin diseases are still unknown. IL-17A is a key cytokine in the pathogenesis of psoriasis. OBJECTIVES We investigated if IL-17A could induce IL-33 in epidermal keratinocytes, and the signaling mechanisms involved. METHODS IL-33 levels were evaluated by RT-PCR and western blot in human keratinocytes following IL-17A simulation. IL-33 immunohistochemical staining of psoriatic skin samples was also performed and compared with that of control tissues. The role of signaling pathways downstream of IL-17A was investigated using small molecule inhibitors of EGFR, ERK, p38, and JAK. Adenovirus vector expressing dominant negative STAT1 was also utilized. RESULTS IL-33 and its receptor, ST2L, were expressed in the psoriatic epidermis, and the associated infiltrating cells. IL-17A induced IL-33 expression at mRNA and protein levels in a time- and concentration-dependent manner. IL-17A caused phosphorylation of EGFR, ERK, p38, and STAT1. IL-17A-induced IL-33 expression was blocked by the addition of EGFR, ERK, p38, and JAK inhibitors, and dominant negative STAT1-expressing adenovirus vector. CONCLUSION IL-17A induced IL-33 in NHEKs through EGFR, ERK, p38, and JAK/STAT1 pathways, which were necessary for the induction of IL-33. IL-33, induced by IL-17A in epidermal keratinocytes, may be involved in the pathophysiology of inflammatory skin diseases, including psoriasis.
Collapse
Affiliation(s)
- Jitlada Meephansan
- Department of Dermatology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Boadi WY, Harris S, Anderson JB, Adunyah SE. Lipid peroxides and glutathione status in human progenitor mononuclear (U937) cells following exposure to low doses of nickel and copper. Drug Chem Toxicol 2013; 36:155-62. [PMID: 22632594 PMCID: PMC4175708 DOI: 10.3109/01480545.2012.660947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of Cu(2+), Ni(2+) or Cu(2+) + Ni(2+) on lipid peroxide and glutathione (GSH) levels in U937 cells were investigated. Cells were treated with 0, 5, 10, and 20 µM of Cu(2+) and/or Ni(2+) and H(2)O(2) (0.01 mM) and incubated for 24 hours at 37°C. Lipid peroxides were measured by the thiobarbituric acid assay (TBA). GSH intracellular levels were assayed by the GSH assay kit from EMD/Calbiochem (San Diego, California, USA). Cu(2+) or Ni(2+) significantly (P < 0.01) increased lipid peroxides in a dose-dependent manner, compared to controls. The effect was more pronounced for Cu(2+), compared to the Ni(2+)-treated samples. Cu(2+) + Ni(2+) increased lipid peroxides in a significant (P < 0.001), dose-dependent manner, compared to Cu(2+) or Ni(2+) alone (i.e., ratio of 2.5:1-fold for combined versus single treatments, respectively). Cu(2+) or Ni(2+) significantly decreased GSH levels in U937 cells, with the effect being pronounced for Cu(2+). Cu(2+) + Ni(2+) metal ions significantly (P < 0.001) depleted cells of GSH in a dose-dependent manner. Ethylene diamine tetraacetic acid (EDTA) at 50 or 100 µM moderately reduced the Cu(2+)- or Ni(2+)-induced effects on GSH levels. Interestingly, GSH levels generally decreased to half (except for the combined metal dose of 20 µM at 100 µM EDTA) of its level at the highest metal concentration tested for both the single or combined treatments. In conclusion, multiple exposures of cells to metal ions may be lethal to cells, compared to their single treatments.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
44
|
Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143:765-776.e3. [PMID: 22687286 PMCID: PMC3635475 DOI: 10.1053/j.gastro.2012.05.049] [Citation(s) in RCA: 551] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/06/2012] [Accepted: 05/30/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Interleukin (IL)-17 signaling has been implicated in lung and skin fibrosis. We examined the role of IL-17 signaling in the pathogenesis of liver fibrosis in mice. METHODS Using cholestatic and hepatotoxic models of liver injury, we compared the development of liver fibrosis in wild-type mice with that of IL-17RA(-/-) mice and of bone marrow chimeric mice devoid of IL-17 signaling in immune and Kupffer cells (IL-17RA(-/-) to wild-type and IL-17A(-/-) to wild-type mice) or liver resident cells (wild-type to IL-17RA(-/-) mice). RESULTS In response to liver injury, levels of Il-17A and its receptor increased. IL-17A increased appeared to promote fibrosis by activating inflammatory and liver resident cells. IL-17 signaling facilitated production of IL-6, IL-1, and tumor necrosis factor-α by inflammatory cells and increased the expression of transforming growth factor-1, a fibrogenic cytokine. IL-17 directly induced production of collagen type I in hepatic stellate cells by activating the signal transducer and activator of transcription 3 (Stat3) signaling pathway. Mice devoid of Stat3 signaling in hepatic stellate cells (GFAPStat3(-/-) mice) were less susceptible to fibrosis. Furthermore, deletion of IL-23 from immune cells attenuated liver fibrosis, whereas deletion of IL-22 exacerbated fibrosis. Administration of IL-22 and IL-17E (IL-25, a negative regulator of IL-23) protected mice from bile duct ligation-induced liver fibrosis. CONCLUSIONS IL-17 induces liver fibrosis through multiple mechanisms in mice. Reagents that block these pathways might be developed as therapeutics for patients with cirrhosis.
Collapse
MESH Headings
- Animals
- Bile Ducts/surgery
- Bone Marrow Transplantation
- Carbon Tetrachloride
- Cell Line
- Collagen Type I/metabolism
- Disease Progression
- Gene Expression Regulation
- Genotype
- Hepatic Stellate Cells/immunology
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Inflammation Mediators/administration & dosage
- Inflammation Mediators/metabolism
- Interleukin-1/metabolism
- Interleukin-17/administration & dosage
- Interleukin-17/deficiency
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-23/deficiency
- Interleukin-23/genetics
- Interleukin-6/metabolism
- Interleukins/administration & dosage
- Interleukins/deficiency
- Interleukins/genetics
- Kupffer Cells/immunology
- Kupffer Cells/metabolism
- Kupffer Cells/pathology
- Ligation
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Alcoholic/immunology
- Liver Cirrhosis, Alcoholic/pathology
- Liver Cirrhosis, Experimental/etiology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/immunology
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Interleukin-17/deficiency
- Receptors, Interleukin-17/genetics
- STAT3 Transcription Factor/deficiency
- STAT3 Transcription Factor/genetics
- Signal Transduction
- Time Factors
- Transforming Growth Factor beta1/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Fanli Meng
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Hepatology, Qilu Hospital, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, China
| | - Tomonori Aoyama
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Sergei I Grivennikov
- Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California
| | - YongHan Paik
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - David Scholten
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Min Cong
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Keiko Iwaisako
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiao Liu
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Mingjun Zhang
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Christoph H Österreicher
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California; Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Stickel
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Visceral Surgery and Medicine, Inselspital Bern, Switzerland
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Tatiana Kisseleva
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California.
| |
Collapse
|
45
|
Fu M, Wang G. Keratin 17 as a therapeutic target for the treatment of psoriasis. J Dermatol Sci 2012; 67:161-5. [PMID: 22795618 DOI: 10.1016/j.jdermsci.2012.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022]
Abstract
Keratin 17 (K17) is the only ectopically expressed keratin in psoriatic lesional epidermis. This review focuses mainly on reports that have addressed the mechanism of K17 up-regulation and its biological role in psoriasis. In addition to IFN-γ, IL-17A and IL-22, which are derived from Th17 and Th22 cells, could up-regulate K17 mRNA and protein levels in keratinocytes in a dose-dependent manner. Moreover, these effects are partially blocked with STAT1- and STAT3-specific inhibitors, as well as small interfering RNA (siRNA) targeting STAT1 and STAT3. On the other hand, the HLA DRB1*04 and/or *07 positive patients show significant T cell responses to two peptides from K17 protein selected on the basis of predicted HLA DRB1*04 and/or *07 bindings. One peptide contains the ALEEAN sequence, while the other peptide has an amino acid sequence that has not been previously reported. Analysis of these processes led us to propose the existence of a K17/T cells/cytokine autoimmune loop, in which ectopically expressed K17 impacts on the maintenance of psoriasis by activating autoreactive T cells. Furthermore, it has been found that altered peptide ligands, which are produced through single alanine residue substitutions at a critical TCR contact position, abolish the T cell proliferation and IFN-γ production induced by K17 pathogenic peptides. K17-specific antisense ODNs and RNAi suppress K17 mRNA and protein expression in psoriatic skin in vivo, which coincides with marked clinical and histological improvement. These findings highlight K17 as an attractive target for novel therapies aimed at curtailing psoriasis driven by chronic inflammation.
Collapse
Affiliation(s)
- Meng Fu
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | | |
Collapse
|
46
|
Punwani N, Scherle P, Flores R, Shi J, Liang J, Yeleswaram S, Levy R, Williams W, Gottlieb A. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol 2012; 67:658-64. [PMID: 22281165 DOI: 10.1016/j.jaad.2011.12.018] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Janus-associated kinases (JAKs) are involved in signal transduction from a variety of cytokines implicated in the pathogenesis of psoriasis, including interleukin (IL)-12, IL-23, and interferon-γ. INCB018424, a small molecule inhibitor of JAK1 and JAK2, inhibits cytokine-induced JAK/signal transducers and activators of transcription signaling and the resultant production of inflammatory proteins (eg, IL-17). OBJECTIVE We sought to demonstrate proof of concept in patients with stable plaque psoriasis. METHODS Patients were dosed with vehicle, 0.5% or 1.0% INCB018424 phosphate cream once a day or 1.5% twice a day for 28 days. Additional groups included two active comparators (calcipotriene 0.005% cream or betamethasone dipropionate 0.05% cream). RESULTS Both the 1% and the 1.5% cream improved lesion thickness, erythema, and scaling and reduced lesion area compared with placebo. A composite lesion score decreased by greater than 50% with the efficacious doses of INCB018424 compared with 32% for vehicle controls. Topical application of INCB018424 was well tolerated with few mild adverse events noted. Mean plasma concentrations of INCB018424 after topical application of 0.5% to 1.5% cream were in the low nanomolar range, representing a fraction (<1%) of the half maximal inhibitory concentration (IC(50)) in whole blood for inhibition of cytokine-stimulated signal transducers and activators of transcription-3 phosphorylation. LIMITATIONS This study was limited by the relatively short study duration and small sample size. CONCLUSION Topical INCB018424 is safe, is well tolerated, and exhibits clinical activity in the topical treatment of psoriasis.
Collapse
|
47
|
Liu M, Wang S, Zhou YD, Xiang T, Dong H, Yang K, Zhang XL. An iminosugar N-pentafluorobenzyl-1-deoxynojirimycin as a novel potential immunosuppressant for the treatment of Th2-related diseases. Bioorg Med Chem Lett 2012; 22:564-70. [DOI: 10.1016/j.bmcl.2011.10.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/01/2011] [Accepted: 10/24/2011] [Indexed: 12/17/2022]
|
48
|
IL-17A upregulates keratin 17 expression in keratinocytes through STAT1- and STAT3-dependent mechanisms. J Invest Dermatol 2011; 131:2401-8. [PMID: 21796151 DOI: 10.1038/jid.2011.222] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psoriasis, an immunological skin disease, is characterized by epidermal hyperproliferation, chronic inflammation, and an accumulation of infiltrating T cells. IL-17A is a key cytokine that has a critical role in the pathogenesis of psoriasis. Keratin 17 (K17) is strongly expressed in psoriatic lesions but not in normal skin. Thus, K17 expression is regarded as a hallmark of psoriasis. We previously reported that the K17/T cells/cytokine autoimmune loop was involved in psoriasis. However, the relationship between IL-17A and K17 has yet to be determined. In the present study, IL-17A-induced K17 expression was confirmed in cultured keratinocytes in both mRNA and protein levels. In addition, increased K17 expression was found in the epidermis of IL-17A-injected mouse skin. The regulatory mechanism of K17 expression was further investigated. We found that both the signal transducer and activator of transcription (STAT) 1 and STAT3 pathways were involved in the upregulation of K17 expression induced by IL-17A, and that such regulation could be partially suppressed by STAT1 or STAT3 small interfering RNA and inhibitor. Our data suggest that IL-17A can upregulate K17 expression in keratinocytes in a dose-dependent manner through STAT1- and STAT3-dependent mechanisms. The results indicate that IL-17A might be an important cytokine in the K17/T cells/cytokine autoimmune loop associated with psoriasis.
Collapse
|
49
|
Loverre A, Tataranni T, Castellano G, Divella C, Battaglia M, Ditonno P, Corcelli M, Mangino M, Gesualdo L, Schena FP, Grandaliano G. IL-17 expression by tubular epithelial cells in renal transplant recipients with acute antibody-mediated rejection. Am J Transplant 2011; 11:1248-59. [PMID: 21645256 DOI: 10.1111/j.1600-6143.2011.03529.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acute rejection is still a common complication of kidney transplantation. IL-17 is known to be associated with allograft rejection but the cellular source and the role of this cytokine remains unclear. We investigated IL-17 graft expression in renal transplant recipients with acute antibody-mediated rejection (ABMR), acute T-cell-mediated rejection (TCMR), interstitial fibrosis and tubular atrophy (IFTA) and acute tubular damage due to calcineurin-inhibitor toxicity (CNI). In acute ABMR, tubular IL-17 protein expression was significantly increased compared to TCMR, where most of the IL-17⁺ cells were CD4⁺ graft infiltrating lymphocytes, IFTA and CNI control groups. The tubular expression of IL-17 in acute ABMR colocalized with JAK2 phosphorylation and peritubular capillaries C4d deposition. In addition, IL-17 tubular expression was directly and significantly correlated with the extension of C4d deposits. In cultured proximal tubular cells, C3a induced IL-17 gene and protein expression along with an increased in JAK2 phosphorylation. The inhibition of JAK2 abolished C3a-induced IL-17 expression. The use of steroids and monoclonal antibodies reduced IL-17 expression, JAK2 phosphorylation and C4d deposition in acute ABMR patients. Our data suggest that tubular cells represent a significant source of IL-17 in ABMR and this event might be mediated by the complement system activation featuring this condition.
Collapse
Affiliation(s)
- A Loverre
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
CP-690550, a Janus kinase inhibitor, suppresses CD4+ T-cell-mediated acute graft-versus-host disease by inhibiting the interferon-γ pathway. Transplantation 2010; 90:825-35. [PMID: 20697326 DOI: 10.1097/tp.0b013e3181f24e59] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (GVHD) is a critical obstacle to bone marrow transplantation. Although numerous studies have described immunosuppression protocols to mitigate acute GVHD, the need still exists for a more efficient immunosuppressant with fewer side effects. Here, we evaluated the protective effect of CP-690550, a newly developed Janus kinase inhibitor, in an acute GVHD model. METHODS CP-690550 was chemically synthesized. Acute GVHD was induced through the transfer of parent B6 (H-2) bone marrow and CD4 T cells into lethally irradiated (B6×bm12)F1 (H-2) mice. RESULTS.: CP-690550 treatments confined to days -3 to 11 of GVHD induction provided full protection against allogeneic, acute GVHD-related lethality and histopathology. An analysis of the initial donor-derived CD4 T-cell responses revealed that the inhibitory effects of CP-690550 were largely related to the suppression of donor CD4 T-cell-mediated interferon (IFN)-γ production. Enhanced inhibition of T helper 1 cell differentiation, rather than the inhibition of allogeneic CD4 T-cell proliferation or T helper 17 cell differentiation, was also confirmed in allogeneic mixed lymphocyte reactions. Because lethality was considerably delayed by the systemic blockade of IFN-γ, the principal protective effect of CP-690550 occurred through the modulation of IFN-γ production. CONCLUSION The targeting of Janus kinase with a sensitive and specific inhibitor, CP-690550, conferred effective protection from acute GVHD induced by a semiallogeneic major histocompatibility complex class II-disparate combination. Protection from acute GVHD was largely mediated by the inhibition of IFN-γ production.
Collapse
|