1
|
Lo Iacono M, Corrao S, Alberti G, Amico G, Timoneri F, Russo E, Cucina A, Indelicato S, Rappa F, Corsello T, Saieva S, Di Stefano A, Di Gaudio F, Conaldi PG, La Rocca G. Characterization and Proteomic Profiling of Hepatocyte-like Cells Derived from Human Wharton's Jelly Mesenchymal Stromal Cells: De Novo Expression of Liver-Specific Enzymes. BIOLOGY 2025; 14:124. [PMID: 40001892 PMCID: PMC11851833 DOI: 10.3390/biology14020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
End-stage liver disease (ESLD), affecting millions worldwide, represents a challenging issue for clinical research and global public health. Liver transplantation is the gold standard therapeutic approach but shows some drawbacks. Hepatocyte transplantation could be a reliable alternative for patient treatment. Mesenchymal stromal cells derived from Wharton's jelly of the umbilical cord (WJ-MSCs) can differentiate into hepatocyte-like cells (HLCs) and show immunomodulatory functions. Due to the increasing demand for fully characterized cell therapy vehicles warranting both the safety and efficacy of treatments, in this work, we extensively characterized WJ-MSCs before and after the application of a hepatocyte-directed differentiation protocol. HLCs exhibited a morphology resembling that of hepatocytes, expressed early and late hepatic markers (α-fetoprotein, albumin, CK18, HNF4-α), and acquired hepatic functions (glycogen synthesis, xenobiotics detoxification), as also revealed by the shotgun proteomics approach. HLCs maintained the same pattern of immunomodulatory molecule expression and mesenchymal markers, other than displaying specific enzymes, suggesting these cells as promising candidates for cellular therapy of ESLD. Our work shed new light on the basic biology of HLCs, suggesting new therapeutic approaches to treat ESLD.
Collapse
Affiliation(s)
- Melania Lo Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
| | - Simona Corrao
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| | - Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
| | - Giandomenico Amico
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (G.A.); (F.T.); (P.G.C.)
- Unit of Regenerative Medicine and Immunotherapy, Ri.MED Foundation, 90133 Palermo, Italy
| | - Francesca Timoneri
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (G.A.); (F.T.); (P.G.C.)
- Unit of Regenerative Medicine and Immunotherapy, Ri.MED Foundation, 90133 Palermo, Italy
| | - Eleonora Russo
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Annamaria Cucina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, 90127 Palermo, Italy; (A.C.); (S.I.); (F.D.G.)
| | - Sergio Indelicato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, 90127 Palermo, Italy; (A.C.); (S.I.); (F.D.G.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Tiziana Corsello
- Department of Pediatrics, Division of Clinical and Experimental Immunology and Infectious Diseases (CEIID), University of Texas Medical Branch, Galveston, TX 77550, USA;
| | - Salvatore Saieva
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Antonino Di Stefano
- Laboratory of Cardio-Respiratory Apparatus Cytoimmunopathology, “S. Maugeri” Foundation, IRCCS, Medical Center of Veruno, 281010 Novara, Italy;
| | - Francesca Di Gaudio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) University of Palermo, 90127 Palermo, Italy; (A.C.); (S.I.); (F.D.G.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (G.A.); (F.T.); (P.G.C.)
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (F.R.)
| |
Collapse
|
2
|
Kondkar AA, Sultan T, Azad TA, Khatlani T, Lobo GP, Kalantan H, Al-Obeidan SA, Al-Muammar AM. Gender-specific association of STON2 rs2371597 polymorphism in keratoconus patients of Saudi origin. Front Genet 2024; 15:1505629. [PMID: 39717479 PMCID: PMC11663935 DOI: 10.3389/fgene.2024.1505629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Objective To investigate the association of specific genetic polymorphisms (rs2371597 in STON2, rs11720822 in PDIA5, rs387907358 in WNT1, and rs77542162 in ABCA6) in a Saudi cohort of keratoconus (KC) patients compared to controls. Methods A retrospective case-control genetic association study was conducted. The study included 99 KC patients and 193 healthy controls. Genotyping was performed using real-time PCR with TaqMan assays. Associations between genetic polymorphisms and KC were assessed using various genetic models and binary logistic regression analysis. Results None of the tested polymorphisms showed an overall association with KC risk. Specifically, the rs2371597 polymorphism in STON2 did not demonstrate a significant association with KC risk across different genetic models. However, a gender-specific effect of rs2371597 was noted: in men, the C/G genotype was associated with a higher risk of KC, particularly in the dominant model, while no significant association was observed in women. Age and sex were identified as significant predictors of KC risk, but rs2371597 did not significantly affect KC risk in regression analysis. Conclusion Preliminary evidence suggests a gender-specific effect of the rs2371597 polymorphism in STON2, with an increased KC risk associated with C/G-C/C genotypes in men which was age-dependent. This result highlights the importance of considering population-specific genetic factors and the potential gender-specific effects on KC susceptibility. However, these findings need further validation with larger age- and sex-matched samples of diverse populations.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Hatem Kalantan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Liang P, Henning SM, Grogan T, Elashoff D, Said J, Cohen P, Aronson WJ. Effect of omega-3 fatty acid diet on prostate cancer progression and cholesterol efflux in tumor-associated macrophages-dependence on GPR120. Prostate Cancer Prostatic Dis 2024; 27:700-708. [PMID: 37872251 PMCID: PMC11035487 DOI: 10.1038/s41391-023-00745-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Preclinical and clinical translational research supports the role of an ω-3 fatty acid diet for prostate cancer prevention and treatment. The anti-prostate cancer effects of an ω-3 diet require a functional host g-protein coupled receptor 120 (GPR120) but the underlying effects on the tumor microenvironment and host immune system are yet to be elucidated. METHODS Friend leukemia virus B (FVB) mice received bone marrow from green fluorescent protein (GFP) labeled GPR120 wild-type (WT) or knockout (KO) mice followed by implanting Myc-driven mouse prostate cancer (MycCap) allografts and feeding an ω-3 or ω-6 diet. Tumor associated immune cells were characterized by flow cytometry, and CD206+ tumor infiltrating M2-like macrophages were isolated for gene expression studies. MycCap prostate cancer cell conditioned medium (CM) was used to stimulate murine macrophage cells (RAW264.7) and bone marrow-derived (BMD) macrophages to study the effects of docosahexanoic acid (DHA, fish-derived ω-3 fatty acid) on M2 macrophage function and cholesterol metabolism. RESULTS The bone marrow transplantation study showed that an ω-3 as compared to an ω-6 diet inhibited MycCaP allograft tumor growth only in mice receiving GPR120 WT but not GPR120 KO bone marrow. In the ω-3 group, GPR120 WT BMD M2-like macrophages infiltrating the tumor were significantly reduced in number and gene expression of cholesterol transporters Abca1, Abca6, and Abcg1. RAW264.7 murine macrophages and BMDMs exposed to MycCaP cell CM had increased gene expression of cholesterol transporters, depleted cholesterol levels, and were converted to the M2 phenotype. These effects were inhibited by DHA through the GPR120 receptor. CONCLUSION Host bone marrow cells with functional GPR120 are essential for the anticancer effects of dietary ω-3 fatty acids, and a key target of the ω-3 diet are the M2-like CD206+ macrophages. Our preclinical findings provide rationale for clinical trials evaluating ω-3 fatty acids as a potential therapy for prostate cancer through inhibition of GPR120 functional M2-like macrophages.
Collapse
Affiliation(s)
- Pei Liang
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Susanne M Henning
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William J Aronson
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- VA Medical Center Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Pan B, Yao P, Ma J, Lin X, Zhou L, Lin C, Zhang Y, Lin B, Lin C. Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data. Front Immunol 2024; 15:1482361. [PMID: 39640258 PMCID: PMC11617364 DOI: 10.3389/fimmu.2024.1482361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Osteoarthritis (OA) is a prevalent joint disease that severely impacts patients' quality of life. Due to its unclear pathogenesis and lack of effective therapeutic targets, discovering new biomarkers for OA is essential. Recently, the role of chondrocyte subpopulations in OA progression has gained significant attention, offering potential insights into the disease. This study aimed to explore the role of fibrocartilage chondrocytes (FC) in the progression of OA and identify key biomarkers related to FC. Methods We analyzed single-cell ribonucleic acid sequencing (scRNA-seq) data from samples of OA and normal cartilage, focusing on FC. Microarray data were integrated to identify differentially expressed genes (DEGs). We conducted functional-enrichment analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and used weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm to select biomarkers. A novel risk model for OA was constructed using these biomarkers. We then built a transcription factor (TF)-gene interaction network and performed immunohistochemistry (IHC) to validate protein expression levels of these biomarkers in cartilage samples. Results The study identified 545 marker genes associated with FC in OA. GO and KEGG analyses revealed their biological functions; microarray analysis identified 243 DEGs on which functional-enrichment analysis were conducted. Using WGCNA and LASSO, we identified six hub genes, on the basis of which we constructed a risk model for OA. In addition, correlation analysis revealed a close association between Forkhead Box (FoxO)-mediated transcription and these these biomarkers. IHC showed significantly lower protein levels of ABCA5, ABCA6 and SLC7A8 in OA samples than in normal samples. Conclusion This study used a multi-omics approach to identify six FC-related OA biomarkers (BCL6, ABCA5, ABCA6, CITED2, NR1D1, and SLC7A8) and developed an exploratory risk model. Functional enrichment analysis revealed that the FoxO pathway may be linked to these markers, particularly implicating ABCA5 and ABCA6 in cholesterol homeostasis within chondrocytes. These findings highlight ABCA family members as novel contributors to OA pathogenesis and suggest new therapeutic targets.
Collapse
Affiliation(s)
- Bailin Pan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Peixiu Yao
- Department of Biobank, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jinjin Ma
- Institute of Future Health, South China University of Technology, Guangzhou, China
| | - Xuanhao Lin
- Department of Biobank, Shantou Central Hospital, Shantou, Guangdong, China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Canzhen Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
- Department of Graduate Student, Shantou University Medical College, Shantou, Guangdong, China
| | - Yufeng Zhang
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Bendan Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
5
|
Qi C, Zhao Z, Chen L, Wang L, Zhou Y, Duan G. Exploring the role of neutrophil extracellular traps in neuroblastoma: identification of molecular subtypes and prognostic implications. Front Oncol 2024; 14:1361871. [PMID: 39575432 PMCID: PMC11578966 DOI: 10.3389/fonc.2024.1361871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Background Cancer cells induce neutrophil extracellular traps (NETs) to promote tumor progression and metastasis. However, only a few studies have focused on the role of NETs in Neuroblastoma (NB). Methods First, based on the expression of NET-related genes, consensus clustering analysis was conducted to cluster NB samples into different subtypes. Differential analysis was performed to identify DEGs between subtypes. Functional items and related pathways of DEGs were identified using enrichment analysis. Univariate Cox analysis and the LASSO algorithm were used to identify biomarkers for prognosis. Furthermore, independent prognostic analysis was performed. Immune infiltration analysis was performed to identify differential immune cells. Finally, the verification of prognostic model genes were taken by the immunohistochemical staining and quantitative real-time PCR. Results Consensus clustering analysis demonstrated that NB samples were clustered into two subtypes. There were 125 DEGs between the two subtypes of NB. Moreover, the enrichment analysis results showed that the DEGs were mainly associated with 'external side of plasma membrane,' 'immune receptor activity' 'regulation of leukocyte migration' GO items. There were also several GO items related to neutrophils, such as regulation of neutrophil migration and differentiation. KEGG pathways revealed that the DEGs were correlated with in immunity-related activities, including 'Complement and coagulation cascades,' 'Neutrophil extracellular trap formation, 'T cell receptor signaling pathway,' 'PD-L1 expression and PD-1 checkpoint pathway in cancer' and so on. A total of five biomarkers,[Selenoprotein P1 (SEPP1), Fibrinogen-like protein 2 (FGL2), NK cell lectin-like receptor K1 (KLRK1), ATP-binding cassette transporters 6(ABCA6) and Galectins(GAL)], were screened, and a risk model based on the biomarkers was created. Furthermore, a nomogram for forecasting the survival rates of patients with NB was established based on the risk score, age at diagnosis, and MYCN status. Eight differential immune cells (CD8 + T cells, resting mast cells, etc.) were acquired between the two risk subgroups. The expression levels of five prognostic model genes at the protein and mRNA were verified and all results were consistent with the results of our bioinformatics analysis. Conclusion We initially found that five NET-related genes were significantly differentially expressed in NETs-associated molecular isoforms and two Netrg molecular isoforms were found to be associated with poorer prognosis. This stratification might provide insight into the prediction of prognosis and ideal immunotherapy strategies for patients with NB. However, we also noted that the formation of NETs is a complex biological process involving the regulation of multiple cytokines and cellular interactions. Therefore, the exact roles of these genes and their specific mechanisms in the formation of NETs and the development of NB still need to be further investigated.
Collapse
Affiliation(s)
- Can Qi
- Study Office of Pediatric and Thoracic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Ziwei Zhao
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Lin Chen
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Le Wang
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Yun Zhou
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Guochen Duan
- Study Office of Pediatric and Thoracic Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Pediatric Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
6
|
Kleinsasser B, Garreis F, Musialik M, Zahn I, Kral B, Kutlu Z, Sahin A, Paulsen F, Schicht M. Molecular detection of lacrimal apparatus and ocular surface - related ABC transporter genes. Ann Anat 2024; 255:152272. [PMID: 38697581 DOI: 10.1016/j.aanat.2024.152272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The ocular system is in constant interaction with the environment and with numerous pathogens. The ATP-binding cassette (ABC) transporters represent one of the largest groups among the transmembrane proteins. Their relevance has been demonstrated for their defense function against biotic and abiotic stress factors, for metabolic processes in tumors and for their importance in the development of resistance to drugs. The aim of this study was to analyze which ABC transporters are expressed at the ocular surface and in the human lacrimal apparatus. Using RT-PCR, all ABC transporters known to date in humans were examined in tissue samples from human cornea, conjunctiva, meibomian glands and lacrimal glands. The RT-PCR analyses revealed the presence of all ABC transporters in the samples examined, although the results for some of the 48 transporters known in human and analyzed were different in the various tissues. The present results provide information on the expression of ABC transporters at the mRNA level on the ocular surface and in the lacrimal system. Their detection forms the basis for follow-up studies at the protein level, which will provide more information about their physiological significance at the ocular surface and in the lacrimal system and which may explain pathological effects such as drug resistance.
Collapse
Affiliation(s)
- Benedikt Kleinsasser
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Musialik
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Kral
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zeynep Kutlu
- Koc University School of Medicine, Rumelifeneri Yolu, Istanbul 34450, Turkey
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Schicht
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Liu X, Yuan M, Zhao D, Zeng Q, Li W, Li T, Li Q, Zhuo Y, Luo M, Chen P, Wang L, Feng W, Zhou Z. Single-Nucleus Transcriptomic Atlas of Human Pericoronary Epicardial Adipose Tissue in Normal and Pathological Conditions. Arterioscler Thromb Vasc Biol 2024; 44:1628-1645. [PMID: 38813696 PMCID: PMC11208064 DOI: 10.1161/atvbaha.124.320923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Danni Zhao
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| | - Qi Li
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Center of Vascular Surgery (Y.Z., M.L.), Fuwai Hospital, Beijing, China
- Department of Vascular Surgery, Central-China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, China (M.L.)
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, China (M.L.)
| | - Pengfei Chen
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Liqing Wang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Department of Cardiac Surgery (Q.L., P.C., L.W., W.F.), Fuwai Hospital, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Q.L., Y.Z., M.L., P.C., L.W., W.F., Z.Z.)
- Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine (X.L., M.Y., D.Z., Q.Z., W.L., T.L., Z.Z.), Fuwai Hospital, Beijing, China
| |
Collapse
|
8
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
9
|
González-Alvarez ME, Keating AF. Hepatic and ovarian effects of perfluorooctanoic acid exposure differ in lean and obese adult female mice. Toxicol Appl Pharmacol 2023; 474:116614. [PMID: 37422089 DOI: 10.1016/j.taap.2023.116614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Obesity and overweight cause poor oocyte quality, miscarriage, infertility, polycystic ovarian syndrome, and offspring birth defects and affects 40% and 20% of US women and girls, respectively. Perfluorooctanoic acid (PFOA), a per- and poly-fluoroalkyl substance (PFAS), is environmentally persistent and has negative female reproductive effects including endocrine disruption, oxidative stress, altered menstrual cyclicity, and decreased fertility in humans and animal models. PFAS exposure is associated with non-alcoholic fatty liver disease which affects ∼24-26% of the US population. This study investigated the hypothesis that PFOA exposure impacts hepatic and ovarian chemical biotransformation and alters the serum metabolome. At 7 weeks of age, female lean, wild type (KK.Cg-a/a) or obese (KK.Cg-Ay/J) mice received saline (C) or PFOA (2.5 mg/Kg) per os for 15 d. Hepatic weight was increased by PFOA exposure in both lean and obese mice (P < 0.05) and obesity also increased liver weight (P < 0.05) compared to lean mice. The serum metabolome was also altered (P < 0.05) by PFOA exposure and differed between lean and obese mice. Exposure to PFOA altered (P < 0.05) the abundance of ovarian proteins with roles in xenobiotic biotransformation (lean - 6; obese - 17), metabolism of fatty acids (lean - 3; obese - 9), cholesterol (lean - 8; obese - 11), amino acids (lean - 18; obese - 19), glucose (lean - 7; obese - 10), apoptosis (lean - 18; obese - 13), and oxidative stress (lean - 3; obese - 2). Use of qRT-PCR determined that exposure to PFOA increased (P < 0.05) hepatic Ces1 and Chst1 in lean but Ephx1 and Gstm3 in obese mice. Also, obesity basally increased (P < 0.05) Nat2, Gpi and Hsd17b2 mRNA levels. These data identify molecular changes resultant from PFOA exposure that may cause liver injury and ovotoxicity in females. In addition, differences in toxicity induced by PFOA exposure occurs in lean and obese mice.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
10
|
Puttabyatappa M, Saadat N, Elangovan VR, Dou J, Bakulski K, Padmanabhan V. Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicol Appl Pharmacol 2022; 451:116161. [PMID: 35817127 PMCID: PMC9618258 DOI: 10.1016/j.taap.2022.116161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Gestational Bisphenol A (BPA) exposure leads to peripheral insulin resistance, and hepatic and skeletal muscle oxidative stress and lipotoxicity during adulthood in the female sheep offspring. To investigate transcriptional changes underlying the metabolic outcomes, coding and non-coding (nc) RNA in liver and muscle from 21-month-old control and prenatal BPA-treated (0.5 mg/kg/day from days 30 to 90 of gestation; Term: 147 days) female sheep were sequenced. Prenatal BPA-treatment dysregulated: expression of 194 genes (138 down, 56 up) in liver and 112 genes (32 down, 80 up) in muscle (FDR < 0.05 and abs log2FC > 0.5); 155 common gene pathways including mitochondrial-related genes in both tissues; 1415 gene pathways including oxidative stress and lipid biosynthetic process specifically in the liver (FDR < 0.01); 192 gene pathways including RNA biosynthetic processes in muscle (FDR < 0.01); 77 lncRNA (49 down, 28 up), 14 microRNAs (6 down, 8 up), 127 snoRNAs (63 down, 64 up) and 55 snRNAs (15 down, 40 up) in the liver while upregulating 6 lncRNA and dysregulating 65 snoRNAs (47 down, 18 up) in muscle (FDR < 0.1, abs log2FC > 0.5). Multiple ncRNA correlated with LCORL, MED17 and ZNF41 mRNA in liver but none of them in the muscle. Discriminant analysis identified (p < 0.05) PECAM, RDH11, ABCA6, MIR200B, and MIR30B in liver and CAST, NOS1, FASN, MIR26B, and MIR29A in muscle as gene signatures of gestational BPA exposure. These findings provide mechanistic clues into the development and/or maintenance of the oxidative stress and lipid accumulation and potential for development of mitochondrial and fibrotic defects contributing to the prenatal BPA-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
11
|
Berghöfer J, Khaveh N, Mundlos S, Metzger J. Simultaneous testing of rule- and model-based approaches for runs of homozygosity detection opens up a window into genomic footprints of selection in pigs. BMC Genomics 2022; 23:564. [PMID: 35933356 PMCID: PMC9357325 DOI: 10.1186/s12864-022-08801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Past selection events left footprints in the genome of domestic animals, which can be traced back by stretches of homozygous genotypes, designated as runs of homozygosity (ROHs). The analysis of common ROH regions within groups or populations displaying potential signatures of selection requires high-quality SNP data as well as carefully adjusted ROH-defining parameters. In this study, we used a simultaneous testing of rule- and model-based approaches to perform strategic ROH calling in genomic data from different pig populations to detect genomic regions under selection for specific phenotypes. RESULTS Our ROH analysis using a rule-based approach offered by PLINK, as well as a model-based approach run by RZooRoH demonstrated a high efficiency of both methods. It underlined the importance of providing a high-quality SNP set as input as well as adjusting parameters based on dataset and population for ROH calling. Particularly, ROHs ≤ 20 kb were called in a high frequency by both tools, but to some extent covered different gene sets in subsequent analysis of ROH regions common for investigated pig groups. Phenotype associated ROH analysis resulted in regions under potential selection characterizing heritage pig breeds, known to harbour a long-established breeding history. In particular, the selection focus on fitness-related traits was underlined by various ROHs harbouring disease resistance or tolerance-associated genes. Moreover, we identified potential selection signatures associated with ear morphology, which confirmed known candidate genes as well as uncovered a missense mutation in the ABCA6 gene potentially supporting ear cartilage formation. CONCLUSIONS The results of this study highlight the strengths and unique features of rule- and model-based approaches as well as demonstrate their potential for ROH analysis in animal populations. We provide a workflow for ROH detection, evaluating the major steps from filtering for high-quality SNP sets to intersecting ROH regions. Formula-based estimations defining ROHs for rule-based method show its limits, particularly for efficient detection of smaller ROHs. Moreover, we emphasize the role of ROH detection for the identification of potential footprints of selection in pigs, displaying their breed-specific characteristics or favourable phenotypes.
Collapse
Affiliation(s)
- Jan Berghöfer
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nadia Khaveh
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Mundlos
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, BCRT, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
12
|
Molecular Biological Comparison of Dental Pulp- and Apical Papilla-Derived Stem Cells. Int J Mol Sci 2022; 23:ijms23052615. [PMID: 35269758 PMCID: PMC8910327 DOI: 10.3390/ijms23052615] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Both the dental pulp and the apical papilla represent a promising source of mesenchymal stem cells for regenerative endodontic protocols. The aim of this study was to outline molecular biological conformities and differences between dental pulp stem cells (DPSC) and stem cells from the apical papilla (SCAP). Thus, cells were isolated from the pulp and the apical papilla of an extracted molar and analyzed for mesenchymal stem cell markers as well as multi-lineage differentiation. During induced osteogenic differentiation, viability, proliferation, and wound healing assays were performed, and secreted signaling molecules were quantified by enzyme-linked immunosorbent assays (ELISA). Transcriptome-wide gene expression was profiled by microarrays and validated by quantitative reverse transcription PCR (qRT-PCR). Gene regulation was evaluated in the context of culture parameters and functionality. Both cell types expressed mesenchymal stem cell markers and were able to enter various lineages. DPSC and SCAP showed no significant differences in cell viability, proliferation, or migration; however, variations were observed in the profile of secreted molecules. Transcriptome analysis revealed the most significant gene regulation during the differentiation period, and 13 biomarkers were identified whose regulation was essential for both cell types. DPSC and SCAP share many features and their differentiation follows similar patterns. From a molecular biological perspective, both seem to be equally suitable for dental pulp tissue engineering.
Collapse
|
13
|
Ootake T, Ishii T, Sueishi K, Watanabe A, Ishizuka Y, Amano K, Nagao M, Nishimura K, Nishii Y. Effects of mechanical stress and deficiency of dihydrotestosterone or 17β-estradiol on Temporomandibular Joint Osteoarthritis in mice. Osteoarthritis Cartilage 2021; 29:1575-1589. [PMID: 34500105 DOI: 10.1016/j.joca.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To observe and analyze the interaction between excessive mechanical stress (MS) and decreased sex hormones on Temporomandibular Joint Osteoarthritis (TMJ-OA), and to discover TMJ-OA disease susceptibility genes by molecular biological analysis to elucidate part of the mechanism of TMJ-OA onset. DESIGN For experimental groups, orchiectomy (ORX) or ovariectomy (OVX) was performed on sexually mature 8-week-old mice. A metal plate was attached to the posterior surface of the maxillary incisors to apply excessive MS on mandibular condyles. Male mice were divided into control, ORX, MS, and ORX + MS groups, while female mice were divided into control, OVX, MS, and OVX + MS groups. Mandibular condyles were evaluated by histology and molecular biology. RESULTS Histomorphometric analysis of the TMJ in ORX + MS and OVX + MS groups revealed the thinnest chondrocyte layers, highest modified Mankin scores, and significant increases in the number of osteoclasts. Gene expression analysis indicated upregulation of Angptl7 and Car1 genes in the mandibular condyles of mice subjected to the combined effects of excessive MS and reduced sex hormones. In vitro analysis suggested that cartilage-like cells overexpressing Angptl7 enhanced calcification, and osteoblast-like cells overexpression Car1 suppressed cell proliferation and calcification. CONCLUSIONS A severe TMJ-OA mouse model was successfully developed by applying excessive MS on the mandibular condyle of male and female mice with reduced sex hormones. Disease-susceptibility genes Angptl7 and Car1 were newly discovered in the experimental groups, suggesting their involvement in the onset mechanism of TMJ-OA.
Collapse
Affiliation(s)
- T Ootake
- Department of Orthodontics (Suidobashi Hospital), Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - T Ishii
- Department of Orthodontics (Suidobashi Hospital), Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan.
| | - K Sueishi
- Department of Orthodontics (Suidobashi Hospital), Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - A Watanabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Y Ishizuka
- Department of Epidemiology and Public Health, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - K Amano
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Nagao
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421 Japan
| | - K Nishimura
- Clinics for Maxillo-Oral Disorders, Dental Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Y Nishii
- Department of Orthodontics (Suidobashi Hospital), Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
14
|
Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle. PLoS One 2021; 16:e0258216. [PMID: 34648531 PMCID: PMC8516222 DOI: 10.1371/journal.pone.0258216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to estimate genotype by time-lagged heat stress (HS) variance components as well as main and interaction SNP-marker effects for maternal HS during the last eight weeks of cow pregnancy, considering milk production traits recorded in the offspring generation. The HS indicator was the temperature humidity index (THI) for each week. A dummy variable with the code = 1 for the respective week for THI ≥ 60 indicated HS, otherwise, for no HS, the code = 0 was assigned. The dataset included test-day and lactation production traits from 14,188 genotyped first parity Holstein cows. After genotype quality control, 41,139 SNP markers remained for the genomic analyses. Genomic animal models without (model VC_nHS) and with in-utero HS effects (model VC_wHS) were applied to estimate variance components. Accordingly, for genome-wide associations, models GWA_nHS and GWA_wHS, respectively, were applied to estimate main and interaction SNP effects. Common genomic and residual variances for the same traits were very similar from models VC_nHS and VC_wHS. Genotype by HS interaction variances varied, depending on the week with in-utero HS. Among all traits, lactation milk yield with HS from week 5 displayed the largest proportion for interaction variances (0.07). For main effects from model GWA_wHS, 380 SNPs were suggestively associated with all production traits. For the SNP interaction effects from model GWA_wHS, we identified 31 suggestive SNPs, which were located in close distance to 62 potential candidate genes. The inferred candidate genes have various biological functions, including mechanisms of immune response, growth processes and disease resistance. Two biological processes excessively represented in the overrepresentation tests addressed lymphocyte and monocyte chemotaxis, ultimately affecting immune response. The modelling approach considering time-lagged genotype by HS interactions for production traits inferred physiological mechanisms being associated with health and immunity, enabling improvements in selection of robust animals.
Collapse
|
15
|
Mikaelsdottir E, Thorleifsson G, Stefansdottir L, Halldorsson G, Sigurdsson JK, Lund SH, Tragante V, Melsted P, Rognvaldsson S, Norland K, Helgadottir A, Magnusson MK, Ragnarsson GB, Kristinsson SY, Reykdal S, Vidarsson B, Gudmundsdottir IJ, Olafsson I, Onundarson PT, Sigurdardottir O, Sigurdsson EL, Grondal G, Geirsson AJ, Geirsson G, Gudmundsson J, Holm H, Saevarsdottir S, Jonsdottir I, Thorgeirsson G, Gudbjartsson DF, Thorsteinsdottir U, Rafnar T, Stefansson K. Genetic variants associated with platelet count are predictive of human disease and physiological markers. Commun Biol 2021; 4:1132. [PMID: 34580418 PMCID: PMC8476563 DOI: 10.1038/s42003-021-02642-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play an important role in hemostasis and other aspects of vascular biology. We conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and identified 577 independent associations. To search for mechanisms through which these variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA analyses and assessed genetic sharing between platelet count and various traits using polygenic risk scoring. We found genetic sharing between platelet count and counts of other blood cells (except red blood cells), in addition to several other quantitative traits, including markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis, ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these results advance understanding of diverse aspects of platelet biology and how they affect biological processes in health and disease. Evgenia Mikaelsdottir et al. report a study of variants associated with platelet count among European individuals where they identify 577 associations. They also report a genetic overlap between platelet count and human diseases, including myeloproliferative neoplasms, rheumatoid arthritis, and hypertension, as well as a genetic overlap between platelet count and various physiological markers.
Collapse
Affiliation(s)
| | | | | | | | | | - Sigrun H Lund
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | - Pall Melsted
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Magnus K Magnusson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gunnar B Ragnarsson
- Department of Oncology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigurdur Y Kristinsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Sigrun Reykdal
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Department of Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Laboratory Hematology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, 600, Akureyri, Iceland
| | | | - Gerdur Grondal
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Arni J Geirsson
- Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Gudmundur Geirsson
- Department of Urology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.,Department of Rheumatology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Department of Cardiology, Landspitali-University Hospital, 101, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
16
|
He B, Kang S, Chen Z, Liu X, Wang J, Li X, Liu X, Zheng L, Luo M, Wang Y. Hypercholesterolemia risk associated Abca6 does not regulate lipoprotein metabolism in mice or hamster. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159006. [PMID: 34274505 DOI: 10.1016/j.bbalip.2021.159006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Hypercholesterolemia has strong heritability and about 40-60% of hypercholesterolemia is caused by genetic risk factors. A number of monogenic genes have been identified so far for familial hypercholesterolemia (FH). However, in the general population, more than 90% of individuals with LDL cholesterol over 190 mg/dL do not carry known FH mutations. Large scale whole-exome sequencing has identified thousands of variants that are predicted to be loss-of-function (LoF) and each individual has a median of about twenty rare LoF variants and several hundreds more common LoF variants. However, majority of those variants have not been characterized and their functional consequence remains largely unknown. Rs77542162 is a common missense variant in ABCA6 and is strongly associated with hypercholesterolemia in different populations. ABCA6 is a cholesterol responsive gene and has been suggested to play a role in lipid metabolism. However, whether and how rs77542162 and ABCA6 regulate lipoprotein metabolism remain unknown. In current study, we systemically characterized the function of rs77542162 and ABCA6 in cultured cells and in vivo of rodents. We found that Abca6 is specifically expressed on the basolateral surface of hepatocytes in mouse liver. The rs77542162 variant disrupts ABCA6 protein stability and results in loss of functional protein. However, we found no evidence that Abca6 plays a role in lipoprotein metabolism in either normal mice or hypercholesterolemia mice or hamsters. Thus, our results suggest that Abca6 does not regulate lipoprotein metabolism in rodents and highlight the challenge and importance of functional characterization of disease-associated variants in animal models.
Collapse
Affiliation(s)
- Baoshen He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Shijia Kang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Zhen Chen
- Hubei Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xiao Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Jinkai Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xiaomin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Mengcheng Luo
- Hubei Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
17
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
18
|
Francis M, Li C, Sun Y, Zhou J, Li X, Brenna JT, Ye K. Genome-wide association study of fish oil supplementation on lipid traits in 81,246 individuals reveals new gene-diet interaction loci. PLoS Genet 2021; 17:e1009431. [PMID: 33760818 PMCID: PMC8021161 DOI: 10.1371/journal.pgen.1009431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/05/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
Fish oil supplementation is widely used for reducing serum triglycerides (TAGs) but has mixed effects on other circulating cardiovascular biomarkers. Many genetic polymorphisms have been associated with blood lipids, including high- and low-density-lipoprotein cholesterol (HDL-C, LDL-C), total cholesterol, and TAGs. Here, the gene-diet interaction effects of fish oil supplementation on these lipids were analyzed in a discovery cohort of up to 73,962 UK Biobank participants, using a 1-degree-of-freedom (1df) test for interaction effects and a 2-degrees-of-freedom (2df) test to jointly analyze interaction and main effects. Associations with P < 1×10-6 in either test (26,157; 18,300 unique variants) were advanced to replication in up to 7,284 participants from the Atherosclerosis Risk in Communities (ARIC) Study. Replicated associations reaching 1df P < 0.05 (2,175; 1,763 unique variants) were used in meta-analyses. We found 13 replicated and 159 non-replicated (UK Biobank only) loci with significant 2df joint tests that were predominantly driven by main effects and have been previously reported. Four novel interaction loci were identified with 1df P < 5×10-8 in meta-analysis. The lead variant in the GJB6-GJB2-GJA3 gene cluster, rs112803755 (A>G; minor allele frequency = 0.041), shows exclusively interaction effects. The minor allele is significantly associated with decreased TAGs in individuals with fish oil supplementation, but with increased TAGs in those without supplementation. This locus is significantly associated with higher GJB2 expression of connexin 26 in adipose tissue; connexin activity is known to change upon exposure to omega-3 fatty acids. Significant interaction effects were also found in three other loci in the genes SLC12A3 (HDL-C), ABCA6 (LDL-C), and MLXIPL (LDL-C), but highly significant main effects are also present. Our study identifies novel gene-diet interaction effects for four genetic loci, whose effects on blood lipids are modified by fish oil supplementation. These findings highlight the need and possibility for personalized nutrition.
Collapse
Affiliation(s)
- Michael Francis
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Yitang Sun
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Jingqi Zhou
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Xiang Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - J. Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin, Austin, Texas, United States of America
- Departments of Nutrition and Chemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Kaixiong Ye
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
19
|
Breuss MW, Mamerto A, Renner T, Waters ER. The Evolution of the Mammalian ABCA6-like Genes: Analysis of Phylogenetic, Expression, and Population Genetic Data Reveals Complex Evolutionary Histories. Genome Biol Evol 2020; 12:2093-2106. [PMID: 32877505 PMCID: PMC7674697 DOI: 10.1093/gbe/evaa179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 01/25/2023] Open
Abstract
ABC membrane transporters are a large and complex superfamily of ATP-binding cassette transporters that are present in all domains of life. Both their essential function and complexity are reflected by their retention across large expanses of organismal diversity and by the extensive expansion of individual members and subfamilies during evolutionary history. This expansion has resulted in the diverse ABCA transporter family that has in turn evolved into multiple subfamilies. Here, we focus on the ABCA6-like subfamily of ABCA transporters with the goal of understanding their evolutionary history including potential functional changes in, or loss of, individual members. Our analysis finds that ABCA6-like genes, consisting of ABCA6, 8, 9, and 10, are absent from representatives of both monotremes and marsupials and thus the duplications that generated these families most likely occurred at the base of the Eutherian or placental mammals. We have found evidence of both positive and relaxed selection among the ABCA6-like genes, suggesting dynamic changes in function and the potential of gene redundancy. Analysis of the ABCA10 genes further suggests that this gene has undergone relaxed selection only within the human lineage. These findings are complemented by human population data, where we observe an excess of deactivating homozygous mutations. We describe the complex evolutionary history of this ABCA transporter subfamily and demonstrate through the combination of evolutionary and population genetic analysis that ABCA10 is undergoing pseudogenization within humans.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Neurosciences, University of California, San Diego
- Rady Children’s Institute for Genomic Medicine, San Diego, California
| | - Allen Mamerto
- Department of Biology and Program in Biological and Medical Informatics, San Diego State University
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park
| | - Elizabeth R Waters
- Department of Biology and Program in Biological and Medical Informatics, San Diego State University
| |
Collapse
|
20
|
Amini H, Shroff N, Stamova B, Ferino E, Carmona‐Mora P, Zhan X, Sitorus PP, Hull H, Jickling GC, Sharp FR, Ander BP. Genetic variation contributes to gene expression response in ischemic stroke: an eQTL study. Ann Clin Transl Neurol 2020; 7:1648-1660. [PMID: 32785988 PMCID: PMC7480928 DOI: 10.1002/acn3.51154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Single nucleotide polymorphisms (SNPs) contribute to complex disorders such as ischemic stroke (IS). Since SNPs could affect IS by altering gene expression, we studied the association of common SNPs with changes in mRNA expression (i.e. expression quantitative trait loci; eQTL) in blood after IS. METHODS RNA and DNA were isolated from 137 patients with acute IS and 138 vascular risk factor controls (VRFC). Gene expression was measured using Affymetrix HTA 2.0 microarrays and SNP variants were assessed with Axiom Biobank Genotyping microarrays. A linear model with a genotype (SNP) × diagnosis (IS and VRFC) interaction term was fit for each SNP-gene pair. RESULTS The eQTL interaction analysis revealed significant genotype × diagnosis interaction for four SNP-gene pairs as cis-eQTL and 70 SNP-gene pairs as trans-eQTL. Cis-eQTL involved in the inflammatory response to IS included rs56348411 which correlated with neurogranin expression (NRGN), rs78046578 which correlated with CXCL10 expression, rs975903 which correlated with SMAD4 expression, and rs62299879 which correlated with CD38 expression. These four genes are important in regulating inflammatory response and BBB stabilization. SNP rs148791848 was a strong trans-eQTL for anosmin-1 (ANOS1) which is involved in neural cell adhesion and axonal migration and may be important after stroke. INTERPRETATION This study highlights the contribution of genetic variation to regulating gene expression following IS. Specific inflammatory response to stroke is at least partially influenced by genetic variation. This has implications for progressing toward personalized treatment strategies. Additional research is required to investigate these genes as therapeutic targets.
Collapse
Affiliation(s)
- Hajar Amini
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Natasha Shroff
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Boryana Stamova
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Eva Ferino
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Paulina Carmona‐Mora
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Xinhua Zhan
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Preston P. Sitorus
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Heather Hull
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Glen C. Jickling
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Frank R. Sharp
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| | - Bradley P. Ander
- Department of NeurologyUniversity of California at DavisSacramentoCalifornia95817
| |
Collapse
|
21
|
Wang CY, Chen YQ, Jin JY, Du R, Fan LL, Xiang R. A Novel Nonsense Mutation of ABCA8 in a Han-Chinese Family With ASCVD Leads to the Reduction of HDL-c Levels. Front Genet 2020; 11:755. [PMID: 32760429 PMCID: PMC7373792 DOI: 10.3389/fgene.2020.00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
Arteriosclerotic cardiovascular disease (ASCVD) is one of the major causes of death worldwide and most commonly develops as a result of atherosclerosis (AS). As we all know, dyslipidemia is a leading pathogenic risk factor for ASCVD, which leads to cardiac ischemic injury and myocardial infarction. Dyslipidemias include hypercholesterolemia, hypertriglyceridemia, increased low-density lipoprotein cholesterol (LDL-c) and decreased high density lipoproteins cholesterol (HDL-c). Mutations of dyslipidemia related genes have been proved to be the crucial contributor to the development of AS and ASCVD. In this study, a Han-Chinese family with ASCVD was enrolled and the lipid testing discovered an obvious reduced levels of HDL-c in the affected members. We then performed whole exome sequencing to detect the candidate genes of the family. After data filtering, a novel heterozygous nonsense mutation (NM_007168: c.3460C>T; p.R1154X) of ABCA8 was detected and validated to be co-separated in the family members by Sanger sequencing. Previous studies have proved that deleterious heterozygous ABCA8 variants may disrupt cholesterol efflux and reduce HDL-c levels in humans and mice. This study may be the second report related to ABCA8 mutations in patients with reduced levels of HDL-c. Our study not only contributed to the genetic counseling and prenatal genetic diagnosis of patients with ASCVD caused by reduced HDL-c levels, but also provided a new sight among ABCA8, cholesterol efflux and HDL-c levels.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ya-Qin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal for Human Disease, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
22
|
Liu Y, Chen TY, Yang ZY, Fang W, Wu Q, Zhang C. Identification of hub genes in papillary thyroid carcinoma: robust rank aggregation and weighted gene co-expression network analysis. J Transl Med 2020; 18:170. [PMID: 32299435 PMCID: PMC7161219 DOI: 10.1186/s12967-020-02327-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC), which is the most common endocrine malignancy, has been steadily increasing worldwide in incidence over the years, while mechanisms underlying the pathogenesis and diagnostic for PTC are incomplete. The purpose of this study is to identify potential biomarkers for diagnosis of PTC, and provide new insights into pathogenesis of PTC. METHODS Based on weighted gene co-expression network analysis, Robust Rank Aggregation, functional annotation, GSEA and DNA methylation, were employed for investigating potential biomarkers for diagnosis of PTC. RESULTS Black and turquoise modules were identified in the gene co-expression network constructed by 1807 DEGs that from 6 eligible gene expression profiles of Gene Expression Omnibus database based on Robust Rank Aggregation and weighted gene co-expression network analysis. Hub genes were significantly down-regulated and the expression levels of the hub genes were different in different stages in hub gene verification. ROC curves indicated all hub genes had good diagnostic value for PTC (except for ABCA6 AUC = 89.5%, the 15 genes with AUC > 90%). Methylation analysis showed that hub gene verification ABCA6, ACACB, RMDN1 and TFPI were identified as differentially methylated genes, and the decreased expression level of these genes may relate to abnormal DNA methylation. Moreover, the expression levels of 8 top hub genes were correlated with tumor purity and tumor-infiltrating immune cells. These findings, including functional annotations and GSEA provide new insights into pathogenesis of PTC. CONCLUSIONS The hub genes and methylation of hub genes may as potential biomarkers provide new insights for diagnosis of PTC, and all these findings may be the direction to study the mechanisms underlying of PTC in the future.
Collapse
Affiliation(s)
- Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Ting-Yu Chen
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Zhi-Yan Yang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Wei Fang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Qian Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China.
| |
Collapse
|
23
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
24
|
Xavier BM, Jennings WJ, Zein AA, Wang J, Lee JY. Structural snapshot of the cholesterol-transport ATP-binding cassette proteins 1. Biochem Cell Biol 2018; 97:224-233. [PMID: 30058354 DOI: 10.1139/bcb-2018-0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ATP-binding cassette (ABC) proteins play critical roles in maintaining lipid and sterol homeostasis in higher eukaryotes. In humans, several subfamily-A and -G members function as cholesterol transporters across the cellular membranes. Deficiencies of these ABC proteins can cause dyslipidemia that is associated with health conditions such as atherosclerosis, diabetes, fatty liver disease, and neurodegeneration. The physiological roles of ABC cholesterol transporters have been implicated in mediating cholesterol efflux for reverse cholesterol transport and in maintaining membrane integrity for cell survival. The precise role of these ABC transporters in cells remains elusive, and little is known about the sterol-transport mechanism. The membrane constituents of ABC transporters have been postulated to play a key role in determining the transport substrates and the translocation mechanisms via the transmembrane domains. Recent breakthroughs in determining high-resolution structures of the human sterol transporter ABCG5/G8 and its functional homologs have shed light on new structural features of ABC transporters, providing a more relevant framework for mechanistic analysis of cholesterol-transport ABC proteins. This minireview outlines what is known about ABCG cholesterol transporters, addresses key structural features in the putative sterol translocation pathway on the transmembrane domains, and concludes by proposing a mechanistic model of ABC cholesterol transporters.
Collapse
Affiliation(s)
- Bala M Xavier
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William J Jennings
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aiman A Zein
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Junmei Wang
- b Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jyh-Yeuan Lee
- a Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
25
|
Damián-Zamacona S, Toledo-Ibelles P, Ibarra-Abundis MZ, Uribe-Figueroa L, Hernández-Lemus E, Macedo-Alcibia KP, Delgado–Coello B, Mas-Oliva J, Reyes-Grajeda JP. Early Transcriptomic Response to LDL and oxLDL in Human Vascular Smooth Muscle Cells. PLoS One 2016; 11:e0163924. [PMID: 27727291 PMCID: PMC5058556 DOI: 10.1371/journal.pone.0163924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/17/2016] [Indexed: 01/03/2023] Open
Abstract
Background Although nowadays it is well known that the human transcriptome can importantly vary according to external or environmental condition, the reflection of this concept when studying oxidative stress and its direct relationship with gene expression profiling during the process of atherogenesis has not been thoroughly achieved. Objective The ability to analyze genome-wide gene expression through transcriptomics has shown that the genome responds dynamically to diverse stimuli. Here, we describe the transcriptome of human vascular smooth muscle cells (hVSMC) stimulated by native and oxidized low-density lipoprotein (nLDL and oxLDL respectively), with the aim of assessing the early molecular changes that induce a response in this cell type resulting in a transcriptomic transformation. This expression has been demonstrated in atherosclerotic plaques in vivo and in vitro, particularly in the light of the oxidative modification hypothesis of atherosclerosis. Approach and Results Total RNA was isolated with TRIzol reagent (Life Technologies) and quality estimated using an Agilent 2100 bioanalyzer. The transcriptome of hVSMC under different experimental conditions (1,5 and 24 hours for nLDL and oxLDL) was obtained using the GeneChip Human Gene 1.0 ST (Affymetrix) designed to measure gene expression of 28,869 well-annotated genes. A fixed fold-change cut-off corresponding to ± 2 was used to identify genes exhibiting the most significant variation and statistical significance (P< 0.05), and 8 genes validated by qPCR using Taqman probes. Conclusions 10 molecular processes were significantly affected in hVSMC: Apoptosis and cell cycle, extracellular matrix remodeling, DNA repair, cholesterol efflux, cGMP biosynthesis, endocytic mechanisms, calcium homeostasis, redox balance, membrane trafficking and finally, the immune response to inflammation. The evidence we present supporting the hypothesis for the involvement of oxidative modification of several processes and metabolic pathways in atherosclerosis is strengthen by the fact that gene expression patterns obtained when hVSMC are incubated for a long period of time in the presence of nLDL, correspond very much the same as when cells are incubated for a short period of time in the presence of chemically modified oxLDL. Our results indicate that under physiological conditions and directly related to specific environmental conditions, LDL particles most probably suffer chemical modifications that initially serve as an alert signal to overcome a harmful stimulus that with time might get transformed to a pathological pattern and therefore consolidate a pathological condition.
Collapse
Affiliation(s)
| | - Paola Toledo-Ibelles
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | | - Blanca Delgado–Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
- * E-mail: (JPRG); (JMO)
| | | |
Collapse
|
26
|
Kanoni S, Masca NGD, Stirrups KE, Varga TV, Warren HR, Scott RA, Southam L, Zhang W, Yaghootkar H, Müller-Nurasyid M, Couto Alves A, Strawbridge RJ, Lataniotis L, An Hashim N, Besse C, Boland A, Braund PS, Connell JM, Dominiczak A, Farmaki AE, Franks S, Grallert H, Jansson JH, Karaleftheri M, Keinänen-Kiukaanniemi S, Matchan A, Pasko D, Peters A, Poulter N, Rayner NW, Renström F, Rolandsson O, Sabater-Lleal M, Sennblad B, Sever P, Shields D, Silveira A, Stanton AV, Strauch K, Tomaszewski M, Tsafantakis E, Waldenberger M, Blakemore AIF, Dedoussis G, Escher SA, Kooner JS, McCarthy MI, Palmer CNA, Hamsten A, Caulfield MJ, Frayling TM, Tobin MD, Jarvelin MR, Zeggini E, Gieger C, Chambers JC, Wareham NJ, Munroe PB, Franks PW, Samani NJ, Deloukas P. Analysis with the exome array identifies multiple new independent variants in lipid loci. Hum Mol Genet 2016; 25:4094-4106. [PMID: 27466198 PMCID: PMC5291227 DOI: 10.1093/hmg/ddw227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/06/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
It has been hypothesized that low frequency (1-5% minor allele frequency (MAF)) and rare (<1% MAF) variants with large effect sizes may contribute to the missing heritability in complex traits. Here, we report an association analysis of lipid traits (total cholesterol, LDL-cholesterol, HDL-cholesterol triglycerides) in up to 27 312 individuals with a comprehensive set of low frequency coding variants (ExomeChip), combined with conditional analysis in the known lipid loci. No new locus reached genome-wide significance. However, we found a new lead variant in 26 known lipid association regions of which 16 were >1000-fold more significant than the previous sentinel variant and not in close LD (six had MAF <5%). Furthermore, conditional analysis revealed multiple independent signals (ranging from 1 to 5) in a third of the 98 lipid loci tested, including rare variants. Addition of our novel associations resulted in between 1.5- and 2.5-fold increase in the proportion of heritability explained for the different lipid traits. Our findings suggest that rare coding variants contribute to the genetic architecture of lipid traits.
Collapse
Affiliation(s)
- Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Tibor V Varga
- The Broad Institute of MIT and Harvard, Boston, MA 02142, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Robert A Scott
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lorraine Southam
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Ealing Hospital NHS Trust, Middlesex, UK
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Martina Müller-Nurasyid
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lazaros Lataniotis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Nikman An Hashim
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Céline Besse
- CEA, Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Anne Boland
- CEA, Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - John M Connell
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anna Dominiczak
- Division of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Western Infirmary, Glasgow, UK
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University Athens, Athens, Greece
| | - Stephen Franks
- Department of Surgery and Cancer, Imperial College London, Institute of Reproductive and Developmental Biology, London, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Jan-Håkan Jansson
- Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, Umeå, Sweden
| | | | | | - Angela Matchan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Nigel W Rayner
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå University, Umeå, Sweden
| | - Maria Sabater-Lleal
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Denis Shields
- Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Angela Silveira
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alice V Stanton
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Stephens Green, Dublin, Ireland
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maciej Tomaszewski
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
| | | | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexandra I F Blakemore
- Section of Investigative Medicine, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University Athens, Athens, Greece
| | - Stefan A Escher
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Jaspal S Kooner
- Ealing Hospital NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Ealing Hospital NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Nick J Wareham
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University Hospital, Umeå, Sweden
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
28
|
Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013; 65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Argentina; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
29
|
FoxO regulates expression of ABCA6, an intracellular ATP-binding-cassette transporter responsive to cholesterol. Int J Biochem Cell Biol 2013; 45:2651-9. [PMID: 24028821 DOI: 10.1016/j.biocel.2013.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/12/2013] [Accepted: 08/30/2013] [Indexed: 11/24/2022]
Abstract
ATP-binding-cassette (ABC) proteins have been recognized as key players in cellular physiological transport processes. ABC transporter A6 (ABCA6) is a member of the ABC subfamily A. Although it was cloned more than 10 years ago, its expression regulation, subcellular localization, and physiologic function remain largely unknown. We here demonstrated that expression of ABCA6 was Forkhead box O (FoxO)-dependent in human endothelial cell line EA.hy926 and human umbilical vein endothelial cells. Two functional FoxO-responsive elements were identified in ABCA6 promoter and characterized in detail. ABCA6 mRNA was suppressed by insulin-like growth factor-1 which stimulates the phosphorylation and inactivation of FoxOs while inhibitor of phosphatidylinositol 3-kinase had the opposite effect. By immunofluorescence and confocal microscopy, ABCA6 protein is localized primarily in an intracellular compartment, likely representing the Golgi apparatus. ABCA6 mRNA was demonstrated to be responsive to cholesterol loading as well as 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors in human endothelial cells. Our data provide evidence for an essential role of FoxO proteins in the transcription of ABCA6 in human vascular endothelial cells. Based on its cholesterol responsiveness, a potential involvement of ABCA6 in intracellular lipid transport processes may be anticipated.
Collapse
|
30
|
Takenaka S, Itoh T, Fujiwara R. Expression pattern of human ATP-binding cassette transporters in skin. Pharmacol Res Perspect 2013; 1:e00005. [PMID: 25505559 PMCID: PMC4184570 DOI: 10.1002/prp2.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 12/20/2022] Open
Abstract
ATP-binding cassette (ABC) transporters transport a variety of substrates across cellular membranes coupled with hydrolysis of ATP. Currently 49 ABC transporters consisting of seven subfamilies, ABCA, ABCB, ABCC, ABCD, ABCE, ABCF, and ABCG, have been identified in humans and they are extensively expressed in various tissues. Skin can develop a number of drug-induced toxicities' such as Stevens–Johnson syndrome and psoriasis. Concentration of drugs in the skin cells is associated with the development of adverse drug reactions. ABC transporters play important roles in absorption and disposition of drugs in the cells; however, the expression pattern of human ABC transporters in the skin has not been determined. In this study, the expression patterns of 48 human ABC transporters were determined in the human skin as well as in the liver and small intestine. Most of the ABCA, ABCB, ABCC, ABCD, ABCE, and ABCF family members were highly or moderately expressed in the skin, while ABCG family members were slightly expressed in the skin. Significant interindividual variability was also observed in the expression levels of those ATP transporters in the skin, except for ABCA5 and ABCF1, which were found to be expressed in all of the human skin samples tested in this study. In conclusion, this is the first study to identify the expression pattern of the whole human ABC family of transporters in the skin. The interindividual variability in the expression levels of ABC transporters in the human skin might be associated with drug-induced skin diseases.
Collapse
Affiliation(s)
- Saya Takenaka
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryoichi Fujiwara
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
31
|
Interrelationship between ATP-binding cassette transporters and oxysterols. Biochem Pharmacol 2013; 86:80-8. [PMID: 23500544 DOI: 10.1016/j.bcp.2013.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) transporters constitute a ubiquitous superfamily of membrane proteins responsible for the translocation of several substances across membranes using the chemical energy provided by ATP hydrolysis. ABC transporters participate in many physiological and pathophysiological processes, including cholesterol and lipid transportation and multidrug resistance. Oxysterols are the products of cholesterol oxidation, formed by both enzymatic and non-enzymatic mechanisms. The role of oxysterols in cholesterol metabolism and several diseases has been widely investigated, but many questions remain to be answered. Several lines of evidence link ABC transporter functions with cholesterol and oxysterol metabolism. This review discusses ABC transporters, oxysterols, and how they interact with each other.
Collapse
|
32
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
33
|
Tang L, Bergevoet SM, Gilissen C, de Witte T, Jansen JH, van der Reijden BA, Raymakers RAP. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells. BMC Pharmacol 2010; 10:12. [PMID: 20836839 PMCID: PMC2945345 DOI: 10.1186/1471-2210-10-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022] Open
Abstract
Background ATP-binding cassette (ABC) transporters protect cells against unrelated (toxic) substances by pumping them across cell membranes. Earlier we showed that many ABC transporters are highly expressed in hematopoietic stem cells (HSCs) compared to more committed progenitor cells. The ABC transporter expression signature may guarantee lifelong protection of HSCs but may also preserve stem cell integrity by extrusion of agents that trigger their differentiation. Here we have studied whether non-hematopoietic stem cells (non-HSCs) exhibit a similar ABC transporter expression signature as HSCs. Results ABC transporter expression profiles were determined in non-hematopoietic stem cells (non-HSCs) from embryonic, neonatal and adult origin as well as in various mature blood cell types. Over 11,000 individual ABC transporter expression values were generated by Taqman Low Density Arrays (TLDA) to obtain a sensitivity comparable with quantitative real-time polymerase chain reactions. We found that the vast majority of transporters are significantly higher expressed in HSCs compared to non-HSCs. Furthermore, regardless their origin, non-HSCs exhibited strikingly similar ABC transporter expression profiles that were distinct from those in HSCs. Yet, sets of transporters characteristic for different stem cell types could be identified, suggesting restricted functions in stem cell physiology. Remarkably, in HSCs we could not pinpoint any single transporter expressed at an evidently elevated level when compared to all the mature blood cell types studied. Conclusions These findings challenge the concept that individual ABC transporters are implicated in maintaining stem cell integrity. Instead, a distinct ABC transporter expression signature may be essential for stem cell function. The high expression of specific transporters in non-HSCs and mature blood cells suggests a specialized, cell type dependent function and warrants further functional experiments to determine their exact roles in cellular (patho)physiology.
Collapse
Affiliation(s)
- Leilei Tang
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein 8, 6525GA Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Gulati S, Liu Y, Munkacsi AB, Wilcox L, Sturley SL. Sterols and sphingolipids: dynamic duo or partners in crime? Prog Lipid Res 2010; 49:353-65. [PMID: 20362613 DOI: 10.1016/j.plipres.2010.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One manner in which eukaryotic cells respond to their environments is by optimizing the composition and proportions of sterols and sphingolipids in membranes. The physical association of the planar ring of sterols with the acyl chains of phospholipids, particularly sphingolipids, produces membrane micro-heterogeneity that is exploited to coordinate several crucial pathways. We hypothesize that these lipid molecules play an integrated role in human disease; when one of the partners is mis-regulated, pathology frequently ensues. Sterols and sphingolipid levels are not coordinated by the action of a single master regulator, however the cross-talk between their metabolic pathways is considerable. We describe our perspectives on the key components of synthesis, catabolism and transport of these lipid partners with an emphasis on evolutionarily conserved reactions that produce disease states when defective.
Collapse
Affiliation(s)
- Sonia Gulati
- Institute of Human Nutrition, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
35
|
Chae SW, Kim JM, Yun YP, Lee WK, Kim JS, Kim YH, Lee KS, Ko YJ, Lee KH, Rha HK. Identification and analysis of the promoter region of the human PLC-δ4 gene. Mol Biol Rep 2007; 34:69-77. [PMID: 17394098 DOI: 10.1007/s11033-006-9014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
The delta4 isoform of phospholipase C (PLC-delta4) is thought to be associated with various cellular functions and disease status. However, little is known about how its function is controlled in cells, particularly in terms of the regulation of its expression. To understand the regulation mechanisms of the PLC-delta4 gene transcription, the 5'-flanking region (-2046 approximately +5) (the nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank/DDBJ data bank under accession numbers DQ302751) of the human PLC-delta4 gene was isolated from human genomic DNA. It was a TATA-less promoter with very GC-rich sequences near the transcription start site. The activity of the PLC-delta4 promoter was shown in various human and mouse cell lines by luciferase reporter assay. Serial deletion analysis identified the core promoter region as being between -402 and -67, in which an E-box and an AP-1 binding site played important roles in the promoter activity. In addition, we also showed that 12-O-tetradecanoylphorbol-1,3-acetate (TPA), a PKC activator and tumor promoter, induced the activity of the PLC-delta4 promoter via the AP-1 binding site. In summary, this study identified a core promoter region of the hPLC-delta4 gene and the factor binding sites responsible for the promoter activity. These results will provide important new information to further understand the regulatory mechanism of the PLC-delta4 function.
Collapse
Affiliation(s)
- Song Wha Chae
- Neuroscience Genome Research Center, The Catholic University of Korea, Banpo-dong, Socho-ku, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alterations in lipid metabolism gene expression and abnormal lipid accumulation in fibroblast explants from giant axonal neuropathy patients. BMC Genet 2007; 8:6. [PMID: 17331252 PMCID: PMC1810559 DOI: 10.1186/1471-2156-8-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 03/01/2007] [Indexed: 11/25/2022] Open
Abstract
Background Giant axonal neuropathy (GAN) is a hereditary neurological disorder that affects both central and peripheral nerves. The main pathological hallmark of the disease is abnormal accumulations of intermediate filaments (IFs) in giant axons and other cell types. Mutations in the GAN gene, encoding gigaxonin, cause the disease. Gigaxonin is important in controlling protein degradation via the ubiquitin-proteasome system. The goal of this study was to examine global alterations in gene expression in fibroblasts derived from newly identified GAN families compared with normal cells. Results We report the characterization of fibroblast explants obtained from two unrelated GAN patients. We identify three novel putative mutant GAN alleles and show aggregation of vimentin IFs in these fibroblasts. By microarray analysis, we also demonstrate that the expression of lipid metabolism genes of the GAN fibroblasts is disrupted, which may account for the abnormal accumulations of lipid droplets in these cells. Conclusion Our findings suggest that aberrant lipid metabolism in GAN patients may contribute to the progression of the disease.
Collapse
|
37
|
Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJC, Van Eck M. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett 2006; 580:5588-96. [PMID: 16935283 DOI: 10.1016/j.febslet.2006.08.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/28/2006] [Accepted: 08/06/2006] [Indexed: 11/25/2022]
Abstract
Foam cell formation due to excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis. Macrophages cannot limit the uptake of cholesterol and therefore depend on cholesterol efflux pathways for preventing their transformation into foam cells. Several ABC-transporters, including ABCA1 and ABCG1, facilitate the efflux of cholesterol from macrophages. These transporters, however, also affect membrane lipid asymmetry which may have important implications for cellular endocytotic pathways. We propose that in addition to the generally accepted role of these ABC-transporters in the prevention of foam cell formation by induction of cholesterol efflux from macrophages, they also influence the macrophage endocytotic uptake.
Collapse
Affiliation(s)
- Marieke Pennings
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol Rev 2006; 58:244-58. [PMID: 16714487 DOI: 10.1124/pr.58.2.7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The passage of drugs across cell membranes dictates their absorption, distribution, metabolism, and excretion. This process is determined by several factors including the molecular weight of the compounds, their shape, degree of ionization, and binding to proteins. Accumulation of xenobiotics into tissues does not depend only on their ability to enter cells, but also on their ability to leave them. For instance, the role of efflux transporters such as ATP-binding cassette (ABC) proteins in the disposition of drugs is now well recognized. Actually, ABC transporters act in synergy with drug-metabolizing enzymes to protect the organism from toxic compounds. The most studied transporter from the ABC transporter superfamily, P-glycoprotein, was found to be overexpressed in tumor cells and associated with an acquired resistance to several anticancer drugs. P-glycoprotein, thought at first to be confined to tumor cells, was subsequently recognized to be expressed in normal tissues such as the liver, kidney, intestine, and heart. Even though information remains rather limited on the functional role of ABC transporters in the myocardium, it is hypothesized that they may modulate efficacy and toxicity of cardioactive agents. This review addresses recent progress on knowledge about the ABC transporters in drug disposition and more precisely their role in drug distribution to the heart.
Collapse
Affiliation(s)
- Lucie Couture
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada, H3C 3J7
| | | | | |
Collapse
|
39
|
Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: Structure, function and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:510-24. [PMID: 16540294 DOI: 10.1016/j.bbadis.2006.01.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/30/2006] [Accepted: 01/31/2006] [Indexed: 12/01/2022]
Abstract
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.
Collapse
Affiliation(s)
- Wolfgang E Kaminski
- Institute for Clinical Chemistry, Faculty for Clinical Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
40
|
Gildea LA, Ryan CA, Foertsch LM, Kennedy JM, Dearman RJ, Kimber I, Gerberick GF. Identification of gene expression changes induced by chemical allergens in dendritic cells: opportunities for skin sensitization testing. J Invest Dermatol 2006; 126:1813-22. [PMID: 16645592 DOI: 10.1038/sj.jid.5700319] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellular changes within resident skin dendritic cells (DCs) after allergen uptake and processing are critical events in the acquisition of skin sensitization. Here we describe the development of a set of selection criteria to derive a list of potential target genes from previous microarray analyses of human peripheral blood-derived (peripheral blood mononuclear cells (PBMCs)-DCs) treated with dinitrobenzene sulfonic acid for predicting skin-sensitizing chemicals. Based on those criteria, a probing evaluation of the target genes has been conducted using an extended chemical data set, comprising five skin irritants and 11 contact allergens. PBMCs-DCs were treated for 24 hours with various concentrations of chemicals and in each instance the expression of up to 60 genes was examined by real-time PCR analysis. Consistent allergen-induced changes in the expression of many genes were observed and further prioritization of the targets was conducted by analysis of the same genes in DCs treated with non-sensitizing chemicals to determine their specificity for skin sensitization. Real-time PCR analyses of multiple chemical allergens, irritants, and non-sensitizers have identified 10 genes that demonstrate reproducibly high levels of selectivity, specificity, and dynamic range consistent with providing the basis for robust and sensitive alternative approaches for the identification of skin-sensitizing chemicals.
Collapse
Affiliation(s)
- Lucy A Gildea
- Central Product Safety Department, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253-8707, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Albrecht C, Viturro E. The ABCA subfamily--gene and protein structures, functions and associated hereditary diseases. Pflugers Arch 2006; 453:581-9. [PMID: 16586097 DOI: 10.1007/s00424-006-0047-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 12/21/2022]
Abstract
To date, 12 members of the human ABCA subfamily are identified. They share a high degree of sequence conservation and have been mostly related with lipid trafficking in a wide range of body locations. Mutations in some of these genes have been described to cause severe hereditary diseases related with lipid transport, such as fatal surfactant deficiency or harlequin ichthyosis. In addition, most of them are hypothesized to participate in the subcellular sequestration of drugs, thereby being responsible for the resistance of several carcinoma cell lines against drug treatment. The objective of this review is to summarize the literature for this subfamily of ABC transporter proteins, excluding ABCA1 and ABCA4, which will be discussed in other chapters of this issue.
Collapse
|
42
|
Wakaumi M, Ishibashi K, Ando H, Kasanuki H, Tsuruoka S. Acute digoxin loading reduces ABCA8A mRNA expression in the mouse liver. Clin Exp Pharmacol Physiol 2006; 32:1034-41. [PMID: 16445568 DOI: 10.1111/j.1440-1681.2005.04301.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human ABCA8, a new member of the ATP binding cassette (ABC) transporter family, transports certain lipophilic drugs, such as digoxin. To investigate the roles of this transporter, we cloned a mouse homologue of ABCA8, from a mouse heart cDNA library, named ABCA8a. The deduced mouse ABCA8a protein is 66% identical with that of human ABCA8 and possesses features common to the ABC superfamily. It was found that ABCA8a was mainly expressed in the liver and heart, similar to human ABCA8. We further evaluated the effect of acute digoxin (a substrate for ABCA8) intoxication on the mRNA expression of ABCA8 using northern blotting with a 3' non-coding region as a probe to avoid cross-hybridization with other ABCA genes. Following acute digoxin infusion, the mRNA expression of ABCA8 was significantly reduced in the liver 12-24 h after injection (14.7% of vehicle treatment), but not in the heart and kidney. Real-time quantitative polymerase chain reaction analysis confirmed the reduction in ABCA8a mRNA. Similar reductions in ABCA5, ABCA7, ABCA8b and ABCA9 mRNA were also observed. A comparable amount of digitoxin did not affect ABCA8a mRNA expression in the liver. The results suggest that ABCA8 may play a role in digoxin metabolism in the liver.
Collapse
Affiliation(s)
- Michi Wakaumi
- Department of Pharmacology, Division of Clinical Pharmacology, Jichi Medical School, Kawachi, Tochigi, Japan
| | | | | | | | | |
Collapse
|
43
|
Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 2006; 20:452-77. [PMID: 16415531 DOI: 10.2133/dmpk.20.452] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pairs of forward and reverse primers and TaqMan probes specific to each of 46 human ATP-binding cassette (ABC) transporters and 108 human solute carrier (SLC) transporters were prepared. The mRNA expression level of each target transporter was analyzed in total RNA from single and pooled specimens of various human tissues (adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, pancreas, peripheral leukocytes, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid gland, trachea, and uterus) by real-time reverse transcription PCR using an ABI PRISM 7700 sequence detector system. In contrast to previous methods for analyzing the mRNA expression of single ABC and SLC genes such as Northern blotting, our method allowed us to perform sensitive, semiautomatic, rapid, and complete analysis of ABC and SLC transporters in total RNA samples. Our newly determined expression profiles were then used to study the gene expression in 23 different human tissues, and tissues with high transcriptional activity for human ABC and SLC transporters were identified. These results are expected to be valuable for establishing drug transport-mediated screening systems for new chemical entities in new drug development and for research concerning the clinical diagnosis of disease.
Collapse
Affiliation(s)
- Masuhiro Nishimura
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Inc., Tokushima, Japan.
| | | |
Collapse
|
44
|
Petry F, Ritz V, Meineke C, Middel P, Kietzmann T, Schmitz-Salue C, Hirsch-Ernst K. Subcellular localization of rat Abca5, a rat ATP-binding-cassette transporter expressed in Leydig cells, and characterization of its splice variant apparently encoding a half-transporter. Biochem J 2006; 393:79-87. [PMID: 16162093 PMCID: PMC1383666 DOI: 10.1042/bj20050808] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 09/12/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022]
Abstract
Several transporters belonging to the ABCA subfamily of ABC (ATP-binding cassette) proteins are involved in lipid trafficking. Human ABCA5 and its rat orthologue, rAbca5, represent recently identified subfamily members whose substrate spectrum remains to be defined. The elucidation of (sub)cellular rAbca5 distribution would be expected to provide a basis for optimization of functional analyses. In the present study, we applied in situ hybridization to examine rAbca5 mRNA distribution within sections of rat testis, a tissue expressing high levels of rAbca5 mRNA. We found rAbca5 mRNA to be predominantly expressed in interstitial Leydig cells, which are major sites of testosterone synthesis. To investigate rAbca5 subcellular localization, we constructed expression vectors yielding rAbca5 fused either to EGFP (enhanced green fluorescent protein) or to a peptide bearing the viral V5 epitope. During rAbca5 cDNA cloning, we discovered a splice variant sequence (rAbca5 V20+16), predicted to give rise to a truncated, half-size transporter, which was highly homologous with a human splice variant described by us previously. Quantitative RT (reverse transcription)-PCR demonstrated that the rAbca5 splice variant was expressed in numerous tissues (including testis, brain and lungs), its cDNA amounting to 2.6-11.2% of total rAbca5 cDNA. Transfection of individual rAbca5-EGFP, rAbca5 splice variant-EGFP or transporter-V5 expression plasmids along with organelle marker plasmids into HEK-293 cells (human embryonic kidney 293 cells) revealed that both rAbca5 and splice variant fusion proteins co-localized with marker protein for the Golgi apparatus. Expression of rAbca5 mRNA in Leydig cells, intracellular localization of rAbca5-EGFP/rAbca5-V5 and involvement of rAbca5-related proteins in lipid transport suggest that rAbca5 may participate in intracellular sterol/steroid trafficking.
Collapse
Key Words
- atp-binding-cassette (abc) transporter
- golgi
- leydig cell
- rat abca5
- real-time pcr
- splice variant
- abc, atp-binding cassette
- dig, digoxigenin
- dsred, discosoma sp. fluorescent protein
- ecfp, enhanced cyan fluorescent protein
- egfp, enhanced green fluorescent protein
- er, endoplasmic reticulum
- 6-fam, 6-carboxyfluorescein
- gap-43, growth-associated protein 43
- hdl, high-density lipoprotein
- hek-293 cells, human embryonic kidney 293 cells
- mdr1, multidrug resistance transporter 1
- mgb, minor groove binder
- orf, open reading frame
- rt, reverse transcription
- rtq pcr, real-time quantitative pcr
Collapse
Affiliation(s)
- Frauke Petry
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Vera Ritz
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Cornelia Meineke
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Peter Middel
- †Department of Pathology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Thomas Kietzmann
- ‡Department of Biochemistry, Faculty of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Str., Gebaeude 54, D-67663 Kaiserslautern, Germany
| | - Christoph Schmitz-Salue
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Karen I. Hirsch-Ernst
- *Institute of Pharmacology and Toxicology, University of Goettingen, Robert-Koch-Str. 40, D-37075 Goettingen, Germany
| |
Collapse
|
45
|
Ile KE, Davis W, Boyd JT, Soulika AM, Tew KD. Identification of a novel first exon of the human ABCA2 transporter gene encoding a unique N-terminus. ACTA ACUST UNITED AC 2005; 1678:22-32. [PMID: 15093135 DOI: 10.1016/j.bbaexp.2004.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/16/2022]
Abstract
The human ABCA2 transporter is a member of a large family of ATP-binding proteins that transport a variety of molecules across biological membranes. Using RNA ligation-mediated PCR (RLM-PCR), we have identified a novel first exon, which we designate 1B that is located 699 bp upstream of the previously characterized first exon, which we designate 1A. These first exons are alternatively spliced to the second exon of the ABCA2 transcript resulting in a protein that has a unique amino terminus. For exon 1B, the new amino terminus encoded by the first exon is 52 amino acids and for exon 1A, 22 amino acids. We observed that among adult tissues examined, the highest expression of the 1B isoform was in peripheral blood leukocytes (PBL). Laser scanning confocal microscopy revealed that the 1A isoform and the 1B isoform co-localize with lysosome-associated membrane proteins-1 and -2 (LAMP-1 and -2). Cytotoxicity assays suggested a role for ABCA2 in estramustine and estradiol resistance, and overexpression of ABCA2 is seen in an estramustine-resistant prostate carcinoma line. Since both isoforms of the ABCA2 transporter have identical subcellular localization and both are overexpressed in a resistant cell line, we propose that they are also functionally redundant. It is likely that expression of ABCA2 by two independent promoters constitutes locus of regulation controlling expression of the protein to meet requirements in different tissues.
Collapse
Affiliation(s)
- Kristina E Ile
- Department of Pharmacology, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
46
|
Pohl A, Devaux PF, Herrmann A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1733:29-52. [PMID: 15749056 DOI: 10.1016/j.bbalip.2004.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/08/2004] [Accepted: 12/16/2004] [Indexed: 12/23/2022]
Abstract
ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry.
Collapse
Affiliation(s)
- Antje Pohl
- Humboldt-University Berlin, Institute of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
47
|
Torres C, Pérez-Victoria FJ, Parodi-Talice A, Castanys S, Gamarro F. Characterization of an ABCA-like transporter involved in vesicular trafficking in the protozoan parasite Trypanosoma cruzi. Mol Microbiol 2004; 54:632-46. [PMID: 15491356 DOI: 10.1111/j.1365-2958.2004.04304.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protozoan parasites are responsible of important healthy problems, among others malaria, leishmaniasis and trypanosomiasis. The present work reports the characterization of the first mammalian ATP-binding cassette transporter, subfamily A (ABCA)-like in Trypanosoma cruzi. TcABC1 is a single copy gene differentially expressed along the life cycle of the parasite, being absent in its infective form. TcABC1 localizes to the plasma membrane, flagellar pocket and intracellular vesicles. Functional studies of TcABC1 in transfected parasites suggest that the protein is implicated in intracellular trafficking, as determined by the analysis of endocytosis and exocytosis events. The accumulation of the endocytic markers FM4-64 and NBD-SM is increased in transfected parasites. Similarly, ectophosphatase and ectoATPase activities are increased in TcABC1 overproducers. Indeed, transmission electronic microscopy analysis showed a higher number of intracellular vesicles in TcABC1 transfectants. Taken together, these results suggest that the protein is involved in the endocytic and exocytic pathways of T. cruzi.
Collapse
Affiliation(s)
- Cristina Torres
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | |
Collapse
|
48
|
Kinscherf R, Kamencic H, Deigner HP, Metz J. Hypercholesterolemia-Induced Long-Term Increase of Macrophages in the Myocardium of New Zealand White Rabbits. Cells Tissues Organs 2003; 174:184-93. [PMID: 14504429 DOI: 10.1159/000072721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2003] [Indexed: 11/19/2022] Open
Abstract
The effect of hypercholesterolemia on the number, immunological phenotype and oxidative stress-dependent processes of macrophages (MPhi) and dendritic cells (DC) was studied in New Zealand White rabbits. The left ventricular myocardium was immunohistochemically analyzed in group I (control), which was on standard chow, and groups II and III, which both received a 0.5% cholesterol-enriched diet for 96 days, but thereafter, only group III was fed standard chow for 4 months. In the myocardial interstitium of group I, (1) significantly less RAM-11-immunoreactive (ir) MPhi than S-100-ir DC were found; (2) both, MPhi and DC, were similar major histocompatibility complex (MHC) class II molecules LN3-, ISCR3-, and 2.06-ir; (3) all MPhi and most DC were manganese superoxide dismutase (MnSOD)-ir and homing receptor CD44-ir. In group II, only MPhi increased about 10-fold in the myocardium in parallel to the about 40-fold increase of the serum cholesterol levels. In group III, the elevated serum cholesterol levels significantly decreased (about 90%), while the MPhi still remained significantly increased (about 8-fold). The cellular immunoreactivities of MHC class II molecules, as well as MnSOD and CD44 did not change in groups II and III in comparison to group I. We suggest that mainly the MPhi, which increase within the myocardium of rabbits after elevation of serum cholesterol levels and remain significantly increased for a long time after decrease of the blood lipid levels, might initiate or aggravate eventual complications such as coronary atherosclerosis and myocardial fibrosis.
Collapse
Affiliation(s)
- Ralf Kinscherf
- Department of Anatomy and Cell Biology III, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
49
|
Wenzel JJ, Kaminski WE, Piehler A, Heimerl S, Langmann T, Schmitz G. ABCA10, a novel cholesterol-regulated ABCA6-like ABC transporter. Biochem Biophys Res Commun 2003; 306:1089-98. [PMID: 12821155 DOI: 10.1016/s0006-291x(03)01097-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We recently identified several novel members of the A subclass of ABC transporters. In this study, we report the cloning of an additional ABC A subfamily transporter, denoted ABCA10, from macrophages. The coding sequence of ABCA10 is of 4.6 kb size and codes for a 1543-amino acid protein that bears the structural features of a full-size ABC transporter. Intriguingly, ABCA10 contains a PEST sequence downstream of the N-terminal transmembrane domain which may be potentially involved in the control of its turnover rate by proteasomal degradation. Several distinct ABCA10 transcripts are expressed in human macrophages that predict the existence of various truncated forms of the novel transporter. Moreover, we identified seven single nucleotide polymorphisms in ABCA10 transcripts. ABCA10 displays high amino acid sequence homology with ABCA6 (63%), ABCA8 (62%), and ABCA9 (63%), respectively, known members of the subgroup of ABCA6-like transporters. Like other transporters of this subfamily, ABCA10 mRNA is ubiquitously expressed and highest gene expression levels are detectable in heart, brain, and the gastrointestinal tract. Analysis of the gene structure demonstrated that the ABCA10 gene consists of 40 exons that extend across a genomic region of approximately 97kb size (Chr. 17q24.3). ABCA10 mRNA is expressed in similar quantities in monocytes and M-CSF differentiated macrophages. Importantly, ABCA10 expression is suppressed by cholesterol import into macrophages, indicating that it is a cholesterol-responsive gene. Our results identify ABCA10 as a novel member of the group of ABCA6-like transporters and suggest its involvement in macrophage lipid homeostasis.
Collapse
Affiliation(s)
- Jürgen J Wenzel
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg D-93042, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Aiello RJ, Brees D, Francone OL. ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler Thromb Vasc Biol 2003; 23:972-80. [PMID: 12615679 DOI: 10.1161/01.atv.0000054661.21499.fb] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies with ATP-binding cassette transporter (ABCA1)-deficient mice have been critical in demonstrating the relation between ABCA1 expression, cellular lipid efflux, and HDL metabolism. The phenotype of the ABCA1-deficient mouse parallels the phenotype observed in human Tangier disease, including substantial reductions in both apolipoprotein B and apolipoprotein AI with confounding affects on atherosclerosis.
Collapse
Affiliation(s)
- Robert J Aiello
- Pfizer Global Research and Development, Department of Cardiovascular and Metabolic Diseases, Eastern Point Road, Groton, Conn 06340, USA.
| | | | | |
Collapse
|