1
|
Sun S, Cao L, Wu J, Sun B, El-Newehy M, Moydeen Abdulhameed M, Mo X, Yang X, Zheng H. A novel antibiotic: the antimicrobial effects of CFBSA and its application on electronspun wound dressing. Biomed Mater 2024; 19:055010. [PMID: 38917818 DOI: 10.1088/1748-605x/ad5ba4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
N-chloro-N-fluorobenzenesulfonylamide (CFBSA), was a novel chlorinating reagent, which exhibits potential antibacterial activities. In this study, CFBSA was confirmed as a wide-broad antimicrobial and bactericidal drug against different gram-negative bacteria, gram-positive bacteria and fungi, while it was found to have low cytotoxicity for eukaryotic cells. In addition, microorganism morphology assay and oxidative stress test was used to determine the antimicrobial mechanisms of CFBSA. According to the results, CFBSA probably had a target on cell membrane and killed microorganism by disrupting its cell membrane. Then, CFBSA was first combined with poly(L-lactide-co-caprolactone) (PLCL)/SF via electrospinning and applied in wound dressings. The characterization of different PLCL/SF of CFBSA-loaded nanofibrous mats was investigated by SEM, water contact angle, Fourier transform infrared spectroscopy, cell compatibility and antimicrobial test. CFBSA-loaded PLCL/SF nanofibrous mats showed excellent antimicrobial activities. In order to balance of the biocompatibility and antibacterial efficiency, SP-2.5 was selected as the ideal loading concentration for further application of CFBSA-loaded PLCL/SF. In conclusion, the electrospun CFBSA-loaded PLCL/SF nanofibrous mat with its broad-spectrum antimicrobial and bactericidal activity and good biocompatibility showed enormous potential for wound dressing.
Collapse
Affiliation(s)
- Shu Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lei Cao
- Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xianjin Yang
- Key Lab for Advanced Material & Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200231, People's Republic of China
| | - Hao Zheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
2
|
Gebremedhn S, Gad A, Aglan HS, Laurincik J, Prochazka R, Salilew-Wondim D, Hoelker M, Schellander K, Tesfaye D. Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Sci Rep 2020; 10:15824. [PMID: 32978452 PMCID: PMC7519046 DOI: 10.1038/s41598-020-72706-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 01/15/2023] Open
Abstract
Elevated summer temperature is reported to be the leading cause of stress in dairy and beef cows, which negatively affects various reproductive functions. Follicular cells respond to heat stress (HS) by activating the expression of heat shock family proteins (HSPs) and other antioxidants. HS is reported to negatively affect the bi-directional communication between the follicular cells and the oocyte, which is partly mediated by follicular fluid extracellular vesicles (EVs) released from surrounding cells. As carriers of bioactive molecules (DNA, RNA, protein, and lipids), the involvement of EVs in mediating the stress response in follicular cells is not fully understood. Here we used an in vitro model to decipher the cellular and EV-coupled miRNAs of bovine granulosa cells in response to HS. Moreover, the protective role of stress-related EVs against subsequent HS was assessed. For this, bovine granulosa cells from smaller follicles were cultured in vitro and after sub-confluency, cells were either kept at 37 °C or subjected to HS (42 °C). Results showed that granulosa cells exposed to HS increased the accumulation of ROS, total oxidized protein, apoptosis, and the expression of HSPs and antioxidants, while the viability of cells was reduced. Moreover, 14 and 6 miRNAs were differentially expressed in heat-stressed granulosa cells and the corresponding EVs, respectively. Supplementation of stress-related EVs in cultured granulosa cells has induced adaptive response to subsequent HS. However, this potential was not pronounced when the cells were kept under 37 °C. Taking together, EVs generated from granulosa cells exposed to HS has the potential to shuttle bioactive molecules to recipient cells and make them robust to subsequent HS.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO, 80525, USA.,Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Animal, Rangeland and Wildlife Sciences, Mekelle University, Mekelle, Ethiopia
| | - Ahmed Gad
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hoda Samir Aglan
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Jozef Laurincik
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Dessie Salilew-Wondim
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 1351 Rampart Rd, Fort Collins, CO, 80525, USA. .,Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany. .,Department of Animal, Rangeland and Wildlife Sciences, Mekelle University, Mekelle, Ethiopia.
| |
Collapse
|
3
|
Abdelnour SA, Swelum AA, Abd El-Hack ME, Khafaga AF, Taha AE, Abdo M. Cellular and functional adaptation to thermal stress in ovarian granulosa cells in mammals. J Therm Biol 2020; 92:102688. [PMID: 32888576 DOI: 10.1016/j.jtherbio.2020.102688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
Abstract
Climate change represents a significant environmental challenge to human welfare. One of many negative impacts may be on animal reproduction. Elevated ambient temperature unfavourably influences reproductive processes in mammals. High temperature can affect reproductive processes such as follicle development and may alter follicular fluid concentrations of amino acids, fatty acids, minerals, enzymes, antioxidants defence and growth factors. These impacts may lead to inferior oocyte competence and abnormal granulosa cell (GCs) function. Mammalian oocytes are enclosed by GCs that secret hormones and signalling molecules to promote oocyte competence. GCs are essential for proper follicular development, oocyte maturation, ovulation, and luteinization. Many environmental stressors, including thermal stress, affect GC function and alter oocyte development and growth. Several studies documented a link between elevated ambient temperature and increased generation of cellular reactive oxygen species (ROS). ROS can damage DNA, reduce cell proliferation, and induce apoptosis in GCs, thus altering oocyte development. Additionally, thermal stress induces upregulation of thermal shock proteins, such as HSP70 and HSP90. This review provides an update on the influence of thermal stress on GCs of mammals. Discussions include impacts to steroidogenesis (estradiol and progesterone), proliferation and cell cycle transition, apoptosis, oxidative stress (ROS), antioxidants related genes, heat shock proteins (HSPs) and endoplasmic reticulum responses.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
4
|
Likszo P, Skarzynski DJ, Moza Jalali B. Proteomic Analysis of Porcine Pre-ovulatory Follicle Differentiation Into Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:774. [PMID: 31798533 PMCID: PMC6879000 DOI: 10.3389/fendo.2019.00774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The luteinization of the follicular cells, following a LH surge, causes extensive molecular and structural changes in preovulatory follicles (POF) that lead to ovulation and ultimate formation of the corpus luteum (CL). The objective of this study was to identify proteins expressed in porcine POF before the LH surge and a new CL formed, 2-3 days after ovulation, and evaluate proteome changes associated with formation of the CL from a follicle. We used 2D-gel electrophoresis-based proteomics and tandem mass spectrometry followed by a functional analysis using Ingenuity Pathway analysis (IPA) to evaluate functional pathways associated with the luteinization process. Protein lysates were prepared from isolated POFs and from the newly formed CL. A total of 422 protein spots were identified in both structures. A total of 15 and 48 proteins or their proteoforms were detected only in the POFs and CL, respectively. An IPA analysis of a POF proteome showed that most of the follicular proteins were involved in cellular infiltration, endoplasmic stress responses, and the protein ubiquitination pathway. Most of the early luteal proteins were associated with steroid metabolism, cell death and survival, free radical scavenging, and the protein ubiquitination pathway. A comparison of a follicular proteome with that of an early luteal proteome revealed that 167 identified proteins or their proteoforms were differentially regulated between POFs and the newly formed CL (p < 0.05 and a fold change of >1.8). Proteins that were significantly more abundant in follicles included cAMP-dependent protein kinase, histone binding protein RBBP4, reticulocalbin, vimentin, and calumenin; more abundant luteal proteins included albumin, farnesyl diphosphate synthase, serine protease inhibitors, elongation factor-1, glutaredoxin, and selenium-binding protein. Proteins that were significantly altered with luteal formation were found to be associated with cholesterol biosynthesis, cell death and survival, and acute phase response. Moreover, upstream regulators of differentially abundant proteins in CL were identified that included insulin growth factor-1, sterol regulatory element-binding transcription factor-1, and nuclear factor erythroid-derived 2. We have identified novel proteins that advance our understanding of (1) processes associated with differentiation of POFs into the CL, (2) possible mechanisms of luteal cell survival, and (3) pathways regulating steroidogenesis in the newly formed CL.
Collapse
Affiliation(s)
| | | | - Beenu Moza Jalali
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
5
|
Nahomi RB, Sampathkumar S, Myers AM, Elghazi L, Smith DG, Tang J, Lee CA, Kern TS, Nagaraj RH, Fort PE. The Absence of Indoleamine 2,3-Dioxygenase Inhibits Retinal Capillary Degeneration in Diabetic Mice. Invest Ophthalmol Vis Sci 2019; 59:2042-2053. [PMID: 29677366 PMCID: PMC5908388 DOI: 10.1167/iovs.17-22702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Loss of retinal capillary endothelial cells and pericytes through apoptosis is an early event in diabetic retinopathy (DR). Inflammatory pathways play a role in early DR, yet the biochemical mechanisms are poorly understood. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), an inflammatory cytokine-inducible enzyme, on retinal endothelial apoptosis and capillary degeneration in the diabetic retina. Methods IDO was detected in human and mouse retinas by immunohistochemistry or Western blotting. Interferon-γ (IFN-γ) levels were measured by ELISA. IDO levels were measured in human retinal capillary endothelial cells (HREC) cultured in the presence of IFN-γ ± 25 mM D-glucose. Reactive oxygen species (ROS) were measured using CM-H2DCFDA dye and apoptosis was measured by cleaved caspase-3. The role of IDO in DR was determined in IDO knockout (IDO−/−) mice with streptozotocin-induced diabetes. Results The IDO and IFN-γ levels were higher in human diabetic retinas with retinopathy relative to nondiabetic retinas. Immunohistochemical data showed that IDO is present in capillary endothelial cells. IFN-γ upregulated the IDO and ROS levels in HREC. The blockade of either IDO or kynurenine monooxygenase led to inhibition of ROS in HREC. Apoptosis through this pathway was inhibited by an ROS scavenger, TEMPOL. Capillary degeneration was significantly reduced in diabetic IDO−/− mice compared to diabetic wild-type mice. Conclusions The results suggest that the kynurenine pathway plays an important role in the inflammatory damage in the diabetic retina and could be a new therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Rooban B Nahomi
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Sruthi Sampathkumar
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Angela M Myers
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Lynda Elghazi
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Dawn G Smith
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Jie Tang
- Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - C Allen Lee
- Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Timothy S Kern
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Ram H Nagaraj
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Patrice E Fort
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
6
|
Alemu TW, Pandey HO, Salilew Wondim D, Gebremedhn S, Neuhof C, Tholen E, Holker M, Schellander K, Tesfaye D. Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress. Theriogenology 2018; 110:130-141. [PMID: 29396041 DOI: 10.1016/j.theriogenology.2017.12.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022]
Abstract
In most mammalian species including cattle, heat stress has detrimental effects on ovarian function through disturbing estradiol production and viability of granulosa cells. However, effect of heat stress and underlying cellular defense mechanisms of bovine granulosa cells is not fully understood. Here, we aimed to investigate the effect of heat stress on granulosa cells function and the associated defense mechanism. For this an in vitro granulosa cell model was used to investigate the role of elevated temperature (41 °C) on granulosa cell functions at 24 h and 48 h exposure compared to the control cultured at 37 °C. The results showed that reactive oxygen species level was higher in cells under 41 °C at 24 h compared to control. In response to increased reactive oxygen species level, the expression of NRF2 and its antioxidant genes, CAT and PRDX1 were higher in bovine granulosa cells exposed to heat stress. Interestingly, heat stress markedly increased expression of endoplasmic reticulum stress marker genes; GRP78 and GRP94, in cultured bovine granulosa cells at 24 h, and higher protein accumulation of GRP78 accompanied by increased expression of apoptotic genes, BAX and CASPASE-3. Moreover, heat stress significantly decreased the bovine granulosa cells proliferation, which was supported by decreased in the expression of proliferation marker gene PCNA. All in all heat stress induce reactive oxygen species accumulation, apoptosis and reduced proliferation, which trigger the NRF2 mediated oxidative stress and endoplasmic reticulum stress response by bovine granulosa cells.
Collapse
Affiliation(s)
- Teshome Wondie Alemu
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Hari Om Pandey
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Dessie Salilew Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Samuel Gebremedhn
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Christiane Neuhof
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Michael Holker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Bethea CL, Mueller K, Reddy AP, Kohama SG, Urbanski HF. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques. PLoS One 2017; 12:e0178788. [PMID: 28628658 PMCID: PMC5476244 DOI: 10.1371/journal.pone.0178788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022] Open
Abstract
The beneficial effects of bioidentical ovarian steroid hormone therapy (HT) during the perimenopause are gaining recognition. However, the positive effects of estrogen (E) plus or minus progesterone (P) administration to ovariectomized (Ovx) lab animals were recognized in multiple systems for years before clinical trials could adequately duplicate the results. Moreover, very large numbers of women are often needed to find statistically significant results in clinical trials of HT; and there are still opposing results being published, especially in neural and cardiovascular systems. One of the obvious differences between human and animal studies is diet. Laboratory animals are fed a diet that is low in fat and refined sugar, but high in micronutrients. In the US, a large portion of the population eats what is known as a "western style diet" or WSD that provides calories from 36% fat, 44% carbohydrates (includes 18.5% sugars) and 18% protein. Unfortunately, obesity and diabetes have reached epidemic proportions and the percentage of obese women in clinical trials may be overlooked. We questioned whether WSD and obesity could decrease the positive neural effects of estradiol (E) in the serotonin system of old macaques that were surgically menopausal. Old ovo-hysterectomized female monkeys were fed WSD for 2.5 years, and treated with placebo, Immediate E (ImE) or Delayed E (DE). Compared to old Ovx macaques on primate chow and treated with placebo or E, the WSD-fed monkeys exhibited greater individual variance and blunted responses to E-treatment in the expression of genes related to serotonin neurotransmission, CRH components in the midbrain, synapse assembly, DNA repair, protein folding, ubiquitylation, transport and neurodegeneration. For many of the genes examined, transcript abundance was lower in WSD-fed than chow-fed monkeys. In summary, an obesogenic diet for 2.5 years in old surgically menopausal macaques blunted or increased variability in E-induced gene expression in the dorsal raphe. These results suggest that with regard to function and viability in the dorsal raphe, HT may not be as beneficial for obese women as normal weight women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kevin Mueller
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Arubala P. Reddy
- Department of Internal Medicine, Texas Technical University Health Sciences Center School of Medicine, Lubbock, TX, United States of America
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
8
|
González Esquivel D, Ramírez-Ortega D, Pineda B, Castro N, Ríos C, Pérez de la Cruz V. Kynurenine pathway metabolites and enzymes involved in redox reactions. Neuropharmacology 2017; 112:331-345. [DOI: 10.1016/j.neuropharm.2016.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/28/2016] [Accepted: 03/06/2016] [Indexed: 11/27/2022]
|
9
|
Li S, Li F, Sun Z, Zhang X, Xiang J. Differentially proteomic analysis of the Chinese shrimp at WSSV latent and acute infection stages by iTRAQ approach. FISH & SHELLFISH IMMUNOLOGY 2016; 54:629-638. [PMID: 27192146 DOI: 10.1016/j.fsi.2016.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
As the direct executors of biological function, the expression level of proteins will reveal the molecular mechanisms regulating WSSV acute infection more directly. In the present study, the iTRAQ approach was applied to identifying differentially expressed proteins in Chinese shrimp during WSSV latent infection and acute infection. A total of 4051 unique peptides corresponding to 1286 proteins were identified. 118 unique proteins showed differential up-regulation and 122 proteins were down-regulated in shrimp during WSSV acute infection compared with those in WSSV latent infection stage. A number of proteins related to actin-myosin cytoskeleton process, including myosin, actin, tubulin, clathrin, and tropomyosin were found up-regulated in shrimp at WSSV AI stage, indicating that the phagocytosis process was involved in WSSV AI stage. The apoptosis process in shrimp during WSSV AI seemed to be inhibited because some proteins suppressive on apoptosis were up-regulated, such as ALG-2 interacting protein x, Hsp90, 14-3-3-like protein, peroxiredoxin 5, peroxiredoxin 6 and adenine nucleotide translocase 2. Association analysis between the proteomic data and the previous transcriptome data was performed. Quantitative real-time PCR and western blot were carried out to verify the reliability of the proteomics data. The present study provided a comprehensive view of molecular mechanisms regulating WSSV acute infection at the protein level.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China.
| | - Zheng Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
10
|
Zare N, Motamedi F, Digaleh H, Khodagholi F, Maghsoudi N. Collaboration of geldanamycin-activated P70S6K and Hsp70 against beta-amyloid-induced hippocampal apoptosis: an approach to long-term memory and learning. Cell Stress Chaperones 2015; 20:309-19. [PMID: 25576151 PMCID: PMC4326392 DOI: 10.1007/s12192-014-0550-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022] Open
Abstract
One of the neuropathological hallmarks of Alzheimer's disease (AD) is the accumulation of beta-amyloid peptides (Aβ) in senile plaques. Aβ-induced oxidative stress is believed to be responsible for degeneration and apoptosis of neurons and consequent cognitive and memory deficits. Here, we investigated the possible neuroprotective effect of the heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) against amyloid pathogenesis in adult male Wistar rats. GA or vehicle was injected into the lateral cerebral ventricles of rats 24 h before injection of Aβ (1-42) in CA1 area of hippocampus. The learning and memory of the rats were assessed 7 days after injection of Aβ using passive avoidance (PA) task. As potential contributing factors in Aβ-induced memory decline, we evaluated apoptotic markers and also used terminal-transferase UTP nick end labeling (TUNEL) technique to detect apoptosis in the hippocampus of Aβ-injected rats. Our behavioral data suggest that GA pretreatment can significantly suppress memory deficits in Aβ-injected rats. There was also not only a marked increase in Hsp70 level but also upregulated 70 kDa ribosomal protein S6 kinase (p70S6K) in the hippocampus of GA-treated groups with a reduction in apoptotic factors including caspase-3, poly (ADP-ribose) polymerase, Bax/Bcl-2 ratio, and TUNEL-positive cells as well. Thus, we conclude that GA exerts its protective effects against Aβ (1-42) toxicity and memory deficits, at least in part, by upregulating of Hsp70 and P70S6K.
Collapse
Affiliation(s)
- Nayereh Zare
- />NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- />Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- />NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- />Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- />NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- />Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- />NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- />Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- />NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- />Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Alani B, Salehi R, Sadeghi P, Khodagholi F, Digaleh H, Jabbarzadeh-Tabrizi S, Zare M, Korbekandi H. Silencing of Hsp70 intensifies 6-OHDA-induced apoptosis and Hsp90 upregulation in PC12 cells. J Mol Neurosci 2015; 55:174-183. [PMID: 24729093 DOI: 10.1007/s12031-014-0298-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/26/2014] [Indexed: 11/28/2022]
Abstract
By the current study, we tried to find out the interactive mechanisms enrolled by Hsp70 and Hsp90 following the 6-hydroxydopamine (6-OHDA)-induced oxidative stress. Of heat shock protein (Hsp) family, we have previously evaluated the effects of Hsp90 gene silencing on in vitro model of Parkinson's disease and its influence on controlling the mechanisms of cell survival. Here, we extended our study to Hsp70 silencing short interfering RNA (siRNA) oligonucleotides, transfected into Pheochromocytoma (PC12) cells with/without exposure to 6-OHDA stress. In order to determine the probable effects of Hsp70 silencing on apoptotic factors, we assessed Bcl2/Bax ratio, nuclear level of PARP, and cleavage of caspase-3 under 6-OHDA stress condition. The results showed deteriorated effect of Hsp70 siRNA on apoptosis in cells exposed to only 6-OHDA. This is, at least in part, in consequence of upregulation of Hsp90, both at messenger RNA (mRNA) and protein levels. These data highlight the critical role of Hsp70 for cell survival under 6-OHDA stress condition. It could be a suggestive issue for supervision of caspase cascades by survival roles of Hsps as Hsp70 silencing resulted in apoptosis phenomenon. Convergence of Hsp70 anti-apoptotic and 6-OHDA pro-apoptotic pathways may explain intensified apoptosis following Hsp70 silencing. In addition, nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor, has been previously studied in detoxification of oxidative stress. For this issue, we tried to elucidate Hsp70 silencing impact on Nrf2, which has been shown to regulate the transcription of Hsp70, unspecifically. Besides, our investigations revealed that Hsp70 siRNA did not affect the level of Nrf2 during 6-OHDA exposure. But, it is still a dealing question and other investigations are needed to have a comprehensive perception of Hsp family signaling functions.
Collapse
Affiliation(s)
- Behrang Alani
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Applied Cell Science, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Rasoul Salehi
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Payam Sadeghi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Jabbarzadeh-Tabrizi
- Center for Cancer Stem Cell Research, Department of Medicine and Biosystemic Science and Graduate School of Medical Sciences, Kyushu University Hospital, Fukuoka, Japan
| | - Mohammad Zare
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Korbekandi
- Department of Genetic and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Caito S, Zeng H, Aschner JL, Aschner M. Methylmercury alters the activities of Hsp90 client proteins, prostaglandin E synthase/p23 (PGES/23) and nNOS. PLoS One 2014; 9:e98161. [PMID: 24852575 PMCID: PMC4031136 DOI: 10.1371/journal.pone.0098161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/29/2014] [Indexed: 01/14/2023] Open
Abstract
Methylmercury (MeHg) is a persistent pollutant with known neurotoxic effects. We have previously shown that astrocytes accumulate MeHg and play a prominent role in mediating MeHg toxicity in the central nervous system (CNS) by altering glutamate signaling, generating oxidative stress, depleting glutathione (GSH) and initiating lipid peroxidation. Interestingly, all of these pathways can be regulated by the constitutively expressed, 90-kDa heat shock protein, Hsp90. As Hsp90 function is regulated by oxidative stress, we hypothesized that MeHg disrupts Hsp90-client protein functions. Astrocytes were treated with MeHg and expression of Hsp90, as well as the abundance of complexes of Hsp90-neuronal nitric oxide synthase (nNOS) and Hsp90-prostaglandin E synthase/p23 (PGES/p23) were assessed. MeHg exposure decreased Hsp90 protein expression following 12 h of treatment while shorter exposures had no effect on Hsp90 protein expression. Interestingly, following 1 or 6 h of MeHg exposure, Hsp90 binding to PGES/p23 or nNOS was significantly increased, resulting in increased prostaglandin E2 (PGE2) synthesis from MeHg-treated astrocytes. These effects were attenuated by the Hsp90 antagonist, geldanmycin. NOS activity was increased following MeHg treatment while cGMP formation was decreased. This was accompanied by an increase in •O2− and H2O2 levels, suggesting that MeHg uncouples NO formation from NO-dependent signaling and increases oxidative stress. Altogether, our data demonstrates that Hsp90 interactions with client proteins are increased following MeHg exposure, but over time Hsp90 levels decline, contributing to oxidative stress and MeHg-dependent excitotoxicity.
Collapse
Affiliation(s)
- Samuel Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Heng Zeng
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Judy L Aschner
- Department of Pediatrics and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine of Yeshiva University and Children's Hospital at Montefiore, Bronx, New York, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America; Department of Pediatrics and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine of Yeshiva University and Children's Hospital at Montefiore, Bronx, New York, United States of America; The Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
13
|
Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:646909. [PMID: 24693337 PMCID: PMC3945746 DOI: 10.1155/2014/646909] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD(+). The metabolism of tryptophan can be altered in ageing and with neurodegenerative process, leading to decreased biosynthesis of nicotinamide. This fact is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD(+) coenzymes, which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great importance due to the fact that oxidative stress, alterations in KP metabolites, energetic deficit, cell death, and inflammatory events may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine remarking their redox properties, their effects in experimental models, their alterations in the aging process.
Collapse
Affiliation(s)
- Jazmin Reyes Ocampo
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Rafael Lugo Huitrón
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Dinora González-Esquivel
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Anabel Jiménez-Anguiano
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., 14269 México, DF, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| |
Collapse
|
14
|
Calvillo M, Diaz A, Limon DI, Mayoral MA, Chánez-Cárdenas ME, Zenteno E, Montaño LF, Guevara J, Espinosa B. Amyloid-β(25-35) induces a permanent phosphorylation of HSF-1, but a transitory and inflammation-independent overexpression of Hsp-70 in C6 astrocytoma cells. Neuropeptides 2013; 47:339-46. [PMID: 23850171 DOI: 10.1016/j.npep.2013.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/17/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
Two hallmarks of Alzheimer diseases are the continuous inflammatory process, and the brain deposit of Amyloid b (Aβ), a cytotoxic protein. The intracellular accumulation of Aβ(25-35) fractions, in the absence of Heat Shock proteins (Hsṕs), could be responsible for its cytotoxic activity. As, pro-inflammatory mediators and nitric oxide control the expression of Hsṕs, our aim was to investigate the effect of Aβ(25-35) on the concentration of IL-1β, TNF-α and nitrite levels, and their relation to pHSF-1, Hsp-60, -70 and -90 expressions, in the rat C6 astrocyte cells. Interleukin-specific ELISA kits, immunohistochemistry with monoclonal anti-Hsp and anti pHSF-1 antibodies, and histochemistry techniques, were used. Our results showed that Aβ25-35 treatment of C6 cells increased, significantly and consistently the concentration of IL-1β, TNF-α and nitrite 3 days after initiating treatment. The immunoreactivity of C6 cells to Hsp-70 reached its peak after 3 days of treatment followed by an abrupt decrease, as opposed to Hsp-60 and -90 expressions that showed an initial and progressive increase after 3 days of Aβ(25-35) treatment. pHSF-1 was identified throughout the experimental period. Nevertheless, progressive and sustained cell death was observed during all the treatment times and it was not caspase-3 dependent. Our results suggest that Hsp-70 temporary expression serves as a trigger to inhibit casapase-3 pathway and allow the expression of Hsp-60 and -90 in C6 astrocytoma cells stimulated with Aβ(25-35).
Collapse
Affiliation(s)
- Minerva Calvillo
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "MVS", Mexico D.F. 14059, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Identification of HSP90 as potential biomarker of biliary atresia using two-dimensional electrophoresis and mass spectrometry. PLoS One 2013; 8:e68602. [PMID: 23874684 PMCID: PMC3708914 DOI: 10.1371/journal.pone.0068602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/31/2013] [Indexed: 12/26/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholestatic liver disease targeting infants. Current diagnosis depends on surgical exploration of the biliary tree. The aim of the present study was to identify potential biomarkers for the diagnosis of biliary atresia (BA). Two-dimensional electrophoresis was utilized for the identification of proteins that were differentially expressed in liver biopsies of 20 BA patients and 12 infants with non-BA neonatal cholestasis (NC) as controls. Using mass spectrometry, we identified 15 proteins with expressions significantly altered. Out of the 15 proteins identified, heat shock protein (HSP) 90 was the most significantly altered and was down-regulated in BA samples compared to NC samples using immunoblotting analysis. Our findings suggest that HSP90 might be a potential biomarker for the diagnosis of BA and may be used for monitoring further development and therapy for BA. This study demonstrated that a comprehensive strategy of proteomic identification combined with further validation should be adopted in biomarker discovery.
Collapse
|
16
|
Koen YM, Sarma D, Hajovsky H, Galeva NA, Williams TD, Staudinger JL, Hanzlik RP. Protein targets of thioacetamide metabolites in rat hepatocytes. Chem Res Toxicol 2013; 26:564-74. [PMID: 23465048 PMCID: PMC3710294 DOI: 10.1021/tx400001x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2. However, hepatocytes treated with TASO show extensive covalent binding to both lipids and proteins accompanied by extensive cytotoxicity. In this work, we treated rat hepatocytes with [(14)C]-TASO and submitted the mitochondrial, microsomal, and cytosolic fractions to 2DGE, which revealed a total of 321 radioactive protein spots. To facilitate the identification of target proteins and adducted peptides, we also treated cells with a mixture of TASO/[(13)C2D3]-TASO. Using a combination of 1DGE- and 2DGE-based proteomic approaches, we identified 187 modified peptides (174 acetylated, 50 acetimidoylated, and 37 in both forms) from a total of 88 nonredundant target proteins. Among the latter, 57 are also known targets of at least one other hepatotoxin. The formation of both amide- and amidine-type adducts to protein lysine side chains is in contrast to the exclusive formation of amidine-type adducts with PE phospholipids. Thiobenzamide (TB) undergoes the same two-step oxidative bioactivation as TA, and it also gives rise to both amide and amidine adducts on protein lysine side chains but only amidine adducts to PE lipids. Despite their similarity in functional group chemical reactivity, only 38 of 62 known TB target proteins are found among the 88 known targets of TASO. The potential roles of protein modification by TASO in triggering cytotoxicity are discussed in terms of enzyme inhibition, protein folding, and chaperone function, and the emerging role of protein acetylation in intracellular signaling and the regulation of biochemical pathways.
Collapse
Affiliation(s)
- Yakov M. Koen
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - Diganta Sarma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - Heather Hajovsky
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045
| | - Nadezhda A. Galeva
- Mass Spectrometry Laboratory, The University of Kansas, Lawrence, Kansas 66045
| | - Todd D. Williams
- Mass Spectrometry Laboratory, The University of Kansas, Lawrence, Kansas 66045
| | - Jeffrey L. Staudinger
- Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, Kansas 66045
| | - Robert P. Hanzlik
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
17
|
Dai B, Wang Y, Li D, Xu Y, Liang R, Zhao L, Cao Y, Jia J, Jiang Y. Hsp90 is involved in apoptosis of Candida albicans by regulating the calcineurin-caspase apoptotic pathway. PLoS One 2012; 7:e45109. [PMID: 23028789 PMCID: PMC3445616 DOI: 10.1371/journal.pone.0045109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA) could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway.
Collapse
Affiliation(s)
- BaoDi Dai
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - DeDong Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi Xu
- Department of Pharmacy, General Hospital of Jinan Military Command Region, Jinan, China
| | - RongMei Liang
- Department of Clinical Pharmacy, General Hospital of Chengdu Military Command Region, Chengdu, China
| | - LanXue Zhao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - YongBing Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - JianHui Jia
- Department of Pharmacology, School of Life Science and Biopharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - YuanYing Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Gasperini L, Piubelli C, Carboni L. Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP. Mol Biol Rep 2011; 39:2921-35. [PMID: 21687973 DOI: 10.1007/s11033-011-1054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 06/08/2011] [Indexed: 11/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts pleiotropic functions, acting as a hypophysiotropic factor, a neurotrophic and a neuroprotective agent. The molecular pathways activated by PACAP to exert its physiological roles in brain are incompletely understood. In this study, adrenocorticotropic hormone (ACTH), prolactin, luteinising hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), brain-derived neurotrophic factor and corticosterone blood levels were determined before and 20, 40, 60, and 120 min after PACAP intracerebroventricular administration. PACAP treatment increased ACTH, corticosterone, LH and FSH blood concentrations, while it decreased TSH levels. A proteomics investigation was carried out in hypothalamus, hippocampus and pre-frontal/frontal cortex (P/FC) using 2-dimensional gel electrophoresis at 120 min, the end-point suggested by studies on PACAP hypophysiotropic activities. Spots showing statistically significant alterations after PACAP treatment were identified by Matrix-assisted laser desorption/ionization-Time of flight mass spectrometry. Identified proteins were consistent with PACAP involvement in different molecular processes in brain. Altered expression levels were observed for proteins involved in cytoskeleton modulation and synaptic plasticity: actin in the hypothalamus; stathmin, dynamin, profilin and cofilin in hippocampus; synapsin in P/FC. Proteins involved in cellular differentiation were also modulated: glutathione-S-transferase α and peroxiredoxin in hippocampus; nucleoside diphosphate kinase in P/FC. Alterations were detected in proteins involved in neuroprotection, neurodegeneration and apoptosis: ubiquitin carboxyl-terminal hydrolase isozyme L1 and heat shock protein 90-β in hypothalamus; α-synuclein in hippocampus; glyceraldehyde-3-phosphate dehydrogenase and prohibitin in P/FC. This proteomics study identified new proteins involved in molecular mechanisms mediating PACAP functions in the central nervous system.
Collapse
Affiliation(s)
- Lisa Gasperini
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Via A Fleming 4, 37135 Verona, Italy
| | | | | |
Collapse
|
19
|
Gao F, Hu XY, Xie XJ, Xu QY, Wang YP, Liu XB, Xiang MX, Sun Y, Wang JA. Heat shock protein 90 protects rat mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the PI3K/Akt and ERK1/2 pathways. J Zhejiang Univ Sci B 2010; 11:608-17. [PMID: 20669351 DOI: 10.1631/jzus.b1001007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation has shown a therapeutic potential to repair the ischemic and infracted myocardium, but the effects are limited by the apoptosis and loss of donor cells in host cardiac microenvironment. The aim of this study is to explore the cytoprotection of heat shock protein 90 (Hsp90) against hypoxia and serum deprivation-induced apoptosis and the possible mechanisms in rat MSCs. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by Hoechst 33258 nuclear staining and flow cytometric analysis with annexin V/PI staining. The gene expression of Toll-like receptor-4 (TLR-4) and V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErbB2) was detected by real-time polymerase chain reaction (PCR). The protein levels of cleaved caspase-3, Bcl-2, Bcl-xL, Bax, total-ERK, phospho-ERK, total-Akt, phospho-Akt, and Hsp90 were detected by Western blot. The production of nitric oxide was measured by spectrophotometric assay. Hsp90 improves MSC viability and protects MSCs against apoptosis induced by serum deprivation and hypoxia. The protective role of Hsp90 not only elevates Bcl-2/Bax and Bcl-xL/Bax expression and attenuates cleaved caspase-3 expression via down-regulating membrane TLR-4 and ErbB2 receptors and then activating their downstream PI3K/Akt and ERK1/2 pathways, but also enhances the paracrine effect of MSCs. These findings demonstrated a novel and effective treatment strategy against MSC apoptosis in cell transplantation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vallanat B, Anderson SP, Brown-Borg HM, Ren H, Kersten S, Jonnalagadda S, Srinivasan R, Corton JC. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). BMC Genomics 2010; 11:16. [PMID: 20059764 PMCID: PMC2823686 DOI: 10.1186/1471-2164-11-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
Abstract
Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1) family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.
Collapse
Affiliation(s)
- Beena Vallanat
- NHEERL Toxicogenomics Core, US EPA, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang S, Chen PC, Berthiaume F, Toner M, Jayaraman A, Yarmush ML. Dynamic effect of heat shock pretreatment on apoptotic responses to TNF-alpha in liver cells. J Biomech Eng 2009; 131:071003. [PMID: 19640128 DOI: 10.1115/1.3118768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heat shock (HS) response is a protective mechanism for cells to protect themselves against subsequent lethal stress. HS upregulated heat shock protein (HSP) expression reduced apoptosis following tumor necrosis factor-alpha (TNF-alpha) stimulation. However, vector-mediated overexpression of HSP70 failed to provide similar protection but rather sensitized cells to TNF-alpha induced apoptosis. This may be due to the fact that the kinetics of vector-mediated HSP overexpression is totally different from that of HSP upregulation by HS. We hypothesized that the response depends on the timing of TNF-alpha challenge relative to HSP expression dynamics after HS. Therefore, we investigated the correlation between the dynamic change of HSP expression and the levels of apoptosis induced by TNF-alpha after HS. Hepatoma cells were subjected to mild heat shock at 42 degrees C for 2 h followed by varied recovery times and then treated with TNF-alpha to induce apoptosis. The results from quantitative apoptosis assays using the TUNEL reaction reveal an optimal HS protection window centered around 5 h post-HS against TNF-alpha induced apoptosis. In addition, we found a window extending up to 2 h after HS where HS sensitized cells to TNF-alpha stress. Importantly, the correlation between apoptosis and HSP expression kinetics demonstrates that both high levels of HSPs and proper timing between HS and TNF-alpha stress were critical for optimal protection. Our study establishes a dynamic experimental model for further investigation of HS as a potential clinical approach to target tissue survival or death.
Collapse
Affiliation(s)
- Sihong Wang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
22
|
Benedetto A, Au C, Aschner M. Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson’s Disease. Chem Rev 2009; 109:4862-84. [DOI: 10.1021/cr800536y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandre Benedetto
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Catherine Au
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| |
Collapse
|
23
|
Mailankot M, Smith D, Howell S, Wang B, Jacobberger JW, Stefan T, Nagaraj RH. Cell cycle arrest by kynurenine in lens epithelial cells. Invest Ophthalmol Vis Sci 2008; 49:5466-75. [PMID: 18676626 PMCID: PMC2610264 DOI: 10.1167/iovs.08-2374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Indolemine 2,3-dioxygenase (IDO)-mediated oxidation of tryptophan produces kynurenines (KYNs), which may play a role in cataract formation. The molecular mechanisms by which KYNs cause cellular changes are poorly understood. The effects of KYNs on mouse lens epithelial cells by overexpression of human IDO were investigated. METHODS Lens epithelial cells (mLECs) derived from human IDO-overexpressing hemizygous transgenic (hemTg) and wild-type (Wt) mice were used. IDO activity was measured by quantifying kynurenine (KYN) by HPLC. KYN-mediated protein modifications were detected by immunocytochemistry and measured by ELISA. Cell proliferation and apoptosis were measured with commercially available kits. Cell distribution between cell cycle phases was examined with flow cytometric analysis. Immunoprecipitation followed by LC/MS was used to identify kynurenine-modified proteins. RESULTS mLECs derived from hemTg animals exhibited considerable IDO immunoreactivity and enzyme activity, which were barely detectable in Wt mLECs. KYN and KYN-mediated protein modification were detected in hemTg but not in Wt mLECs; the modified proteins were myosin II and alpha/gamma-actin. HemTg mLECs displayed reduced viability and proliferation. Cell cycle analysis of hemTg mLEC cultures showed approximately a twofold increase in cells at G(2)/M or in both phases, relative to Wt mLECs. Blocking IDO activity with 1-methyl-d,l-tryptophan in hemTg mLECs prevented KYN formation, KYN-mediated protein modification, and G(2)/M arrest. CONCLUSIONS Excess IDO activity in mLECs results in KYN production, KYN-mediated modification of myosin II and alpha/gamma-actin, and cell cycle perturbation. Modification of myosin II and gamma-actin by KYN may interfere with cytokinesis, leading to defective epithelial cell division and thus a decreased number of fiber cells.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apoptosis
- Cell Cycle/drug effects
- Cell Proliferation
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Flow Cytometry
- Gene Expression Regulation, Enzymologic/physiology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Kynurenine/metabolism
- Kynurenine/pharmacology
- Lens, Crystalline/cytology
- Lens, Crystalline/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Myosin Type II/metabolism
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Maneesh Mailankot
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Dawn Smith
- Visual Sciences Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Scott Howell
- Visual Sciences Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Benlian Wang
- Visual Sciences Research Center, Case Western Reserve University, Cleveland, Ohio
| | | | - Tammy Stefan
- Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Ram H. Nagaraj
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
- Visual Sciences Research Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
24
|
Dorai H, Li K, Huang CC, Bittner A, Galindo J, Carmen A. Genome-Wide Analysis of Mouse Myeloma Cell Lines Expressing Therapeutic Antibodies. Biotechnol Prog 2007. [DOI: 10.1002/bp0700051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Lee Y, Park HW, Park SG, Cho S, Myung PK, Park BC, Lee DH. Proteomic analysis of glutamate-induced toxicity in HT22 cells. Proteomics 2007; 7:185-93. [PMID: 17146837 DOI: 10.1002/pmic.200600644] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, we have investigated the proteome changes associated with glutamate-induced HT22 cell death, a model system to study oxidative stress-mediated toxicity. Among a number of HT22 proteins exhibiting altered expression, several molecular chaperones demonstrated substantial changes. For example, the levels of Hsp90 and Hsp70 decreased as cell death progressed whereas that of Hsp60 increased dramatically. Interestingly, cytosolic Hsp60 increased more prominently than mitochondrial Hsp60. Concomitantly, the accumulation of poly-ubiquitylated proteins and differential regulation of the peptidase activities and the subunits of 26S proteasomes were observed in glutamate-treated HT22 cells. Our findings that the molecular chaperones and the ubiquitin-proteasome system undergo changes during glutamate-induced HT22 cell death may suggest the importance of a protein quality control system in oxidative damage-mediated toxicity.
Collapse
Affiliation(s)
- Youra Lee
- Protein Therapeutics Research Center, KRIBB, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Latini A, Wajner M. In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 2007; 50:83-94. [PMID: 16959377 DOI: 10.1016/j.neuint.2006.04.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/25/2022]
Abstract
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dello Russo C, Polak PE, Mercado PR, Spagnolo A, Sharp A, Murphy P, Kamal A, Burrows FJ, Fritz LC, Feinstein DL. The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 2006; 99:1351-62. [PMID: 17064348 DOI: 10.1111/j.1471-4159.2006.04221.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The heat-shock response (HSR), a highly conserved cellular response, is characterized by rapid expression of heat-shock proteins (HSPs), and inhibition of other synthetic activities. The HSR can attenuate inflammatory responses, via suppression of transcription factor activation. A HSR can be induced pharmacologically by HSP90 inhibitors, through activation of the transcription factor Heat Shock Factor 1 (HSF1). In the present study we characterized the effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG), a less toxic derivative of the naturally occurring HSP90 inhibitor geldanamycin, on glial inflammatory responses and the development of experimental autoimmune encephalomyelitis. In primary enriched glial cultures, 17-AAG dose dependently reduced lipopolysaccharide-dependent expression and activity of inducible nitric oxide synthase, attenuated interleukin (IL)-1beta expression and release, increased inhibitor of kappaB protein levels, and induced HSP70 expression. 17-AAG administration to mice immunized with myelin oligodendrocyte glycoprotein peptide prevented disease onset when given at an early time, and reduced clinical symptoms when given during ongoing disease. T cells from treated mice showed a reduced response to immunogen re-stimulation, and 17-AAG reduced CD3- and CD28-dependent IL-2 production. Together, these data suggest that HSP90 inhibitors could represent a new approach for therapeutic intervention in autoimmune diseases such as multiple sclerosis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Inflammatory Agents/pharmacology
- Benzoquinones/pharmacology
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/physiopathology
- Disease Models, Animal
- Encephalitis/drug therapy
- Encephalitis/immunology
- Encephalitis/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Gliosis/drug therapy
- Gliosis/immunology
- Gliosis/physiopathology
- HSP72 Heat-Shock Proteins/drug effects
- HSP72 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- I-kappa B Proteins/drug effects
- I-kappa B Proteins/metabolism
- Immunosuppressive Agents/pharmacology
- Interleukin-1beta/drug effects
- Interleukin-1beta/metabolism
- Interleukin-2/metabolism
- Lactams, Macrocyclic/pharmacology
- Mice
- Mice, Inbred C57BL
- Nitric Oxide Synthase Type II/drug effects
- Nitric Oxide Synthase Type II/metabolism
- Rats
- Rats, Sprague-Dawley
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Department of Anesthesiology, University of Illinois, and Jesse Brown Veteran's Affairs Research Division, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shen WW, Liu HC, Yang YY, Lin CY, Chen KP, Yeh TS, Leu SJ. Anti-heat shock protein 90 is increased in acute mania. Aust N Z J Psychiatry 2006; 40:712-6. [PMID: 16866768 DOI: 10.1080/j.1440-1614.2006.01872.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this work was to examine autoantibodies in patients with bipolar disorder. METHOD We enrolled 94 patients with acute bipolar mania, with 37 of them medicated and 57 unmedicated at the time of blood sampling. The samples also consisted of 44 patients in the remission state and another 48 normal controls. We first used human glioblastoma (U373 MG) cell lysate to screen the potential autoantibodies present in sera of bipolar mania patients, and anti-heat shock protein (anti-HSP) 60, 70 and 90 autoantibodies were identified. We then examined the serum levels of these autoantibodies by enzyme-linked immunosorbent assay. RESULTS The findings of this study showed that serum anti-HSP90 level was significantly higher in bipolar patients in acute mania than those in remission (p = 0.002). CONCLUSIONS The data of this study suggest that increased anti-HSP90 might be a state marker for acute mania in patients with bipolar disorder.
Collapse
Affiliation(s)
- Winston W Shen
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Healy DA, Daly PJ, Docherty NG, Murphy M, Fitzpatrick JM, Watson RWG. Heat shock-induced protection of renal proximal tubular epithelial cells from cold storage and rewarming injury. J Am Soc Nephrol 2006; 17:805-12. [PMID: 16421224 DOI: 10.1681/asn.2005090980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cold storage and reperfusion injury to transplanted kidneys contributes to increased incidence of delayed graft function and may have a negative impact on graft survival. This study examined the mechanisms by which previous heat shock protects against cell death in an in vitro model of kidney storage. Cold storage is mimicked by incubating human renal proximal tubular epithelial (HK-2) cells in University of Wisconsin solution at 4 degrees C with and without subsequent rewarming. Heat shock was induced by incubation of cells at 42 degrees C for 1 h. Altered protein expression was measured by Western blot, and cell viability and apoptosis were measured by propidium iodide DNA staining using flow cytometry. The specific role of heat-shock protein 70 (HSP-70) was determined both by siRNA knockdown and by stable overexpression approaches. Cold storage and rewarming-induced cell death was associated with decreased expression of HSP-70, HSP-90, HSP-27, and Bcl-2. Previous heat shock significantly reduced HK-2 cell death after cold storage and rewarming and was associated with the maintenance of HSP-70, HSP-27, and Bcl-2 protein levels. Blocking heat stress-induced HSP-70 with siRNA did not significantly block the protective effect of heat stress against cold storage and rewarming cell death; however, overexpression of HSP-70 protected HK-2 cells from this stress. It is concluded that previous heat shock protects HK-2 cells from cold storage and rewarming injury. siRNA inhibition of HSP-70 induction did not block the protective effect of heat shock, indicating that HSP-70 is not essential to the heat stress-induced protective effect reported in this study.
Collapse
Affiliation(s)
- Declan A Healy
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, Mater Misericordiae University Hospital, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
30
|
Woodhouse A, Dickson TC, West AK, McLean CA, Vickers JC. No difference in expression of apoptosis-related proteins and apoptotic morphology in control, pathologically aged and Alzheimer's disease cases. Neurobiol Dis 2006; 22:323-33. [PMID: 16406795 DOI: 10.1016/j.nbd.2005.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/07/2005] [Accepted: 11/24/2005] [Indexed: 11/24/2022] Open
Abstract
Apoptotic-like changes in the neocortex of control, pathologically aged and Alzheimer's disease (AD) cases were investigated. There was no increase in labeling or change in localization of labeling that distinguished between these cases for active caspase-3, -8, -9, Bax, Bcl-2 or TRADD. Bax, Bcl-2 and TRADD mRNA levels also differed little between case types, although there were small but significant decreases in Bax mRNA levels in AD compared to control cases and Bcl-2 mRNA in AD cases compared to pathologically aged and control cases. There was no difference in the percentage of apoptotic-like nuclei between these cases, except for a small but significant decrease in the inferior temporal gyrus of AD cases relative to controls. Nuclei observed within or adjacent to beta-amyloid plaques were rarely abnormal, and neurons bearing neurofibrillary tangles (NFTs) did not have abnormal nuclei. Apoptosis may not play a major role in the pathogenesis of neuronal degeneration of AD.
Collapse
Affiliation(s)
- Adele Woodhouse
- NeuroRepair Group, School of Medicine, Private Bag 29, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | |
Collapse
|
31
|
Zhang MH, Lee JS, Kim HJ, Jin DI, Kim JI, Lee KJ, Seo JS. HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis. Mol Cell Biochem 2006; 281:111-21. [PMID: 16328963 DOI: 10.1007/s11010-006-0638-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 07/07/2005] [Indexed: 01/28/2023]
Abstract
Heat shock protein (HSP) 90 is of interest as an anticancer drug target because of its importance in maintaining the conformation, stability and function of the client proteins involved in signal transduction pathways leading to proliferation, cell cycle progression, and apoptosis. Geldanamycin, a specific antagonist of HSP90, binds directly to HSP90 and promotes proteolytic degradation of client proteins of HSP90. The aim of the present study was to identify novel client proteins of HSP90 and to elucidate HSP90 function through inhibition of HSP90 binding to its client proteins, by using of geldanamycin. We investigated changes in protein profile when apoptosis was induced by exposure to geldanamycin. Differentially expressed proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), in human neuroblastoma SK-N-SH cells. The vimentin level was found to decrease dramatically by the treatment of geldanamycin. We observed subcellular co-localization of vimentin and HSP90. Physical association of vimentin with HSP90 was detected by an immunoprecipitation assay. The caspase inhibitors, Z-VAD-FMK and Ac-DEVD-CHO, completely abolished geldanamycin-induced cleavage of vimentin. Changes of HSP90 level by antisense treatment or transfection of HSP90-overexpressing vector affected geldanamycin-induced cleavage of vimentin. These results suggest that HSP90 protects vimentin by physical interaction in the geldanamycin-induced apoptotic pathway.
Collapse
Affiliation(s)
- Mei-Hua Zhang
- Department of Biochemistry and molecular Biology, ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: From bedside to bench. Prog Neurobiol 2005; 77:396-425. [PMID: 16376477 DOI: 10.1016/j.pneurobio.2005.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 01/07/2023]
Abstract
As much as brain stem death is currently the clinical definition of death in many countries and is a phenomenon of paramount medical importance, there is a dearth of information on its mechanistic underpinnings. A majority of the clinical studies are concerned only with methods to determine brain stem death. Whereas a vast amount of information is available on the cellular and molecular mechanisms of cell death, rarely are these studies directed specifically towards the understanding of brain stem death. This review presents a framework for translational research on brain stem death that is based on systematically coordinated clinical and laboratory efforts that center on this phenomenon. It begins with the identification of a novel clinical marker from patients that is related specifically to brain stem death. After realizing that this "life-and-death" signal is related to the functional integrity of the brain stem, its origin is traced to the rostral ventrolateral medulla (RVLM). Subsequent laboratory studies on this neural substrate in animal models of brain stem death provide credence to the notion that both "pro-life" and "pro-death" programs are at work during the progression towards death. Those programs (mitochondrial functions, nitric oxide, peroxynitrite, superoxide anion, coenzyme Q10, heat shock proteins and ubiquitin-proteasome system) hitherto identified from the RVLM are presented, along with their cellular and molecular mechanisms. It is proposed that outcome of the interplay between the "pro-life" and "pro-death" programs (dying) in this neural substrate determines the final fate of the individual (being dead). Thus, identification of additional programs in the RVLM and delineation of their regulatory mechanisms should shed new lights on future directions for clinical management of life-and-death.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, ROC
| | | | | |
Collapse
|
33
|
Li FCH, Chan JYH, Chan SHH, Chang AYW. In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade. Mol Pharmacol 2005; 68:179-92. [PMID: 15827295 DOI: 10.1124/mol.105.011684] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat shock proteins (HSPs) represent a group of highly conserved intracellular proteins that participate in protective adaptation against cellular stress. We evaluated the neuroprotective role of the 70-kDa HSP (HSP70) and the 90-kDa HSP (HSP90) at the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic vasomotor tone, during fatal endotoxemia. In Sprague-Dawley rats maintained under propofol anesthesia, Escherichia coli lipopolysaccharide (30 mg/kg, i.v.) induced a decrease (phase I), followed by an increase (phase II; "pro-life" phase) and a secondary decrease (phase III; "pro-death" phase) in the power density of the vasomotor component of systemic arterial pressure spectrum, along with progressive hypotension or bradycardia. Proteomic and Western blot analyses revealed that whereas HSP70 expression in the RVLM was significantly augmented during phases I and II and returned to baseline during phase III endotoxemia, HSP90 protein expression remained constant. The increase in HSP70 level was significantly blunted on pretreatment with microinjection of the transcription inhibitor actinomycin D or protein synthesis inhibitor cycloheximide into the bilateral RVLM. Functional blockade of HSP70 in the RVLM by an anti-HSP70 antiserum or prevention of synthesis by an antisense hsp70 oligonucleotide exacerbated mortality or potentiated the cardiovascular depression during experimental endotoxemia, alongside significantly reduced nitric-oxide synthase (NOS) I or protein kinase G (PKG) level or augmented NOS II or peroxynitrite level in the RVLM. We conclude that whereas HSP90 is ineffective, de novo synthesis of HSP70 in the RVLM may confer neuroprotection during fatal endotoxemia by preventing cardiovascular depression via enhancing the sympathoexcitatory NOS I/PKG signaling pathway and inhibiting the sympathoinhibitory NOS II/peroxynitrite cascade in the RVLM.
Collapse
Affiliation(s)
- Faith C H Li
- Center for Neuroscience and Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
34
|
|
35
|
Anderson SP, Howroyd P, Liu J, Qian X, Bahnemann R, Swanson C, Kwak MK, Kensler TW, Corton JC. The transcriptional response to a peroxisome proliferator-activated receptor alpha agonist includes increased expression of proteome maintenance genes. J Biol Chem 2004; 279:52390-8. [PMID: 15375163 DOI: 10.1074/jbc.m409347200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha), in addition to regulating lipid homeostasis, controls the level of tissue damage after chemical or physical stress. To determine the role of PPARalpha in oxidative stress responses, we examined damage after exposure to chemicals that increase oxidative stress in wild-type or PPARalpha-null mice. Primary hepatocytes from wild-type but not PPARalpha-null mice pretreated with the PPAR pan-agonist WY-14,643 (WY) were protected from damage to cadmium and paraquat. The livers from intact wild-type but not PPARalpha-null mice were more resistant to damage after carbon tetrachloride treatment. To determine the molecular basis of the protection by PPARalpha, we identified by transcript profiling genes whose expression was altered by a 7-day exposure to WY in wild-type and PPARalpha-null mice. Of the 815 genes regulated by WY in wild-type mice (p < or = 0.001; > or =1.5-fold or < or =-1.5-fold), only two genes were regulated similarly by WY in PPARalpha-null mice. WY increased expression of stress modifier genes that maintain the health of the proteome, including those that prevent protein aggregation (heat stress-inducible chaperones) and eliminate damaged proteins (proteasome components). Although the induction of proteasomal genes significantly overlapped with those regulated by 1,2-dithiole-3-thione, an activator of oxidant-inducible Nrf2, WY increased expression of proteasomal genes independently of Nrf2. Thus, PPARalpha controls the vast majority of gene expression changes after exposure to WY in the mouse liver and protects the liver from oxidant-induced damage, possibly through regulation of a distinct set of proteome maintenance genes.
Collapse
Affiliation(s)
- Steven P Anderson
- Investigative Toxicology and Pathology Group, Safety Assessment, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101:227-57. [PMID: 15031001 DOI: 10.1016/j.pharmthera.2003.11.004] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Collapse
Affiliation(s)
- Amere Subbarao Sreedhar
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest, Hungary
| | | |
Collapse
|
37
|
Lee HJ, Bach JH, Chae HS, Lee SH, Joo WS, Choi SH, Kim KY, Lee WB, Kim SS. Mitogen-activated protein kinase/extracellular signal-regulated kinase attenuates 3-hydroxykynurenine-induced neuronal cell death. J Neurochem 2004; 88:647-56. [PMID: 14720214 DOI: 10.1111/j.1471-4159.2004.02191.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
3-Hydroxykynurenine (3-HK), an endogenous tryptophan metabolite, is known to have toxic effects in brain. However, the molecular mechanism of the toxicity has not been well identified. In this study, we investigated the involvement of MAPK/extracellular signal-regulated kinase (ERK) in the 3-HK-induced neuronal cell damage. Our results showed that 3-HK induced apoptotic neuronal cell death and ERK phosphorylation occurred during cell death. Inhibition of ERK activation using PD98059 considerably increased cell death. Furthermore, cell death was preceded by mitochondrial malfunction including collapse of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release from mitochondria to the cytosol. Interestingly, inhibition of ERK dramatically increased mitochondrial malfunction, and enhanced caspase activation, resulting in enhanced neuronal cell death. Thus, our results show that ERK plays a protective role by maintaining mitochondrial function and regulating caspase activity under conditions of cellular stress.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yuza Y, Agawa M, Matsuzaki M, Yamada H, Urashima M. Gene and protein expression profiling during differentiation of neuroblastoma cells triggered by 13-cis retinoic acid. J Pediatr Hematol Oncol 2003; 25:715-20. [PMID: 12972807 DOI: 10.1097/00043426-200309000-00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE The precise changes in RNA and protein expression that accompany neuroblastoma differentiation remain unknown. The authors used microarray technologies to screen molecules associated with the differentiation of neuroblastoma (NB) cells induced by 13-cis retinoic acid. METHODS The authors quantified the expression of 2,061 RNA transcripts related to oncogenesis and of 380 proteins expressed in SK-N-SH and CHP-134 NB cell lines in the presence or absence of 13-cis retinoic acid. RESULTS Hierarchical clustering captured gene expression altered during neuroblastoma differentiation induced by 13-cis retinoic acid. Several genes were further abstracted based on P values below 0.0017 or protein chips observed in both NB cell lines. The altered expressions of gene products revealed by both DNA and protein chips were in agreement. The expressions of N-myc, cyclin D3, and Wnt10B were downregulated, whereas those of retinoblastoma (RB) and related genes (p107, RB2/p130, p300/CBP, E2F-1, DP-1) as well as others were upregulated. CONCLUSIONS These results suggest that microarray technology can screen for genes that are important in neuroblastoma differentiation.
Collapse
Affiliation(s)
- Yuki Yuza
- Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Tabuchi Y, Kondo T. cDNA microarray analysis reveals chop-10 plays a key role in Sertoli cell injury induced by bisphenol A. Biochem Biophys Res Commun 2003; 305:54-61. [PMID: 12732195 DOI: 10.1016/s0006-291x(03)00708-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We examined the time course of changes in gene expression in detail using cDNA microarray analysis of mouse Sertoli TTE3 cells treated with bisphenol A (BPA). A subtoxic dose of BPA (200 microM) transiently increased intracellular Ca(2+) concentration and time-dependently induced an increase in mRNA level of 78-kDa glucose-regulated protein, indicating that BPA induces endoplasmic reticulum stress. Of the 865 genes analyzed, 31 genes showed increased levels of expression. TaqMan analysis confirmed that the mRNA levels of chop-10, fra-2, c-myc, and ornithine decarboxylase were increased, and showed that chop-10 is the most sensitive gene. The expression level of chop-10 protein and cell injury induced by BPA were significantly reduced in stable TTE3 cells overexpressing full-length chop-10 antisense RNA. We conclude that chop-10 plays a key role in Sertoli cell injury induced by BPA.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics, Life Science Research Center, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama City, Toyama 930-0194, Japan.
| | | |
Collapse
|
40
|
Mearow KM, Dodge ME, Rahimtula M, Yegappan C. Stress-mediated signaling in PC12 cells - the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 2002; 83:452-62. [PMID: 12423255 DOI: 10.1046/j.1471-4159.2002.01151.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of stress-activated signaling pathways and the small heat shock protein, Hsp27, in protecting PC12 cells from heat shock and nerve growth factor (NGF) withdrawal-induced apoptosis. PC12 cells and a stable cell line overexpressing Hsp27 (HSPC cells) were subjected to heat shock. This resulted in the rapid activation of Akt followed by p38 mitogen-activated protein kinase (MAPK) signaling, with phosphorylation and intracellular translocation of Hsp27 also detectable. Hsp27 was found to form an immunoprecipitable complex with Akt and p38 MAPK in both non-stimulated and heat shocked cells, although after heat shock there was a gradual dissociation of Akt and p38 from the Hsp27. Cells were differentiated with NGF and then subjected to NGF withdrawal, a treatment which results in substantial cell death over 24-72 h. Hsp27 was shown to be protective against this treatment, since HSPC cells which overexpress Hsp27 showed significantly less cell death than the parental PC12 cells. In addition, we observed that phosphorylation of Akt was maintained in HSPC cells subjected to heat shock and NGF withdrawal compared with the parental cells. Taken together, our results suggest that Hsp27 may protect Akt from dephosphorylation and may also act in stabilizing Akt.
Collapse
Affiliation(s)
- K M Mearow
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | | | | | | |
Collapse
|
41
|
Kalmar B, Burnstock G, Vrbová G, Urbanics R, Csermely P, Greensmith L. Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp Neurol 2002; 176:87-97. [PMID: 12093085 DOI: 10.1006/exnr.2002.7945] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Heat shock proteins (hsps) are induced in a variety of cells following periods of stress, where they promote cell survival. In this study, we examined the effect of upregulating hsp expression by treatment with BRX-220, a co-inducer of hsps, on the survival of injured motoneurones. Following sciatic nerve crush at birth, rat pups were treated daily with BRX-220. The expression of hsp70 and hsp90, motoneurone survival, and muscle function was examined at various intervals later and the number of functional motor units was assessed by in vivo isometric tension recordings. Fourteen days after injury, significantly more motoneurones survived in the BRX-220-treated group (39 +/- 2.8%) compared to the saline-treated group (21 +/- 1.7%). Moreover, in the BRX-220-treated group no further loss of motoneurones occurred, so that at 10 weeks 42 +/- 2.1% of motoneurones survived compared to 15 +/- 0.6% in the untreated group. There were also more functional motor units in the hindlimb muscles of BRX-220-treated animals. In addition, treatment with BRX-220 resulted in a significant increase in the expression of hsp70 and hsp90 in glia and neurones. Thus, treatment with BRX-220, a co-inducer of hsps, protects motoneurones from axotomy-induced cell death.
Collapse
Affiliation(s)
- B Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Sun Y, Huang PL, Li JJ, Huang YQ, Zhang L, Huang PL, Lee-Huang S. Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi's sarcoma-associated virus. Biochem Biophys Res Commun 2001; 287:983-94. [PMID: 11573962 DOI: 10.1006/bbrc.2001.5689] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anti-HIV agent MAP30 (Momordica anti-HIV protein, 30 kDa) inhibits the proliferation of BC-2, an AIDS-related primary effusion lymphoma (PEL) cell line derived from an AIDS patient. BC-2 cells are latently infected with Kaposi's sarcoma-associated herpes virus (KSHV), also known as human herpes virus 8 (HHV8). We examined the effect of MAP30 on the expression of viral and cellular genes in BC-2 during latent and lytic states of the viral life cycle. By Northern analysis and RT-PCR, we found that MAP30 downregulates the expression of viral cyclin D (vCD), viral interleukin-6 (vIL-6), and viral FLIP (vFLIP), genes involved in cell cycle regulation, viral pathogenesis, and apoptosis. By pathway-specific cDNA microarray analysis, we found that BC-2 cells express high levels of egr-1, ATF-2, hsp27, hsp90, IkappaB, mdm2, skp1, and IL-2, cellular genes involved in mitogenesis, tumorigenesis, and inhibition of apoptosis in NFkappaB and p53 signaling pathways. These results define for the first time the specific cellular pathways involved in AIDS-related tumorigenesis and suggest specific novel targets for the treatment. Furthermore, we found that MAP30 downregulates the expression of egr-1, ATF-2, hsp27, hsp90, IkappaB, mdm2, and Skp1, while it upregulates the pro-apoptotic-related genes Bax, CRADD, and caspase-3. Thus, MAP30 modulates the expression of both viral and cellular genes involved in KS pathogenesis. These results provide valuable insight into the molecular mechanisms of MAP30 anti-KS action and suggest its utility as a therapeutic agent against AIDS-related tumors.
Collapse
Affiliation(s)
- Y Sun
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|