1
|
Akele M, Iervolino M, Van Belle S, Christ F, Debyser Z. Role of LEDGF/p75 (PSIP1) in oncogenesis. Insights in molecular mechanism and therapeutic potential. Biochim Biophys Acta Rev Cancer 2025; 1880:189248. [PMID: 39701326 DOI: 10.1016/j.bbcan.2024.189248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin. LEDGF/p75 has been implicated in diseases such as HIV infection and KMT2A-rearranged leukemia. Notably, LEDGF/p75 is upregulated in various human cancers including prostate and breast cancer. In this review, we discuss the essential role of LEDGF/p75 in different malignancies and explore its mechanistic contribution to tumorigenesis revealing its potential as a therapeutic target for chemotherapy.
Collapse
Affiliation(s)
- Muluembet Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matteo Iervolino
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Ochoa PT, Casiano CA. The Emerging Roles of the Stress Epigenetic Reader LEDGF/p75 in Cancer Biology and Therapy Resistance: Mechanisms and Targeting Opportunities. Cancers (Basel) 2024; 16:3957. [PMID: 39682146 DOI: 10.3390/cancers16233957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The lens epithelium derived growth factor of 75 kD (LEDGF/p75) is a transcription co-activator and epigenetic reader that has emerged as a stress oncoprotein in multiple human cancers. Growing evidence indicates that it promotes tumor cell survival against certain therapeutic drugs. The amino (N)-terminal region of LEDGF/p75 contains a PWWP domain that reads methylated histone marks, critical for recognizing transcriptionally active chromatin sites. Its carboxyl (C)-terminus has an integrase binding domain (IBD) that serves as the binding site for the HIV-1 integrase and multiple oncogenic transcription factors. Acting as hubs for protein-protein interactions, both domains facilitate the tethering of oncogenic transcription factors and regulators to active chromatin to regulate mRNA splicing, promote DNA repair, and enhance the expression of stress and cancer-related genes that contribute to tumor cell aggressiveness and chemoresistance. This review summarizes our current knowledge of the emerging roles of LEDGF/p75 in cancer biology and therapy resistance and discusses its potential as a novel oncotherapeutic target in combinatorial treatments.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Pedro T Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Cancer Center, Loma Linda University Health, Loma Linda, CA 92350, USA
| |
Collapse
|
3
|
Martínez VS, Rodriguez K, McCubbin T, Tong J, Mahler S, Shave E, Baker K, Munro TP, Marcellin E. Amino acid degradation pathway inhibitory by-products trigger apoptosis in CHO cells. Biotechnol J 2024; 19:e2300338. [PMID: 38375561 DOI: 10.1002/biot.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/21/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Karen Rodriguez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Timothy McCubbin
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| | - Junjie Tong
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Evan Shave
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Trent P Munro
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- National Biologics Facility, The University of Queensland, St Lucia, Queensland, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Sanchez-Hernandez ES, Ochoa PT, Suzuki T, Ortiz-Hernandez GL, Unternaehrer JJ, Alkashgari HR, Diaz Osterman CJ, Martinez SR, Chen Z, Kremsky I, Wang C, Casiano CA. Glucocorticoid Receptor Regulates and Interacts with LEDGF/p75 to Promote Docetaxel Resistance in Prostate Cancer Cells. Cells 2023; 12:2046. [PMID: 37626856 PMCID: PMC10453226 DOI: 10.3390/cells12162046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Tise Suzuki
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
| | - Juli J. Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Carlos J. Diaz Osterman
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Shannalee R. Martinez
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Zhong Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
The antinuclear antibody dense fine speckled pattern and possible clinical associations: An indication of a proinflammatory microenvironment. J Immunol Methods 2020; 488:112904. [PMID: 33121975 DOI: 10.1016/j.jim.2020.112904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Indirect immunofluorescence (IIF) is the most prevalent screening antinuclear antibody test for systemic autoimmune rheumatic disease (SARD). Certain IIF patterns have known antibody and disease associations, but the dense fine speckled (ANA-DFS) pattern has no confirmed clinical associations. Our objective was to determine the prevalence of SARD among a group of ANA-DFS positive individuals and to identify final diagnoses among non-SARD individuals in order to determine possible clinical associations with the ANA-DFS pattern. METHODS A retrospective study of 425 patients from a university health care system with a positive ANA-DFS pattern consecutively between August 2017 and September 2018. Sera samples underwent ANA testing by IIF on HEp-2 cell substrates (Euroimmun, Germany). Clinical information was retrieved from electronic health records and stored in a de-identified database. RESULTS The prevalence of SARD was 24%. Undetermined diagnosis (17%), skin disorders (12.1%), and fibromyalgia/chronic pain syndrome/chronic fatigue syndrome (11.8%) were the most common non-SARD diagnoses. Taking into account past medical history, the most common non-SARD were atopic disorders (21.2%), fibromyalgia/chronic pain syndrome/chronic fatigue syndrome (17.6%), and skin disorders (16.7%). CONCLUSIONS The ANA-DFS pattern may be indicative of an underlying antigen-antibody interaction that plays a role in either the initiation or propagation of immunologic reactions. DFS70/LEDGF is a transcription factor involved in cell survival and stress protection, and autoantibodies may inhibit its function. It is likely that there are other antibodies producing the ANA-DFS pattern besides anti-DFS70/LEDGF, and more research is necessary to identify additional antibody specificities. The ANA-DFS pattern may be an indicator of a proinflammatory microenvironment given the high frequency of symptomatic patients and disease processes with an immunologic basis (including SARD).
Collapse
|
6
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
7
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
8
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Casiano CA. Twenty years of research on the DFS70/LEDGF autoantibody-autoantigen system: many lessons learned but still many questions. AUTOIMMUNITY HIGHLIGHTS 2020; 11:3. [PMID: 32127038 PMCID: PMC7065333 DOI: 10.1186/s13317-020-0126-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA. .,Department of Medicine/Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
9
|
Bottrell A, Meng YH, Najy AJ, Hurst N, Kim S, Kim CJ, Kim ES, Moon A, Kim EJ, Park SY, Kim HRC. An oncogenic activity of PDGF-C and its splice variant in human breast cancer. Growth Factors 2019; 37:131-145. [PMID: 31542979 PMCID: PMC6872946 DOI: 10.1080/08977194.2019.1662415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite strong evidence for the involvement of PDGF signaling in breast cancer, little is known about the PDGF ligand responsible for PDGFR activation during breast cancer progression. Here, we found PDGF-C to be highly expressed in breast carcinoma cell lines. Immunohistochemical analysis of invasive breast cancer revealed an association between increased PDGF-C expression and lymph node metastases, Ki-67 proliferation index, and poor disease-free survival. We also identified a PDGF-C splice variant encoding truncated PDGF-C (t-PDGF-C) isoform lacking the signal peptide and the N-terminal CUB domain. While t-PDGF C homodimer is retained intracellularly, it can be secreted as a heterodimer with full-length PDGF-C (FL-PDGF-C). PDGF-C downregulation reduced anchorage-independent growth and matrigel invasion of MDA-MB-231 cells. Conversely, ectopic expression of t-PDGF-C enhanced phenotypic transformation and invasion in BT-549 cells expressing endogenous FL-PDGF-C. The present study provides new insights into the functional significance of PDGF-C and its splice variant in human breast cancer.
Collapse
Affiliation(s)
- Alyssa Bottrell
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Yong Hong Meng
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Abdo J. Najy
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Newton Hurst
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Seongho Kim
- Department of Oncology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Chong Jai Kim
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Eun Joo Kim
- Department of Pathology, Seoul National University Bundang Hospital, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Republic of Korea
- Co-corresponding authors: Hyeong-Reh C. Kim: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Tel: 313-577-2407, Fax: 313-577-0057, , So Yeon Park: Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea. Tel: 82-31-787-7712, Fax: 82-31-787-4012,
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
- Co-corresponding authors: Hyeong-Reh C. Kim: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Tel: 313-577-2407, Fax: 313-577-0057, , So Yeon Park: Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea. Tel: 82-31-787-7712, Fax: 82-31-787-4012,
| |
Collapse
|
10
|
Guo R, Ma Y, Zhao M, Zhang W, An G, Chen B, Song Y, Xu H, Li Y. Polymorphism rs2395655 affects LEDGF/p75 binding activity and p21WAF1/CIP1 gene expression in esophageal squamous cell carcinoma. Cancer Med 2019; 8:2313-2324. [PMID: 30854807 PMCID: PMC6536968 DOI: 10.1002/cam4.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 01/26/2023] Open
Abstract
p21WAF1/CIP1 (p21) plays critical roles in cell‐cycle regulation and DNA repair and is transcriptionally regulated through p53‐dependent or ‐independent pathways. Bioinformatic analysis predicated one stress‐response element (STRE) implicated in single nucleotide polymorphism (SNP) rs2395655 of the p21 promoter. Here, we investigated the transcriptional regulatory function of rs2395655 variant genotype and analyzed its associations with the p21 expression and clinical outcomes in esophageal squamous cell carcinoma (ESCC) patients. Luciferase assay results showed significantly increased transcriptional activity of the rs2395655 G allele‐containing p21 promoter compared with rs2395655 A allele‐containing counterpart, especially in ESCC cells with ectopic LEDGF/p75 expression. Furthermore electrophoretic mobility shift assay using the rs2395655 G or A allele‐containing probe and chromatin immunoprecipitation assay with specific anti‐LEDGF/p75 antibody indicated the potential binding activity of LEDGF/p75 with the STRE element implicated in rs2395655 G allele of the p21 promoter. Subsequent specific RNA interference‐mediated depletion or ectopic expression of LEDGF/p75 caused obviously down‐ or up‐regulated expression of p21 mRNA in ESCC cells harboring rs2395655 GG genotype but not cells with rs2395655 AA genotype. Furthermore, rs2395655 GG genotype carriers showed significantly elevated p21 protein expression and conferred survival advantage in both univariate and multivariate analyses in total 218 ESCC patients. Our findings suggest that LEDGF/p75 regulates the p21 expression in ESCC cells through interacting with STRE element implicated in polymorphism rs2395655 and the elevated p21 protein expression and rs2395655GG genotype may serve as positive prognostic factors for ESCC patients.
Collapse
Affiliation(s)
- Rong Guo
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenlong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Baojun Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yiping Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hui Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
11
|
Glucocorticoids Induce Stress Oncoproteins Associated with Therapy-Resistance in African American and European American Prostate Cancer Cells. Sci Rep 2018; 8:15063. [PMID: 30305646 PMCID: PMC6180116 DOI: 10.1038/s41598-018-33150-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoid receptor (GR) is emerging as a key driver of prostate cancer (PCa) progression and therapy resistance in the absence of androgen receptor (AR) signaling. Acting as a bypass mechanism, GR activates AR-regulated genes, although GR-target genes contributing to PCa therapy resistance remain to be identified. Emerging evidence also shows that African American (AA) men, who disproportionately develop aggressive PCa, have hypersensitive GR signaling linked to cumulative stressful life events. Using racially diverse PCa cell lines (MDA-PCa-2b, 22Rv1, PC3, and DU145) we examined the effects of glucocorticoids on the expression of two stress oncoproteins associated with PCa therapy resistance, Clusterin (CLU) and Lens Epithelium-Derived Growth Factor p75 (LEDGF/p75). We observed that glucocorticoids upregulated LEDGF/p75 and CLU in PCa cells. Blockade of GR activation abolished this upregulation. We also detected increased GR transcript expression in AA PCa tissues, compared to European American (EA) tissues, using Oncomine microarray datasets. These results demonstrate that glucocorticoids upregulate the therapy resistance-associated oncoproteins LEDGF/p75 and CLU, and suggest that this effect may be enhanced in AA PCa. This study provides an initial framework for understanding the contribution of glucocorticoid signaling to PCa health disparities.
Collapse
|
12
|
Roles of TGF β and FGF Signals in the Lens: Tropomyosin Regulation for Posterior Capsule Opacity. Int J Mol Sci 2018; 19:ijms19103093. [PMID: 30304871 PMCID: PMC6212802 DOI: 10.3390/ijms19103093] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor (TGF) β and fibroblast growth factor (FGF) 2 are related to the development of posterior capsule opacification (PCO) after lens extraction surgery and other processes of epithelial–mesenchymal transition (EMT). Oxidative stress seems to activate TGF β1 largely through reactive oxygen species (ROS) production, which in turn alters the transcription of several survival genes, including lens epithelium-cell derived growth factor (LEDGF). Higher ROS levels attenuate LEDGF function, leading to down-regulation of peroxiredoxin 6 (Prdx6). TGF β is regulated by ROS in Prdx6 knock-out lens epithelial cells (LECs) and induces the up-regulation of tropomyosins (Tpms) 1/2, and EMT of LECs. Mouse and rat PCO are accompanied by elevated expression of Tpm2. Further, the expression of Tpm1/2 is induced by TGF β2 in LECs. Importantly, we previously showed that TGF β2 and FGF2 play regulatory roles in LECs in a contrasting manner. An injury-induced EMT of a mouse lens as a PCO model was attenuated in the absence of Tpm2. In this review, we present findings regarding the roles of TGF β and FGF2 in the differential regulation of EMT in the lens. Tpms may be associated with TGF β2- and FGF2-related EMT and PCO development.
Collapse
|
13
|
Ríos-Colón L, Cajigas-Du Ross CK, Basu A, Elix C, Alicea-Polanco I, Sanchez TW, Radhakrishnan V, Chen CS, Casiano CA. Targeting the stress oncoprotein LEDGF/p75 to sensitize chemoresistant prostate cancer cells to taxanes. Oncotarget 2018; 8:24915-24931. [PMID: 28212536 PMCID: PMC5421899 DOI: 10.18632/oncotarget.15323] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/13/2016] [Indexed: 12/05/2022] Open
Abstract
Prostate cancer (PCa) is associated with chronic prostate inflammation resulting in activation of stress and pro-survival pathways that contribute to disease progression and chemoresistance. The stress oncoprotein lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, promotes cellular survival against environmental stressors, including oxidative stress, radiation, and cytotoxic drugs. Furthermore, LEDGF/p75 overexpression in PCa and other cancers has been associated with features of tumor aggressiveness, including resistance to cell death and chemotherapy. We report here that the endogenous levels of LEDGF/p75 are upregulated in metastatic castration resistant prostate cancer (mCRPC) cells selected for resistance to the taxane drug docetaxel (DTX). These cells also showed resistance to the taxanes cabazitaxel (CBZ) and paclitaxel (PTX), but not to the classical inducer of apoptosis TRAIL. Silencing LEDGF/p75 effectively sensitized taxane-resistant PC3 and DU145 cells to DTX and CBZ, as evidenced by a significant decrease in their clonogenic potential. While TRAIL induced apoptotic blebbing, caspase-3 processing, and apoptotic LEDGF/p75 cleavage, which leads to its inactivation, in both taxane-resistant and -sensitive PC3 and DU145 cells, treatment with DTX and CBZ failed to robustly induce these signature apoptotic events. These observations suggested that taxanes induce both caspase-dependent and -independent cell death in mCRPC cells, and that maintaining the structural integrity of LEDGF/p75 is critical for its role in promoting taxane-resistance. Our results further establish LEDGF/p75 as a stress oncoprotein that plays an important role in taxane-resistance in mCRPC cells, possibly by antagonizing drug-induced caspase-independent cell death.
Collapse
Affiliation(s)
- Leslimar Ríos-Colón
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Christina K Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Catherine Elix
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Ivana Alicea-Polanco
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Vinodh Radhakrishnan
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Department of Medicine, Division of Hematology/Medical Oncology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.,Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
14
|
Singh DK, Gholamalamdari O, Jadaliha M, Ling Li X, Lin YC, Zhang Y, Guang S, Hashemikhabir S, Tiwari S, Zhu YJ, Khan A, Thomas A, Chakraborty A, Macias V, Balla AK, Bhargava R, Janga SC, Ma J, Prasanth SG, Lal A, Prasanth KV. PSIP1/p75 promotes tumorigenicity in breast cancer cells by promoting the transcription of cell cycle genes. Carcinogenesis 2017. [PMID: 28633434 DOI: 10.1093/carcin/bgx062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease, both at the pathological and molecular level, and several chromatin-associated proteins play crucial roles in BC initiation and progression. Here, we demonstrate the role of PSIP1 (PC4 and SF2 interacting protein)/p75 (LEDGF) in BC progression. PSIP1/p75, previously identified as a chromatin-adaptor protein, is found to be upregulated in basal-like/triple negative breast cancer (TNBC) patient samples and cell lines. Immunohistochemistry in tissue arrays showed elevated levels of PSIP1 in metastatic invasive ductal carcinoma. Survival data analyses revealed that the levels of PSIP1 showed a negative association with TNBC patient survival. Depletion of PSIP1/p75 significantly reduced the tumorigenicity and metastatic properties of TNBC cell lines while its over-expression promoted tumorigenicity. Further, gene expression studies revealed that PSIP1 regulates the expression of genes controlling cell-cycle progression, cell migration and invasion. Finally, by interacting with RNA polymerase II, PSIP1/p75 facilitates the association of RNA pol II to the promoter of cell cycle genes and thereby regulates their transcription. Our findings demonstrate an important role of PSIP1/p75 in TNBC tumorigenicity by promoting the expression of genes that control the cell cycle and tumor metastasis.
Collapse
Affiliation(s)
- Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mahdieh Jadaliha
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xiao Ling Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yang Zhang
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA
| | - Shuomeng Guang
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA
| | - Seyedsasan Hashemikhabir
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202,USA
| | - Saumya Tiwari
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA
| | - Yuelin J Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abid Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Virgilia Macias
- Department of Pathology, College of Medicine, University of Illinois at Chicago,Chicago, IL 60612, USA
| | - Andre K Balla
- Department of Pathology, College of Medicine, University of Illinois at Chicago,Chicago, IL 60612, USA
| | - Rohit Bhargava
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA.,Departments of Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering and Chemistry, UIUC, Urbana, IL, USA
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202,USA
| | - Jian Ma
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, UIUC, Urbana, IL 61801, USA.,School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ashish Lal
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801,USA, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Navarrete-Dechent C, Pérez-Mateluna G, Silva-Valenzuela S, Vera-Kellet C, Borzutzky A. Humoral and Cellular Autoreactivity to Epidermal Proteins in Atopic Dermatitis. Arch Immunol Ther Exp (Warsz) 2016; 64:435-442. [PMID: 27147107 DOI: 10.1007/s00005-016-0400-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Atopic dermatitis (AD), a chronic relapsing inflammatory disease of the skin, is an important public health concern affecting 10-20 % of children worldwide. The etiology and pathogenesis of AD involve the interplay of genetic and environmental factors, including abnormalities in skin integrity and a skewed immune system usually driven by a Th2 phenotype in childhood with a switch to Th1 in the chronic phase of disease. Children and adults with AD commonly have elevated IgE levels directed to multiple different antigens, including aeroallergens, food allergens, and microbial proteins. IgE targeting self-antigens from epidermal proteins have been detected in up to 91 % of patients, particularly in severe persistent AD. It has been suggested that the occurrence of autoreactivity develops in early childhood. However, it is not clear yet if autoreactive IgEs in patients with AD are pathogenic or just an epiphenomenon. The fact that these autoantibodies are associated with severity and are not present in other allergic or skin diseases favors the pathogenicity of IgE-mediated autoreactivity in AD. In this review, we evaluate the pathogenesis of AD and the emerging role of autoreactivity to various keratinocyte antigens involving both the humoral and cellular components of the immune system.
Collapse
Affiliation(s)
- Cristián Navarrete-Dechent
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Pérez-Mateluna
- Department of Pediatric Infectious Diseases and Immunology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Portugal 61, Santiago, 8330034, Chile
| | - Sergio Silva-Valenzuela
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Vera-Kellet
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arturo Borzutzky
- Department of Pediatric Infectious Diseases and Immunology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Portugal 61, Santiago, 8330034, Chile. .,Millennium Institute on Immunology and Immunotherapy, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
16
|
French JD, Johnatty SE, Lu Y, Beesley J, Gao B, Kalimutho M, Henderson MJ, Russell AJ, Kar S, Chen X, Hillman KM, Kaufmann S, Sivakumaran H, O'Reilly M, Wang C, Korbie DJ, Australian Ovarian Cancer Study Group, Australian Cancer Study, Lambrechts D, Despierre E, Van Nieuwenhuysen E, Lambrechts S, Vergote I, Karlan B, Lester J, Orsulic S, Walsh C, Fasching PA, Beckmann MW, Ekici AB, Hein A, Matsuo K, Hosono S, Pisterer J, Hillemanns P, Nakanishi T, Yatabe Y, Goodman MT, Lurie G, Matsuno RK, Thompson PJ, Pejovic T, Bean Y, Heitz F, Harter P, du Bois A, Schwaab I, Hogdall E, Kjaer SK, Jensen A, Hogdall C, Lundvall L, Engelholm SA, Brown B, Flanagan JM, Metcalf MD, Siddiqui N, Sellers T, Fridley B, Cunningham J, Schildkraut JM, Iversen E, Weber RP, Brennan D, Berchuck A, Pharoah P, Harnett P, Norris MD, Haber M, Goode EL, Lee JS, Khanna KK, Meyer KB, Chenevix-Trench G, deFazio A, Edwards SL, MacGregor S. Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer. Oncotarget 2016; 7:6353-68. [PMID: 26840454 PMCID: PMC4872719 DOI: 10.18632/oncotarget.7047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Chromatin Immunoprecipitation
- Cohort Studies
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- Electrophoretic Mobility Shift Assay
- Enhancer Elements, Genetic/genetics
- Fallopian Tube Neoplasms/drug therapy
- Fallopian Tube Neoplasms/genetics
- Fallopian Tube Neoplasms/mortality
- Fallopian Tube Neoplasms/pathology
- Female
- Follow-Up Studies
- Germ-Line Mutation/genetics
- Humans
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Peritoneal Neoplasms/drug therapy
- Peritoneal Neoplasms/genetics
- Peritoneal Neoplasms/mortality
- Peritoneal Neoplasms/pathology
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
| | | | - Yi Lu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Bo Gao
- Department of Gynaecological Oncology and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia
| | | | | | | | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xiaoqing Chen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - Martin O'Reilly
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Chen Wang
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Darren J. Korbie
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Australian Ovarian Cancer Study Group
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Gynaecological Oncology and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium and Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
- Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Evelyn Despierre
- Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Sandrina Lambrechts
- Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ignace Vergote
- Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Beth Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen- Nuremberg, Comprehensive Cancer Center Erlangen-Nuremberg, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen- Nuremberg, Comprehensive Cancer Center Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen- Nuremberg, Comprehensive Cancer Center Erlangen-Nuremberg, Erlangen, Germany
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | - Peter Hillemanns
- Departments of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Toru Nakanishi
- Department of Gynecology, Aichi Cancer Center Central Hospital, Nagoya, Aichi, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Central Hospital, Nagoya, Aichi, Japan
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Galina Lurie
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Rayna K. Matsuno
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Pamela J. Thompson
- Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yukie Bean
- Department of Obstetrics and Gynecology, Oregon Health and Science University and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Ira Schwaab
- Institut für Humangenetik Wiesbaden, Germany
| | - Estrid Hogdall
- Danish Cancer Society Research Center, Unit of Virus, Lifestyle and Genes, Copenhagen, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Susanne K. Kjaer
- Danish Cancer Society Research Center, Unit of Virus, Lifestyle and Genes, Copenhagen, Denmark
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Denmark
| | - Allan Jensen
- Danish Cancer Society Research Center, Unit of Virus, Lifestyle and Genes, Copenhagen, Denmark
| | - Claus Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Denmark
| | - Lene Lundvall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Denmark
| | | | - Bob Brown
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - James M. Flanagan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Nadeem Siddiqui
- North Glasgow University Hospitals NHS Trust, Stobhill Hospital, Glasgow, UK
| | - Thomas Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Julie Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joellen M. Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
- Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC, USA
| | - Ed Iversen
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Donal Brennan
- Queensland Centre for Gynaecological Cancer, Brisbane, Australia
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Harnett
- Crown Princess Mary Cancer Centre and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia
| | | | - Michelle Haber
- Children's Cancer Institute Australia, Randwick, Australia
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Jason S. Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerstin B. Meyer
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Anna deFazio
- Department of Gynaecological Oncology and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia
| | | | | |
Collapse
|
17
|
Basu A, Cajigas-Du Ross CK, Rios-Colon L, Mediavilla-Varela M, Daniels-Wells TR, Leoh LS, Rojas H, Banerjee H, Martinez SR, Acevedo-Martinez S, Casiano CA. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer. PLoS One 2016; 11:e0146549. [PMID: 26771192 PMCID: PMC4714844 DOI: 10.1371/journal.pone.0146549] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3), whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
- * E-mail:
| | - Christina K. Cajigas-Du Ross
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Leslimar Rios-Colon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Melanie Mediavilla-Varela
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Tracy R. Daniels-Wells
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Lai Sum Leoh
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Heather Rojas
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Hiya Banerjee
- Novartis Pharmaceutical Oncology, East Hanover, New Jersey 08807, United States of America
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Stephanny Acevedo-Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350, United States of America
| |
Collapse
|
18
|
Arai M, Kawachi T, Kotoku N, Nakata C, Kamada H, Tsunoda SI, Tsutsumi Y, Endo H, Inoue M, Sato H, Kobayashi M. Furospinosulin-1, Marine Spongean Furanosesterterpene, Suppresses the Growth of Hypoxia-Adapted Cancer Cells by Binding to Transcriptional Regulators p54(nrb) and LEDGF/p75. Chembiochem 2015; 17:181-9. [PMID: 26561285 DOI: 10.1002/cbic.201500519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/09/2022]
Abstract
Hypoxia-adapted cancer cells in tumors contribute to the pathological progression of cancer. Cancer research has therefore focused on the identification of molecules responsible for hypoxia adaptation in cancer cells, as well as the development of new compounds with action against hypoxia-adapted cancer cells. The marine natural product furospinosulin-1 (1) has displayed hypoxia-selective growth inhibition against cultured cancer cells, and has shown in vivo anti-tumor activity, although its precise mode of action and molecular targets remain unclear. In this study, we found that 1 is selectively effective against hypoxic regions of tumors, and that it directly binds to the transcriptional regulators p54(nrb) and LEDGF/p75, which have not been previously identified as mediators of hypoxia adaptation in cancer cells.
Collapse
Affiliation(s)
- Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.
| | - Takashi Kawachi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Naoyuki Kotoku
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Chiaki Nakata
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Haruhiko Kamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, 567-0085, Japan
| | - Shin-ichi Tsunoda
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hiroko Endo
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| | - Masahiro Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| | - Hiroki Sato
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Motomasa Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Basu A, Woods-Burnham L, Ortiz G, Rios-Colon L, Figueroa J, Albesa R, Andrade LE, Mahler M, Casiano CA. Specificity of antinuclear autoantibodies recognizing the dense fine speckled nuclear pattern: Preferential targeting of DFS70/LEDGFp75 over its interacting partner MeCP2. Clin Immunol 2015; 161:241-50. [PMID: 26235378 PMCID: PMC4712632 DOI: 10.1016/j.clim.2015.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
Human antinuclear autoantibodies (ANAs) targeting the dense fine speckled (DFS) nuclear protein DFS70, commonly known as lens epithelium derived growth factor p75 (LEDGFp75), present a clinical puzzle since their significance remains elusive. While their frequencies are low in ANA-positive autoimmune rheumatic diseases, they are relatively elevated in clinical laboratory referrals, diverse inflammatory conditions, and 'apparently' healthy individuals. We reported previously that DFS70/LEDGFp75 is an autoantigen in prostate cancer that closely interacts with another 70kD DFS nuclear protein, methyl CpG binding protein 2 (MeCP2). This led us to investigate if anti-DFS sera exclusively target DFS70/LEDGFp75 or also recognize MeCP2. Using several complementary autoantibody detection platforms and cellular/molecular approaches we evaluated 65 human sera producing anti-DFS autoantibodies. Our results show that these antibodies are highly specific for DFS70/LEDGFp75 and do not target MeCP2. Establishing the specificity of anti-DFS autoantibodies has implications for increasing our understanding of their biological significance and clinical utility.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Greisha Ortiz
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leslimar Rios-Colon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Johnny Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Roger Albesa
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, Immunology Division, Fleury Medicine and Health Laboratories, Sao Paulo, Brazil
| | - Michael Mahler
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
20
|
Filosa S, Pecorelli A, D'Esposito M, Valacchi G, Hajek J. Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free Radic Biol Med 2015; 88:81-90. [PMID: 25960047 DOI: 10.1016/j.freeradbiomed.2015.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/27/2023]
Abstract
Rett syndrome (RTT, MIM 312750) is a rare and orphan progressive neurodevelopmental disorder affecting girls almost exclusively, with a frequency of 1/15,000 live births of girls. The disease is characterized by a period of 6 to 18 months of apparently normal neurodevelopment, followed by early neurological regression, with a progressive loss of acquired cognitive, social, and motor skills. RTT is known to be caused in 95% of the cases by sporadic de novo loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene encoding methyl-CpG binding protein 2 (MeCP2), a nuclear protein able to regulate gene expression. Despite almost two decades of research into the functions and role of MeCP2, little is known about the mechanisms leading from MECP2 mutation to the disease. Oxidative stress (OS) is involved in the pathogenic mechanisms of several neurodevelopmental and neurodegenerative disorders, although in many cases it is not clear whether OS is a cause or a consequence of the pathology. Fairly recently, the presence of a systemic OS has been demonstrated in RTT patients with a strong correlation with the patients' clinical status. The link between MECP2 mutation and the redox imbalance found in RTT is not clear. Animal studies have suggested a possible direct correlation between Mecp2 mutation and increased OS levels. In addition, the restoration of Mecp2 function in astrocytes significantly improves the developmental outcome of Mecp2-null mice and reexpression of Mecp2 gene in the brain of null mice restored oxidative damage, suggesting that Mecp2 loss of function can be involved in oxidative brain damage. Starting from the evidence that oxidative damage in the brain of Mecp2-null mice precedes the onset of symptoms, we evaluated whether, based on the current literature, the dysfunctions described in RTT could be a consequence or, in contrast, could be caused by OS. We also analyzed whether therapies that at least partially treated some RTT symptoms can play a role in defense against OS. At this stage we can propose that OS could be one of the main causes of the dysfunctions observed in RTT. In addition, the major part of the therapies recommended to alleviate RTT symptoms have been shown to interfere with oxidative homeostasis, suggesting that MeCP2 could somehow be involved in the protection of the brain from OS.
Collapse
Affiliation(s)
- Stefania Filosa
- Institute of Biosciences and BioResources-CNR, UOS Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati-Traverso"-CNR, Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Joussef Hajek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
21
|
Impact of Chromatin on HIV Replication. Genes (Basel) 2015; 6:957-76. [PMID: 26437430 PMCID: PMC4690024 DOI: 10.3390/genes6040957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.
Collapse
|
22
|
Ochs RL, Mahler M, Basu A, Rios-Colon L, Sanchez TW, Andrade LE, Fritzler MJ, Casiano CA. The significance of autoantibodies to DFS70/LEDGFp75 in health and disease: integrating basic science with clinical understanding. Clin Exp Med 2015; 16:273-93. [PMID: 26088181 PMCID: PMC4684813 DOI: 10.1007/s10238-015-0367-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022]
Abstract
Antinuclear autoantibodies (ANAs) displaying the nuclear dense fine speckled immunofluorescence (DFS-IIF) pattern in HEp-2 substrates are commonly observed in clinical laboratory referrals. They target the dense fine speckled autoantigen of 70 kD (DFS70), most commonly known as lens epithelium-derived growth factor p75 (LEDGFp75). Interesting features of these ANAs include their low frequency in patients with systemic autoimmune rheumatic diseases (SARD), elevated prevalence in apparently healthy individuals, IgG isotype, strong trend to occur as the only ANA specificity in serum, and occurrence in moderate to high titers. These autoantibodies have also been detected at varied frequencies in patients with diverse non-SARD inflammatory and malignant conditions such as atopic diseases, asthma, eye diseases, and prostate cancer. These observations have recently stimulated vigorous research on their clinical and biological significance. Some studies have suggested that they are natural, protective antibodies that could serve as biomarkers to exclude a SARD diagnosis. Other studies suggest that they might be pathogenic in certain contexts. The emerging role of DFS70/LEDGFp75 as a stress protein relevant to human acquired immunodeficiency syndrome, cancer, and inflammation also points to the possibility that these autoantibodies could be sensors of cellular stress and inflammation associated with environmental factors. In this comprehensive review, we integrate our current knowledge of the biology of DFS70/LEDGFp75 with the clinical understanding of its autoantibodies in the contexts of health and disease.
Collapse
Affiliation(s)
- Robert L Ochs
- Ventana Medical, Roche Tissue Diagnostics, Tucson, AZ, USA
| | - Michael Mahler
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Anamika Basu
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Leslimar Rios-Colon
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Tino W Sanchez
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, and Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
| | | | - Carlos A Casiano
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA.
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
23
|
The same site on the integrase-binding domain of lens epithelium-derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 2014; 124:3730-7. [PMID: 25305204 DOI: 10.1182/blood-2014-01-550079] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) is a chromatin-associated protein implicated in leukemia and HIV type 1 infection. LEDGF associates with mixed-lineage leukemia (MLL) fusion proteins and menin and is required for leukemic transformation. To better understand the molecular mechanism underlying the LEDGF integrase-binding domain (IBD) interaction with MLL fusion proteins in leukemia, we determined the solution structure of the MLL-IBD complex. We found a novel MLL motif, integrase domain binding motif 2 (IBM2), which binds to a well-defined site on IBD. Point mutations within IBM2 abolished leukemogenic transformation by MLL-AF9, validating that this newly identified motif is essential for the oncogenic activity of MLL fusion proteins. Interestingly, the IBM2 binding site on IBD overlaps with the binding site for the HIV integrase (IN), and IN was capable of efficiently sequestering IBD from the menin-MLL complex. A short IBM2 peptide binds to IBD directly and inhibits both the IBD-MLL/menin and IBD-IN interactions. Our findings show that the same site on IBD is involved in binding to MLL and HIV-IN, revealing an attractive approach to simultaneously target LEDGF in leukemia and HIV.
Collapse
|
24
|
Integrase as a Novel Target for the Inhibition of Human Immunodeficiency Virus Type 1 Infection: Current Status and Future Perspectives. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Xu X, Powell DW, Lambring CJ, Puckett AH, Deschenes L, Prough RA, Poeschla EM, Samuelson DJ. Human MCS5A1 candidate breast cancer susceptibility gene FBXO10 is induced by cellular stress and correlated with lens epithelium-derived growth factor (LEDGF). Mol Carcinog 2014; 53:300-13. [PMID: 23138933 PMCID: PMC9737042 DOI: 10.1002/mc.21977] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/14/2022]
Abstract
Genetic variation and candidate genes associated with breast cancer susceptibility have been identified. Identifying molecular interactions between associated genetic variation and cellular proteins may help to better understand environmental risk. Human MCS5A1 breast cancer susceptibility associated SNP rs7042509 is located in F-box protein 10 (FBXO10). An orthologous Rattus norvegicus DNA-sequence that contains SNV ss262858675 is located in rat Mcs5a1, which is part of a mammary carcinoma susceptibility locus controlling tumor development in a non-mammary cell-autonomous manner via an immune cell-mediated mechanism. Higher Fbxo10 expression in T cells is associated with Mcs5a increased susceptibility alleles. A common DNA-protein complex bound human and rat sequences containing MCS5A1/Mcs5a1 rs7042509/ss262858675 in electrophoretic mobility shift assays (EMSAs). Lens epithelium-derived growth factor (LEDGF), a stress-response protein, was identified as a candidate to bind both human and rat sequences using DNA-pulldown and mass spectrometry. LEDGF binding was confirmed by LEDGF-antibody EMSA and chromatin immunoprecipitation (ChIP). Ectopic expression of LEDGF/p75 increased luciferase activities of co-transfected reporters containing both human and rat orthologs. Over-expressed LEDGF/p75 increased endogenous FBXO10 mRNA levels in Jurkat cells, a human T-cell line, implying LEDGF may be involved in increasing FBXO10 transcript levels. Oxidative and thermal stress of Jurkat cells increased FBXO10 and LEDGF expression, further supporting a hypothesis that LEDGF binds to a regulatory region of FBXO10 and increases expression during conditions favoring carcinogenesis. We conclude that FBXO10, a candidate breast cancer susceptibility associated gene, is induced by cellular stress and LEDGF may play a role in expression of this gene.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - David W. Powell
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky,Department of Medicine/Nephrology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Courtney J. Lambring
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Aaron H. Puckett
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Lucas Deschenes
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Russell A. Prough
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky,Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, Kentucky
| | - Eric M. Poeschla
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - David J. Samuelson
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, Kentucky,Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, Kentucky,Correspondence to: Department of Biochemistry & Molecular Biology, Center for Genetics & Molecular Medicine, University of Louisville, School of Medicine, HSC-A Building, Room 708, 319 Abraham Flexner Way, Louisville, KY 40292
| |
Collapse
|
26
|
Leitz J, Reuschenbach M, Lohrey C, Honegger A, Accardi R, Tommasino M, Llano M, von Knebel Doeberitz M, Hoppe-Seyler K, Hoppe-Seyler F. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene. PLoS Pathog 2014; 10:e1003957. [PMID: 24604027 PMCID: PMC3946365 DOI: 10.1371/journal.ppat.1003957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/13/2014] [Indexed: 12/20/2022] Open
Abstract
The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. Specific types of human papillomaviruses (HPVs) are closely linked to the development of malignant tumors, such as cervical cancer. Virtually all cervical cancers contain HPV DNA and the tumorigenic growth behavior of cervical cancer cells is dependent on the activity of two viral oncogenes, called E6 and E7. It is important to study the activities by which the HPV oncogenes can support the growth of tumor cells. This should allow new insights into the molecular mechanisms of virus-induced carcinogenesis and could also be useful for developing novel approaches for cancer therapy. We here show that the HPV oncogenes stimulate and maintain expression of the cellular LEDGF gene in HPV-positive cancer cells. Consistently, pre-malignant and malignant lesions of the cervix exhibit significantly increased LEDGF protein levels. LEDGF is crucial for the protection of tumor cells against various forms of cellular stress, including DNA damage. LEDGF stimulation by the viral oncogenes could be a critical survival mechanism by which HPVs support the growth of cervical cancer cells and provide resistance towards chemo- and radiotherapy in the clinic.
Collapse
Affiliation(s)
- Jenny Leitz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (KHS); (FHS)
| |
Collapse
|
27
|
Serrao E, Wang CH, Frederick T, Lee CL, Anthony P, Arribas-Layton D, Baker K, Millstein J, Kovacs A, Neamati N. Alteration of select gene expression patterns in individuals infected with HIV-1. J Med Virol 2014; 86:678-86. [PMID: 24482297 DOI: 10.1002/jmv.23872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 01/06/2023]
Abstract
Multiple human proteins have been shown to both support and restrict viral replication, and confirmation of virus-associated changes in the expression of these genes is relevant for future therapeutic efforts. In this study a well-characterized panel of 49 individuals either infected with HIV-1 or uninfected was compiled and analyzed for the effect of HIV infection status, viral load, and antiretroviral treatment on specific gene expression. mRNA was extracted and reverse transcribed from purified CD4+ cells, and quantitative real-time PCR was utilized to scrutinize differences in the expression of four host genes that have been demonstrated to either stimulate (HSP90 and LEDGF/p75) or restrict (p21/WAF1 and APOBEC3G) proviral integration. HIV infection status was associated with slight to moderate alterations in the expression of all four genes. After adjusting for age, mRNA expression levels of HSP90, LEDGF/p75 and APOBEC3G were found to all be decreased in infected patients compared to healthy controls by 1.43-, 1.26-, and 4.71-fold, respectively, while p21/WAF1 expression was increased 2.35-fold. Furthermore, individuals receiving raltegravir exhibited a 1.28-fold reduction in LEDGF/p75 compared to those on non-raltegravir antiretroviral treatment. Identification of these and similar HIV-induced changes in gene expression may be valuable for delineating the extent of host cell molecular mechanisms stimulating viral replication.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS One 2013; 8:e81217. [PMID: 24312278 PMCID: PMC3842248 DOI: 10.1371/journal.pone.0081217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75) contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR) colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral integration, DNA repair or transcriptional regulation.
Collapse
Affiliation(s)
- Mehdi Morchikh
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Monica Naughtin
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Francesca Di Nunzio
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Johan Xavier
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Charneau
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Yves Jacob
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Centre National de la Recherche Scientifique, Paris, France
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marc Lavigne
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Fischer S, Procopio S, Becker T. Self-cloning brewing yeast: a new dimension in beverage production. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2092-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Bhargavan B, Chhunchha B, Fatma N, Kubo E, Kumar A, Singh DP. Epigenetic repression of LEDGF during UVB exposure by recruitment of SUV39H1 and HDAC1 to the Sp1-responsive elements within LEDGF promoter CpG island. Epigenetics 2013; 8:268-80. [PMID: 23386123 DOI: 10.4161/epi.23861] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression level of lens epithelial derived growth factor (LEDGF) is vital for LEDGF-mediated cell survival and cytoprotection against proapoptotic stimuli. We previously demonstrated that LEDGF is transcriptionally regulated by Sp1-responsive elements within a CpG island in the LEDGF promoter. Herein, we report on the existence of epigenetic signaling involved in the repression of LEDGF transcription in lens epithelial cells (LECs) facing UVB. UVB exposure led to histone H3 dimethylation and deacetylation at its CpG island, where a histone deacetylase/histone methylase (HDAC1/SUV39H1) complex was recruited. Exposure of LECs to UVB stress altered LEDGF protein and mRNA expression as well as promoter activity, while failing to methylate the CpG island. These events were correlated with increased reactive oxygen species (ROS) and increased cell death. LEDGF promoter activity and expression remained unaltered after 5-Aza treatment, but were relieved with tricostatin A, an inhibitor of HDACs. Expression analysis disclosed that UVB radiation altered the global expression levels of acetylated histone proteins, diminished total histone acetyltransferase (HAT) activity and increased HDAC activity and HDAC1 expression. In silico analysis of LEDGF proximal promoter and ChIP analyses disclosed HDAC1/SUV39H1 complex anchored to the -170/-10 nt promoter regions at Sp1-responsive elements and also attenuated Sp1 binding, resulting in HDAC1- and SUV39H1-dependent deacetylation and dimethylation of H3 at K9. Acetylation of H3K9 was essential for LEDGF active transcription, while enrichment of H3K9me2 at Sp1-responsive elements within CpGs (-170/-10) by UVB radiation repressed LEDGF transcription. Our study may contribute to understanding diseases associated with LEDGF aberrant expression due to specific epigenetic modifications, including blinding disorders.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
31
|
Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2012; 20:581-8. [PMID: 23171920 DOI: 10.1038/gt.2012.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Replication-deficient retroviruses have been successfully utilized as vectors, offering an efficient, stable method of therapeutic gene delivery. Many examples exist proving this mode of integrative gene transfer is both effective and safe in cultured systems and clinical trials. Along with their success, severe side effects have occurred with early retroviral vectors causing a shift in the approach to vector design before further clinical testing. Several alternative delivery methods are available but lentiviral vectors (LV) are among the most favorable as they are already well understood. LV offer safer integration site selection profiles and a lower degree of genotoxicity, compared with γ-retroviral vectors. Following their introduction, development of the self-inactivating vector configuration was a huge step to this mode of therapy but did not confer full protection against insertional mutagenesis. As a result integration, modeling must be improved to eventually avoid this possibility. The cellular factor LEDGF/p75 seems to play an essential role in the process of LV site selection and its interactions with chromatin are being quickly resolved. LEDGF/p75 is at the center of one example directed integration effort where recombinant products bias the integration event, a step toward fully directed integration into pre-determined benign loci. A more accurate picture of the details of LEDGF/p75 in the natural integration process is emerging, including new binding specificities, chromatin interaction kinetics and additional cellular factors. Together with next-generation sequencing technology and bio-informatics to analyze integration patterns, these advancements will lead to highly focused directed integration, accelerating wide-spread acceptance of LV for gene therapy.
Collapse
|
32
|
Ishihara K, Fatma N, Bhargavan B, Chhunchha B, Kubo E, Dey S, Takamura Y, Kumar A, Singh DP. Lens epithelium-derived growth factor deSumoylation by Sumo-specific protease-1 regulates its transcriptional activation of small heat shock protein and the cellular response. FEBS J 2012; 279:3048-70. [PMID: 22748127 DOI: 10.1111/j.1742-4658.2012.08686.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lens epithelium-derived growth factor (LEDGF), a ubiquitously expressed nuclear protein, acts by interacting with DNA and protein and is involved in widely varying cellular functions. Despite its importance, the mechanism(s) that regulate naturally occurring LEDGF activity are unidentified. In the present study, we report that LEDGF is constitutively Sumoylated, and that the dynamical regulatory mechanism(s) (i.e. Sumoylation and deSumoylation) act as a molecular switch in modulating the DNA-binding and transcriptional activity of LEDGF with the functional consequences. Using bioinformatics analysis coupled with in vitro and in vivo Sumoylation assays, we found that lysine (K) 364 of LEDGF was Sumoylated, repressing its transcriptional activity. Conversely, mutation of K364 to arginine (R) or deSumoylation by small ubiquitin-like modifier (Sumo)-specific protease-1, a nuclear deSumoylase, enhanced the transactivation capacity of LEDGF and its cellular abundance. The enhancements were directly correlated with an increase in the DNA-binding activity and small heat shock protein transcription of LEDGF, whereas the process was reversed in cells overexpressing Sumo1. Interestingly, cells expressing Sumoylation-deficient pEGFP-K364R protein showed increased cellular survival compared to wild-type LEDGF protein. The findings provide insights into the regulation and regulatory functions of LEDGF in Sumoylation-dependent transcriptional control that may be essential for modifying the physiology of cells to maintain cellular homeostasis. These studies also provide new evidence of the important role of post-translational modification in controlling LEDGF function.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Thonel A, Le Mouël A, Mezger V. Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 2012; 44:1593-612. [PMID: 22750029 DOI: 10.1016/j.biocel.2012.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/16/2022]
Abstract
The members of the small heat shock protein (sHSP) family are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy, particularly in cancer. The molecular mechanisms that regulate their transcription, in normal, stress, or pathological conditions, are characterized by extreme complexity and subtlety. Although historically linked to the heat shock transcription factors (HSFs), the stress-induced or developmental expression of the diverse members, including HSPB1/Hsp27/Hsp25, αA-crystallin/HSPB4, and αB-crystallin/HSPB5, relies on the combinatory effects of many transcription factors. Coupled with remarkably different cis-element architectures in the sHsp regulatory regions, they confer to each member its developmental expression or stress-inducibility. For example, multiple regulatory pathways coordinate the spatio-temporal expression of mouse αA-, αB-crystallin, and Hsp25 genes during lens development, through the action of master genes, like the large Maf family proteins and Pax6, but also HSF4. The inducibility of Hsp27 and αB-crystallin transcription by various stresses is exerted by HSF-dependent mechanisms, by which concomitant induction of Hsp27 and αB-crystallin expression is observed. In contrast, HSF-independent pathways can lead to αB-crystallin expression, but not to Hsp27 induction. Not surprisingly, deregulation of the expression of sHSP is associated with various pathologies, including cancer, neurodegenerative, or cardiac diseases. However, many questions remain to be addressed, and further elucidation of the developmental mechanisms of sHsp gene transcription might help to unravel the tissue- and stage-specific functions of this fascinating class of proteins, which might prove to be crucial for future therapeutic strategies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
|
34
|
LEDGF gene silencing impairs the tumorigenicity of prostate cancer DU145 cells by abating the expression of Hsp27 and activation of the Akt/ERK signaling pathway. Cell Death Dis 2012; 3:e316. [PMID: 22647853 PMCID: PMC3366088 DOI: 10.1038/cddis.2012.57] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lens epithelium-derived growth factor (LEDGF) maintains survival pathways by augmenting the transcription of stress-response genes such as small heat-shock protein 27. Recently, aberrant expression of LEDGF was found in prostate cancer (PC). Herein, we showed that LEDGF overexpression upregulated Hsp27 in PC cells, DU145, PC-3 and LNCaP and promoted antiapoptotic pathways in PCs. We found that these cells had higher abundance of Hsp27, which was correlated with the levels of LEDGF expression. Transactivation assay in DU145 cells revealed that transactivation of Hsp27 was related to the magnitude of LEDGF expression. Silencing of LEDGF in DU145 cells abrogated Hsp27 expression and inhibited stimulated cell proliferation, invasiveness and migration. These cells were arrested in S and G2 phase, and failed to accumulate cyclin B1, and showed increased apoptosis. Furthermore, LEDGF-depleted DU145 cells displayed elevated Bax and cleaved caspase 9 expression and reduced levels of Bcl2, Bcl-XL. The activated survival pathway(s), ERK1/2 and Akt, were selectively decreased in these cells, which characteristically have lower tumorigenicity. Conversely, the depleted cells, when re-overexpressed with LEDGF or Hsp27, regained tumorigenic properties. Collectively, results reveal the involvement of LEDGF-mediated elevated expression of Hsp27-dependent survival pathway(s) in PC. Our findings suggest new lines of investigation aimed at developing therapies by targeting LEDGF or its aberrant expression-associated stimulated antiapoptotic pathway(s).
Collapse
|
35
|
Singh DP, Bhargavan B, Chhunchha B, Kubo E, Kumar A, Fatma N. Transcriptional protein Sp1 regulates LEDGF transcription by directly interacting with its cis-elements in GC-rich region of TATA-less gene promoter. PLoS One 2012; 7:e37012. [PMID: 22615874 PMCID: PMC3353957 DOI: 10.1371/journal.pone.0037012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/11/2012] [Indexed: 02/02/2023] Open
Abstract
LEDGF/p75 interacts with DNA/protein to regulate gene expression and function. Despite the recognized diversity of function of LEDGF/p75, knowledge of its transregulation is in its infancy. Here we report that LEDGF/p75 gene is TATA-less, contains GC-rich cis elements and is transcriptionally regulated by Sp1 involving small ubiquitin-like modifier (Sumo1). Using different cell lines, we showed that Sp1 overexpression increased the level of LEDGF/p75 protein and mRNA expression in a concentration-dependent fashion. In contrast, RNA interference depletion of intrinsic Sp1 or treatment with artemisinin, a Sp1 inhibitor, reduced expression of LEDGF/p75, suggesting Sp1-mediated regulation of LEDGF/p75. In silico analysis disclosed three evolutionarily conserved, putative Sp1 sites within LEDGF/p75 proximal promoter (−170/+1 nt). DNA-binding and transactivation assays using deletion and point mutation constructs of LEDGF/p75 promoter-CAT revealed that all Sp1 sites (−50/−43, −109/−102 and −146/−139) differentially regulate LEDGF/p75. Cotransfection studies with Sp1 in Drosophila cells that were Sp1-deficient, showed increased LEDGF/p75 transcription, while in lens epithelial cells (LECs) promoter activity was inhibited by artemisinin. These events were correlated with levels of endogenous Sp1-dependent LEDGF/p75 expression, and higher resistance to UVB-induced cell death. ChIP and transactivation assays showed that Sumoylation of Sp1 repressed its transcriptional activity as evidenced through its reduced binding to GC-box and reduced ability to activate LEDGF/p75 transcription. As whole, results revealed the importance of Sp1 in regulating expression of LEDGF/p75 gene and add to our knowledge of the factors that control LEDGF/p75 within cellular microenvironments, potentially providing a foundation for LEDGF/p75 expression-based transcription therapy.
Collapse
Affiliation(s)
- Dhirendra P Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.
| | | | | | | | | | | |
Collapse
|
36
|
Basu A, Drame A, Muñoz R, Gijsbers R, Debyser Z, De Leon M, Casiano CA. Pathway specific gene expression profiling reveals oxidative stress genes potentially regulated by transcription co-activator LEDGF/p75 in prostate cancer cells. Prostate 2012; 72:597-611. [PMID: 21796653 PMCID: PMC3227744 DOI: 10.1002/pros.21463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/29/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lens epithelium-derived growth factor p75 (LEDGF/p75) is a stress survival transcription co-activator and autoantigen that is overexpressed in tumors, including prostate cancer (PCa). This oncoprotein promotes resistance to cell death induced by oxidative stress and chemotherapy by mechanisms that remain unclear. To get insights into these mechanisms we identified candidate target stress genes of LEDGF/p75 using pathway-specific gene expression profiling in PCa cells. METHODS A "Human oxidative stress and antioxidant defense" qPCR array was used to identify genes exhibiting significant expression changes in response to knockdown or overexpression of LEDGF/p75 in PC-3 cells. Validation of array results was performed by additional qPCR and immunoblotting. RESULTS Cytoglobin (CYGB), Phosphoinositide-binding protein PIP3-E/IPCEF-1, superoxidase dismutase 3 (SOD3), thyroid peroxidase (TPO), and albumin (ALB) exhibited significant transcript down- and up-regulation in response to LEDGF/p75 knockdown and overexpression, respectively. CYGB gene was selected for further validation based on its emerging role as a stress oncoprotein in human malignancies. In light of previous reports indicating that LEDGF/p75 regulates peroxiredoxin 6 (PRDX6), and that PRDXs exhibit differential expression in PCa, we also examined the relationship between these proteins in PCa cells. Our validation data revealed that changes in LEDGF/p75 transcript and protein expression in PCa cells closely paralleled those of CYGB, but not those of the PRDXs. CONCLUSIONS Our study identifies CYGB and other genes as stress genes potentially regulated by LEDGF/p75 in PCa cells, and provides a rationale for investigating their role in PCa and in promoting resistance to chemotherapy- and oxidative stress-induced cell death.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Awa Drame
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ruben Muñoz
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Rik Gijsbers
- Division of Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Zeger Debyser
- Division of Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
- Department of Medicine, Loma Linda University Schoolof Medicine, Loma Linda, California
- Correspondence to: Carlos A. Casiano, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350.
| |
Collapse
|
37
|
Leoh LS, van Heertum B, De Rijck J, Filippova M, Rios-Colon L, Basu A, Martinez SR, Tungteakkhun SS, Filippov V, Christ F, De Leon M, Debyser Z, Casiano CA. The stress oncoprotein LEDGF/p75 interacts with the methyl CpG binding protein MeCP2 and influences its transcriptional activity. Mol Cancer Res 2012; 10:378-91. [PMID: 22275515 DOI: 10.1158/1541-7786.mcr-11-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lens epithelium-derived growth factor p75 (LEDGF/p75) is a transcription coactivator that promotes resistance to oxidative stress- and chemotherapy-induced cell death. LEDGF/p75 is also known as the dense fine speckles autoantigen of 70 kDa (DFS70) and has been implicated in cancer, HIV-AIDS, autoimmunity, and inflammation. To gain insights into mechanisms by which LEDGF/p75 protects cancer cells against stress, we initiated an analysis of its interactions with other transcription factors and the influence of these interactions on stress gene activation. We report here that both LEDGF/p75 and its short splice variant LEDGF/p52 interact with MeCP2, a methylation-associated transcriptional modulator, in vitro and in various human cancer cells. These interactions were established by several complementary approaches: transcription factor protein arrays, pull-down and AlphaScreen assays, coimmunoprecipitation, and nuclear colocalization by confocal microscopy. MeCP2 was found to interact with the N-terminal region shared by LEDGF/p75 and p52, particularly with the PWWP-CR1 domain. Like LEDGF/p75, MeCP2 bound to and transactivated the Hsp27 promoter (Hsp27pr). LEDGF/p75 modestly enhanced MeCP2-induced Hsp27pr transactivation in U2OS osteosarcoma cells, whereas this effect was more pronounced in PC3 prostate cancer cells. LEDGF/p52 repressed Hsp27pr activity in U2OS cells. Interestingly, siRNA-induced silencing of LEDGF/p75 in U2OS cells dramatically elevated MeCP2-mediated Hsp27pr transactivation, whereas this effect was less pronounced in PC3 cells depleted of LEDGF/p75. These results suggest that the LEDGF/p75-MeCP2 interaction differentially influences Hsp27pr activation depending on the cellular and molecular context. These findings are of significance in understanding the contribution of this interaction to the activation of stress survival genes.
Collapse
Affiliation(s)
- Lai Sum Leoh
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Basu A, Rojas H, Banerjee H, Cabrera IB, Perez KY, De León M, Casiano CA. Expression of the stress response oncoprotein LEDGF/p75 in human cancer: a study of 21 tumor types. PLoS One 2012; 7:e30132. [PMID: 22276150 PMCID: PMC3261859 DOI: 10.1371/journal.pone.0030132] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/09/2011] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress-modulated signaling pathways have been implicated in carcinogenesis and therapy resistance. The lens epithelium derived growth factor p75 (LEDGF/p75) is a transcription co-activator that promotes resistance to stress-induced cell death. This protein has been implicated in inflammatory and autoimmune conditions, HIV-AIDS, and cancer. Although LEDGF/p75 is emerging as a stress survival oncoprotein, there is scarce information on its expression in human tumors. The present study was performed to evaluate its expression in a comprehensive panel of human cancers. Transcript expression was examined in the Oncomine cancer gene microarray database and in a TissueScan Cancer Survey Panel quantitative polymerase chain reaction (Q-PCR) array. Protein expression was assessed by immunohistochemistry (IHC) in cancer tissue microarrays (TMAs) containing 1735 tissues representing single or replicate cores from 1220 individual cases (985 tumor and 235 normal tissues). A total of 21 major cancer types were analyzed. Analysis of LEDGF/p75 transcript expression in Oncomine datasets revealed significant upregulation (tumor vs. normal) in 15 out of 17 tumor types. The TissueScan Cancer Q-PCR array revealed significantly elevated LEDGF/p75 transcript expression in prostate, colon, thyroid, and breast cancers. IHC analysis of TMAs revealed significant increased levels of LEDGF/p75 protein in prostate, colon, thyroid, liver and uterine tumors, relative to corresponding normal tissues. Elevated transcript or protein expression of LEDGF/p75 was observed in several tumor types. These results further establish LEDGF/p75 as a cancer-related protein, and provide a rationale for ongoing studies aimed at understanding the clinical significance of its expression in specific human cancers.
Collapse
Affiliation(s)
- Anamika Basu
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
39
|
Migliori V, Müller J, Phalke S, Low D, Bezzi M, Mok WC, Sahu SK, Gunaratne J, Capasso P, Bassi C, Cecatiello V, De Marco A, Blackstock W, Kuznetsov V, Amati B, Mapelli M, Guccione E. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 2012; 19:136-44. [PMID: 22231400 DOI: 10.1038/nsmb.2209] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/17/2011] [Indexed: 01/24/2023]
Abstract
The asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) acts as a repressive mark that antagonizes trimethylation of H3 lysine 4. Here we report that H3R2 is also symmetrically dimethylated (H3R2me2s) by PRMT5 and PRMT7 and present in euchromatic regions. Profiling of H3-tail interactors by SILAC MS revealed that H3R2me2s excludes binding of RBBP7, a central component of co-repressor complexes Sin3a, NURD and PRC2. Conversely H3R2me2s enhances binding of WDR5, a common component of the coactivator complexes MLL, SET1A, SET1B, NLS1 and ATAC. The interaction of histone H3 with WDR5 distinguishes H3R2me2s from H3R2me2a, which impedes the recruitment of WDR5 to chromatin. The crystallographic structure of WDR5 and the H3R2me2s peptide elucidates the molecular determinants of this high affinity interaction. Our findings identify H3R2me2s as a previously unknown mark that keeps genes poised in euchromatin for transcriptional activation upon cell-cycle withdrawal and differentiation in human cells.
Collapse
|
40
|
McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, Christ F, Debyser Z. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011; 410:811-30. [PMID: 21763490 DOI: 10.1016/j.jmb.2011.03.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/21/2022]
Abstract
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.
Collapse
Affiliation(s)
- Melissa McNeely
- Laboratory for Molecular Virology and Gene Therapy, Molecular Medicine, KULeuven and IRC Kulak, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Madlala P, Gijsbers R, Christ F, Hombrouck A, Werner L, Mlisana K, An P, Abdool Karim SS, Winkler CA, Debyser Z, Ndung'u T. Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression. AIDS 2011; 25:1711-9. [PMID: 21681054 PMCID: PMC3233670 DOI: 10.1097/qad.0b013e328349c693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE LEDGF/p75, encoded by the PSIP1 gene, interacts with HIV-1 integrase and targets HIV-1 integration into active genes. We investigated the influence of polymorphisms in PSIP1 on HIV-1 acquisition and disease progression in black South Africans. METHODS Integrase binding domain of LEDGF/p75 was sequenced in 126 participants. Four haplotype tagging SNPs rs2277191, rs1033056, rs12339417 and rs10283923 referred to as SNP1, SNP2, SNP3 and SNP4, respectively, and one exonic SNP rs61744944 (SNP5, Q472L) were genotyped in 195 HIV-1 seronegative, 52 primary and 403 chronically infected individuals using TaqMan assays. LEDGF/p75 expression was quantified by real-time RT-PCR. The impact of Q472L mutation on the interaction with HIV_1 IN was measured by AlphaScreen. RESULTS rs2277191 (SNP1) A was more frequent among seropositives (P = 0.06, Fisher's exact test). Among individuals followed longitudinally SNP1A trended towards association with higher likelihood of HIV-1 acquisition [relative hazard (RH) = 2.21, P = 0.08; Cox model] and it was also associated with rapid disease progression (RH = 5.98, P = 0.04; Cox model) in the recently infected (primary infection) cohort. rs12339417 (SNP3)C was associated with slower decline of CD4(+) T cells (P = 0.02) and lower messenger RNA (mRNA) levels of LEDGF/p75 (P < 0.01). Seroconverters had higher preinfection mRNA levels of LEDGF/p75 (P < 0.01) and these levels decreased after HIV-1 infection (P = 0.02). CONCLUSIONS Genetic variants of PSIP1 may affect HIV-1 outcomes. Further studies are needed to confirm the effect of genetic variation of PSIP1 on HIV-1 pathogenesis in different cohorts.
Collapse
Affiliation(s)
- Paradise Madlala
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Baid R, Scheinman RI, Shinohara T, Singh DP, Kompella UB. LEDGF(1-326) decreases P23H and wild type rhodopsin aggregates and P23H rhodopsin mediated cell damage in human retinal pigment epithelial cells. PLoS One 2011; 6:e24616. [PMID: 21915354 PMCID: PMC3168525 DOI: 10.1371/journal.pone.0024616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/16/2011] [Indexed: 12/02/2022] Open
Abstract
Background P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF1-326, a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage. Methods ARPE-19 cells were transiently transfected/cotransfected with pLEDGF1-326 and/or pWT-Rho (wild type)/pP23H-Rho. Rhodopsin mediated cellular damage and rescue by LEDGF1-326 was assessed using cell viability, cell proliferation, and confocal microscopy assays. Rhodopsin monomers, oligomers, and their reduction in the presence of LEDGF1-326 were quantified by western blot analysis. P23H rhodopsin mRNA levels in the presence and absence of LEDGF1-326 was determined by real time quantitative PCR. Principal Findings P23H rhodopsin reduced RPE cell viability and cell proliferation in a dose dependent manner, and disrupted the nuclear material. LEDGF1-326 did not alter P23H rhodopsin mRNA levels, reduced its oligomers, and significantly increased RPE cell viability as well as proliferation, while reducing nuclear damage. WT rhodopsin formed oligomers, although to a smaller extent than P23H rhodopsin. Further, LEDGF1-326 decreased WT rhodopsin aggregates. Conclusions P23H rhodopsin as well as WT rhodopsin form aggregates in RPE cells and LEDGF1-326 decreases these aggregates. Further, LEDGF1-326 reduces the RPE cell damage caused by P23H rhodopsin. LEDGF1-326 might be useful in treating cellular damage associated with protein aggregation diseases such as retinitis pigmentosa.
Collapse
Affiliation(s)
- Rinku Baid
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert I. Scheinman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Toshimichi Shinohara
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dhirendra P. Singh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Uday B. Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
43
|
Avni R, Cohen B, Neeman M. Hypoxic stress and cancer: imaging the axis of evil in tumor metastasis. NMR IN BIOMEDICINE 2011; 24:569-81. [PMID: 21793071 PMCID: PMC3558740 DOI: 10.1002/nbm.1632] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 05/04/2023]
Abstract
Tumors emerge as a result of the sequential acquisition of genetic, epigenetic and somatic alterations promoting cell proliferation and survival. The maintenance and expansion of tumor cells rely on their ability to adapt to changes in their microenvironment, together with the acquisition of the ability to remodel their surroundings. Tumor cells interact with two types of interconnected microenvironments: the metabolic cell autonomous microenvironment and the nonautonomous cellular-molecular microenvironment comprising interactions between tumor cells and the surrounding stroma. Hypoxia is a central player in cancer progression, affecting not only tumor cell autonomous functions, such as cell division and invasion, resistance to therapy and genetic instability, but also nonautonomous processes, such as angiogenesis, lymphangiogenesis and inflammation, all contributing to metastasis. Closely related microenvironmental stressors affecting cancer progression include, in addition to hypoxia, elevated interstitial pressure and oxidative stress. Noninvasive imaging offers multiple means to monitor the tumor microenvironment and its consequences, and can thus assist in the understanding of the biological basis of hypoxia and microenvironmental stress in cancer progression, and in the development of strategies to monitor therapies targeted at stress-induced tumor progression.
Collapse
Affiliation(s)
- Reut Avni
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|
44
|
Abstract
IMPORTANCE OF THE FIELD Integrase inhibitors are the newest class of antiretroviral agents developed to treat HIV-1 infection. Raltegravir (RAL), the only integrase inhibitor (INI) currently approved for the treatment of HIV-infected patients, has proven to be a potent and well-tolerated antiretroviral (ARV) agent. It is currently approved and used for the treatment of both ARV-experienced and ARV-naive patients. Nevertheless, the relatively low genetic barrier for resistance of RAL encourages the search for new INIs with different mechanisms of actions and resistance profiles. AREAS COVERED IN THIS REVIEW Here we review the data available about INI that are currently being tested in clinical trials or are in preclinical development: elvitegravir (EVG), S/GSK1349572, S/GSK1265744 and LEDGINs. We focus on their clinical efficacy, pharmacokinetic, safety and resistance profiles. WHAT THE READER WILL GAIN Up-to-date overview on the currently available, clinically relevant INIs and promising preclinical inhibitors at all phases of development. TAKE HOME MESSAGE Integrase inhibitors represent the newest therapeutic class available to treat HIV-1 infection. There are a variety of compounds either available in the clinic (RAL), advancing to Phase III trials (EVG), or in earlier phases of development. Taken together, this class offers new treatment options for the HIV-infected individual.
Collapse
Affiliation(s)
- Nicole Prada
- Aaron Diamond AIDS Research Center, 455 First Ave., 7th floor, New York, NY 10016, USA
| | | |
Collapse
|
45
|
Hendrix J, Gijsbers R, De Rijck J, Voet A, Hotta JI, McNeely M, Hofkens J, Debyser Z, Engelborghs Y. The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res 2010; 39:1310-25. [PMID: 20974633 PMCID: PMC3045605 DOI: 10.1093/nar/gkq933] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting.
Collapse
Affiliation(s)
- Jelle Hendrix
- Laboratory for Biomolecular Dynamics, University of Leuven, Leuven, Flanders, B-3000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Levin A, Hayouka Z, Friedler A, Loyter A. Peptides derived from the HIV-1 integrase promote HIV-1 infection and multi-integration of viral cDNA in LEDGF/p75-knockdown cells. Virol J 2010; 7:177. [PMID: 20678206 PMCID: PMC2924314 DOI: 10.1186/1743-422x-7-177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/02/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of the cellular Lens Epithelium Derived Growth Factor p75 (LEDGF/p75) protein is essential for integration of the Human immunodeficiency virus type 1 (HIV-1) cDNA and for efficient virus production. In the absence of LEDGF/p75 very little integration and virus production can be detected, as was demonstrated using LEDGF/p75-knockdown cells. RESULTS Here we show that the failure to infect LEDGF/p75-knockdown cells has another reason aside from the lack of LEDGF/p75. It is also due to inhibition of the viral integrase (IN) enzymatic activity by an early expressed viral Rev protein. The formation of an inhibitory Rev-IN complex in virus-infected cells can be disrupted by the addition of three IN-derived, cell-permeable peptides, designated INr (IN derived-Rev interacting peptides) and INS (IN derived-integrase stimulatory peptide). The results of the present work confirm previous results showing that HIV-1 fails to infect LEDGF/p75-knockdown cells. However, in the presence of INrs and INS peptides, relatively high levels of viral cDNA integration as well as productive virus infection were obtained following infection by a wild type (WT) HIV-1 of LEDGF/p75-knockdown cells. CONCLUSIONS It appears that the lack of integration observed in HIV-1 infected LEDGF/p75-knockdown cells is due mainly to the inhibitory effect of Rev following the formation of a Rev-IN complex. Disruption of this inhibitory complex leads to productive infection in those cells.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences; The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
47
|
De Rijck J, Bartholomeeusen K, Ceulemans H, Debyser Z, Gijsbers R. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res 2010; 38:6135-47. [PMID: 20484370 PMCID: PMC2952859 DOI: 10.1093/nar/gkq410] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a transcriptional coactivator involved in stress response, autoimmune disease, cancer and HIV replication. A fusion between the nuclear pore protein NUP98 and LEDGF/p75 has been found in human acute and chronic myeloid leukemia and association of LEDGF/p75 with mixed-lineage leukemia (MLL)/menin is critical for leukemic transformation. During lentiviral replication, LEDGF/p75 tethers the pre-integration complex to the host chromatin resulting in a bias of integration into active transcription units (TUs). The consensus function of LEDGF/p75 is tethering of cargos to chromatin. In this regard, we determined the LEDGF/p75 chromatin binding profile. To this purpose, we used DamID technology and focused on the highly annotated ENCODE (Encyclopedia of DNA Elements) regions. LEDGF/p75 primarily binds downstream of the transcription start site of active TUs in agreement with the enrichment of HIV-1 integration sites at these locations. We show that LEDGF/p75 binding is not restricted to stress response elements in the genome, and correlation analysis with more than 200 genomic features revealed an association with active chromatin markers, such as H3 and H4 acetylation, H3K4 monomethylation and RNA polymerase II binding. Interestingly, some associations did not correlate with HIV-1 integration indicating that not all LEDGF/p75 complexes on the chromosome are amenable to HIV-1 integration.
Collapse
Affiliation(s)
- Jan De Rijck
- Laboratory for Molecular Virology and Gene Therapy, KULeuven and IRC KULAK, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
48
|
Bueno MTD, Garcia-Rivera JA, Kugelman JR, Morales E, Rosas-Acosta G, Llano M. SUMOylation of the lens epithelium-derived growth factor/p75 attenuates its transcriptional activity on the heat shock protein 27 promoter. J Mol Biol 2010; 399:221-39. [PMID: 20382164 DOI: 10.1016/j.jmb.2010.03.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
Lens epithelium-derived growth factor (LEDGF) proteins p75 and p52 are transcriptional coactivators that connect sequence-specific activators to the basal transcription machinery. We have found that these proteins are posttranslationally modified by SUMO (small ubiquitin-like modifier)-1 and SUMO-3. Three SUMOylation sites, K75, K250, and K254, were mapped on the shared N-terminal region of these molecules, while a fourth site, K364, was identified in the C-terminal part exclusive of LEDGF/p75. The N-terminal SUMO targets are located in evolutionarily conserved charge-rich regions that lack resemblance to the described consensus SUMOylation motif, whereas the C-terminal SUMO target is solvent exposed and situated in a typical consensus motif. SUMOylation did not affect the cellular localization of LEDGF proteins and was not necessary for their chromatin-binding ability, nor did it affect this activity. However, lysine to arginine mutations of the identified SUMO acceptor sites drastically inhibited LEDGF SUMOylation, extended the half-life of LEDGF/p75, and significantly increased its transcriptional activity on the heat shock protein 27 promoter, indicating a negative effect of SUMOylation on the transcriptional activity of LEDGF/p75. Considering that SUMOylation is known to negatively affect the transcriptional activity of all transcription factors known to transactivate heat shock protein 27 expression, these findings support the paradigm establishing SUMOylation as a global neutralizer of cellular processes upregulated upon cellular stress.
Collapse
Affiliation(s)
- Murilo T D Bueno
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sapoznik S, Cohen B, Tzuman Y, Meir G, Ben-Dor S, Harmelin A, Neeman M. Gonadotropin-regulated lymphangiogenesis in ovarian cancer is mediated by LEDGF-induced expression of VEGF-C. Cancer Res 2010; 69:9306-14. [PMID: 19934313 DOI: 10.1158/0008-5472.can-09-1213] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The risk and severity of ovarian carcinoma, the leading cause of gynecologic malignancy death, are significantly elevated in postmenopausal women. Ovarian failure at menopause, associated with a reduction in estrogen secretion, results in an increase of the gonadotropic luteinizing hormone (LH) and follicle-stimulating hormone (FSH), suggesting a role for these hormones in facilitating the progression of ovarian carcinoma. The current study examined the influence of hormonal stimulation on lymphangiogenesis in ovarian cancer cells. In vitro stimulation of ES2 ovarian carcinoma cells with LH and FSH induced expression of vascular endothelial growth factor (VEGF)-C. In vivo, ovariectomy of mice resulted in activation of the VEGF-C promoter in ovarian carcinoma xenografts, increased VEGF-C mRNA level, and enhanced tumor lymphangiogenesis and angiogenesis. Seeking the molecular mechanism, we examined the role of lens epithelium-derived growth factor (LEDGF/p75) and the possible contribution of its putative target, a conserved stress-response element identified in silico in the VEGF-C promoter. Using chromatin immunoprecipitation, we showed that LEDGF/p75 indeed binds the VEGF-C promoter, and binding is augmented by FSH. A corresponding hormonally regulated increase in the LEDGF/p75 mRNA and protein levels was observed. Suppression of LEDGF/p75 expression using small interfering RNA, suppression of LH and FSH production using the gonadotropin-releasing hormone antagonist cetrorelix, or mutation of the conserved stress-response element suppressed the hormonally induced expression of VEGF-C. Overall, our data suggest a possible role for elevated gonadotropins in augmenting ovarian tumor lymphangiogenesis in postmenopausal women.
Collapse
Affiliation(s)
- Stav Sapoznik
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Transcriptional regulation of vascular endothelial growth factor C by oxidative and thermal stress is mediated by lens epithelium-derived growth factor/p75. Neoplasia 2009; 11:921-33. [PMID: 19724686 DOI: 10.1593/neo.09636] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) plays a critical role in tumor lymphangiogenesis and lymph node metastasis. We report here that VEGF-C expression is regulated by microenvironmental stress including hyperthermia and oxidative stress. Furthermore, we show that this stress response is mediated by transcriptional activation mediated by lens epithelium-derived growth factor (LEDGF/p75). Ectopic expression of LEDGF/p75 in C6 rat glioma and in H1299 human non-small cell lung carcinoma induced VEGF-C expression in vitro, whereas in subcutaneous mouse tumor xenografts, LEDGF/p75 stimulated VEGF-C expression and augmented angiogenesis and lymphangiogenesis. Conversely, overexpression of a LEDGF/p75 native antisense or LEDGF/p75-targeted short interfering RNA downmodulated VEGF-C expression. LEDGF seemed to conferred this activity on binding to a conserved stress response element (STRE) located in the VEGF-C gene because mutating the STRE was sufficient for the suppression of basal and stress-induced activations of the VEGF-C promoter. Thus, the study reported here identified a role for LEDGF/p75 in stress-regulated transcriptional control of VEGF-C expression. These results provide a possible link for LEDGF/p75 in tumor lymphangiogenesis and cancer metastasis. Hence, our data suggest the LEDGF-VEGF-C axis as a putative biomarker for the detection of stress-induced lymphangiogenesis and LEDGF as a potential target for antimetastatic therapy.
Collapse
|