1
|
Wang Q, Han J, Liang Z, Geng X, Du Y, Zhou J, Yao W, Xu T. FSH Is Responsible for Androgen Deprivation Therapy-Associated Atherosclerosis in Mice by Exaggerating Endothelial Inflammation and Monocyte Adhesion. Arterioscler Thromb Vasc Biol 2024; 44:698-719. [PMID: 38205641 PMCID: PMC10880942 DOI: 10.1161/atvbaha.123.319426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHβ antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3β (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3β/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
- Department of Urology, Sichuan Cancer Hospital, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu (Q.W.)
| | - Jingli Han
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Xueyu Geng
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China (Z.L., X.G., J.Z., W.Y.)
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (W.Y.)
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China (Q.W., J.H., Y.D., T.X.)
| |
Collapse
|
2
|
Song J, Farris D, Ariza P, Moorjani S, Varghese M, Blin M, Chen J, Tyrrell D, Zhang M, Singer K, Salmon M, Goldstein DR. Age-associated adipose tissue inflammation promotes monocyte chemotaxis and enhances atherosclerosis. Aging Cell 2023; 22:e13783. [PMID: 36683460 PMCID: PMC9924943 DOI: 10.1111/acel.13783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Although aging enhances atherosclerosis, we do not know if this occurs via alterations in circulating immune cells, lipid metabolism, vasculature, or adipose tissue. Here, we examined whether aging exerts a direct pro-atherogenic effect on adipose tissue in mice. After demonstrating that aging augmented the inflammatory profile of visceral but not subcutaneous adipose tissue, we transplanted visceral fat from young or aged mice onto the right carotid artery of Ldlr-/- recipients. Aged fat transplants not only increased atherosclerotic plaque size with increased macrophage numbers in the adjacent carotid artery, but also in distal vascular territories, indicating that aging of the adipose tissue enhances atherosclerosis via secreted factors. By depleting macrophages from the visceral fat, we identified that adipose tissue macrophages are major contributors of the secreted factors. To identify these inflammatory factors, we found that aged fat transplants secreted increased levels of the inflammatory mediators TNFα, CXCL2, and CCL2, which synergized to promote monocyte chemotaxis. Importantly, the combined blockade of these inflammatory mediators impeded the ability of aged fat transplants to enhance atherosclerosis. In conclusion, our study reveals that aging enhances atherosclerosis via increased inflammation of visceral fat. Our study suggests that future therapies targeting the visceral fat may reduce atherosclerosis disease burden in the expanding older population.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Diana Farris
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Paola Ariza
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Smriti Moorjani
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mita Varghese
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel Blin
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Judy Chen
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Tyrrell
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Min Zhang
- Department of BiostatisticsUniversity of MichiganAnn ArborMichiganUSA
| | - Kanakadurga Singer
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Osburn WO, Smith K, Yanek L, Amat-Alcaron N, Thiemann DR, Cox AL, Leucker TM, Lowenstein CJ. Markers of endothelial cell activation are associated with the severity of pulmonary disease in COVID-19. PLoS One 2022; 17:e0268296. [PMID: 35588115 PMCID: PMC9119480 DOI: 10.1371/journal.pone.0268296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Severe coronavirus disease-19 (COVID-19) is characterized by vascular inflammation and thrombosis. We and others have proposed that the inflammatory response to coronavirus infection activates endothelial cells, leading to endothelial release of pro-thrombotic proteins. These mediators can trigger obstruction of the pulmonary microvasculature, leading to worsening oxygenation, acute respiratory distress syndrome, and death. In the current study, we tested the hypothesis that higher levels of biomarkers released from endothelial cells are associated with worse oxygenation in patients with COVID-19. We studied 83 participants aged 18–84 years with COVID-19 admitted to a single center. The severity of pulmonary disease was classified by oxygen requirement, including no oxygen requirement, low-flow oxygen, high-flow nasal cannula oxygen, mechanical ventilation, and death. We measured plasma levels of two proteins released by activated endothelial cells, von Willebrand Factor (VWF) antigen and soluble P-Selectin (sP-Sel), and a biomarker of systemic thrombosis, D-dimer. Additionally, we explored the association of endothelial biomarker levels with the levels of pro-inflammatory cytokine and chemokines, and vascular inflammation biomarkers. We found that levels of VWF, sP-sel, and D-dimer were increased in individuals with more severe COVID-19 pulmonary disease. Biomarkers of endothelial cell activation were also correlated with proinflammatory cytokines and chemokines. Taken together, our data demonstrate increased levels of VWF and sP-selectin are linked to the severity of lung disease in COVID-19 and correlated with biomarkers of inflammation and vascular inflammation. Our data support the concept that COVID-19 is a vascular disease which involves endothelial injury in the context of an inflammatory state.
Collapse
Affiliation(s)
- William O. Osburn
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kimberly Smith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Lisa Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nuria Amat-Alcaron
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David R. Thiemann
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrea L. Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thorsten M. Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles J. Lowenstein
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
4
|
Qian G, Adeyanju O, Sunil C, Huang SK, Chen SY, Tucker TA, Idell S, Guo X. Dedicator of Cytokinesis 2 (DOCK2) Deficiency Attenuates Lung Injury Associated with Chronic High-Fat and High-Fructose Diet-Induced Obesity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:226-238. [PMID: 34767813 PMCID: PMC8883439 DOI: 10.1016/j.ajpath.2021.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a major risk factor for lung disease development. However, little is known about the impact of chronic high-fat and high-fructose (HFHF) diet-induced obesity on lung inflammation and subsequent pulmonary fibrosis. Herein we hypothesized that dedicator of cytokinesis 2 (DOCK2) promotes a proinflammatory phenotype of lung fibroblasts (LFs) to elicit lung injury and fibrosis in chronic HFHF diet-induced obesity. An HFHF diet for 20 weeks induced lung inflammation and profibrotic changes in wild-type C57BL/6 mice. CD68 and monocyte chemoattractant protein-1 (MCP-1) expression were notably increased in the lungs of wild-type mice fed an HFHF diet. An HFHF diet further increased lung DOCK2 expression that co-localized with fibroblast-specific protein 1, suggesting a role of DOCK2 in regulating proinflammatory phenotype of LFs. Importantly, DOCK2 knockout protected mice from lung inflammation and fibrosis induced by a HFHF diet. In primary human LFs, tumor necrosis factor-α (TNF-α) and IL-1β induced DOCK2 expression concurrent with MCP-1, IL-6, and matrix metallopeptidase 2. DOCK2 knockdown suppressed TNF-α-induced expression of these molecules and activation of phosphatidylinositol 3-kinase/AKT and NF-κB signaling pathways, suggesting a mechanism of DOCK2-mediated proinflammatory and profibrotic changes in human LFs. Taken together, these findings reveal a previously unrecognized role of DOCK2 in regulating proinflammatory phenotype of LFs, potentiation of lung inflammation, and pulmonary fibrosis in chronic HFHF diet-caused obesity.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Oluwaseun Adeyanju
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven K. Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia,Department of Surgery, School of Medicine, The University of Missouri, Columbia, Missouri
| | - Torry A. Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas,Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia,Address correspondence to Xia Guo, Ph.D., Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Lab A-1, Tyler, TX 75708.
| |
Collapse
|
5
|
Chua JV, Baddley JW. Anti-tumor Necrosis Factor-Alpha Agents. INFECTIOUS COMPLICATIONS IN BIOLOGIC AND TARGETED THERAPIES 2022:69-87. [DOI: 10.1007/978-3-031-11363-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Lin G, Zhang L, Yan Z, Jiang W, Wu B, Li D, Xiong X. Identification of heterogeneous subsets of aortic interleukin-17A-expressing CD4 + T cells in atherosclerotic mice. Int J Immunopathol Pharmacol 2022; 36:3946320221117933. [PMID: 35932160 PMCID: PMC9364180 DOI: 10.1177/03946320221117933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objectives: T helper 17 (Th17) cells are involved in the inflammatory response of
atherosclerosis. However, their heterogeneity in the atherosclerotic aorta remains
elusive. This study was designed to identify aortic Th17 subsets. Methods: The surface
markers and transcription factors of aortic interleukin-17A (IL-17A)-expressing T cells
were determined by flow cytometry in an ApoE-deficient mouse atherosclerotic model. Viable
aortic IL-17A-expressing T cell subsets were isolated by flow cytometry on the basis of
surface markers, followed by characterizing their transcription factors by either flow
cytometry or real-time RT-PCR. The effect of aortic IL-17A-expressing T cell subsets on
aortic endothelial cells was determined in vitro. Results: C-X-C Motif Chemokine Receptor
3 (CXCR3), interleukin-17 receptor E (IL-17RE), CD200, and C-C Motif Chemokine Receptor 4
(CCR4) marked three subsets of aortic IL-17A-expressing T cells:
CXCR3+IL-17RElowCD200+CCR4- T cells
expressing T-box protein expressed in T cells (T-bet) and interferon-gamma (IFN-γ),
CXCR3+IL-17RElowCD200+CCR4+ T cells
expressing T-bet but fewer IFN-γ, and
CXCR3−IL-17REhighCD200+CCR4+ T cells
expressing very low T-bet and no IFN-γ. Based on these markers, viable aortic Th17 cells,
Th17.1 cells, and transitional Th17.1 cells were identified. Both Th17.1 cells and
transitional Th17.1 cells were more proliferative than Th17 cells. Compared with Th17
cells, Th17.1 cells plus transitional Th17.1 cells induced higher expression of C-X-C
motif chemokine ligand 1 (CXCL1), C-C motif chemokine ligand 2 (CCL2), C-X-C motif
chemokine 5 (CXCL5), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in
aortic endothelial cells. Conclusion: IL-17A-expressing CD4+ T cells were
heterogeneous in atherosclerotic aortas.
Collapse
Affiliation(s)
- Guizhen Lin
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Lei Zhang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Zheng Yan
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Wei Jiang
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Beibei Wu
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Dongsheng Li
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| | - Xiaofang Xiong
- The Department of Cardiology at Wuhan Third Hospital, Tongren Hospital of Wuhan University, Hubei Province, China
| |
Collapse
|
7
|
Wei L, Ji H, Song W, Peng S, Zhan S, Qu Y, Chen M, Zhang D, Liu S. Hypouricemic, hepatoprotective and nephroprotective roles of oligopeptides derived from Auxis thazard protein in hyperuricemic mice. Food Funct 2021; 12:11838-11848. [PMID: 34746942 DOI: 10.1039/d1fo02539b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The oligopeptides derived from Auxis thazard protein (ATO) are a class of small peptides with molecular weight <1 kDa and good bioactivity. This paper aimed to explore the hypouricemic, hepatoprotective, and nephroprotective effects of ATO and its potential mechanisms in hyperuricemia in mice induced by potassium oxonate. The results showed that ATO significantly reduced serum UA, serum creatinine levels, inhibited XOD and ADA activities in the liver (p < 0.05), and accelerated UA excretion by downregulating the gene expression of renal mURAT1 and mGLUT9 and upregulating the gene expression of mABCG2 and mOAT1. ATO could also reduce the levels of liver MDA, increase the activities of SOD and CAT, and reduce the levels of IL-1β, MCP-1 and TNF-α. Histological analysis also showed that ATO possessed hepatoprotective and nephroprotective activities in hyperuricemic mice. Thus, ATO could reduce the serum UA level in hyperuricemic mice by decreasing UA production and promoting UA excretion from the kidney, suggesting that ATO could be developed as a dietary supplement for hyperuricemia treatment.
Collapse
Affiliation(s)
- Liuyi Wei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shuo Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Suhong Zhan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Yushan Qu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
8
|
Platonova EY, Shaposhnikov MV, Lee HY, Lee JH, Min KJ, Moskalev A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Olivier DW, Pretorius E, Engelbrecht AM. Serum amyloid A1: Innocent bystander or active participant in cell migration in triple-negative breast cancer? Exp Cell Res 2021; 406:112759. [PMID: 34332984 DOI: 10.1016/j.yexcr.2021.112759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023]
Abstract
The Serum Amyloid A (SAA) family of proteins is associated with various pathological conditions, including cancer. However, their role in cancer is incompletely understood. Here, we investigated the role of SAA1 in cell cycle regulation, apoptosis, survival signaling, metabolism, and metastasis in models of triple-negative breast cancer (TNBC), using RNAi. Our data show that in untransformed epithelial cells (MCF12A), the knockdown of SAA1 induces the expression of cell cycle regulators (MCM2, p53), the activation of DNA repair (PARP synthesis), and survival signaling (NFκB). In contrast, knockdown of SAA1 in the TNBC cell line (MDA-MB-231) induced the expression p16 and shifted cells in the cell cycle from the S to G2/M phase, without the activation of DNA repair. Moreover, in SAA1-deficient MDA-MB-231 and HCC70 cells, metabolism (NADH oxidation) continually increased while cell migration (% wound closure and the rate of wound closure) decreased. However, silencing of SAA1 altered epithelial and mesenchymal markers in MCF12A (E-cadherin, Laminin 1β, Vimentin) and MDA-MB-231 (α-Smooth muscle actin) cells, associated with the metastatic program of epithelial-mesenchymal transition. Nonetheless, our data provide evidence that SAA1 could potentially serve as a therapeutic target in TNBC.
Collapse
Affiliation(s)
- Daniel Wilhelm Olivier
- Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Corner Merriman and Bosman Road, Stellenbosch, 7602, South Africa.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Corner Merriman and Bosman Road, Stellenbosch, 7602, South Africa.
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Corner Merriman and Bosman Road, Stellenbosch, 7602, South Africa.
| |
Collapse
|
10
|
Ryu J, Hadley JT, Li Z, Dong F, Xu H, Xin X, Zhang Y, Chen C, Li S, Guo X, Zhao JL, Leach RJ, Abdul-Ghani MA, DeFronzo RA, Kamat A, Liu F, Dong LQ. Adiponectin Alleviates Diet-Induced Inflammation in the Liver by Suppressing MCP-1 Expression and Macrophage Infiltration. Diabetes 2021; 70:1303-1316. [PMID: 34162682 PMCID: PMC8275886 DOI: 10.2337/db20-1073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/10/2021] [Indexed: 01/21/2023]
Abstract
Adiponectin is an adipokine that exerts insulin-sensitizing and anti-inflammatory roles in insulin target tissues including liver. While the insulin-sensitizing function of adiponectin has been extensively investigated, the precise mechanism by which adiponectin alleviates diet-induced hepatic inflammation remains elusive. Here, we report that hepatocyte-specific knockout (KO) of the adaptor protein APPL2 enhanced adiponectin sensitivity and prevented mice from developing high-fat diet-induced inflammation, insulin resistance, and glucose intolerance, although it caused fatty liver. The improved anti-inflammatory and insulin-sensitizing effects in the APPL2 hepatocyte-specific KO mice were largely reversed by knocking out adiponectin. Mechanistically, hepatocyte APPL2 deficiency enhances adiponectin signaling in the liver, which blocks TNF-α-stimulated MCP-1 expression via inhibiting the mTORC1 signaling pathway, leading to reduced macrophage infiltration and thus reduced inflammation in the liver. With results taken together, our study uncovers a mechanism underlying the anti-inflammatory role of adiponectin in the liver and reveals the hepatic APPL2-mTORC1-MCP-1 axis as a potential target for treating overnutrition-induced inflammation in the liver.
Collapse
Affiliation(s)
- Jiyoon Ryu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jason T Hadley
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Zhi Li
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Feng Dong
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Huan Xu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xiaoban Xin
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ye Zhang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Cang Chen
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xiaoning Guo
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jared L Zhao
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Robin J Leach
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Muhammad A Abdul-Ghani
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Amrita Kamat
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX
| | - Feng Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
11
|
Bigford GE, Szeto A, Kimball J, Herderick EE, Mendez AJ, Nash MS. Cardiometabolic risks and atherosclerotic disease in ApoE knockout mice: Effect of spinal cord injury and Salsalate anti-inflammatory pharmacotherapy. PLoS One 2021; 16:e0246601. [PMID: 33626069 PMCID: PMC7904230 DOI: 10.1371/journal.pone.0246601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/21/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To test in mice with a double mutation of the ApoE gene (ApoE-/-) whether spinal cord injury (SCI) hastens the native trajectory of, and established component risks for, atherosclerotic disease (AD), and whether Salsalate anti-inflammatory pharmacotherapy attenuates the impact of SCI. METHODS ApoE-/- mice were anesthetized and underwent a T9 laminectomy. Exposed spinal cords were given a contusion injury (70 k-dynes). Sham animals underwent all surgical procedures, excluding injury. Injured animals were randomized to 2 groups: SCI or SCI+Salsalate [120 mg/Kg/day i.p.]. Mice were serially sacrificed at 20-, 24-, and 28-weeks post-SCI, and body mass was recorded. At sacrifice, heart and aorta were harvested intact, fixed in 10% buffered formalin, cleaned and cut longitudinally for en face preparation. The aortic tree was stained with oil-red-O (ORO). AD lesion histomorphometry was calculated from the proportional area of ORO. Plasma total cholesterol, triglycerides and proatherogenic inflammatory cytokines (PAIC's) were analyzed. RESULTS AD lesion in the aortic arch progressively increased in ApoE-/-, significant at 24- and 28-weeks. AD in SCI is significantly greater at 24- and 28-weeks compared to time-controlled ApoE-/-. Salsalate treatment attenuates the SCI-induced increase at these time points. Body mass in all SCI groups are significantly reduced compared to time-controlled ApoE-/-. Cholesterol and triglycerides are significantly higher with SCI by 24- and 28-weeks, compared to ApoE-/-, and Salsalate reduces the SCI-induced effect on cholesterol. PAIC's interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNFα), monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-C motif) ligand 5 (CCL-5) are significantly greater with SCI compared to ApoE-/- at varying timepoints. Salsalate confers a marginal reducing effect on PAIC's by 28-weeks compared to SCI. Regression models determine that each PAIC is a significant and positive predictor of lesion. (p's <0.05). CONCLUSIONS SCI accelerates aortic AD and associated risk factors, and anti-inflammatory treatment may attenuate the impact of SCI on AD outcomes. PAIC's IL-1β, IL-6, TNFα, MCP-1, and CCL-5 may be effective predictors of AD.
Collapse
Affiliation(s)
- Gregory E. Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Angela Szeto
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - John Kimball
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | | | - Armando J. Mendez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mark S. Nash
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Physical Therapy, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
12
|
Nakamura M, Souri EA, Osborn G, Laddach R, Chauhan J, Stavraka C, Lombardi S, Black A, Khiabany A, Khair DO, Figini M, Winship A, Ghosh S, Montes A, Spicer JF, Bax HJ, Josephs DH, Lacy KE, Tsoka S, Karagiannis SN. IgE Activates Monocytes from Cancer Patients to Acquire a Pro-Inflammatory Phenotype. Cancers (Basel) 2020; 12:E3376. [PMID: 33203088 PMCID: PMC7698027 DOI: 10.3390/cancers12113376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
IgE contributes to host-protective functions in parasitic and bacterial infections, often by monocyte and macrophage recruitment. We previously reported that monocytes contribute to tumour antigen-specific IgE-mediated tumour growth restriction in rodent models. Here, we investigate the impact of IgE stimulation on monocyte response, cellular signalling, secretory and tumour killing functions. IgE cross-linking on human monocytes with polyclonal antibodies to mimic formation of immune complexes induced upregulation of co-stimulatory (CD40, CD80, CD86), and reduced expression of regulatory (CD163, CD206, MerTK) monocyte markers. Cross-linking and tumour antigen-specific IgE antibody-dependent cellular cytotoxicity (ADCC) of cancer cells by cancer patient-derived monocytes triggered release of pro-inflammatory mediators (TNFα, MCP-1, IL-10, CXCL-10, IL-1β, IL-6, IL-23). High intratumoural gene expression of these mediators was associated with favourable five-year overall survival in ovarian cancer. IgE cross-linking of trimeric FcεRI on monocytes stimulated the phosphorylation of intracellular protein kinases widely reported to be downstream of mast cell and basophil tetrameric FcεRI signalling. These included recently-identified FcεRI pathway kinases Fgr, STAT5, Yes and Lck, which we now associate with monocytes. Overall, anti-tumour IgE can potentiate pro-inflammatory signals, and prime tumour cell killing by human monocytes. These findings will inform the development of IgE monoclonal antibody therapies for cancer.
Collapse
Affiliation(s)
- Mano Nakamura
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
| | - Elmira Amiri Souri
- Department of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, London WC2B 4BG, UK; (E.A.S.); (S.T.)
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- Department of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, London WC2B 4BG, UK; (E.A.S.); (S.T.)
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Chara Stavraka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Sara Lombardi
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Anna Black
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Atousa Khiabany
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Duaa O. Khair
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
| | - Mariangela Figini
- Biomarker Unit, Department of Applied Research and Technology Development, Fondazione, IRCCS Istituto Nazionale dei Tumouri Milano, 20133 Milan, Italy;
| | - Anna Winship
- Department of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Sharmistha Ghosh
- Department of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - Ana Montes
- Department of Medical Oncology and Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK; (A.W.); (S.G.); (A.M.)
| | - James F. Spicer
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Debra H. Josephs
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, London WC2B 4BG, UK; (E.A.S.); (S.T.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Tower Wing, 9th Floor, Guy’s Hospital, London SE1 9RT, UK; (M.N.); (G.O.); (R.L.); (J.C.); (C.S.); (S.L.); (A.B.); (A.K.); (D.O.K.); (H.J.B.); (D.H.J.); (K.E.L.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
13
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
14
|
Marshall JD, Courage ER, Elliott RF, Fitzpatrick MN, Kim AD, Lopez-Clavijo AF, Woolfrey BA, Ouimet M, Wakelam MJO, Brown RJ. THP-1 macrophage cholesterol efflux is impaired by palmitoleate through Akt activation. PLoS One 2020; 15:e0233180. [PMID: 32437392 PMCID: PMC7241781 DOI: 10.1371/journal.pone.0233180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Lipoprotein lipase (LPL) is upregulated in atherosclerotic lesions and it may promote the progression of atherosclerosis, but the mechanisms behind this process are not completely understood. We previously showed that the phosphorylation of Akt within THP-1 macrophages is increased in response to the lipid hydrolysis products generated by LPL from total lipoproteins. Notably, the free fatty acid (FFA) component was responsible for this effect. In the present study, we aimed to reveal more detail as to how the FFA component may affect Akt signalling. We show that the phosphorylation of Akt within THP-1 macrophages increases with total FFA concentration and that phosphorylation is elevated up to 18 hours. We further show that specifically the palmitoleate component of the total FFA affects Akt phosphorylation. This is tied with changes to the levels of select molecular species of phosphoinositides. We further show that the total FFA component, and specifically palmitoleate, reduces apolipoprotein A-I-mediated cholesterol efflux, and that the reduction can be reversed in the presence of the Akt inhibitor MK-2206. Overall, our data support a negative role for the FFA component of lipoprotein hydrolysis products generated by LPL, by impairing macrophage cholesterol efflux via Akt activation.
Collapse
Affiliation(s)
- Jenika D. Marshall
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
| | - Emily R. Courage
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
| | - Ryan F. Elliott
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
| | - Madeline N. Fitzpatrick
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
| | - Anne D. Kim
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Bronwyn A. Woolfrey
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Robert J. Brown
- Department of Biochemistry, Memorial University of Newfoundland, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
15
|
Janicova A, Becker N, Xu B, Wutzler S, Vollrath JT, Hildebrand F, Ehnert S, Marzi I, Störmann P, Relja B. Endogenous Uteroglobin as Intrinsic Anti-inflammatory Signal Modulates Monocyte and Macrophage Subsets Distribution Upon Sepsis Induced Lung Injury. Front Immunol 2019; 10:2276. [PMID: 31632392 PMCID: PMC6779999 DOI: 10.3389/fimmu.2019.02276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious clinical condition which can cause life-threatening organ dysfunction, and has limited therapeutic options. The paradigm of limiting excessive inflammation and promoting anti-inflammatory responses is a simplified concept. Yet, the absence of intrinsic anti-inflammatory signaling at the early stage of an infection can lead to an exaggerated activation of immune cells, including monocytes and macrophages. There is emerging evidence that endogenous molecules control those mechanisms. Here we aimed to identify and describe the dynamic changes in monocyte and macrophage subsets and lung damage in CL57BL/6N mice undergoing blunt chest trauma with subsequent cecal ligation and puncture. We showed that early an increase in systemic and activated Ly6C+CD11b+CD45+Ly6G- monocytes was paralleled by their increased emigration into lungs. The ratio of pro-inflammatory Ly6ChighCD11b+CD45+Ly6G- to patrolling Ly6ClowCD11b+CD45+Ly6G- monocytes significantly increased in blood, lungs and bronchoalveolar lavage fluid (BALF) suggesting an early transition to inflammatory phenotypes during early sepsis development. Similar to monocytes, the level of pro-inflammatory Ly6ChighCD45+F4/80+ macrophages increased in lungs and BALF, while tissue repairing Ly6ClowCD45+F4/80+ macrophages declined in BALF. Levels of inflammatory mediators TNF-α and MCP-1 in blood and RAGE in lungs and BALF were elevated, and besides their boosting of inflammation via the recruitment of cells, they may promote monocyte and macrophage polarization, respectively, toward the pro-inflammatory phenotype. Neutralization of uteroglobin increased pro-inflammatory cytokine levels, activation of inflammatory phenotypes and their recruitment to lungs; concurrent with increased pulmonary damage in septic mice. In in vitro experiments, the influence of uteroglobin on monocyte functions including migratory behavior, TGF-β1 expression, cytotoxicity and viability were proven. These results highlight an important role of endogenous uteroglobin as intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modules the early monocyte/macrophages driven inflammation. Short Summary Blunt chest injury is the third largest cause of death following major trauma, and ongoing excessive pro-inflammatory immune response entails high risk for the development of secondary complications, such as sepsis, with limited therapeutic options. In murine double hit trauma consisting of thoracic trauma and subsequent cecal ligation and puncture, we investigated the cytokine profile, pulmonary epithelial integrity and phenotypic shift of patrolling Ly6ClowCD11b+CD45+Ly6G- monocytes and Ly6ClowCD45+F4/80+ macrophages to pro-inflammatory Ly6ChighCD11b+CD45+Ly6G- monocytes and Ly6ChighCD45+F4/80+ cells in blood, lungs and bronchoalveolar lavage fluid (BALF). Pro-inflammatory mediators and phenotypes were elevated and uteroglobin neutralization led to further increase. Enhanced total protein levels in BALF suggests leakage of respiratory epithelium. In vitro, uteroglobin inhibited the migratory capacity of monocytes and the TGF-β1 expression without affecting the viability. These results highlight an important role of endogenous uteroglobin as an intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modulates the early monocyte/macrophages driven inflammation.
Collapse
Affiliation(s)
- Andrea Janicova
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany.,Department of Aquatic Ecotoxicology, Goethe University, Frankfurt, Germany.,Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Nils Becker
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Baolin Xu
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Sebastian Wutzler
- Orthopedic and Trauma Surgery, Helios Horst Schmidt Clinic, Wiesbaden, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | | | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
16
|
Gao S, Lu A, Amra S, Guo P, Huard J. TIPE2 gene transfer with adeno-associated virus 9 ameliorates dystrophic pathology in mdx mice. Hum Mol Genet 2019; 28:1608-1619. [DOI: 10.1093/hmg/ddz001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Shanshan Gao
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Aiping Lu
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Sarah Amra
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ping Guo
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
17
|
Hosseini H, Yi L, Kanellakis P, Cao A, Tay C, Peter K, Bobik A, Toh BH, Kyaw T. Anti-TIM-1 Monoclonal Antibody (RMT1-10) Attenuates Atherosclerosis By Expanding IgM-producing B1a Cells. J Am Heart Assoc 2018; 7:JAHA.117.008447. [PMID: 29936416 PMCID: PMC6064881 DOI: 10.1161/jaha.117.008447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Peritoneal B1a cells attenuate atherosclerosis by secreting natural polyclonal immunoglobulin M (IgM). Regulatory B cells expressing T‐cell immunoglobulin mucin domain‐1 (TIM‐1) expanded through TIM‐1 ligation by anti‐TIM‐1 monoclonal antibody (RMT1‐10) induces immune tolerance. Methods and Results We examined the capacity of RMT1‐10 to expand peritoneal B1a cells to prevent atherosclerosis development and retard progression of established atherosclerosis. RMT1‐10 treatment selectively doubled peritoneal B1a cells, tripled TIM‐1+ B1a cells and increased TIM‐1+IgM+interleukin (IL)‐10+ by 3‐fold and TIM‐1+IgM+IL‐10− B1a cells by 2.5‐fold. Similar expansion of B1a B cells was observed in spleens. These effects reduced atherosclerotic lesion size, increased plasma IgM and lesion IgM deposits, and decreased oxidatively modified low‐density lipoproteins in lesions. Lesion CD4+ and CD8+ T cells, macrophages and monocyte chemoattractant protein‐1, vascular cell adhesion molecule‐1, expression of proinflammatory cytokines monocyte chemoattractant protein‐1, vascular cell adhesion molecule‐1, IL1β, apoptotic cell numbers and necrotic cores were also reduced. RMT1‐10 treatment failed to expand peritoneal B1a cells and reduce atherosclerosis after splenectomy that reduces B1a cells, indicating that these effects are B1a cell‐dependent. Apolipoprotein E‐KO mice fed a high‐fat diet for 6 weeks before treatment with RMT1‐10 also increased TIM‐1+IgM+IL‐10+ and TIM‐1+IgM+IL‐10− B1a cells and IgM levels and attenuated progression of established atherosclerosis. Conclusions RMT1‐10 treatment attenuates atherosclerosis development and progression by selectively expanding IgM producing atheroprotective B1a cells. Antibody‐based in vivo expansion of B1a cells could be an attractive approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Hamid Hosseini
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | - Li Yi
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | | | - Anh Cao
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Christopher Tay
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | | | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Immunology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | - Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Australia .,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Wang B, Chen G, Urabe G, Xie R, Wang Y, Shi X, Guo LW, Gong S, Kent KC. A paradigm of endothelium-protective and stent-free anti-restenotic therapy using biomimetic nanoclusters. Biomaterials 2018; 178:293-301. [PMID: 29958152 DOI: 10.1016/j.biomaterials.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023]
Abstract
Drug-eluting stents are the most commonly employed method to control post-angioplasty restenosis. Unfortunately, they exacerbate life-threatening stent thrombosis because of endothelium damage caused by both drug and stenting. To solve this major medical problem, an endothelium-protective and stent-free anti-restenotic method is highly desirable. Here we have generated a biomimetic intravenous delivery system using dendritic polymer-based nanoclusters, which were coated with platelet membranes for targeting to the injured arterial wall where restenosis occurs. These nanoclusters were loaded with an endothelium-protective epigenetic inhibitor (JQ1) or an endothelium-toxic status quo drug (rapamycin), and compared for their ability to mitigate restenosis without hindering the process of re-endothelialization. Fluorescence imaging of Cy5-tagged biomimetic nanoclusters indicated their robust homing to injured, but not uninjured arteries. Two weeks after angioplasty, compared to no-drug control, both rapamycin- and JQ1-loaded biomimetic nanoclusters substantially reduced (by >60%) neointimal hyperplasia, the primary cause of restenosis. However, whereas the rapamycin formulation impaired the endothelial re-coverage of the denuded inner arterial wall, the JQ1 formulation preserved endothelial recovery. In summary, we have created an endothelium-protective anti-restenotic system with biomimetic nanoclusters containing an epigenetic inhibitor. This system warrants further development for a non-thrombogenic and stent-free method for clinical applications.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Go Urabe
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xudong Shi
- Department of Surgery, 5151 Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - K Craig Kent
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Xu S, Xu Y, Yin M, Zhang S, Liu P, Koroleva M, Si S, Little PJ, Pelisek J, Jin ZG. Flow-dependent epigenetic regulation of IGFBP5 expression by H3K27me3 contributes to endothelial anti-inflammatory effects. Theranostics 2018; 8:3007-3021. [PMID: 29896299 PMCID: PMC5996356 DOI: 10.7150/thno.21966] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/17/2018] [Indexed: 01/11/2023] Open
Abstract
Rationale: Atherosclerosis is a chronic inflammatory and epigenetic disease that is influenced by different patterns of blood flow. However, the epigenetic mechanism whereby atheroprotective flow controls endothelial gene programming remains elusive. Here, we investigated the possibility that flow alters endothelial gene expression through epigenetic mechanisms. Methods: En face staining and western blot were used to detect protein expression. Real-time PCR was used to determine relative gene expression. RNA-sequencing of human umbilical vein endothelial cells treated with siRNA of enhancer of zeste homolog 2 (EZH2) or laminar flow was used for transcriptional profiling. Results: We found that trimethylation of histone 3 lysine 27 (H3K27me3), a repressive epigenetic mark that orchestrates gene repression, was reduced in laminar flow areas of mouse aorta and flow-treated human endothelial cells. The decrease of H3K27me3 paralleled a reduction in the epigenetic "writer"-EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2). Moreover, laminar flow decreased expression of EZH2 via mechanosensitive miR101. Genome-wide transcriptome profiling studies in endothelial cells treated with EZH2 siRNA and flow revealed the upregulation of novel mechanosensitive gene IGFBP5 (insulin-like growth factor-binding protein 5), which is epigenetically silenced by H3K27me3. Functionally, inhibition of H3K27me3 by EZH2 siRNA or GSK126 (a specific EZH2 inhibitor) reduced H3K27me3 levels and monocyte adhesion to endothelial cells. Adenoviral overexpression of IGFBP5 also recapitulated the anti-inflammatory effects of H3K27me3 inhibition. More importantly, we observed EZH2 upregulation, and IGFBP5 downregulation, in advanced atherosclerotic plaques from human patients. Conclusion: Taken together, our findings reveal that atheroprotective flow reduces H3K27me3 as a chromatin-based mechanism to augment the expression of genes that confer an anti-inflammatory response in the endothelium. Our study exemplifies flow-dependent epigenetic regulation of endothelial gene expression, and also suggests that targeting the EZH2/H3K27me3/IGFBP5 pathway may offer novel therapeutics for inflammatory disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Shuyi Si
- Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peter J. Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba QLD 4102, Australia
- Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
20
|
Xiong L, Ren F, Lv J, Zhang H, Guo H. Lactoferrin attenuates high-fat diet-induced hepatic steatosis and lipid metabolic dysfunctions by suppressing hepatic lipogenesis and down-regulating inflammation in C57BL/6J mice. Food Funct 2018; 9:4328-4339. [DOI: 10.1039/c8fo00317c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin was reported to exert modulatory effects on lipid metabolism, but the regulatory mechanisms remain unclear.
Collapse
Affiliation(s)
- Ling Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiayi Lv
- Key Laboratory of Functional Dairy
- Co-constructed by the Ministry of Education and Beijing Government
- China Agricultural University
- Beijing 100083
- China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
21
|
Chang M, Guo F, Zhou Z, Huang X, Yi L, Dou Y, Huan J. HBP induces the expression of monocyte chemoattractant protein-1 via the FAK/PI3K/AKT and p38 MAPK/NF-κB pathways in vascular endothelial cells. Cell Signal 2017; 43:85-94. [PMID: 29288710 DOI: 10.1016/j.cellsig.2017.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.
Collapse
Affiliation(s)
- Mengling Chang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Lei Yi
- Department of Orthopaedic Surgery, Fudan University, School of Medicine, Zhongshan Hospital, Shanghai, China
| | - Yi Dou
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China.
| |
Collapse
|
22
|
Chalmers AD, Bursill CA, Myerscough MR. Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression. PLoS One 2017; 12:e0187674. [PMID: 29161303 PMCID: PMC5697811 DOI: 10.1371/journal.pone.0187674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 01/27/2023] Open
Abstract
We use a computational model to explore the effect of foam cell accumulation on plaque regression following an increase in high density lipoprotein (HDL) influx into the plaque. Atherosclerotic plaque formation is the outcome of cellular and cytokine responses to low density lipoproteins (LDL) that penetrate the artery wall following an injury to the endothelium and become modified. We modelled the cells and cytokines that are most important in plaque formation using partial differential equations. The model includes monocytes and macrophages, foam cells, macrophage chemoattractants, endothelium-stimulating cytokines, modified low density lipoproteins (mod LDL) and HDL. We included interactions both at the endothelium surface and inside the artery wall. The model predicts that when HDL influx into a well-established plaque with large numbers of foam cells is increased, the plaque may not regress but may continue to grow at a slower rate. If HDL influx is increased when a model plaque is recently established and has fewer foam cells, then the plaque does regress. If modLDL influx into the plaque is lowered at the same time that HDL influx increased or the capacity of the HDL to remove cholesterol from foam cells is increased, then the plaque is more likely to regress. The predictions of the model are in qualitative agreement with experimental studies in mice and rabbits. The results suggest that the intrinsic dynamics of reverse cholesterol transport by HDL are important in determining the success of HDL raising in promoting plaque regression.
Collapse
Affiliation(s)
- Alexander D. Chalmers
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Christina A. Bursill
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mary R. Myerscough
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
23
|
Monfoulet LE, Mercier S, Bayle D, Tamaian R, Barber-Chamoux N, Morand C, Milenkovic D. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics. Free Radic Biol Med 2017; 112:109-120. [PMID: 28739530 DOI: 10.1016/j.freeradbiomed.2017.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 01/16/2023]
Abstract
Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier.
Collapse
Affiliation(s)
| | - Sylvie Mercier
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Dominique Bayle
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Radu Tamaian
- Research and Development Department, National Institute for Research and Development for Cryogenic and Isotopic Technologies, RO-240050 Râmnicu Vâlcea, Romania; SC Biotech Corp SRL, RO-240050 Râmnicu Vâlcea, Romania
| | - Nicolas Barber-Chamoux
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Service de Cardiologie, F-63000 Clermont-Ferrand, France
| | - Christine Morand
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Wells AJ, Hoffman JR, Jajtner AR, Varanoske AN, Church DD, Gonzalez AM, Townsend JR, Boone CH, Baker KM, Beyer KS, Mangine GT, Oliveira LP, Fukuda DH, Stout JR. Monocyte Recruitment after High-Intensity and High-Volume Resistance Exercise. Med Sci Sports Exerc 2017; 48:1169-78. [PMID: 26784277 DOI: 10.1249/mss.0000000000000878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED The innate immune response is generally considered to have an important role in tissue remodeling after resistance exercise. PURPOSE The purpose of this study was to compare changes in markers of monocyte recruitment after an acute bout of high-intensity (HVY) versus high-volume (VOL) lower-body resistance exercise. METHODS Ten resistance-trained men (24.7 ± 3.4 yr, 90.1 ± 11.3 kg, 176.0 ± 4.9 cm) performed each protocol in a randomized, counterbalanced order. Blood samples were collected at baseline, immediately (IP), 30 min (30P), 1 h (1H), 2 h (2H), and 5 h (5H) postexercise. Plasma concentrations of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-α), myoglobin, and cortisol were measured via assay. Tumor necrosis factor receptor 1 (TNFr1), macrophage-1 antigen (cluster of differentiation 11b [CD11b]), and C-C chemokine receptor 2 (CCR2) expression levels were measured using flow cytometry. TNFr1 and CD11b were assessed on CD14CD16 monocytes, whereas CCR2 was assessed on CD14 monocytes. RESULTS Plasma myoglobin concentrations were significantly greater after HVY compared with VOL (P < 0.001). Changes in plasma TNF-α, MCP-1, and expression levels of CCR2 and CD11b were similar between HVY and VOL. When collapsed across groups, TNF-α was significantly increased at IP, 30P, 1H, and 2H (P values < 0.05), whereas MCP-1 was significantly elevated at all postexercise time points (P values < 0.05). CCR2 expression on CD14 monocytes was significantly lower at IP, 1H, 2H, and 5H (P values < 0.05). CD11b expression on CD14 CD16 was significantly greater at IP (P < 0.014) and 1H (P = 0.009). TNFr1 expression did not differ from baseline at any time point. Plasma cortisol concentrations did not seem to be related to receptor expression. CONCLUSIONS Results indicate that both HVY and VOL protocols stimulate a robust proinflammatory response. However, no differences were noted between resistance exercise training paradigms.
Collapse
Affiliation(s)
- Adam J Wells
- 1School of Health and Kinesiology, Georgia Southern University, Statesboro, GA; 2Institute of Exercise Physiology and Wellness; University of Central Florida, Orlando, FL; 3Department of Health Professions, Hofstra University, Hempstead, NY; and 4Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
26
|
Ton VK, Vunjak-Novakovic G, Topkara VK. Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Rev Med Devices 2016; 13:1029-1034. [PMID: 27685648 DOI: 10.1080/17434440.2016.1243053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Left ventricular assist device (LVAD) therapy has revolutionized the treatment of patients with advanced heart failure. Although originally intended for bridge-to-transplantation and destination therapy indications, a small subset of patients supported with LVADs exhibit complete myocardial recovery leading to device explanation. However, genetic and molecular determinants of partial and/or complete myocardial recovery remain largely unknown. Areas covered: We summarize current knowledge on alterations in heart failure transcriptome in response to LVAD support, as well as discuss common gene signatures potentially responsible for the reverse remodeling phenotype in the failing human heart. Expert commentary: Reverse remodeling after LVAD is likely a continuum between fully and partially recovered myocardium. Multicenter cardiac tissue repositories linked with detailed phenotype information may facilitate identification of genetic signals responsible for myocardial recovery in LVAD supported patients in the foreseeable future.
Collapse
Affiliation(s)
- Van-Khue Ton
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA.,b Division of Cardiovascular Medicine, Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | | | - Veli K Topkara
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
27
|
Pentoxifylline Ameliorates Cardiac Fibrosis, Pathological Hypertrophy, and Cardiac Dysfunction in Angiotensin II-induced Hypertensive Rats. J Cardiovasc Pharmacol 2016; 67:76-85. [PMID: 26340750 DOI: 10.1097/fjc.0000000000000316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inflammation induces cardiac fibrosis and hypertrophy in multiple cardiovascular diseases, contributing to cardiac dysfunction. We tested the hypothesis that pentoxifylline (PTX), a phosphodiesterase inhibitor with anti-inflammatory property, would attenuate cardiac fibrosis and hypertrophy, and prevent cardiac dysfunction in angiotensin (ANG) II-induced hypertensive rats. Sprague-Dawley rats were divided into control and ANG II-infused groups treated with or without PTX for 2 weeks. PTX had no effect on ANG II-induced hypertension, but significantly attenuated cardiac fibrosis and hypertrophy, and ameliorated cardiac dysfunction in ANG II-induced hypertensive rats. In addition, ANG II-induced increase in circulating and cardiac proinflammatory cytokines were attenuated by PTX, which reduced cardiac nuclear factor-kappa B activity. Furthermore, PTX decreased cardiac expression of genetic markers important for fibrosis, hypertrophy, and endothelial dysfunction, and reduced migration and infiltration of macrophages. In contrast, PTX had no effects on the above parameters in control rats. The findings suggest that PTX ameliorates cardiac fibrosis, pathological hypertrophy, and cardiac dysfunction by suppressing inflammatory responses in angiotensin II-induced hypertension, and that these benefits were independent of the blood pressure lowering effect. The PTX by its anti-inflammatory property may be a potential therapeutic option for the prevention of cardiac remodeling and dysfunction in ANG II-induced hypertension.
Collapse
|
28
|
Chillo O, Kleinert EC, Lautz T, Lasch M, Pagel JI, Heun Y, Troidl K, Fischer S, Caballero-Martinez A, Mauer A, Kurz ARM, Assmann G, Rehberg M, Kanse SM, Nieswandt B, Walzog B, Reichel CA, Mannell H, Preissner KT, Deindl E. Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function. Cell Rep 2016; 16:2197-2207. [PMID: 27524614 DOI: 10.1016/j.celrep.2016.07.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/23/2016] [Accepted: 07/17/2016] [Indexed: 01/08/2023] Open
Abstract
The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit(+)/CXCR-4(+) cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.
Collapse
Affiliation(s)
- Omary Chillo
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Eike Christian Kleinert
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Thomas Lautz
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Judith-Irina Pagel
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; Hospital of the University of Munich, Department of Anesthesiology, LMU Munich, 81377 Munich, Germany
| | - Yvonn Heun
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Kerstin Troidl
- Division of Arteriogenesis Research, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Silvia Fischer
- Institute for Biochemistry, Medical School, Justus-Liebig-Universität, 35392 Giessen, Germany
| | - Amelia Caballero-Martinez
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Annika Mauer
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; Institute for Biochemistry, Medical School, Justus-Liebig-Universität, 35392 Giessen, Germany
| | - Angela R M Kurz
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Gerald Assmann
- Institute of Pathology, LMU Munich, 81377 Munich, Germany
| | - Markus Rehberg
- Institute for Stroke and Dementia Research, LMU Munich, 81377 Munich, Germany
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Christoph A Reichel
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; Hospital of the University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, LMU Munich, 81377 Munich, Germany
| | - Hanna Mannell
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Klaus T Preissner
- Institute for Biochemistry, Medical School, Justus-Liebig-Universität, 35392 Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany.
| |
Collapse
|
29
|
Tay C, Liu YH, Hosseini H, Kanellakis P, Cao A, Peter K, Tipping P, Bobik A, Toh BH, Kyaw T. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc Res 2016; 111:385-97. [PMID: 27492217 DOI: 10.1093/cvr/cvw186] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS B2 lymphocytes promote atherosclerosis development but their mechanisms of action are unknown. Here, we investigated the role of tumour necrosis factor alpha (TNF-α) produced by B2 cells in atherogenesis. METHODS AND RESULTS We found that 50% of TNF-α-producing spleen lymphocytes were B2 cells and ∼20% of spleen and aortic B cells produced TNF-α in hyperlipidemic ApoE(-/-) mice. We generated mixed bone marrow (80% μMT/20% TNF-α(-/-)) chimeric LDLR(-/-) mice where only B cells did not express TNF-α. Atherosclerosis was reduced in chimeric LDLR(-/-) mice with TNF-α-deficient B cells. TNF-α expression in atherosclerotic lesions and in macrophages were also reduced accompanied by fewer apoptotic cells, reduced necrotic cores, and reduced lesion Fas, interleukin-1β and MCP-1 in mice with TNF-α-deficient B cells compared to mice with TNF-α-sufficient B cells. To confirm that the reduced atherosclerosis is attributable to B2 cells, we transferred wild-type and TNF-α-deficient B2 cells into ApoE(-/-) mice deficient in B cells or in lymphocytes. After 8 weeks of high fat diet, we found that atherosclerosis was increased by wild-type but not TNF-α-deficient B2 cells. Lesions of mice with wild-type B2 cells but not TNF-α-deficient B2 cells also had increased apoptotic cells and necrotic cores. Transferred B2 cells were found in lesions of recipient mice, suggesting that TNF-α-producing B2 cells promote atherosclerosis within lesions. CONCLUSION We conclude that TNF-α produced by B2 cells is a key mechanism by which B2 cells promote atherogenesis through augmenting macrophage TNF-α production to induce cell death and inflammation that promote plaque vulnerability.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Yu-Han Liu
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Peter Tipping
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria 3004, Australia Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences. Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| |
Collapse
|
30
|
Ma J, Jung BG, Yi N, Samten B. Early Secreted Antigenic Target of 6 kDa ofMycobacterium tuberculosisStimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4. Scand J Immunol 2016; 84:39-48. [DOI: 10.1111/sji.12447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J. Ma
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - B-G. Jung
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - N. Yi
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - B. Samten
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| |
Collapse
|
31
|
Kim Y, Kim TW, Park YS, Jeong EM, Lee DS, Kim IG, Chung H, Hwang YI, Lee WJ, Yu HG, Kang JS. The Role of Interleukin-22 and Its Receptor in the Development and Pathogenesis of Experimental Autoimmune Uveitis. PLoS One 2016; 11:e0154904. [PMID: 27166675 PMCID: PMC4864334 DOI: 10.1371/journal.pone.0154904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023] Open
Abstract
IL-22 is a pro- and anti-inflammatory cytokine that is mainly produced by T cells and NK cells. Recent studies have reported the increased number of IL-22 producing T cells in patients with autoimmune noninfectious uveitis; however, the correlation between IL-22 and uveitis remains unclear. In this study, we aimed to determine the specific role of IL-22 and its receptor in the pathogenesis of uveitis. Serum concentration of IL-22 was significantly increased in uveitis patients. IL-22Rα was expressed in the retinal pigment epithelial cell line, ARPE-19. To examine the effect of IL-22, ARPE-19 was treated with recombinant IL-22. The proliferation of ARPE-19 and the production of monocyte chemoattractant protein (MCP)-1 from ARPE-19 were clearly elevated. IL-22 induced MCP-1 which facilitated the migration of inflammatory cells. Moreover, IL-22 increased the IL-22Rα expression in ARPE-19 through the activation of PI3K/Akt. Experimental animal models of uveitis induced by interphotoreceptor retinoid binding protein 1-20 (IRBP1-20) exhibited elevation of hyperplasia RPE and IL-22 production. When CD4+ T cells from the uveitis patients were stimulated with IRBP1-20, the production of IL-22 definitely increased. In addition, we examine the regulatory role of cysteamine, which has an anti-inflammatory role in the cornea, in uveitis through the down-regulation of IL-22Rα expression. Cysteamine effectively suppressed the IRBP1-20-induced IL-22Rα expression and prevented the development of IRBP1-20-induced uveitis in the experimental animal model. These finding suggest that IL-22 and its receptor have a crucial role in the development and pathogenesis of uveitis by facilitating inflammatory cell infiltration, and that cysteamine may be a useful therapeutic drug in treating uveitis by down-regulating IL-22Rα expression in RPE.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Wan Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Rheumatology Institute and Research for Sensory Organs Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, Seoul, Republic of Korea
| | - Yun Seong Park
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Sup Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hum Chung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wang Jae Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Kasiewicz LN, Whitehead KA. Silencing TNFα with lipidoid nanoparticles downregulates both TNFα and MCP-1 in an in vitro co-culture model of diabetic foot ulcers. Acta Biomater 2016; 32:120-128. [PMID: 26689461 DOI: 10.1016/j.actbio.2015.12.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/19/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022]
Abstract
Diabetes is one of the most formidable diseases facing the world today, with the number of patients growing every year. Poor glycemic control yields a host of complications, such as impaired wound healing. This often results in the formation of diabetic foot ulcers, which carry a poor prognosis because they are notoriously difficult to treat. Current therapies do not address the increased number of infiltrating macrophages to the wound bed that overproduce tumor necrosis factor α (TNFα), which increases fibroblast apoptosis and collagen dismantling and decreases angiogenesis. In this study, we investigated the potential of RNA interference therapy to reduce the inappropriately high levels of TNFα in the wound bed. Although TNFα is a challenging gene silencing target, our lipidoid nanoparticles potently silence TNFα mRNA and protein expression at siRNA doses of 5-100nM without inducing vehicle-related gene silencing or cell death. We also describe the creation of an in vitro macrophage-fibroblast co-culture model, which reflects the TNFα and monocyte chemotactant protein-1 (MCP-1/CCL2) cross-talk that exists in diabetic wounds. Because TNFα induces fibroblasts to produce MCP-1, we show that silencing TNFα results in a downregulation of MCP-1, which should inhibit the recruitment of additional macrophages to the wound. In co-culture experiments, a single lipidoid nanoparticle dose of 100nM siTNFα downregulated TNFα and MCP-1 by 64% and 32%, respectively. These data underscore the potential of lipidoid nanoparticle RNAi treatment to inhibit a positive feedback cycle that fuels the pathogenesis of diabetic foot ulcers. STATEMENT OF SIGNIFICANCE Diabetic foot ulcers are a rapidly growing issue worldwide, with current ulcer treatments not as effective as desired. RNA interference therapy represents a largely untapped possible solution to impaired wound healing. We show that siRNA-loaded lipidoid nanoparticles silence the overexpression of tumor necrosis factor α (TNFα) in inflammatory macrophages which leads to a subsequent downregulation of fibroblast-produced macrophage chemotactant protein-1 (MCP-1). Both TNFα and MCP-1 are critical components of the inflammatory feedback loop that exists in chronic wounds. In contrast to the majority of wound drug delivery studies, our study utilizes macrophage/fibroblast co-culture experiments to recapitulate a multicellular wound environment in which cytokine signaling influences inflammation. Results underscore the therapeutic potential of siRNA nanoparticles directed against TNFα in inhibiting two key inflammatory targets in chronic wounds.
Collapse
|
33
|
Bruneau S, Wedel J, Fakhouri F, Nakayama H, Boneschansker L, Irimia D, Daly KP, Briscoe DM. Translational implications of endothelial cell dysfunction in association with chronic allograft rejection. Pediatr Nephrol 2016; 31:41-51. [PMID: 25903640 PMCID: PMC4619184 DOI: 10.1007/s00467-015-3094-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Advances in therapeutics have dramatically improved short-term graft survival, but the incidence of chronic rejection has not changed in the past 20 years. New insights into mechanism are sorely needed at this time and it is hoped that the development of predictive biomarkers will pave the way for the emergence of preventative therapeutics. In this review, we discuss a paradigm suggesting that sequential changes within graft endothelial cells (EC) lead to an intragraft microenvironment that favors the development of chronic rejection. Key initial events include EC injury, activation and uncontrolled leukocyte-induced angiogenesis. We propose that all of these early changes in the microvasculature lead to abnormal blood flow patterns, local tissue hypoxia, and an associated overexpression of HIF-1α-inducible genes, including vascular endothelial growth factor. We also discuss how cell intrinsic regulators of mTOR-mediated signaling within EC are of critical importance in microvascular stability and may thus have a role in the inhibition of chronic rejection. Finally, we discuss recent findings indicating that miRNAs may regulate EC stability, and we review their potential as novel non-invasive biomarkers of allograft rejection. Overall, this review provides insights into molecular events, genes, and signals that promote chronic rejection and their potential as biomarkers that serve to support the future development of interruption therapeutics.
Collapse
Affiliation(s)
- Sarah Bruneau
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- INSERM UMR S-1064, Institut de Transplantation Urologie-Nephrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, University of Nantes, Nantes, France
| | - Johannes Wedel
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Fadi Fakhouri
- INSERM UMR S-1064, Institut de Transplantation Urologie-Nephrologie (ITUN), Centre Hospitalier Universitaire (CHU) de Nantes, University of Nantes, Nantes, France
| | - Hironao Nakayama
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leo Boneschansker
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Kevin P Daly
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Kim MJ, Kadayat T, Um YJ, Jeong TC, Lee ES, Park PH. Inhibitory Effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a Chalcone Derivative on MCP-1 Expression in Macrophages via Inhibition of ROS and Akt Signaling. Biomol Ther (Seoul) 2015; 23:119-27. [PMID: 25767679 PMCID: PMC4354312 DOI: 10.4062/biomolther.2014.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/19/2023] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones), a subfamily of flavonoid, are widely known to possess potent anti-inflammatory and anti-oxidant properties. In this study, we investigated the effect of 3-(4-Hydroxyphenyl)-1-(thio3-(4-Hydroxyphenyl phen-2-yl)prop-2-en-1-one (TI-I-175), a synthetic chalcone derivative, on endotoxin-induced expression of monocyte chemoattractant protein-1 (MCP-1), one of the key chemokines that regulates migration and infiltration of immune cells, and its potential mechanisms. TII-175 potently inhibited MCP-1 mRNA expression stimulated by lipopolysaccharide (LPS) in RAW 264.7 macrophages without significant effect on cell viability. Treatment of cells with TI-I-175 markedly prevented LPS-induced transcriptional activation of activator protein-1 (AP-1) as measured by luciferase reporter assay, while nuclear factor-κB (NF-κB) activity was not inhibited by TI-I-175, implying that TI-I-175 suppressed MCP-1 expression probably via regulation of AP-1. In addition, TI-I-175 treatment significantly inhibited LPS-induced Akt phosphorylation and led to a significant decrease in reactive oxygen species (ROS) production by LPS, which act as up-stream signaling events required for AP-1 activation in RAW 264.7 macrophages. Taken together, these results indicate that TI-I-175 suppresses MCP-1 gene expression in LPS-stimulated RAW 264.7 macrophages via suppression of ROS production and Akt activation.
Collapse
Affiliation(s)
- Mi Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Taraman Kadayat
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Yeon Ji Um
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
35
|
Wedel J, Bruneau S, Kochupurakkal N, Boneschansker L, Briscoe DM. Chronic allograft rejection: a fresh look. Curr Opin Organ Transplant 2015; 20:13-20. [PMID: 25563987 PMCID: PMC4461362 DOI: 10.1097/mot.0000000000000155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW New developments suggest that the graft itself and molecules expressed within the graft microenvironment dictate the phenotype and evolution of chronic rejection. RECENT FINDINGS Once ischemia-reperfusion injury, cellular and humoral immune responses target the microvasculature, the associated local tissue hypoxia results in hypoxia-inducible factor 1α-dependent expression of pro-inflammatory and proangiogenic growth factors including vascular endothelial growth factor (VEGF) as a physiological response to injury. Local expression of VEGF can promote the recruitment of alloimune T cells into the graft. mTOR/Akt signaling within endothelial cells regulates cytokine- and alloantibody-induced activation and proliferation and their proinflammatory phenotype. Inhibition of mTOR and/or Akt results in an anti-inflammatory phenotype and enables the expression of coinhibitory molecules that limit local T cell reactivation and promotes immunoregulation. Semaphorin family molecules may bind to neuropilin-1 on regulatory T cell subsets to stabilize functional responses. Ligation of neuropilin-1 on Tregs also inhibits Akt-induced responses suggesting common theme for enhancing local immunoregulation and long-term graft survival. SUMMARY Events within the graft initiated by mTOR/Akt-induced signaling promote the development of chronic rejection. Semaphorin-neuropilin biology represents a novel avenue for targeting this biology and warrants further investigation.
Collapse
Affiliation(s)
- Johannes Wedel
- Transplant Research Program, Pediatric Transplant Center, Boston Children's Hospital, Boston MA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sarah Bruneau
- Transplant Research Program, Pediatric Transplant Center, Boston Children's Hospital, Boston MA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nora Kochupurakkal
- Transplant Research Program, Pediatric Transplant Center, Boston Children's Hospital, Boston MA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Leo Boneschansker
- Transplant Research Program, Pediatric Transplant Center, Boston Children's Hospital, Boston MA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M. Briscoe
- Transplant Research Program, Pediatric Transplant Center, Boston Children's Hospital, Boston MA
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Kurashina T, Nagasaka S, Watanabe N, Yabe D, Sugi N, Nin K, Hosokawa M, Nomura Y, Fukushima M, Nakai Y, Nishimura F, Taniguchi A. Circulating TNF receptor 2 is closely associated with the kidney function in non-diabetic Japanese subjects. J Atheroscler Thromb 2014; 21:730-8. [PMID: 24717758 DOI: 10.5551/jat.21055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Chronic kidney disease (CKD) is associated with cardiovascular events. Tumor necrosis factor (TNF) and/or its receptors have been postulated to be involved in renal pathophysiology. It is unclear whether an increased TNF system activity is present before the development of apparent CKD. METHODS Four hundred and twenty non-diabetic Japanese subjects with an estimated GFR (eGFR) greater than 60 ml/min/1.73 m(2) were recruited for measurement of the HbA1c, insulin, TNF system activity (TNF-α, soluble TNF receptor 1 (sTNF-R1) and sTNF-R2) levels and various parameters, including the lipid, high-sensitivity C-reactive protein (hsCRP), high-molecular-weight (HMW) adiponectin and leptin levels. The subjects were stratified according to the eGFR: the G1 level (eGFR ≧90 ml/min/1.73 m(2)) and the G2 level (90 >eGFR ≧60 ml/min/1.73 m(2)). RESULTS Whereas no significant differences were observed in gender, body mass index (BMI), blood pressure, insulin, TNF-α, hsCRP, HMW adiponectin or leptin between the two groups, the values for age, HbA1c, triglycerides, sTNF-R1 and sTNF-R2 were significantly higher in the subjects with a G2 level of eGFR than in those with a G1 level. In contrast, the HDL cholesterol levels were significantly lower in the subjects with a G2 level than in those with a G1 level. Linear negative correlations were also observed between eGFR and age, BMI, HbA1c, triglycerides, sTNF-R1 and sTNFR2, respectively. A multiple logistic regression analysis revealed that only sTNF-R2 was associated with the presence of a G2 level of eGFR (Odds ratio 1.092, 95% CI 1.013-1.177, P=0.021). CONCLUSIONS The circulating sTNF-R2 level is closely associated with the kidney function in non-diabetic Japanese subjects.
Collapse
|
37
|
Ren J, Wang Q, Morgan S, Si Y, Ravichander A, Dou C, Kent KC, Liu B. Protein kinase C-δ (PKCδ) regulates proinflammatory chemokine expression through cytosolic interaction with the NF-κB subunit p65 in vascular smooth muscle cells. J Biol Chem 2014; 289:9013-26. [PMID: 24519937 DOI: 10.1074/jbc.m113.515957] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proinflammatory chemokines released by vascular smooth muscle cells (VSMCs) play a critical role in vascular inflammation. Protein kinase C-δ (PKCδ) has been shown to be up-regulated in VSMCs of injured arteries. PKCδ knock-out (Prkcd(-/-)) mice are resistant to inflammation as well as apoptosis in models of abdominal aortic aneurysm. However, the precise mechanism by which PKCδ modulates inflammation remains incompletely understood. In this study, we identified four inflammatory chemokines (Ccl2/Mcp-1, Ccl7, Cxcl16, and Cx3cl1) of over 45 PKCδ-regulated genes associated with inflammatory response by microarray analysis. Using CCL2 as a prototype, we demonstrated that PKCδ stimulated chemokine expression at the transcriptional level. Inhibition of the NF-κB pathway or siRNA knockdown of subunit p65, but not p50, eliminated the effect of PKCδ on Ccl2 expression. Overexpressing PKCδ followed by incubation with phorbol 12-myristate 13-acetate resulted in an increase in p65 Ser-536 phosphorylation and enhanced DNA binding affinity without affecting IκB degradation or p65 nuclear translocation. Prkcd gene deficiency impaired p65 Ser-536 phosphorylation and DNA binding affinity in response to TNFα. Results from in situ proximity ligation analysis and co-immunoprecipitation performed on cultured VSMCs and aneurysmal aorta demonstrated physical interaction between PKCδ and p65 that took place largely outside the nucleus. Promoting nuclear translocation of PKCδ with peptide ψδRACK diminished Ccl2 production, whereas inhibition of PKCδ translocation with peptide δV1-1 enhanced Ccl2 expression. Together, these results suggest that PKCδ modulates inflammation at least in part through the NF-κB-mediated chemokines. Mechanistically, PKCδ activates NF-κB through an IκB-independent cytosolic interaction, which subsequently leads to enhanced p65 phosphorylation and DNA binding affinity.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin, Madison, Wisconsin 53705 and
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang WY, Wang J, Liu YM, Zheng QS, Li CY. Inhibitory effect of Malvidin on TNF-α-induced inflammatory response in endothelial cells. Eur J Pharmacol 2013; 723:67-72. [PMID: 24333549 DOI: 10.1016/j.ejphar.2013.11.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 01/13/2023]
Abstract
Vascular inflammatory responses are key mediators of endothelial dysfunction that leads to various pathologies in many diseases including atherosclerosis and cancer. The purpose of the study was to investigate the effects and molecular mechanisms of Malvidin, a natural pigment with strong antioxidant activity, on regulating inflammatory response in endothelial cells. Our results showed that tumor necrosis factor-alpha (TNF-α) significantly increased the protein or mRNA levels of monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), whereas pretreatment with Malvidin inhibited TNF-α-induced increases of MCP-1, ICAM-1, and VCAM-1 production in a concentration-dependent manner. In addition, Malvidin could inhibit degradation of IκBα and the nuclear translocation of p65, which suggesting the anti-inflammation mechanism of Malvidin by the nuclear factor kappa B (NF-κB) pathway. These results indicate the potential role of Malvidin in preventing chronic inflammation in many diseases.
Collapse
Affiliation(s)
- Wu-Yang Huang
- Department of Functional Food and Bio-active Compounds, Institute of Farm Product Processing, Jiangsu Academy of Agricultural Science, Nanjing 210014, PR China
| | - Jian Wang
- Department of Functional Food and Bio-active Compounds, Institute of Farm Product Processing, Jiangsu Academy of Agricultural Science, Nanjing 210014, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ya-Mei Liu
- National Technical Research Centre of Veterinary Biological Products, Jiangsu Academy of Agricultural Science, Nanjing 210014, PR China
| | - Qi-Sheng Zheng
- National Technical Research Centre of Veterinary Biological Products, Jiangsu Academy of Agricultural Science, Nanjing 210014, PR China
| | - Chun-Yang Li
- Department of Functional Food and Bio-active Compounds, Institute of Farm Product Processing, Jiangsu Academy of Agricultural Science, Nanjing 210014, PR China.
| |
Collapse
|
39
|
Liu B, Zupan B, Laird E, Klein S, Gleason G, Bozinoski M, Gal Toth J, Toth M. Maternal hematopoietic TNF, via milk chemokines, programs hippocampal development and memory. Nat Neurosci 2013; 17:97-105. [PMID: 24292233 PMCID: PMC6169993 DOI: 10.1038/nn.3596] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/05/2013] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor α (TNF) is a proinflammatory cytokine with established roles in host defense and immune system organogenesis. We studied TNF function and found a previously unidentified physiological function that extends its effect beyond the host into the developing offspring. A partial or complete maternal TNF deficit, specifically in hematopoietic cells, resulted in reduced milk levels of the chemokines IP-10, MCP-1, MCP-3, MCP-5 and MIP-1β, which in turn augmented offspring postnatal hippocampal proliferation, leading to improved adult spatial memory in mice. These effects were reproduced by the postpartum administration of a clinically used anti-TNF agent. Chemokines, fed to suckling pups of TNF-deficient mothers, restored both postnatal proliferation and spatial memory to normal levels. Our results identify a TNF-dependent 'lactrocrine' pathway that programs offspring hippocampal development and memory. The level of ambient TNF is known to be downregulated by physical activity, exercise and adaptive stress. We propose that the maternal TNF-milk chemokine pathway evolved to promote offspring adaptation to post-weaning environmental challenges and competition.
Collapse
Affiliation(s)
- Bingfang Liu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Bojana Zupan
- 1] Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. [2]
| | - Emma Laird
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Shifra Klein
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Georgia Gleason
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Marjan Bozinoski
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | | | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
40
|
Eirin A, Zhang X, Zhu XY, Tang H, Jordan KL, Grande JP, Dietz AB, Lerman A, Textor SC, Lerman LO. Renal vein cytokine release as an index of renal parenchymal inflammation in chronic experimental renal artery stenosis. Nephrol Dial Transplant 2013; 29:274-82. [PMID: 24097799 DOI: 10.1093/ndt/gft305] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Renal parenchymal inflammation is a critical determinant of kidney injury in renal artery stenosis (RAS) but is difficult to assess in the single kidney without tissue samples. Whether renal vein (RV) levels of inflammatory markers reflect active parenchymal inflammation remains unknown. We evaluated the relationship between net RV cytokine release and tissue inflammation in the post-stenotic kidney. METHODS Pigs were studied after 10 weeks of RAS treated 4 weeks earlier with intra-renal vehicle or anti-inflammatory mesenchymal stem cells (MSCs) or normal control. Single-kidney renal blood flow was measured by fast computerized tomography. RV and inferior vena cava levels of tumor necrosis factor (TNF)-α, interferon (IF)-γ, monocyte chemoattractant protein (MCP-1) and interleukin (IL)-10 were measured by enzyme-linked immunosorbent assay, and their net release calculated. Renal expression of the same cytokines was correlated with their net release. RESULTS Net release of TNF-α, IF-γ and MCP-1 was higher in RAS compared with normal and to the contralateral kidney (all P<0.05), decreased in MSC-treated pigs as was their tissue expression. Contrarily, the release of the anti-inflammatory IL-10 was lower in RAS and normalized in RAS+MSC. The net release of TNF-α, MCP-1 and IL-10 directly correlated with their tissue expression. The ratio of inflammatory-to-reparative macrophages directly correlated with the release of MCP-1, but inversely with the release of IL-10. In vitro cultured MSCs also induced a shift in the macrophage phenotype from inflammatory (M1) to reparative (M2). CONCLUSIONS Our findings demonstrate that the release of inflammatory markers from the affected kidney provides an index of renal tissue inflammation in experimental RAS.
Collapse
Affiliation(s)
- Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Perna AF, Sepe I, Lanza D, Capasso R, Zappavigna S, Capasso G, Caraglia M, Ingrosso D. Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17-dependent TNF-α activation. J Cell Biochem 2013; 114:1536-48. [DOI: 10.1002/jcb.24495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022]
|
42
|
AMPKα2 exerts its anti-inflammatory effects through PARP-1 and Bcl-6. Proc Natl Acad Sci U S A 2013; 110:3161-6. [PMID: 23382195 DOI: 10.1073/pnas.1222051110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B-cell lymphoma-6 protein (Bcl-6) is a corepressor for inflammatory mediators such as vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and -3, which function to recruit monocytes to vascular endothelial cells upon inflammation. Poly [ADP ribose] polymerase 1 (PARP-1) is proinflammatory, in part through its binding at the Bcl-6 intron 1 to suppress Bcl-6 expression. We investigated the mechanisms by which PARP-1 dissociates from the Bcl-6 intron 1, ultimately leading to attenuation of endothelial inflammation. Analysis of the PARP-1 primary sequence suggested that phosphorylation of PARP-1 Serine 177 (Ser-177) by AMP-activated protein kinase (AMPK) is responsible for the induction of Bcl-6. Our results show that AMPK activation with treatment of 5-aminoimidazole-4-carboxamide ribonucleotide, metformin, or pulsatile shear stress induces PARP-1 dissociation from the Bcl-6 intron 1, increases Bcl-6 expression, and inhibits expression of inflammatory mediators. Conversely, AMPKα suppression or knockdown produces the opposite effects. The results demonstrate an anti-infamatory pathway linking AMPK, PARP-1, and Bcl-6 in endothelial cells.
Collapse
|
43
|
Dormond O, Dufour M, Seto T, Bruneau S, Briscoe DM. Targeting the intragraft microenvironment and the development of chronic allograft rejection. Hum Immunol 2012; 73:1261-8. [PMID: 22863981 DOI: 10.1016/j.humimm.2012.07.334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/29/2012] [Accepted: 07/25/2012] [Indexed: 01/10/2023]
Abstract
In this review, we discuss a paradigm whereby changes in the intragraft microenvironment promote or sustain the development of chronic allograft rejection. A key feature of this model involves the microvasculature including (a) endothelial cell (EC) destruction, and (b) EC proliferation, both of which result from alloimmune leukocyte- and/or alloantibody-induced responses. These changes in the microvasculature likely create abnormal blood flow patterns and thus promote local tissue hypoxia. Another feature of the chronic rejection microenvironment involves the overexpression of vascular endothelial growth factor (VEGF). VEGF stimulates EC activation and proliferation and it has potential to sustain inflammation via direct interactions with leukocytes. In this manner, VEGF may promote ongoing tissue injury. Finally, we review how these events can be targeted therapeutically using mTOR inhibitors. EC activation and proliferation as well as VEGF-VEGFR interactions require PI-3K/Akt/mTOR intracellular signaling. Thus, agents that inhibit this signaling pathway within the graft may also target the progression of chronic rejection and thus promote long-term graft survival.
Collapse
Affiliation(s)
- Olivier Dormond
- The Department of Visceral Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Subramaniam S, Beura LK, Kwon B, Pattnaik AK, Osorio FA. Amino acid residues in the non-structural protein 1 of porcine reproductive and respiratory syndrome virus involved in down-regulation of TNF-α expression in vitro and attenuation in vivo. Virology 2012; 432:241-9. [PMID: 22699004 DOI: 10.1016/j.virol.2012.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/03/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses tumor necrosis factor-alpha (TNF-α) production at both transcriptional and post-transcriptional levels by its non-structural proteins 1α and 1β (Nsp1α and Nsp1β). To identify the amino acid residues responsible for this activity, we generated several alanine substitution mutants of Nsp1α and Nsp1β. Examination of the mutant proteins revealed that Nsp1α residues Gly90, Asn91, Arg97, Arg100 and Arg124 were necessary for TNF-α promoter suppression, whereas several amino acids spanning the entire Nsp1β were found to be required for this activity. Two mutant viruses, with mutations at Nsp1α Gly90 or Nsp1β residues 70-74, generated from infectious cDNA clones, exhibited attenuated viral replication in vitro and TNF-α was found to be up regulated in infected macrophages. In infected pigs, the Nsp1β mutant virus was attenuated in growth. These studies provide insights into how PRRSV evades the effector mechanisms of innate immunity during infection.
Collapse
Affiliation(s)
- Sakthivel Subramaniam
- School of Veterinary Medicine & Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA
| | | | | | | | | |
Collapse
|
45
|
Chakrabarti S, Chan CK, Jiang Y, Davidge ST. Neuronal nitric oxide synthase regulates endothelial inflammation. J Leukoc Biol 2012; 91:947-56. [DOI: 10.1189/jlb.1011513] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Zheng Y, Toborek M, Hennig B. Epigallocatechin gallate-mediated protection against tumor necrosis factor-α-induced monocyte chemoattractant protein-1 expression is heme oxygenase-1 dependent. Metabolism 2010; 59:1528-35. [PMID: 20580034 DOI: 10.1016/j.metabol.2010.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 02/04/2023]
Abstract
Flavonoids have been suggested to protect against atherosclerosis via their antioxidant and anti-inflammatory properties. Heme oxygenase-1 (HO-1) is an enzyme that plays an important role in the vascular system, and its induction may provide a protective role against atherosclerosis. We hypothesize that flavonoids can down-regulate endothelial inflammatory parameters by modulating HO-1-regulated cell signaling. We focused on the role of HO-1 and its major metabolic product, bilirubin, on mechanisms of tumor necrosis factor-α-induced endothelial cell activation and protection by the catechin epigallocatechin gallate (EGCG). Pretreatment with EGCG inhibited the secretion of monocyte chemoattractant protein-1 and the activation of activator protein-1 in porcine aortic endothelial cells stimulated with tumor necrosis factor-α. Moreover, EGCG up-regulated the expression of HO-1 and further induced the secretion of bilirubin. The observed anti-inflammatory effects of EGCG were mimicked by the HO-1 inducer cobalt protoporphyrin and abolished by HO-1 gene silencing. These data suggest that the protective properties of flavonoids, such as EGCG, against endothelial inflammation may be regulated in part though induction of HO-1 and subsequent activator protein-1 signaling.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | |
Collapse
|
47
|
Rainwater DL, Shi Q, Mahaney MC, Hodara V, Vandeberg JL, Wang XL. Genetic regulation of endothelial inflammatory responses in baboons. Arterioscler Thromb Vasc Biol 2010; 30:1628-33. [PMID: 20508207 PMCID: PMC2908371 DOI: 10.1161/atvbaha.110.205740] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the genetic contributions to the expression of cell surface adhesion molecules on endothelial cells (ECs) and to the release by ECs of chemokines, which are responsible for local inflammation. METHODS AND RESULTS Monocyte adhesion to ECs and transmigration across the endothelial barrier are the key steps in the formation of atherosclerotic plaques and the rupture of the existing plaques. Biopsy specimens were obtained from the femoral arteries of 131 pedigreed baboons (65 males and 66 females) aged 10.4+/-1.5 years (mean+/-SD); arterial ECs were harvested and cultured up to the second passage and then subjected to in vitro challenge with tumor necrosis factor (TNF) alpha, 10 ng/mL, or vehicle for 4 hours. Endothelial surface adhesion molecules were measured using flow cytometry, and chemokines released by the ECs were measured by immunoassay. In response to TNF-alpha treatment, interleukin 8 and monocyte chemoattractant protein-1 released by ECs were increased 3.4- and 26-fold, respectively (P<0.001). The expressions of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were increased 12.2-, 41.4-, and 3.5-fold, respectively (P<0.001). The quantitative levels of several traits were heritable after TNF-alpha stimulation: h(2)=0.24 (P=0.02) for interleukin 8 and h(2)=0.28 (P=0.003) for E-selectin in culture medium; h(2)=0.21 (P=0.03) for intercellular adhesion molecule-1; and h(2)=0.37 (P<0.001) for vascular cell adhesion molecule-1 expression on EC surfaces. Furthermore, significant heritability was observed for lysate protein level, which is a measure of cell growth rate, with (h(2)=0.64, P<0.001) or without (h(2)=0.51, P<0.001) TNF-alpha stimulation. CONCLUSIONS This study reports on the heritability of adhesion molecules in ECs when activated by TNF-alpha. This finding suggests genetic regulation of key arterial wall inflammatory processes that are responsible for the initiation of atherosclerotic lesions and the plaque rupture of existing atheromas.
Collapse
Affiliation(s)
- David L Rainwater
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nishiuchi T, Murao K, Imachi H, Yu X, Dobashi H, Haba R, Ishida T. Scavenger receptor class BI mediates the anti-apoptotic effect of erythropoietin. Ann Med 2010; 42:151-60. [PMID: 20156043 DOI: 10.3109/07853891003601556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A scavenger receptor of the B class (SR-BI)/human homolog of SR-BI, CD36, and LIMP II analogous-1 (CLA-1), has been identified as a receptor for high-density lipoprotein (HDL). Mice lacking SR-B1 develop anemia, plausibly explained by the observation that the erythrocyte life-span in these animals is reduced. Erythropoietin (EPO) is known to promote survival of erythroid cells, in large part through protection from apoptosis. We have examined the role of EPO on hSR-BI/CLA-1 expression and erythrocyte apoptosis. Endogenous expression of hSR-BI/CLA-1 was increased by exposure to EPO. EPO increased transcriptional activity of hSR-BI/CLA-1 promoter. The stimulatory effect of EPO on hSR-BI/CLA-1 promoter activity was abrogated by LY294002, specific inhibitor of phosphatidylinositol-3 kinase (PI3K). Constitutively active Akt stimulates the activity of the hSR-BI/CLA-1 promoter and a dominant-negative mutant of Akt abolished the ability of EPO to stimulate promoter activity. Finally, EPO in combination with HDL protected the cell from apoptosis, which suggests that hSR-BI/CLA-1 induced by EPO might contribute to the erythrocyte life-span.
Collapse
Affiliation(s)
- Takamasa Nishiuchi
- Division of Endocrinology & Metabolism and Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-Cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Volin MV, Huynh N, Klosowska K, Reyes RD, Woods JM. Fractalkine-induced endothelial cell migration requires MAP kinase signaling. Pathobiology 2010; 77:7-16. [PMID: 20185962 DOI: 10.1159/000272949] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 07/28/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIMS Angiogenesis is a well-established characteristic in the rheumatoid arthritis (RA) synovial pannus. We have previously demonstrated that fractalkine (Fkn/ CX3CL1) expression is significantly increased in the RA joint and that fractalkine induces angiogenesis. In this work we studied mechanisms through which Fkn functions as an angiogenic mediator. METHODS Human microvascular endothelial cells (HMVECs) and human umbilical vein endothelial cells (HUVECs) were stimulated with Fkn and analyzed by Western blotting or stained with Alexa Fluor 488 phalloidin for F-actin to characterize the time frame of cytoskeletal rearrangement. Fkn-induced HUVEC chemotaxis was performed in the presence and absence of MAP kinase inhibitors. RESULTS Phalloidin staining of F-actin revealed significant cytoskeletal rearrangements in HUVECs and HMVECs starting as early as 10 min after Fkn stimulation. Western blotting demonstrated that HUVEC and HMVEC stimulation with Fkn for 1-30 min resulted in phosphorylation of JNK. Fkn also induces significant phosphorylation of Erk 1/2 in HUVECs over a time course ranging from 1 to 15 min. A somewhat similar time course (5-15 min) was detected for Erk 1/2 phosphorylation in HMVECs. Inhibitors of either JNK or Erk 1/2 nearly abolish Fkn-induced HUVEC migration. CONCLUSIONS We demonstrate that Fkn induces significant alterations in cytoskeletal structure and specifically activates the MAP kinases, JNK and Erk 1/2, both of which appear necessary for endothelial cell migration. Our results suggest that the endogenous Fkn present in the RA joint may induce angiogenesis through activation of the JNK and Erk 1/2 pathways.
Collapse
Affiliation(s)
- Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL 60515, USA
| | | | | | | | | |
Collapse
|
50
|
Yang J, Park Y, Zhang H, Gao X, Wilson E, Zimmer W, Abbott L, Zhang C. Role of MCP-1 in tumor necrosis factor-alpha-induced endothelial dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2009; 297:H1208-16. [PMID: 19666844 DOI: 10.1152/ajpheart.00396.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) upregulates the expression of monocyte chemoattractant protein-1 (MCP-1) and adhesion molecules in type 2 diabetes. We hypothesized that TNF-alpha and MCP-1 may interact to contribute to the evolution of vascular inflammation and endothelial dysfunction in coronary arterioles in type 2 diabetes. To test this hypothesis, we administered anti-MCP-1 to block MCP-1 signaling in genetically modified mice with type 2 diabetes (Lepr(db)) and in heterozygote (m Lepr(db)) lean control. Anti-MCP-1 partially restored vasodilation to the endothelium-dependent vasodilator acetylcholine in isolated, cannulated, and pressurized coronary arterioles in Lepr(db) mice but did not affect vasodilation in m Lepr(db) mice. Anti-MCP-1 attenuated superoxide production and the protein expression of nitrotyrosine, which is an indicator of peroxynitrite production, in isolated coronary arterioles of Lepr(db) mice. Immunostaining results showed that the expression of MCP-1 and vascular cellular adhesion molecule-1 is colocalized with endothelial cells and macrophages. Anti-TNF-alpha or anti-MCP-1 markedly reduced macrophage infiltration and the number of MCP-1-positive endothelium in Lepr(db) mice. The neutralization of TNF-alpha or anti-MCP-1 reduced the expression of adhesion molecules, suggesting that proinflammatory cytokines interact to amplify the signaling process that leads to vascular dysfunction. These findings demonstrate that the endothelial dysfunction occurring in type 2 diabetes is the result of the effects of the inflammatory cytokine TNF-alpha and TNF-alpha-related signaling, including the expression of MCP-1 and adhesion molecules, which further exacerbates vessel inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jiyeon Yang
- Michael E DeBakey Institute, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|