1
|
Aldosari Z, Abbasian N, Robinson K, Bevington A, Watson E. Low pH up-regulates interleukin-6 mRNA in L6-G8C5 rat skeletal muscle cells independent of pH sensing by SNAT2(SLC38A2) transporters. FASEB Bioadv 2022; 4:138-152. [PMID: 35141477 PMCID: PMC8814557 DOI: 10.1096/fba.2021-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/14/2022] Open
Abstract
Exercise is known to create a transient, but potent increase in skeletal muscle expression of potentially anti-inflammatory myokine interleukin-6 (IL-6). This effect may be clinically important in managing chronic inflammatory states. It has previously been proposed that lactic acidosis following exercise promotes this IL-6 up-regulation, but the mechanism of this acidosis effect is unknown. Rat skeletal muscle cell line L6-G8C5 has been used previously to model metabolic effects of acidosis, sensing low pH through the resulting inhibition of amino acid transporter SNAT2(SLC38A2). Use of ionophore ionomycin to model the rise in intracellular Ca2+ concentration occurring in contracting muscle strongly up-regulates IL-6 mRNA in L6-G8C5 myotubes. This study used this model to test the hypothesis that low extracellular pH (7.1) enhances ionomycin-induced IL-6 mRNA up-regulation by inhibiting SNAT2. Incubation of L6-G8C5 myotubes for 6 h with 0.5 µM ionomycin at control pH (7.4) resulted in a 15-fold increase in IL-6 mRNA which was further enhanced (1.74-fold) at pH 7.1. In contrast low pH had no significant effect on IL-6 mRNA without ionomycin, nor on the IL-6 mRNA increase that was induced by cyclic stretch. Even though pH 7.1 halved the transport activity of SNAT2, alternative methods of SNAT2 inhibition (JNK inhibitor SP600125; SNAT2 antagonist MeAIB; or SNAT2 silencing with siRNA) did not mimic the enhancing effect of low pH on IL-6 mRNA. On the contrary, JNK inhibition blunted the effect of pH 7.1 with ionomycin, but had no effect at pH 7.4. It is concluded that low pH promotes Ca2+/ionomycin-induced up-regulation of IL-6 mRNA through a novel SNAT2-independent JNK-dependent pH-sensing pathway not previously described in this skeletal muscle model.
Collapse
Affiliation(s)
- Ziyad Aldosari
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
- Department of Medical Laboratories SciencesCollege of Applied Medical Sciences in AlquwayiyahShaqra UniversityRiyadhSaudi Arabia
| | - Nima Abbasian
- School of Life and Medical SciencesUniversity of HertfordshireHatfieldUK
| | | | - Alan Bevington
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
| | - Emma Watson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
2
|
Moon JE, Yang HY, Wee G, ParK SH, Ko CW. A cell function study on calcium regulation of a novel calcium-sensing receptor mutation (p.Tyr825Phe). Ann Pediatr Endocrinol Metab 2021; 26:24-30. [PMID: 32871647 PMCID: PMC8026336 DOI: 10.6065/apem.2040022.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Autosomal dominant hypocalcemia with hypercalciuria is a genetic disease characterized by hypoparathyroidism with hypercalciuria. We discovered a novel variant (p.Tyr825Phe[Y825F]) of the CASR gene in a neonate with congenital hypoparathyroidism and hypercalciuria and conducted a cell function study to determine whether the CASR-Y825F variant was pathogenic. METHODS To perform a functional study on CaSR-Y825F, we constructed expression vectors expressing wild-type (WT) CASR and CASR-Y825F. After transfection of each expression vector into HEK293 cells, we examined alterations in intracellular signaling. Mitogen-activated protein kinase (MAPK) signaling activity of HEK293 cells expressing CASR-WT or CASR-Y825F was determined. Changes in intracellular calcium ions ([Ca2+]i) by extracellular calcium ion ([Ca2+]e) stimulation were quantitatively compared and analyzed. RESULTS Cells expressing CASR-Y825F showed elevated of MAPK signaling (phospho-ERK [pERK], phospho-JNK [pJNK], phospho-p38 [pp38]) and increased [Ca2+]i levels at low [Ca2+]e stimulation compared with cells expressing CASR-WT. Additionally, [Ca2+]i levels in HEK293 cells expression CASR-WT and CASR-Y825F were determined at 340 nm/380 nm wavelength ratios using Fura-2 AM. At [Ca2+]e concentrations of 2.5 mM and 3 mM, the ratios of CASR-Y825F cells were higher (2.6 and 3.5, respectively) than those of CASR-WT cells (1.04 and 1.40, respectively). CONCLUSION This cell function study proved that the CASR-Y825F expressed in HEK293 cells elevated MAPK signaling (pERK, pJNK, pp38) and increased [Ca2+]i to induce hypocalcemia.
Collapse
Affiliation(s)
- Jung Eun Moon
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Suk-Hyun ParK
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Cheol Woo Ko
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea,Address for correspondence: Cheol Woo Ko Department of Pediatric Endocrinology, Kyungpook National University Children's Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea
| |
Collapse
|
3
|
van der Vorst EPC, Peters LJF, Müller M, Gencer S, Yan Y, Weber C, Döring Y. G-Protein Coupled Receptor Targeting on Myeloid Cells in Atherosclerosis. Front Pharmacol 2019; 10:531. [PMID: 31191301 PMCID: PMC6540917 DOI: 10.3389/fphar.2019.00531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the underlying cause of the majority of cardiovascular diseases (CVDs), is a lipid-driven, inflammatory disease of the large arteries. Gold standard therapy with statins and the more recently developed proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have improved health conditions among CVD patients by lowering low density lipoprotein (LDL) cholesterol. Nevertheless, a substantial part of these patients is still suffering and it seems that 'just' lipid lowering is insufficient. The results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) have now proven that inflammation is a key driver of atherosclerosis and that targeting inflammation improves CVD outcomes. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways have to be promoted. The inflammatory processes in atherosclerosis are facilitated by a network of immune cells and their subsequent responses. Cell networking is orchestrated by various (inflammatory) mediators which interact, bind and induce signaling. Over the last years, G-protein coupled receptors (GPCRs) emerged as important players in recognizing these mediators, because of their diverse functions in steady state but also and specifically during chronic inflammatory processes - such as atherosclerosis. In this review, we will therefore highlight a selection of these receptors or receptor sub-families mainly expressed on myeloid cells and their role in atherosclerosis. More specifically, we will focus on chemokine receptors, both classical and atypical, formyl-peptide receptors, the chemerin receptor 23 and the calcium-sensing receptor. When information is available, we will also describe the consequences of their targeting which may hold promising options for future treatment of CVD.
Collapse
Affiliation(s)
- Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research/Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Linsey J. F. Peters
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Madeleine Müller
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| |
Collapse
|
4
|
Strontium ranelate promotes odonto-/osteogenic differentiation/mineralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo. Sci Rep 2018; 8:9224. [PMID: 29907831 PMCID: PMC6003917 DOI: 10.1038/s41598-018-27461-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/04/2018] [Indexed: 12/28/2022] Open
Abstract
This study examined the effects and mechanisms of strontium ranelate (SrRn)-a drug used to treat osteoporosis-on the proliferation and differentiation/mineralization of cloned dental pulp-like cells (mouse dental papillae cells; MDPs). It also determined whether topical application of SrRn to exposed dental pulp tissue promotes the formation of mineralized tissue in vivo. The MDPs were cultured with or without SrRn, and cell proliferation, odonto-/osteoblastic gene expression, mineralized nodule formation, and Akt phosphorylation were evaluated. The formation of mineralized tissue in SrRn-treated pulp tissue in rat upper first molars was evaluated histologically. The SrRn up-regulated cell proliferation and expression of Alp (alkaline phosphatase), Bsp (bone sialoprotein), Dmp (dentin matrix acidic phosphoprotein)-1, Dspp (dentin sialophosphoprotein), and Oc (osteocalcin) in a dose-dependent manner. Mineralized nodule formation was also enhanced by SrRn. NPS-2143, a calcium-sensing receptor (CaSR) antagonist, and siRNA against the CaSR gene blocked SrRn-induced proliferation, odonto-/osteoblastic gene expression, and mineralized nodule formation. SrRn induced Akt phosphorylation, and this was blocked by NPS-2143. Topical application of SrRn to exposed rat molar pulps induced the formation of osteodentin-like mineralized tissue. Our study revealed for the first time that SrRn promotes proliferation and odonto-/osteogenic differentiation/mineralization of MDPs via PI3K/Akt signaling activated by CaSR in vitro; mineralized tissue forms from the dental pulp in vivo.
Collapse
|
5
|
Baran N, ter Braak M, Saffrich R, Woelfle J, Schmitz U. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia. Mol Cell Endocrinol 2015; 407:18-25. [PMID: 25766501 DOI: 10.1016/j.mce.2015.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. OBJECTIVE The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. PATIENTS A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. MAIN OUTCOME MEASURE P136L CaR mutation was predicted to cause gain of function of CaR. RESULTS Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. CONCLUSIONS The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family.
Collapse
Affiliation(s)
- Natalia Baran
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.
| | - Michael ter Braak
- Institut of Pharmacology, University of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Saffrich
- Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, University of Bonn, Adenauerallee 119, 53113 Bonn, Germany
| | - Udo Schmitz
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
6
|
Yamamura A, Guo Q, Yamamura H, Zimnicka AM, Pohl NM, Smith KA, Fernandez RA, Zeifman A, Makino A, Dong H, Yuan JXJ. Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ Res 2012; 111:469-81. [PMID: 22730443 DOI: 10.1161/circresaha.112.266361] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca(2+)](cyt) and enhanced Ca(2+) influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE We examined whether the extracellular Ca(2+)-sensing receptor (CaSR) is involved in the enhanced Ca(2+) influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension. METHODS AND RESULTS In normal PASMC superfused with Ca(2+)-free solution, addition of 2.2 mmol/L Ca(2+) to the perfusate had little effect on [Ca(2+)](cyt). In IPAH-PASMC, however, restoration of extracellular Ca(2+) induced a significant increase in [Ca(2+)](cyt). Extracellular application of spermine also markedly raised [Ca(2+)](cyt) in IPAH-PASMC but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca(2+)-induced [Ca(2+)](cyt) rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca(2+)-mediated [Ca(2+)](cyt) increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia. CONCLUSIONS The extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca(2+) influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Huang Y, Cavanaugh A, Breitwieser GE. Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. ADVANCES IN PHARMACOLOGY 2012; 62:143-73. [PMID: 21907909 DOI: 10.1016/b978-0-12-385952-5.00007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gain- or loss-of-function mutations and polymorphisms of the calcium-sensing receptor (CaSR) cause Ca(2+) handling diseases. Altered expression and/or signaling of wild-type CaSR can also contribute to pathology. Recent studies have demonstrated that a significant proportion of mutations cause altered targeting and/or trafficking of CaSR to the plasma membrane. Pharmacological approaches to rescue of CaSR function include treatment with allosteric modulators, which potentiate the effects of the orthosteric agonist Ca(2+). Dissection of the mechanism(s) contributing to allosteric agonist-mediated rescue of loss-of-function CaSR mutants has demonstrated pharmacologic chaperone actions coincident with CaSR biosynthesis. The distinctive responses to the allosteric agonist (NPS R-568), which promotes CaSR stability, and the allosteric antagonist (NPS 2143), which promotes CaSR degradation, have led to a model for a conformational checkpoint during CaSR biosynthesis. The conformational checkpoint would "tune" CaSR biosynthesis to cellular signaling state. Navigation of a distinct checkpoint for endoplasmic release can also be augmented by pharmacologic chaperones. The diverse, post-endoplasmic reticulum quality control site(s) for pharmacologic chaperone modulation of CaSR stability and trafficking redefines the role(s) of allosteric modulators in regulation of overall GPCR function.
Collapse
Affiliation(s)
- Ying Huang
- Cancer Drug Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
8
|
Kumar R, Thompson JR. The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol 2010; 22:216-24. [PMID: 21164021 DOI: 10.1681/asn.2010020186] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Secondary hyperparathyroidism classically appears during the course of chronic renal failure and sometimes after renal transplantation. Understanding the mechanisms by which parathyroid hormone (PTH) synthesis and secretion are normally regulated is important in devising methods to regulate overactivity and hyperplasia of the parathyroid gland after the onset of renal insufficiency. Rapid regulation of PTH secretion in response to variations in serum calcium is mediated by G-protein coupled, calcium-sensing receptors on parathyroid cells, whereas alterations in the stability of mRNA-encoding PTH by mRNA-binding proteins occur in response to prolonged changes in serum calcium. Independent of changes in intestinal calcium absorption and serum calcium, 1α,25-dihydroxyvitamin D also represses the transcription of PTH by associating with the vitamin D receptor, which heterodimerizes with retinoic acid X receptors to bind vitamin D-response elements within the PTH gene. 1α,25-Dihydroxyvitamin D additionally regulates the expression of calcium-sensing receptors to indirectly alter PTH secretion. In 2°HPT seen in renal failure, reduced concentrations of calcium-sensing and vitamin D receptors, and altered mRNA-binding protein activities within the parathyroid cell, increase PTH secretion in addition to the more widely recognized changes in serum calcium, phosphorus, and 1α,25-dihydroxyvitamin D. The treatment of secondary hyperparathyroidism by correction of serum calcium and phosphorus concentrations and the administration of vitamin D analogs and calcimimetic agents may be augmented in the future by agents that alter the stability of mRNA-encoding PTH.
Collapse
Affiliation(s)
- Rajiv Kumar
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic and Foundation, 200 1 Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
9
|
Ahlstrom M, Pekkinen M, Riehle U, Lamberg-Allardt C. Extracellular calcium regulates parathyroid hormone-related peptide expression in osteoblasts and osteoblast progenitor cells. Bone 2008; 42:483-90. [PMID: 18096456 DOI: 10.1016/j.bone.2007.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 01/24/2023]
Abstract
Parathyroid hormone-related peptide (PTHrP) has been shown to have anabolic effects on bone in women with postmenopausal osteoporosis. On the cellular level PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The calcium concentration is considerably higher in the vicinity of resorbing osteoclasts than in the plasma. Therefore the osteoblasts are likely to be confronted by elevated extracellular calcium concentrations in the areas of resorptive activity. The present study was designed to assess the possibility that extracellular calcium could regulate PTHrP expression in osteoblastic cells. Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The PTHrP release into the culture media was measured by an immunoradiometric assay and the expression of PTHrP, osteocalcin and Runx2 mRNA was assayed by real-time PCR. Increasing the extracellular calcium from 1 mM to 5 mM for 24 h resulted in a 4-6-fold increase in the PTHrP release. PTHrP mRNA was also increased by elevated calcium levels. The effect of calcium stimulation on PTHrP release could be seen within 60 min of treatment. The extracellular calcium sensing receptor (CaR) agonist neomycin mimicked the effects of calcium and the MEK/MAPK inhibitor PD98059 abolished the effect of calcium and neomycin. High extracellular calcium increased the mineralization of hMSC and the expression of osteocalcin, but this effect was not mimicked by neomycin. Our results show that in hMSC, elevated extracellular calcium levels increases both released PTHrP and PTHrP mRNA expression. The effect of calcium on PTHrP can be mimicked by activation of the CaR and can be diminished by inhibition of the MAPK signalling pathway.
Collapse
Affiliation(s)
- Mikael Ahlstrom
- Calcium Research Unit, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
10
|
Turner JH, Garnovskaya MN, Raymond JR. Serotonin 5-HT1A receptor stimulates c-Jun N-terminal kinase and induces apoptosis in Chinese hamster ovary fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:391-9. [PMID: 17208318 DOI: 10.1016/j.bbamcr.2006.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/30/2006] [Accepted: 12/04/2006] [Indexed: 01/07/2023]
Abstract
The 5-HT1A receptor is a prototypical member of the large and diverse serotonin receptor family. One key role of this receptor is to stimulate cell proliferation and differentiation via the extracellular signal regulated protein kinase (ERK) mitogen activated protein (MAP) kinase. There are few reports on the ability of the 5-HT1A receptor to modulate other MAP kinases such as c-Jun N-terminal kinase (JNK), which is activated by various extracellular stimuli, resulting in cell growth, differentiation, and programmed cell death. We report here for the first time that the 5-HT1A receptor stimulates JNK. JNK stimulation was Pertussis toxin-sensitive and was mediated by Rho family low molecular weight GTPases. The 5-HT1A receptor also increased apoptosis, which was mimicked by the MEK inhibitor PD98059, and blocked by the JNK inhibitor SP600125. These results suggest that the 5-HT1A receptor stimulates both ERK-dependent anti-apoptotic pathways and JNK-dependent pro-apoptotic pathways in CHO cells.
Collapse
Affiliation(s)
- Justin H Turner
- The Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, Department of Medicine (Nephrology Division) of the Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
11
|
Kempson SA, Edwards JM, Sturek M. Inhibition of the renal betaine transporter by calcium ions. Am J Physiol Renal Physiol 2006; 291:F305-13. [PMID: 16525159 DOI: 10.1152/ajprenal.00428.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic upregulation of the renal betaine/GABA transporter (BGT1) by hypertonic stress has been well documented, but it is not known whether BGT1 can be regulated acutely after insertion in the basolateral plasma membrane. Related transporters, such as the rat brain GABA transporter, can be rapidly removed from the plasma membrane through activation of G protein-coupled receptors. The goal of the present study was to determine whether acute changes in extracellular and/or intracellular Ca2+will regulate BGT1 transport activity at the plasma membrane level in Madin-Darby canine kidney cells subjected to 24-h hypertonic stress. After brief pretreatment with a Ca2+-free solution, the addition of extracellular Ca2+in the transport assay produced dose-dependent inhibition of Na+-GABA cotransport. Maximum inhibition was 49% at 2 mM Ca2+( P < 0.05). Fura 2 imaging confirmed that addition of 2 mM Ca2+produced a transient increase in intracellular Ca2+that preceded transport inhibition. Acute inhibition of Na+-GABA cotransport was reproduced by addition of thapsigargin (5 μM) and ionomycin (10 μM). Amino acid transport system A, assayed as a control, was not inhibited. Brief treatment with phorbol esters reproduced the specific inhibition of Na+-GABA cotransport, and the inhibition was blocked by staurosporine. Surface biotinylation confirmed that the response to phorbol esters was accompanied by loss of BGT1 protein from the plasma membrane, and immunohistochemistry showed a shift to an intracellular distribution. We conclude that BGT1 can be inhibited acutely by extracellular Ca2+through a mechanism involving BGT1 protein internalization, and protein kinase C may play a role.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
12
|
Huang Y, Niwa JI, Sobue G, Breitwieser GE. Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin. J Biol Chem 2006; 281:11610-7. [PMID: 16513638 DOI: 10.1074/jbc.m513552200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-sensing receptors (CaR) contribute to regulation of systemic calcium homeostasis by activation of G(q)- and G(i)-linked signaling pathways in the parathyroids, kidney, and intestine. Little is known about the mechanisms regulating CaR synthesis and degradation. Screening of a human kidney yeast two-hybrid library identified the E3 ubiquitin ligase dorfin as a binding partner for the intracellular carboxyl terminus of CaR. Interaction between CaR and dorfin was confirmed by coimmunoprecipitation from HEK293 cells. Ubiquitination of CaR was observed in the presence of the proteasomal inhibitor MG132; mutation of all putative intracellular loop and carboxyl-terminal lysine residues abolished ubiquitination of CaR. Coexpression with dorfin decreased the amount of total CaR protein and increased CaR ubiquitination, whereas a dominant negative fragment of dorfin had opposite effects. The AAA-ATPase p97/valosin-containing protein associates with both CaR and dorfin in HEK293 cells. Treatment with tunicamycin, an inhibitor of N-linked glycosylation, induced the appearance of the unglycosylated 115-kDa CaR form, which was further increased by exposure to MG132, or upon transfection with a dorfin dominant negative construct, suggesting that dorfin-mediated proteasomal degradation of immature CaR occurs from the endoplasmic reticulum. Because endogenous CaR in Madin-Darby canine kidney cells is also subject to degradation from the endoplasmic reticulum, dorfin-mediated ubiquitination may contribute to a general mechanism for CaR quality control during biosynthesis.
Collapse
Affiliation(s)
- Ying Huang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | |
Collapse
|
13
|
Liang SH, Zhang W, Mcgrath B, Zhang P, Cavener D. PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 2006; 393:201-9. [PMID: 16124869 PMCID: PMC1383678 DOI: 10.1042/bj20050374] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eIF2alpha (eukaryotic initiation factor-2alpha) kinase PERK (doublestranded RNA-activated protein kinase-like ER kinase) is essential for the normal function of highly secretory cells in the pancreas and skeletal system, as well as the UPR (unfolded protein response) in mammalian cells. To delineate the regulatory machinery underlying PERK-dependent stress-responses, gene profiling was employed to assess global changes in gene expression in PERK-deficient MEFs (mouse embryonic fibroblasts). Several IE (immediate-early) genes, including c-myc, c-jun, egr-1 (early growth response factor-1), and fra-1 (fos-related antigen-1), displayed PERK-dependent expression in MEFs upon disruption of calcium homoeostasis by inhibiting the ER (endoplasmic reticulum) transmembrane SERCA (sarcoplasmic/ER Ca2+-ATPase) calcium pump. Induction of c-myc and egr-1 by other reagents that elicit the UPR, however, showed variable dependence upon PERK. Induction of c-myc expression by thapsigargin was shown to be linked to key signalling enzymes including PLC (phospholipase C), PI3K (phosphatidylinositol 3-kinase) and p38 MAPK (mitogen-activated protein kinase). Analysis of the phosphorylated status of major components in MAPK signalling pathways indicated that thapsigargin and DTT (dithiothreitol) but not tunicamycin could trigger the PERK-dependent activation of JNK (c-Jun N-terminal kinase) and p38 MAPK. However, activation of JNK and p38 MAPK by non-ER stress stimuli including UV irradiation, anisomycin, and TNF-alpha (tumour necrosis factor-alpha) was found to be independent of PERK. PERK plays a particularly important role in mediating the global cellular response to ER stress that is elicited by the depletion of calcium from the ER. We suggest that this specificity of PERK function in the UPR is an extension of the normal physiological function of PERK to act as a calcium sensor in the ER.
Collapse
Affiliation(s)
- Shun-Hsin Liang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Wei Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Barbara C. Mcgrath
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Peichuan Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Douglas R. Cavener
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
Pi M, Quarles LD. Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors. J Cell Biochem 2005; 95:1081-92. [PMID: 15962313 PMCID: PMC1360183 DOI: 10.1002/jcb.20500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is evidence for a functionally important extracellular calcium-sensing receptor in osteoblasts, but there is disagreement regarding its identity. Candidates are CASR and a putative novel calcium-sensing receptor, called Ob.CASR. To further characterize Ob.CASR and to distinguish it from CASR, we examined the extracellular cation-sensing response in MC3T3-E1 osteoblasts and in osteoblasts derived from CASR null mice. We found that extracellular cations activate ERK and serum response element (SRE)-luciferase reporter activity in osteoblasts lacking CASR. Amino acids, but not the calcimimetic NPS-R568, an allosteric modulator of CASR, also stimulate Ob.CASR-dependent SRE-luciferase activation in MC3T3-E1 osteoblasts. In addition, we found that the dominant negative Galphaq(305-359) construct inhibited cation-stimulated ERK activation, consistent with Ob.CASR coupling to Galphaq-dependent pathways. Ob.CASR is also a target for classical GPCR desensitization mechanisms, since beta-arrestins, which bind to and uncouple GRK phosphorylated GPCRs, attenuated cation-stimulated SRE-luciferase activity in CASR deficient osteoblasts. Finally, we found that Ob.CASR and CASR couple to SRE through distinct signaling pathways. Ob.CASR does not activate RhoA and C3 toxin fails to block Ob.CASR-induced SRE-luciferase activity. Mutational analysis of the serum response factor (SRF) and ternary complex factor (TCF) elements in SRE demonstrates that Ob.CASR predominantly activates TCF-dependent mechanisms, whereas CASR activates SRE-luciferase mainly through a RhoA and SRF-dependent mechanism. The ability of Ob.CASR to sense cations and amino acids and function like a G-protein coupled receptor suggests that it may belong to the family of receptors characterized by an evolutionarily conserved amino acid sensing motif (ANF) linked to an intramembranous 7 transmembrane loop region (7TM).
Collapse
Affiliation(s)
| | - L. Darryl Quarles
- *Correspondence to: L. Darryl Quarles, MD, Summerfield Endowed Professor of Nephrology, University of Kansas Medical Center MS 3018, 3901 Rainbow Boulevard, 6018 Wahl Hall East, Kansas City, KS 66160. E-mail:
| |
Collapse
|
15
|
Perkins GL, Derfoul A, Ast A, Hall DJ. An inhibitor of the stretch-activated cation receptor exerts a potent effect on chondrocyte phenotype. Differentiation 2005; 73:199-211. [PMID: 16026542 DOI: 10.1111/j.1432-0436.2005.00024.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rat chondrosarcoma (RCS) cells are unusual in that they display a stable chondrocyte phenotype in monolayer culture. This phenotype is reflected by a rounded cellular morphology with few actin-containing stress fibers and production of an extracellular matrix rich in sulfated proteoglycans, with high-level expression of aggrecan, COMP, Sox9, and collagens type II, IX, and XI. Additionally, these cells do not express collagen type I. Here it is shown that in the absence of any mechanical stimulation, treatment of RCS cells with gadolinium chloride (Gd3+), a stretch-activated cation channel blocker, caused the cells to undergo de-differentiation, adopting a flattened fibroblast phenotype with the marked appearance of actin stress fibers and vinculin-containing focal contacts. This change was accompanied by a dramatic reduction in the expression of aggrecan, Sox9, collagen types II, IX, and XI, with a corresponding increase in the expression of collagen type I and fibronectin. These effects were found to be reversible by simple removal of Gd3+ from the medium. Gd3+ also had a similar effect on expression of chondrocyte marker genes in freshly isolated human chondrocytes. These data suggest that mechanoreceptor signaling plays a key role in maintenance of the chondrocyte phenotype, even in the absence of mechanical stimulation. Further, treatment of RCS cells with Gd3+ provides a tractable system for assessing the molecular events underlying the reversible differentiation of chondrocytes.
Collapse
Affiliation(s)
- Gryphon L Perkins
- Cartilage Molecular Genetics Group, Cartilage Biology and Orthopaedics Branch, Department of Health and Human Services, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
16
|
Wu Z, Tandon R, Ziembicki J, Nagano J, Hujer KM, Miller RT, Huang C. Role of ceramide in Ca2+-sensing receptor-induced apoptosis. J Lipid Res 2005; 46:1396-404. [PMID: 15805541 DOI: 10.1194/jlr.m500071-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased extracellular Ca(2+) ([Ca(2+)](o)) can damage tissues, but the molecular mechanisms by which this occurs are poorly defined. Using HEK 293 cell lines that stably overexpress the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, we demonstrate that activation of the CaR leads to apoptosis, which was determined by nuclear condensation, DNA fragmentation, caspase-3 activation, and increased cytosolic cytochrome c. This CaR-induced apoptotic pathway is initiated by CaR-induced accumulation of ceramide which plays an important role in inducing cell death signals by distinct G protein-independent signaling pathways. Pretreatment of wild-type CaR-expressing cells with pertussis toxin inhibited CaR-induced [(3)H]ceramide formation, c-Jun phosphorylation, and caspase-3 activation. The ceramide accumulation, c-Jun phosphorylation, and caspase-3 activation by the CaR can be abolished by sphingomyelinase and ceramide synthase inhibitors in different time frames. Cells that express a nonfunctional mutant CaR that were exposed to the same levels of [Ca(2+)](o) showed no evidence of activation of the apoptotic pathway. In conclusion, we report the involvement of the CaR in stimulating programmed cell death via a pathway involving GTP binding protein alpha subunit (Galpha(i))-dependent ceramide accumulation, activation of stress-activated protein kinase/c-Jun N-terminal kinase, c-Jun phosphorylation, caspase-3 activation, and DNA cleavage.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Calcium is an important nutrient that is secreted into milk in quantities that put a considerable stress upon maternal calcium homeostasis. Here we summarize the evidence that two important entities, the extracellular calcium-sensing receptor (CaR) and parathyroid hormone-related protein (PTHrP) are involved in a feedback loop that regulates calcium fluxes to the mammary gland. The CaR may also play a role in regulating milk secretion, and may regulate the proliferation of normal and neoplastic mammary epithelial cells. Finally, the relationship between the CaR and PTHrP in breast cancer cells may promote the formation of osteolytic bone metastases.
Collapse
Affiliation(s)
- Joshua N VanHouten
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S120, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
18
|
Xu J, Wang C, Han R, Pavlos N, Phan T, Steer JH, Bakker AJ, Joyce DA, Zheng MH. Evidence of reciprocal regulation between the high extracellular calcium and RANKL signal transduction pathways in RAW cell derived osteoclasts. J Cell Physiol 2005; 202:554-62. [PMID: 15389575 DOI: 10.1002/jcp.20159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During bone resorption, osteoclasts are exposed to high Ca2+ concentrations (up to 40 mM). The role of high extracellular Ca2+ in receptor activator of NF-kappaB ligand (RANKL)-mediated osteoclast survival and their functional interrelationship is unclear. In this study, we show that RANKL enhances osteoclast tolerance to high extracellular Ca2+ by protecting the cell from cell death in a dose dependent manner. We have provided evidence that RANKL does this by attenuating high extracellular Ca2+-induced Ca2+ elevations. Moreover, we have found that high extracellular Ca2+-induced cell death was partially inhibited by a caspase-3 inhibitor, suggesting caspase-3-mediated apoptosis is involved. Conversely, using reporter gene assays and Western blot analysis, we have demonstrated that high extracellular Ca2+ desensitizes the RANKL-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK), and inhibits constitutive and RANKL-stimulated ERK phosphorylation, indicating a negative feed-back mechanism via specific RANKL signaling pathways. Taken together, this study provides evidence for a reciprocal regulation between high extracellular Ca2+ and RANKL signaling in RAW cell derived osteoclasts. Our data imply a cross talk mechanism of extracellular Ca2+ on osteoclast survival through the regulation of RANKL.
Collapse
Affiliation(s)
- Jiake Xu
- Molecular Orthopaedic Laboratory, School of Surgery and Pathology, University of Western Australia, Nedlands WA, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ohanian J, Gatfield KM, Ward DT, Ohanian V. Evidence for a functional calcium-sensing receptor that modulates myogenic tone in rat subcutaneous small arteries. Am J Physiol Heart Circ Physiol 2004; 288:H1756-62. [PMID: 15576443 DOI: 10.1152/ajpheart.00739.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic tone of small arteries is dependent on the presence of extracellular calcium (Ca(o)(2+)), and, recently, a receptor that senses changes in Ca(2+), the calcium-sensing receptor (CaR), has been detected in vascular tissue. We investigated whether the CaR is involved in the regulation of myogenic tone in rat subcutaneous small arteries. Immunoblot analysis using a monoclonal antibody against the CaR demonstrated its presence in rat subcutaneous arteries. To determine whether the CaR was functionally active, segments of artery (< 250 microm internal diameter) mounted in a pressure myograph with an intraluminal pressure of 70 mmHg were studied after the development of myogenic tone. Increasing Ca(o)(2+) concentration ([Ca(2+)](o)) cumulatively from 0.5 to 10 mM induced an initial constriction (0.5-2 mM) followed by dilation (42 +/- 5% loss of tone). The dose-dependent dilation was mimicked by other known CaR agonists including magnesium (1-10 mM) and the aminoglycosides neomycin (0.003-10 mM) and kanamycin (0.003-3 mM). PKC activation with the phorbol ester phorbol-12,13-dibutyrate (20nM) inhibited the dilation induced by high [Ca(2+)](o) or neomycin, whereas inhibition of PKC with GF109203X (10 microM) increased the responses to Ca(o)(2+) or neomycin, consistent with the role of PKC as a negative regulator of the CaR. We conclude that rat subcutaneous arteries express a functionally active CaR that may be involved in the modulation of myogenic tone and hence the regulation of peripheral vascular resistance.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- University Dept. of Medicine, University of Manchester and Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
As a G protein-coupled receptor (GPCR), the extracellular calcium-sensing receptor (CaR) responds to changes in extracellular free calcium concentration by inducing intracellular signalling. These CaR-induced signals then specifically modulate cellular functions such as parathyroid hormone secretion from the parathyroid glands and calcium reabsorption in the kidney and thus to understand how the CaR functions one must understand how it signals. CaR-induced signalling involves intracellular Ca2+ mobilisation/oscillations as well as the activation of various phospholipases and protein kinases and the suppression of cAMP formation. This review will detail the intracellular pathways by which the CaR is believed to elicit its physiological functions and summarises the evidence for cell- and agonist-specific differential signalling.
Collapse
Affiliation(s)
- Donald T Ward
- School of Biological Sciences, University of Manchester, G38 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
21
|
Ye CP, Yano S, Tfelt-Hansen J, MacLeod RJ, Ren X, Terwilliger E, Brown EM, Chattopadhyay N. Regulation of a Ca2+-activated K+ channel by calcium-sensing receptor involves p38 MAP kinase. J Neurosci Res 2004; 75:491-8. [PMID: 14743432 DOI: 10.1002/jnr.10875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By using pharmacological and molecular approaches, we previously showed that the G-protein-coupled, extracellular calcium (Ca2+(o))-sensing receptor (CaR) regulates a large-conductance (approximately 140 pS), Ca(2+)-activated K+ channel [IK(Ca); CAKC] in U87 astrocytoma cells. Here we show that elevated Ca2+(o) stimulates extracellular-signal-regulated kinase (ERK1/2) and p38 MAP kinase (MAPK). The effect of high Ca2+(o) on p38 MAPK but not ERK1/2 is CaR mediated, insofar as transduction with a dominant-negative CaR (R185Q) using recombinant adeno-associated virus (rAAV) attenuated the activation of p38 MAPK but not of ERK1/2. p38 MAPK activation by the CaR is likely to be protein kinase C (PKC) independent, in that the pan-PKC inhibitor GF109203X failed to abolish the high-Ca2+(o)-induced phosphorylation of p38 MAPK. Consistently with our data on the activation of this kinase, we observed that inhibiting p38 MAPK blocked the activation of the CAKC induced by the specific pharmacological CaR activator NPS R-467. In contrast, inhibiting MEK1 only transiently inhibited the activation of this K+ channel by NPS R-467, despite the continued presence of the antagonist. Similarly to the lack of any effect of the PKC inhibitor on the activation of ERK1/2 and p38 MAPK, inhibiting PKC had no effect on NPS R-467-induced activation of this channel. Therefore, our data show that the CaR, acting via p38 MAPK, regulates a large-conductance CAKC in U87 cells, a process that is PKC independent. Large-conductance CAKCs play an important role in the regulation of cellular volume, so our results have important implications for glioma cell volume regulation.
Collapse
Affiliation(s)
- Chian Ping Ye
- Division of Endocrinology, Hypertension and Diabetes and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kifor O, McElduff A, LeBoff MS, Moore FD, Butters R, Gao P, Cantor TL, Kifor I, Brown EM. Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab 2004; 89:548-56. [PMID: 14764760 DOI: 10.1210/jc.2003-031054] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune hypoparathyroidism is thought to result from immune-mediated destruction of the parathyroid glands. We encountered two patients with hypoparathyroidism and other autoimmune conditions (Graves' disease and Addison's disease, respectively) in whom autoimmune destruction of the parathyroid glands had not taken place. In the first, a histologically normal parathyroid gland was observed at the time of subtotal thyroidectomy; and in the second, the hypoparathyroidism remitted spontaneously. Both patients had antibodies that reacted with the cell surface of bovine parathyroid cells and human embryonic kidney (HEK293) cells transfected with the extracellular calcium-sensing receptor (CaR) but not with nontransfected HEK293 cells. The antibodies also reacted with the same bands on Western analysis of extracts of bovine parathyroid tissue and CaR-transfected HEK293 cells that were identified by an authentic, polyclonal, anti-CaR antiserum and reacted with several peptides with sequences from the CaR's extracellular domain. These anti-CaR antibodies activated the receptor based on their ability to increase inositol phosphate accumulation, activate MAPK, and inhibit PTH secretion. These results, therefore, demonstrate that patients with the biochemical findings of primary hypoparathyroidism can harbor activating antibodies to the CaR, which, in the two cases studied here, did not produce irreversible destruction of the parathyroid glands.
Collapse
Affiliation(s)
- Olga Kifor
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tfelt-Hansen J, MacLeod RJ, Chattopadhyay N, Yano S, Quinn S, Ren X, Terwilliger EF, Schwarz P, Brown EM. Calcium-sensing receptor stimulates PTHrP release by pathways dependent on PKC, p38 MAPK, JNK, and ERK1/2 in H-500 cells. Am J Physiol Endocrinol Metab 2003; 285:E329-37. [PMID: 12700162 DOI: 10.1152/ajpendo.00489.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated extracellular calcium ([Ca2+]o) and other agonists potentially acting via the calcium-sensing receptor (CaR) increase parathyroid hormone-related peptide (PTHrP) release from H-500 Leydig cells. Here, we provide strong evidence for the CaR's involvement by using a dominant negative CaR that attenuates high [Ca2+]o-induced PTHrP release. This effect is likely transcriptional, because high [Ca2+]o upregulates the PTHrP transcript, an effect that is abolished by actinomycin D. Regulation of PTHrP release by the CaR involves activation of PKC as well as ERK1/2, p38 MAPK, and JNK pathways. However, we show for the first time that high [Ca2+]o-induced activation of the stress-activated protein kinase SEK1 is PKC independent, because there is an additive effect of a PKC inhibitor in combination with the JNK inhibitor on [Ca2+]o-stimulated PTHrP release. Furthermore, high [Ca2+]o, in a PKC-independent fashion, induces phosphorylation of ERK1/2, SEK1, p38 MAPK, and its downstream transcription factor ATF-2. We conclude that CaR regulation of PTHrP release in H-500 cells involves activation of PKC as well as the ERK1/2, p38 MAPK, and JNK pathways.
Collapse
Affiliation(s)
- J Tfelt-Hansen
- Endocrine-Hypertension Division, Dept. of Medicine and Membrane Biology Program, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- West Roxbury Veterans Affairs Medical Center and Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Room 2B111, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA.
| | | |
Collapse
|
25
|
Shiraishi N, Kitamura K, Kohda Y, Narikiyo T, Adachi M, Miyoshi T, Iwashita K, Nonoguchi H, Miller RT, Tomita K. Increased endothelin-1 expression in the kidney in hypercalcemic rats. Kidney Int 2003; 63:845-52. [PMID: 12631065 DOI: 10.1046/j.1523-1755.2003.00801.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although hypercalcemia causes diuresis and natriuresis, the molecular mechanisms of these effects are not well established. Recently, the important role of the calcium-sensing receptor (CaR) in hypercalcemia-induced polyuria was reported. Endothelin-1 (ET-1) that is locally produced in the nephron has been suggested to have the natriuretic and/or diuretic effects in the kidney. Therefore, we hypothesized that ET-1 expression could be increased through the activation of CaR in the kidney in hypercalcemia. METHODS Rats were made hypercalcemic by dihydrotachysterol (DHT) treatment. The urinary concentration of ET-1 and the mRNA expression of ET-1 in the kidney were determined. Immunohistochemistry was performed to determine types of the cells that produce ET-1. CaR and ET-1 promoter luciferase constructs were co-expressed in COS-7 cells and the ET-1 promoter activity following the addition of extracellular calcium was measured by the luciferase assay. RESULTS In hypercalcemic rat, urinary ET-1 excretion was increased by twofold, and ET-1 mRNA expression was increased in the kidney cortex by threefold. In cortical collecting duct (CCD), both principal cells and intercalated cells synthesized ET-1. In cells that express CaR, ET-1 promoter was activated in a dose-dependent manner by extracellular calcium over the range of 0.5 to 3.0 mmol/L. CONCLUSIONS First, activation of CaR increases ET-1 transcription in a dose-dependent manner. Second, hypercalcemia increases ET-1 production in the kidney cortex. These data suggest the possibility that CaR might play an important role in hypercalcemia-induced increase in ET-1 production.
Collapse
Affiliation(s)
- Naoki Shiraishi
- Third Department of Internal Medicine, Kumamoto University School of Medicine, Kumamoto, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Brown EM. Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporos Int 2003; 14 Suppl 3:S25-34. [PMID: 12730784 DOI: 10.1007/s00198-002-1343-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Accepted: 08/20/2002] [Indexed: 10/20/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) plays key roles in maintaining extracellular calcium homeostasis by enabling several of the cells and tissues involved in this process to sense small changes in Ca(2+)(o) and to respond with changes in cellular function that will restore Ca(2+)(o) to its normal level. The chief cells of the parathyroid gland and the thyroidal C-cells, for example, respond to decreases in Ca(2+)(o) with increased secretion of the Ca(2+)(o)-elevating hormone, parathyroid hormone (PTH), and decreased secretion of the Ca(2+)(o)-lowering hormone, calcitonin, respectively. The cells of the renal distal tubule are likewise capable of sensing Ca(2+)(o) and respond to decreases in Ca(2+)(o) with increased tubular reabsorption of Ca(2+) and vice versa, alterations in tubular function that will contribute to normalization of Ca(2+)(o). The skeleton also plays key roles in maintaining Ca(2+)(o) homeostasis and both osteoblasts and osteoclasts can sense Ca(2+)(o), with elevations in Ca(2+)(o) promoting bone formation and inhibiting bone resorption. It has been suggested that Sr(2+) could act on bone via the CaR; however, the molecular mechanisms through which Ca(2+)(o) and Sr(2+)(o) exert these actions on bone cells remain controversial. Therefore, identifying their molecular target(s) would have significant implications for the treatment of bone loss. Ideally, therapies should simultaneously inhibit bone resorption while stimulating bone formation. Administration of strontium produces exactly those effects. Previous studies with dispersed bovine parathyroid cells as well as a preliminary study using CaR-transfected Chinese hamster ovary (CHO) cells indicate that Sr(2+)(o) is an agonist of the CaR, albeit with slightly lower efficacies and potencies than Ca(2+)(o). Given that Sr(2+)(o) is distributed preferentially in bone, therefore, an action of this divalent cation on the CaR in bone cells represents one possible mechanism by which strontium ranelate, a new antiosteoporotic drug, exerts it skeletal actions in vivo.
Collapse
Affiliation(s)
- Edward M Brown
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Hjälm G, MacLeod RJ, Kifor O, Chattopadhyay N, Brown EM. Filamin-A binds to the carboxyl-terminal tail of the calcium-sensing receptor, an interaction that participates in CaR-mediated activation of mitogen-activated protein kinase. J Biol Chem 2001; 276:34880-7. [PMID: 11390380 DOI: 10.1074/jbc.m100784200] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled, extracellular calcium-sensing receptor (CaR) regulates parathyroid hormone secretion and parathyroid cellular proliferation as well as the functions of diverse other cell types. The CaR resides in caveolae-plasma membrane microdomains containing receptors and associated signaling molecules that are thought to serve as cellular "message centers." An additional mechanism for coordinating cellular signaling is the presence of scaffold proteins that bind and organize components of signal transduction cascades. With the use of the yeast two-hybrid system, we identified filamin-A (an actin-cross-linking, putative scaffold protein that binds mitogen-activated protein kinase (MAPK) components activated by the CaR) as an intracellular binding partner of the CaR's carboxyl (COOH)-terminal tail. A direct interaction of the two proteins was confirmed by an in vitro binding assay. Moreover, confocal microscopy combined with two color immunofluorescence showed co-localization of the CaR and filamin-A within parathyroid cells as well as HEK-293 cells stably transfected with the CaR. Deletion mapping localized the sites of interaction between the two proteins to a stretch of 60 amino acid residues within the distal portion of the CaR's COOH-terminal tail and domains 14 and 15 in filamin-A, respectively. Finally, introducing the portion of filamin-A interacting with the CaR into CaR-transfected HEK-293 cells using protein transduction with a His-tagged, Tat-filamin-A fusion protein nearly abolished CaR-mediated activation of ERK1/2 MAPK but had no effect on ERK1/2 activity stimulated by ADP. Therefore, the binding of the CaR's COOH-terminal tail to filamin-A may contribute to its localization in caveolae, link it to the actin-based cytoskeleton, and participate in CaR-mediated activation of MAPK.
Collapse
Affiliation(s)
- G Hjälm
- Calcium Section, Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Adding LC, Bannenberg GL, Gustafsson LE. Basic experimental studies and clinical aspects of gadolinium salts and chelates. CARDIOVASCULAR DRUG REVIEWS 2001; 19:41-56. [PMID: 11314600 DOI: 10.1111/j.1527-3466.2001.tb00182.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gadolinium is a lanthanide that has in recent years become more commonly present in our society. Organic chelates of gadolinium are increasingly used as contrast agents for the imaging of body fluids. Although adverse reactions to these agents are uncommon, it is known that gadolinium salts can bring about a wide variety of changes in physiology. Gadolinium chloride is widely used experimentally as an inhibitor of stretch-activated ion channels and physiological responses of tissues to mechanical stimulation. It is also employed as a selective inhibitor of macrophages in vivo. In this review, the known biochemical actions of gadolinium are brought together with its in vivo pharmacology and toxicology.
Collapse
Affiliation(s)
- L C Adding
- Dept. of Physiology and Pharmacology, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Blankenship KA, Williams JJ, Lawrence MS, McLeish KR, Dean WL, Arthur JM. The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am J Physiol Renal Physiol 2001; 280:F815-22. [PMID: 11292623 DOI: 10.1152/ajprenal.2001.280.5.f815] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium transport across a monolayer of Madin-Darby canine kidney (MDCK) cells was measured in response to stimulation of the basal surface with calcium-sensing receptor (CaR) agonists. Stimulation of the CaR resulted in a time- and concentration-dependent inhibition of calcium transport but did not change transepithelial voltage or resistance. Inhibition of transport was not altered by pretreatment of cells with pertussis toxin but was blocked by the phospholipase C (PLC) inhibitor U-73122. To determine a potential mechanism by which the CaR could inhibit calcium transport, we measured activity of the plasma membrane calcium ATPase (PMCA). Stimulation of the CaR on the basal surface resulted in an inhibition of the PMCA in a concentration- and PLC-dependent manner. Thus stimulation of the CaR inhibits both calcium transport and PMCA activity through a PLC-dependent pathway. These studies provide the first direct evidence that calcium can inhibit its own transcellular absorption in a model of the distal tubule. In addition, they provide a potential mechanism for the CaR to inhibit calcium transport, inhibition of PMCA.
Collapse
Affiliation(s)
- K A Blankenship
- Molecular Signaling Group and Departments of Medicine and Biochemistry and Molecular Biology, The University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|