1
|
Ermakova GV, Kucheryavyy AV, Zaraisky AG, Bayramov AV. The Molecular Mechanism of Body Axis Induction in Lampreys May Differ from That in Amphibians. Int J Mol Sci 2024; 25:2412. [PMID: 38397089 PMCID: PMC10889193 DOI: 10.3390/ijms25042412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.
Collapse
Affiliation(s)
- Galina V. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Aleksandr V. Kucheryavyy
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrey V. Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| |
Collapse
|
2
|
Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM. Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. eLife 2020; 9:58029. [PMID: 32894225 PMCID: PMC7498262 DOI: 10.7554/elife.58029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Lineage specification is governed by gene regulatory networks (GRNs) that integrate the activity of signaling effectors and transcription factors (TFs) on enhancers. Sox17 is a key transcriptional regulator of definitive endoderm development, and yet, its genomic targets remain largely uncharacterized. Here, using genomic approaches and epistasis experiments, we define the Sox17-governed endoderm GRN in Xenopus gastrulae. We show that Sox17 functionally interacts with the canonical Wnt pathway to specify and pattern the endoderm while repressing alternative mesectoderm fates. Sox17 and β-catenin co-occupy hundreds of key enhancers. In some cases, Sox17 and β-catenin synergistically activate transcription apparently independent of Tcfs, whereas on other enhancers, Sox17 represses β-catenin/Tcf-mediated transcription to spatially restrict gene expression domains. Our findings establish Sox17 as a tissue-specific modifier of Wnt responses and point to a novel paradigm where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between lineage-specific Sox TFs and β-catenin/Tcf transcriptional complexes. Given the ubiquitous nature of Sox TFs and Wnt signaling, this mechanism has important implications across a diverse range of developmental and disease contexts.
Collapse
Affiliation(s)
- Shreyasi Mukherjee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Marcin Wlizla
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Melissa MacDonald
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Matthew T Weirauch
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States.,Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Ken Wy Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| |
Collapse
|
3
|
Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020; 462:20-35. [PMID: 32119833 PMCID: PMC7225061 DOI: 10.1016/j.ydbio.2020.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.
Collapse
Affiliation(s)
- Melody Esmaeili
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - John W Tobias
- Penn Genomic Analysis Core and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Departments of Medicine (Hematology-Oncology) and Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. Development 2018; 145:dev.159368. [PMID: 29866901 DOI: 10.1242/dev.159368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase 3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina.,Aix Marseille Université, CNRS, IBDM, 13288 Marseille, France
| | - Paula I Encinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - María Verónica Baez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Renato J Monti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Mateo Rodríguez Abinal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| |
Collapse
|
5
|
Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A. Coordinated regulation of the dorsal-ventral and anterior-posterior patterning ofXenopusembryos by the BTB/POZ zinc finger protein Zbtb14. Dev Growth Differ 2018; 60:158-173. [DOI: 10.1111/dgd.12431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Hidenori Konishi
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tatsuo Miyamoto
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tomoko Nagata
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Misa Uchida
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Atsushi Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| |
Collapse
|
6
|
Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Sci Rep 2017; 7:42590. [PMID: 28198400 PMCID: PMC5309806 DOI: 10.1038/srep42590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
The Tcf/Lef family of transcription factors mediates the Wnt/β-catenin pathway that is involved in a wide range of biological processes, including vertebrate embryogenesis and diverse pathogenesis. Post-translational modifications, including phosphorylation, sumoylation and acetylation, are known to be important for the regulation of Tcf/Lef proteins. However, the importance of ubiquitination and ubiquitin-mediated regulatory mechanisms for Tcf/Lef activity are still unclear. Here, we newly show that ubiquitin C-terminal hydrolase 37 (Uch37), a deubiquitinase, interacts with Tcf7 (formerly named Tcf1) to activate Wnt signalling. Biochemical analyses demonstrated that deubiquitinating activity of Uch37 is not involved in Tcf7 protein stability but is required for the association of Tcf7 to target gene promoter in both Xenopus embryo and human liver cancer cells. In vivo analyses further revealed that Uch37 functions as a positive regulator of the Wnt/β-catenin pathway downstream of β-catenin stabilization that is required for the expression of ventrolateral mesoderm genes during Xenopus gastrulation. Our study provides a new mechanism for chromatin occupancy of Tcf7 and uncovers the physiological significance of Uch37 during early vertebrate development by regulating the Wnt/β-catenin pathway.
Collapse
|
7
|
Cutts J, Brookhouser N, Brafman DA. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Methods Mol Biol 2016; 1516:121-144. [PMID: 27106497 DOI: 10.1007/7651_2016_357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA.
| |
Collapse
|
8
|
Buchert M, Rohde F, Eissmann M, Tebbutt N, Williams B, Tan CW, Owen A, Hirokawa Y, Gnann A, Orend G, Orner G, Dashwood RH, Heath JK, Ernst M, Janssen KP. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis Model Mech 2015; 8:1361-73. [PMID: 26398937 PMCID: PMC4631784 DOI: 10.1242/dmm.019844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Activation of the Wnt/β-catenin pathway occurs in the vast majority of colorectal cancers. However, the outcome of the disease varies markedly from individual to individual, even within the same tumor stage. This heterogeneity is governed to a great extent by the genetic make-up of individual tumors and the combination of oncogenic mutations. In order to express throughout the intestinal epithelium a degradation-resistant β-catenin (Ctnnb1), which lacks the first 131 amino acids, we inserted an epitope-tagged ΔN(1-131)-β-catenin-encoding cDNA as a knock-in transgene into the endogenous gpA33 gene locus in mice. The resulting gpA33(ΔN-Bcat) mice showed an increase in the constitutive Wnt/β-catenin pathway activation that shifts the cell fate towards the Paneth cell lineage in pre-malignant intestinal epithelium. Furthermore, 19% of all heterozygous and 37% of all homozygous gpA33(ΔN-Bcat) mice spontaneously developed aberrant crypt foci and adenomatous polyps, at frequencies and latencies akin to those observed in sporadic colon cancer in humans. Consistent with this, the Wnt target genes, MMP7 and Tenascin-C, which are most highly expressed in benign human adenomas and early tumor stages, were upregulated in pre-malignant tissue of gpA33(ΔN-Bcat) mice, but those Wnt target genes associated with excessive proliferation (i.e. Cdnn1, myc) were not. We also detected diminished expression of membrane-associated α-catenin and increased intestinal permeability in gpA33(ΔN-Bcat) mice in challenge conditions, providing a potential explanation for the observed mild chronic intestinal inflammation and increased susceptibility to azoxymethane and mutant Apc-dependent tumorigenesis. Collectively, our data indicate that epithelial expression of ΔN(1-131)-β-catenin in the intestine creates an inflammatory microenvironment and co-operates with other mutations in the Wnt/β-catenin pathway to facilitate and promote tumorigenesis.
Collapse
Affiliation(s)
- Michael Buchert
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Franziska Rohde
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Moritz Eissmann
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Niall Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Ben Williams
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexander Owen
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Yumiko Hirokawa
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexandra Gnann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Gertraud Orend
- Inserm U1109, MN3T team, 3 Av. Molière, Strasbourg 67200, France LabEx Medalis, Université de Strasbourg, Strasbourg 67200, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67200, France
| | - Gayle Orner
- University of Wisconsin, Madison, WI 53706, USA
| | - Rod H Dashwood
- Texas A&M Health Science Center, Center for Epigenetics and Disease Prevention, Houston, TX 77030-3303, USA
| | - Joan K Heath
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
9
|
van den Bosch MH, Blom AB, Sloetjes AW, Koenders MI, van de Loo FA, van den Berg WB, van Lent PL, van der Kraan PM. Induction of Canonical Wnt Signaling by Synovial Overexpression of Selected Wnts Leads to Protease Activity and Early Osteoarthritis-Like Cartilage Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1970-80. [PMID: 25976248 DOI: 10.1016/j.ajpath.2015.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022]
Abstract
Proteins from the Wnt signaling pathway are very important for joint development. Curiously, osteoarthritis (OA) is thought to be a recapitulation of developmental processes. Various members of the Wnt signaling pathway are overexpressed in the synovium during experimental OA. Here, we investigated the potency of specific Wnt proteins, when expressed in the synovium, to induce OA pathology. We overexpressed Wnt5a, Wnt8a, Wnt16, and WISP1 in the synovium using adenoviral vectors. We determined whether overexpression resulted in OA pathology by histology, and we measured whether Wnt signaling led to increased protease activity in the joint. Synovial overexpression of Wnt8a and Wnt16 led to canonical Wnt signaling in the cartilage, whereas overexpression of Wnt5a did not. Canonical Wnt signaling increased protease activity and induced cartilage damage shortly after overexpression. Specific blocking of the canonical Wnt signaling pathway with Dickkopf-1 reduced the Wnt-signaling-induced cartilage damage. By contrast, the noncanonical signaling Wnt5a did not cause cartilage lesions. Overexpression of WISP1, a downstream protein of canonical Wnt signaling, resulted in increased cartilage damage. In conclusion, our data show that canonical Wnts and WISP1, which we found overexpressed in the synovium during experimental OA, may conduce to OA pathology.
Collapse
Affiliation(s)
| | - Arjen B Blom
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Annet W Sloetjes
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons A van de Loo
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim B van den Berg
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter L van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Muto A, Ikeda S, Lopez-Burks ME, Kikuchi Y, Calof AL, Lander AD, Schilling TF. Nipbl and mediator cooperatively regulate gene expression to control limb development. PLoS Genet 2014; 10:e1004671. [PMID: 25255084 PMCID: PMC4177752 DOI: 10.1371/journal.pgen.1004671] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS), the most common “cohesinopathy”. It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb), knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions. Limb malformations are a striking feature of Cornelia de Lange Syndrome (CdLS), a multi-system birth defects disorder most commonly caused by haploinsufficiency for NIPBL. In addition to its role as a cohesin-loading factor, Nipbl also regulates gene expression, but how partial Nipbl deficiency causes limb defects is unknown. Using zebrafish and mouse models, we show that expression of multiple key regulators of early limb development, including shha, hand2 and hox genes, are sensitive to Nipbl deficiency. Furthermore, we find morphological and gene expression abnormalities similar to those of Nipbl-deficient zebrafish in the limb buds of zebrafish deficient for the Med12 subunit of Mediator—a protein complex that mediates physical interactions between enhancers and promoters—and genetic interaction studies support the view that Mediator and Nipbl act together. Strikingly, depletion of either Nipbl or Med12 leads to characteristic changes in hox gene expression that reflect the locations of genes within their chromosomal clusters, as well as to disruption of large-scale chromosome organization around the hoxda cluster, consistent with impairment of long-range enhancer-promoter interaction. Together, these findings provide insights into both the etiology of limb defects in CdLS, and the mechanisms by which Nipbl and Mediator influence gene expression.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shingo Ikeda
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Martha E. Lopez-Burks
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Anne L. Calof
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (ALC); (ADL)
| | - Arthur D. Lander
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
- * E-mail: (ALC); (ADL)
| | - Thomas F. Schilling
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
| |
Collapse
|
11
|
Young JJ, Kjolby RAS, Kong NR, Monica SD, Harland RM. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. Development 2014; 141:1683-93. [PMID: 24715458 DOI: 10.1242/dev.099374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/β-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a mechanistic understanding of the process is lacking. Here, we screened for factors enriched in posterior neural tissue and identify spalt-like 4 (sall4), which is induced by Fgf. Knockdown of Sall4 results in loss of spinal cord marker expression and increased expression of pou5f3.2 (oct25), pou5f3.3 (oct60) and pou5f3.1 (oct91) (collectively, pou5f3 genes), the closest Xenopus homologs of mammalian stem cell factor Pou5f1 (Oct4). Overexpression of the pou5f3 genes results in the loss of spinal cord identity and knockdown of pou5f3 function restores spinal cord marker expression in Sall4 morphants. Finally, knockdown of Sall4 blocks the posteriorizing effects of Fgf and RA signaling in the neurectoderm. These results suggest that Sall4, activated by posteriorizing signals, represses the pou5f3 genes to provide a permissive environment allowing for additional Wnt/Fgf/RA signals to posteriorize the neural plate.
Collapse
Affiliation(s)
- John J Young
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
13
|
Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA. β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev 2012; 7:30. [PMID: 22920725 PMCID: PMC3549768 DOI: 10.1186/1749-8104-7-30] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/15/2012] [Indexed: 01/01/2023] Open
Abstract
Background The zebrafish retina maintains two populations of stem cells: first, the germinal zone or ciliary marginal zone (CMZ) contains multipotent retinal progenitors that add cells to the retinal periphery as the fish continue to grow; second, radial glia (Müller cells) occasionally divide asymmetrically to generate committed progenitors that differentiate into rod photoreceptors, which are added interstitially throughout the retina with growth. Retinal injury stimulates Müller glia to dedifferentiate, re-enter the cell cycle, and generate multipotent retinal progenitors similar to those in the CMZ to replace missing neurons. The specific signals that maintain these two distinct populations of endogenous retinal stem cells are not understood. Results We used genetic and pharmacological manipulation of the β-catenin/Wnt signaling pathway to show that it is required to maintain proliferation in the CMZ and that hyperstimulation of β-catenin/Wnt signaling inhibits normal retinal differentiation and expands the population of proliferative retinal progenitors. To test whether similar effects occur during regeneration, we developed a method for making rapid, selective photoreceptor ablations in larval zebrafish with intense light. We found that dephosphorylated β-catenin accumulates in Müller glia as they re-enter the cell cycle following injury, but not in Müller glia that remain quiescent. Activation of Wnt signaling is required for regenerative proliferation, and hyperstimulation results in loss of Müller glia from the INL as all proliferative cells move into the ONL. Conclusions β-catenin/Wnt signaling is thus required for the maintenance of retinal progenitors during both initial development and lesion-induced regeneration, and is sufficient to prevent differentiation of those progenitors and maintain them in a proliferative state. This suggests that the β-catenin/Wnt cascade is part of the shared molecular circuitry that maintains retinal stem cells for both homeostatic growth and epimorphic regeneration.
Collapse
Affiliation(s)
- Jason R Meyers
- Department of Biology, Colgate University, Hamilton, NY 13346, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Takebayashi-Suzuki K, Kitayama A, Terasaka-Iioka C, Ueno N, Suzuki A. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis. Dev Biol 2011; 360:11-29. [PMID: 21958745 DOI: 10.1016/j.ydbio.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022]
Abstract
The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-β, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Institute for Amphibian Biology, Hiroshima University Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
15
|
Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS. An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 2011; 357:478-91. [PMID: 21741375 PMCID: PMC3164747 DOI: 10.1016/j.ydbio.2011.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 05/10/2011] [Accepted: 06/07/2011] [Indexed: 12/12/2022]
Abstract
Most zygotic genes remain transcriptionally silent in Drosophila, Xenopus, and zebrafish embryos through multiple mitotic divisions until the midblastula transition (MBT). Several genes have been identified in each of these organisms that are transcribed before the MBT, but whether precocious expression of specific mRNAs is important for later development has not been examined in detail. Here, we identify a class of protein coding transcripts activated before the MBT by the maternal T-box factor VegT that are components of an established transcriptional regulatory network required for mesendoderm induction in Xenopus laevis, including the Nodal related ligands xnr5, xnr6, and derrière and the transcription factors bix4, and sox17α. Accumulation of phospho-Smad2, a hallmark of active Nodal signaling, at the onset of the MBT requires preMBT transcription and activity of xnr5 and xnr6. Furthermore, preMBT activation of the Nodal pathway is essential for mesendodermal gene expression and patterning of the embryo. Finally, xnr5 and xnr6 can also activate their own expression during cleavage stages, indicating that preMBT transcription contributes to a feed-forward system that allows robust activation of Nodal signaling at the MBT.
Collapse
Affiliation(s)
| | - Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Jing Yang
- Nationwide Children’s Hospital, Columbus, OH, USA
| | - Laurent Kodjabachian
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
In der Rieden PMJ, Vilaspasa FL, Durston AJ. Xwnt8 directly initiates expression of labial Hox genes. Dev Dyn 2010; 239:126-39. [PMID: 19623617 DOI: 10.1002/dvdy.22020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201).
Collapse
Affiliation(s)
- Paul M J In der Rieden
- Hubrecht Laboratorium, Nederlands Instituut voor Ontwikkelingsbiologie, Utrecht, The Netherlands
| | | | | |
Collapse
|
17
|
Franchini A, Casarini L, Malagoli D, Ottaviani E. Expression of the genes siamois, engrailed-2, bmp4 and myf5 during Xenopus development in presence of the marine toxins okadaic acid and palytoxin. CHEMOSPHERE 2009; 77:308-312. [PMID: 19683326 DOI: 10.1016/j.chemosphere.2009.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/25/2009] [Accepted: 07/13/2009] [Indexed: 05/28/2023]
Abstract
The present investigation examines the effects of the marine toxins, okadaic acid (OA) and palytoxin (PTX), on some genes involved in the neural and muscular specification and patterning of Xenopus laevis. The RT-PCR analyses performed at different stages of embryonic and larval development (stages 11-47) demonstrated that both toxins induce an over-expression of the genes siamois and engrailed-2 and a different behaviour in bmp4 and myf5. Indeed, OA provoked a significant increase in bmp4 in the earliest stage (11) examined, a down-regulation from stages 12 to 17, and a renewed increase from the beginning of hatching onwards (stages 35-47). In contrast, myf5 was up-regulated in all stages up to 35. PTX induced an over-expression of both bmp4 and myf5 during the embryonic and early larval development stages. The results show that PTX induces an increase in expression levels in all tested genes, while the response to OA seems to be more stage-dependent, with the embryonic development stage more sensitive to the toxin than the larval stages.
Collapse
Affiliation(s)
- Antonella Franchini
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | | | | | |
Collapse
|
18
|
Dickinson AJG, Sive HL. The Wnt antagonists Frzb-1 and Crescent locally regulate basement membrane dissolution in the developing primary mouth. Development 2009; 136:1071-81. [PMID: 19224982 DOI: 10.1242/dev.032912] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary mouth forms from ectoderm and endoderm at the extreme anterior of the embryo, a conserved mesoderm-free region. In Xenopus, a very early step in primary mouth formation is loss of the basement membrane between the ectoderm and endoderm. In an unbiased microarray screen, we defined genes encoding the sFRPs Frzb-1 and Crescent as transiently and locally expressed in the primary mouth anlage. Using antisense oligonucleotides and ;face transplants', we show that frzb-1 and crescent expression is specifically required in the primary mouth region at the time this organ begins to form. Several assays indicate that Frzb-1 and Crescent modulate primary mouth formation by suppressing Wnt signaling, which is likely to be mediated by beta-catenin. First, a similar phenotype (no primary mouth) is seen after loss of Frzb-1/Crescent function to that seen after temporally and spatially restricted overexpression of Wnt-8. Second, overexpression of either Frzb-1 or Dkk-1 results in an enlarged primary mouth anlage. Third, overexpression of Dkk-1 can restore a primary mouth to embryos in which Frzb-1/Crescent expression has been inhibited. We show that Frzb-1/Crescent function locally promotes basement membrane dissolution in the primary mouth primordium. Consistently, Frzb-1 overexpression decreases RNA levels of the essential basement membrane genes fibronectin and laminin, whereas Wnt-8 overexpression increases the levels of these RNAs. These data are the first to connect Wnt signaling and basement membrane integrity during primary mouth development, and suggest a general paradigm for the regulation of basement membrane remodeling.
Collapse
|
19
|
Vonica A, Gumbiner BM. The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 2007; 312:90-102. [PMID: 17964564 PMCID: PMC2170525 DOI: 10.1016/j.ydbio.2007.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In Xenopus embryos, the dorso-ventral and antero-posterior axes are established by the Spemann-Mangold organizer. According to the prevalent model of early development, the organizer is induced by the dorsalizing Nieuwkoop signal, which is secreted by the Nieuwkoop center. Formation of the center requires the maternal Wnt pathway, which is active on the dorsal side of embryos. Nevertheless, the molecular nature of the Nieuwkoop signal remains unclear. Since the Nieuwkoop center and the organizer both produce dorsalizing signals in vitro, we asked if they might share molecular components. We find that vegetal explants, the source of Nieuwkoop signal in recombination assays, express a number of organizer genes. The product of one of these genes, chordin, is required for signaling, suggesting that the organizer and the center share at least some molecular components. Furthermore, experiments with whole embryos show that maternal Wnt activity is required in the organizer just as it is needed in the Nieuwkoop center in vitro. We conclude that the maternal Wnt pathway generates the Nieuwkoop center in vitro and the organizer in vivo by activating a common set of genes, without the need of an intermediary signaling step.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, P.O. Box 32, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
20
|
McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007; 134:2207-17. [PMID: 17507400 DOI: 10.1242/dev.001230] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver and pancreas are specified from the foregut endoderm through an interaction with the adjacent mesoderm. However, the earlier molecular mechanisms that establish the foregut precursors are largely unknown. In this study, we have identified a molecular pathway linking gastrula-stage endoderm patterning to organ specification. We show that in gastrula and early-somite stage Xenopus embryos, Wnt/beta-catenin activity must be repressed in the anterior endoderm to maintain foregut identity and to allow liver and pancreas development. By contrast, high beta-catenin activity in the posterior endoderm inhibits foregut fate while promoting intestinal development. Experimentally repressing beta-catenin activity in the posterior endoderm was sufficient to induce ectopic organ buds that express early liver and pancreas markers. beta-catenin acts in part by inhibiting expression of the homeobox gene hhex, which is one of the earliest foregut markers and is essential for liver and pancreas development. Promoter analysis indicates that beta-catenin represses hhex transcription indirectly via the homeodomain repressor Vent2. Later in development, beta-catenin activity has the opposite effect and enhances liver development. These results illustrate that turning Wnt signaling off and on in the correct temporal sequence is essential for organ formation, a finding that might directly impact efforts to differentiate liver and pancreas tissue from stem cells.
Collapse
Affiliation(s)
- Valérie A McLin
- Cincinnati Children's Research Foundation, Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
21
|
Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J. PP2A:B56ε is required for eye induction and eye field separation. Dev Biol 2007; 302:477-93. [PMID: 17074314 DOI: 10.1016/j.ydbio.2006.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 12/18/2022]
Abstract
Eye induction and eye field separation are the earliest events during vertebrate eye development. Both of these processes occur much earlier than the formation of optic vesicles. The insulin-like growth factor (IGF) pathway appears to be essential for eye induction, yet it remains unclear how IGF downstream pathways are involved in eye induction. As a consequence of eye induction, a single eye anlage is specified in the anterior neural plate. Subsequently, this single eye anlage is divided into two symmetric eye fields in response to Sonic Hedgehog (Shh) secreted from the prechordal mesoderm. Here, we report that B56epsilon regulatory subunit of protein phosphatase 2A (PP2A) is involved in Xenopus eye induction and subsequent eye field separation. We provide evidence that B56epsilon is required for the IGF/PI3K/Akt pathway and that interfering with the PI3K/Akt pathway inhibits eye induction. In addition, we show that B56epsilon regulates the Hedgehog (Hh) pathway during eye field separation. Thus, B56epsilon is involved in multiple signaling pathways and plays critical roles during early development.
Collapse
Affiliation(s)
- Anna M Rorick
- Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | |
Collapse
|
22
|
Vonica A, Brivanlou AH. The left-right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev Biol 2006; 303:281-94. [PMID: 17239842 DOI: 10.1016/j.ydbio.2006.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/22/2022]
Abstract
Formation of the left-right axis involves a symmetry-breaking signal originating in the node or its equivalents, which increases TGF-beta signaling on the left side of the embryo and ultimately leads to asymmetric patterning of the viscera. DAN domain proteins are extracellular inhibitors of TGF-beta ligands, and are involved in regulating the left-right axis in chick, mouse and zebrafish. We find that Coco, a Xenopus DAN family member, and two TGF-beta ligands, Xnr1 and derrière, are coexpressed in the posterior paraxial mesoderm at neurula stage. Side-specific protein depletion demonstrated that left-right patterning requires Coco exclusively on the right side, and Xnr1 and derrière exclusively on the left, despite their bilateral expression pattern. In the absence of Coco, the TGF-beta signal is bilateral. Interactions among the three proteins show that derrière is required for normal levels of Xnr1 expression, while Coco directly inhibits both ligands. We conclude that derrière, Xnr1, and Coco define a posttranscriptionally regulated signaling center, which is a necessary link in the signaling chain leading to an increased TGF-beta signal on the left side of the embryo.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Liu F, van den Broek O, Destrée O, Hoppler S. Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/β-catenin signalling in mesoderm development. Development 2005; 132:5375-85. [PMID: 16291789 DOI: 10.1242/dev.02152] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tcf/Lef transcription factors and β-catenin mediate canonical Wnt signalling, which plays remarkably diverse roles in embryonic development,stem cell renewal and cancer progression. To investigate the molecular mechanisms allowing for these diverse yet specific functions, we studied the several distinct roles for Wnt/β-catenin signalling in early Xenopus development: establishing the dorsal body axis; regulating mesoderm induction; and subsequent ventrolateral patterning. Our previous experiments and the expression patterns of Tcf/Lef factors during these embryonic stages led us to examine whether different Tcf/Lef factors mediate these distinct events downstream of canonical Wnt/β-catenin signalling. By manipulating gene expression with morpholino-driven gene knockdown and capped RNA-mediated rescue, we show that genes encoding different Tcf/Lef transcription factors mediate distinct responses to Wnt signalling in early Xenopus development: Tcf1 and Tcf3 genes are non-redundantly required in mesoderm induction for mediating primarily transcriptional activation and repression, respectively; while ventrolateral patterning requires both Tcf1 and Lef1 genes to express sufficient levels of transcription-activating Tcf factors. Our investigation further identifies that motifs within their central domain, rather than their C-terminus, determine the particular molecular function of Tcf/Lef factors. These findings suggest that Tcf/Lef genes encode factors of different activities, which function together in antagonistic or synergistic ways to modulate the intensity and outcome of Wnt/β-catenin signalling and to trigger tissue-specific responses.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
24
|
Marom K, Levy V, Pillemer G, Fainsod A. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Dev Biol 2005; 282:442-54. [PMID: 15950609 DOI: 10.1016/j.ydbio.2005.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
BMP signaling performs multiple important roles during early embryogenesis. Signaling through the BMP pathway is mediated by different BMP ligands expressed in partially overlapping temporal and spatial patterns. Assignment of different BMP-dependent activities to the individual ligands has relied on the patterns of expression of the various BMP genes. Temporal analysis of BMP signaling prior to and during gastrulation was performed using glucocorticoid-controlled Smad proteins. Overexpression of the BMP-specific Smad1 and Smad5 revealed that suppression of Spemann's organizer formation in Xenopus embryos can only take place by activating the BMP pathway prior to the onset of gastrulation. Blocking BMP signaling with the inhibitory Smad, Smad6, results in dorsalized embryos or secondary axis induction, only when activated up to early gastrula stages. BMP2 efficiently represses organizer-specific transcription from the midblastula transition onwards while BMP4 is unable to prevent the early activation of organizer-specific genes. Manipulation of the BMP pathway during mid/late gastrula affects mesodermal patterning with no external phenotypic effects. These observations suggest that the malformations resulting from inhibition or promotion of organizer formation, ventralized or dorsalized, respectively, are the result of a very early BMP function, through its antagonism of organizer formation. This function is apparently fulfilled by BMP2 and only at its latest phase by BMP4. Subsequently, BMP functions in the patterning of the mesoderm with no apparent phenotypic effects.
Collapse
Affiliation(s)
- Karen Marom
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
25
|
Steventon B, Carmona-Fontaine C, Mayor R. Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol 2005; 16:647-54. [PMID: 16084743 DOI: 10.1016/j.semcdb.2005.06.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The concerted action of extracellular signals such as BMP, Wnt, FGF, RA and Notch activate a genetic program required to transform a naïve ectodermal cell into a neural crest cell. In this review we will analyze the extracellular signals and the network of transcription factors that are required for this transformation. We will propose the division of this complex network of factors in two main steps: an initial cell specification step followed by a maintenance or cell survival step.
Collapse
Affiliation(s)
- Ben Steventon
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
26
|
Abstract
Siamois is the transcriptional mediator of the dorsal Wnt signaling pathway and is necessary for formation of the Spemann organizer and dorsoanterior development in Xenopus. We have determined that XIC, a Xenopus I-mfa domain protein that regulates Tcf3 binding, is required for dorsoaxial development and specifically for Siamois activity in establishing the dorsal organizer. In loss-of-function studies, we found that embryos injected with a morpholino to XIC mRNA (XIC morphpolino) are missing head structures, neural tube, notochord, and paraxial mesoderm as well as NCAM and XMyoD expression. Although Siamois, Twin, and Xnr3 expression is normal in morpholino-injected embryos, levels of downstream organizer factors, including goosecoid, Xnot, Cerberus, and chordin, are severely reduced. Ectopic axis formation induced by Siamois is repressed by injection of the XIC morpholino and further repressed by coinjection of beta-catenin or a constitutively active Tcf3/HMG/G4A fusion. Activation of reporters driven by the Siamois-responsive proximal element of the goosecoid promoter is inhibited in the presence of the morpholino and can be rescued by murine I-mfa and by a dominant-negative Tcf3. The data indicate a role for XIC in limiting Tcf3-dependent repression of Siamois activities that are required for goosecoid transcription and for dorsal organizer formation.
Collapse
Affiliation(s)
- Lauren Snider
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
27
|
Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005; 6:351-62. [PMID: 15832199 DOI: 10.1038/nrn1665] [Citation(s) in RCA: 492] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
WNT signalling has a key role in early embryonic patterning through the regulation of cell fate decisions, tissue polarity and cell movements. In the nervous system, WNT signalling also regulates neuronal connectivity by controlling axon pathfinding, axon remodelling, dendrite morphogenesis and synapse formation. Studies, from invertebrates to mammals, have led to a considerable understanding of WNT signal transduction pathways. This knowledge provides a framework for the study of the mechanisms by which WNTs regulate diverse neuronal functions. Manipulation of the WNT pathways could provide new strategies for nerve regeneration and neuronal circuit modulation.
Collapse
Affiliation(s)
- Lorenza Ciani
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
28
|
Wu J, Yang J, Klein PS. Neural crest induction by the canonical Wnt pathway can be dissociated from anterior-posterior neural patterning in Xenopus. Dev Biol 2005; 279:220-32. [PMID: 15708570 DOI: 10.1016/j.ydbio.2004.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 12/11/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.
Collapse
Affiliation(s)
- Jinling Wu
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, 364 Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
29
|
Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE. FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J 2004; 24:73-84. [PMID: 15592430 PMCID: PMC544900 DOI: 10.1038/sj.emboj.7600460] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 10/06/2004] [Indexed: 12/22/2022] Open
Abstract
beta-catenin is the major effector of the canonical Wnt signaling pathway. Mutations in components of the pathway that stabilize beta-catenin result in augmented gene transcription and play a major role in many human cancers. We employed microarrays to identify transcriptional targets of deregulated beta-catenin in a human epithelial cell line (293) engineered to produce mutant beta-catenin and in ovarian endometrioid adenocarcinomas characterized with respect to mutations affecting the Wnt/beta-catenin pathway. Two genes strongly induced in both systems-FGF20 and DKK1-were studied in detail. Elevated levels of FGF20 RNA were also observed in adenomas from mice carrying the Apc(Min)allele. Both XFGF20 and Xdkk-1 are expressed early in Xenopus embryogenesis under the control of the Wnt signaling pathway. Furthermore, FGF20 and DKK1 appear to be direct targets for beta-catenin/TCF transcriptional regulation via LEF/TCF-binding sites. Finally, by using small inhibitory RNAs specific for FGF20, we show that continued expression of FGF20 is necessary for maintenance of the anchorage-independent growth state in RK3E cells transformed by beta-catenin, implying that FGF-20 may be a critical element in oncogenesis induced by the Wnt signaling pathway.
Collapse
Affiliation(s)
- Mario N Chamorro
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Varmus Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Cell Biology Program, Cornell University, Weill Graduate School of Medical Sciences, New York, NY, USA
| | - Donald R Schwartz
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | - Kathleen R Cho
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harold E Varmus
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Varmus Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Varmus Laboratory-RRL717, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 62, New York, NY 10021, USA. Tel.: +1 212 639 6561; Fax: +1 212 717 3125; E-mail:
| |
Collapse
|
30
|
Szeto DP, Kimelman D. Combinatorial gene regulation by Bmp and Wnt in zebrafish posterior mesoderm formation. Development 2004; 131:3751-60. [PMID: 15240553 DOI: 10.1242/dev.01236] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Combinatorial signaling is an important mechanism that allows the embryo to utilize overlapping signaling pathways to specify different territories. In zebrafish, the Wnt and Bmp pathways interact to regulate the formation of the posterior body. In order to understand how this works mechanistically, we have identified tbx6 as a posterior mesodermal gene activated by both of these signaling pathways. We isolated a genomic fragment from the tbx6 gene that recapitulates the endogenous tbx6 expression, and used this to ask how the Bmp and Wnt signaling pathways combine to regulate gene expression. We find that the tbx6 promoter utilizes distinct domains to integrate the signaling inputs from each pathway, including multiple Tcf/LEF sites and a novel Bmp-response element. Surprisingly, we found that overexpression of either signaling pathway can activate the tbx6 promoter and the endogenous gene, whereas inputs from both pathways are required for the normal pattern of expression. These results demonstrate that both Bmp and Wnt are present at submaximal levels, which allows the pathways to function combinatorially. We present a model in which overlapping Wnt and Bmp signals in the ventrolateral region activate the expression of tbx6 and other posterior mesodermal genes, leading to the formation of posterior structures.
Collapse
Affiliation(s)
- Daniel P Szeto
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
31
|
Abstract
We have identified two Xenopus mRNAs that encode proteins homologous to a component of the Wnt/beta-catenin transcriptional machinery known as Pygopus. The predicted proteins encoded by both mRNAs share the same structural properties with human Pygo-2, but with Xpygo-2alpha having an additional 21 N-terminal residues. Xpygo-2alpha messages accumulate in the prospective anterior neural plate after gastrulation and then are localized to the nervous system, rostral to and including the hindbrain. Xpygo-2beta mRNA is expressed in oocytes and early embryos but declines in level before and during gastrulation. In late neurula, Xpygo-2beta mRNA is restricted to the retinal field, including eye primordia and prospective forebrain. A C-terminal truncated mutant of Xpygo-2 containing the N-terminal Homology Domain (NHD) caused both axis duplication when injected at the 2-cell stage and inhibition of anterior neural development when injected in the prospective head, mimicking the previously described effects of Wnt-signaling activators. Inhibition of Xpygo-2alpha and Xpygo-2beta by injection of gene-specific antisense morpholino oligonucleotides into prospective anterior neurectoderm caused brain defects that were prevented by coinjection of Xpygo-2 mRNA. Both Xpygo-2alpha and Xpygo-2beta morpholinos reduced the eye and forebrain markers Xrx-1, Xpax-6, and XBF-1, while the Xpygo-2alpha morpholino also eliminated expression of the mid-hindbrain marker En-2. The differential expression and regulatory activities of Xpygo-2alpha/beta in rostral neural tissue indicate that they represent essential components of a novel mechanism for Wnt signaling in regionalization of the brain.
Collapse
Affiliation(s)
- Blue B Lake
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6 Newfoundland, Canada.
| | | |
Collapse
|
32
|
Jenny A, Darken RS, Wilson PA, Mlodzik M. Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J 2003; 22:4409-20. [PMID: 12941693 PMCID: PMC202366 DOI: 10.1093/emboj/cdg424] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/07/2003] [Accepted: 07/08/2003] [Indexed: 11/15/2022] Open
Abstract
Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling.
Collapse
Affiliation(s)
- Andreas Jenny
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cellular and Developmental Biology, 1 Gustave L.Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
33
|
Geng X, Xiao L, Lin GF, Hu R, Wang JH, Rupp RAW, Ding X. Lef/Tcf-dependent Wnt/beta-catenin signaling during Xenopus axis specification. FEBS Lett 2003; 547:1-6. [PMID: 12860376 DOI: 10.1016/s0014-5793(03)00639-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Though the Wnt/beta-catenin signaling pathway is known to play key roles during Xenopus axis specification, whether it signals exclusively through Lef/Tcf transcription factors in this process remains unclear. To investigate this issue, we generated transgenic frog embryos expressing green fluorescent protein (GFP) driven by a Lef/Tcf-dependent and Wnt/beta-catenin-responsive promoter. This promoter is highly sensitive and even detects maternal beta-catenin activity prior to the large-scale transcription of zygotic genes. Unexpectedly, GFP expression was observed only in some, but not all, known Wnt/beta-catenin-positive territories in Xenopus early development. Furthermore, ubiquitous expression of dominant Lef-1 protein variants from transgenes revealed that zygotic Lef/Tcf activity is required for the ventroposterior development of Xenopus embryos. In summary, our results suggest that endogenous Wnt/beta-catenin activity does not result in obligatory Lef/Tcf-dependent gene activation, and that the ventroposteriorizing activity of zygotic Wnt-8 signaling is mediated by Lef/Tcf proteins.
Collapse
Affiliation(s)
- Xin Geng
- Laboratory of Molecular and Cell Biology, Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yue-yang Road 320, 200031, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Mesoderm formation results from an inducing process that requires maternal and zygotic FGF/MAPK and TGFbeta activities, while maternal activation of the Wnt/beta-catenin pathway determines the anterior-dorsal axis. Here, we show a new role of Wnt/beta-catenin signaling in mesoderm induction. We find that maternal beta-catenin signaling is not only active dorsally but also all around the equatorial region, coinciding with the prospective mesoderm. Maternal beta-catenin function is required both for expression of dorsal genes and for activation of MAPK and the mesodermal markers Xbra and eomesodermin. beta-catenin acts in a non- cell-autonomous manner upstream of zygotic FGF and nodal signals. The Wnt/beta-catenin activity in the equatorial region of the early embryo is the first example of a maternally provided mesoderm inducer restricted to the prospective mesoderm.
Collapse
Affiliation(s)
- Anne Schohl
- Department of Cell Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
35
|
Yang J, Tan C, Darken RS, Wilson PA, Klein PS. Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Development 2002; 129:5743-52. [PMID: 12421713 DOI: 10.1242/dev.00150] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Following fertilization, the zygotic genome in many organisms is quiescent until the midblastula transition (MBT), when large-scale transcription begins. In Xenopus embryos, for example, transcription is believed to be repressed until the twelfth cell division. Thus, although dorsal-ventral patterning begins during the first cell cycle, little attention has been given to transcriptional regulation in pre-MBT development. We present evidence that regulated transcription begins during early cleavage stages and that the beta-catenin-Tcf complex is required for the transcription of the Xenopus nodal genes Xnr5 and Xnr6 as early as the 256-cell stage. Moreover, inhibition of beta-catenin/Tcf function can block dorsal development, but only if the inhibition begins early and is maintained throughout pre-MBT stages. Dorsal development can be rescued in ventralized embryos if Tcf-dependent transcription is activated prior to MBT, but activation of Tcf after MBT cannot rescue ventralized embryos, suggesting that beta-catenin/Tcf-dependent transcription is required prior to MBT for dorsal-ventral patterning in Xenopus.
Collapse
Affiliation(s)
- Jing Yang
- Department of Medicine (Hematology-Oncology) and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
36
|
Vonica A, Gumbiner BM. Zygotic Wnt Activity Is Required for Brachyury Expression in the Early Xenopus laevis Embryo. Dev Biol 2002; 250:112-27. [PMID: 12297100 DOI: 10.1006/dbio.2002.0786] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The canonical, beta-catenin-dependent Wnt pathway is a crucial player in the early events of Xenopus development. Dorsal axis formation and mesoderm patterning are accepted effects of this pathway, but the regulation of expression of genes involved in mesoderm specification is not. This conclusion is based largely on the inability of the Wnt pathway to induce mesoderm in animal cap explants. Using injections of inhibitors of canonical Wnt signaling, we demonstrate that expression of the general mesodermal marker Brachyury (Xbra) requires a zygotic, ligand-dependent Wnt activity throughout the marginal zone. Analysis of the Xbra promoter reveals that putative TCF-binding sites mediate Wnt activation, the first sites in this well-studied promoter to which an activation role can be ascribed. However, established mesoderm inducers like eFGF and activin can bypass the Wnt requirement for Xbra expression. Another mesoderm promoting factor, VegT, activates Xbra in a Wnt-dependent manner. We also show that the activin/nodal signaling is necessary for ectopic Xbra induction by the Wnt pathway, but not by VegT. Our data significantly change the understanding of Brachyury regulation in Xenopus, implying the existence of an unknown zygotic Wnt ligand in Spemann's organizer. Since Brachyury is considered to have a major role in mesoderm formation, it is possible that Wnts might play a role in mesoderm specification, in addition to patterning.
Collapse
Affiliation(s)
- Alin Vonica
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
37
|
Levy V, Marom K, Zins S, Koutsia N, Yelin R, Fainsod A. The competence of marginal zone cells to become Spemann's organizer is controlled by Xcad2. Dev Biol 2002; 248:40-51. [PMID: 12142019 DOI: 10.1006/dbio.2002.0705] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organizer in vertebrate embryos is responsible for the formation of the primary body axis. In amphibian embryos, the organizer forms in the dorsal marginal zone (prospective dorsal mesoderm) at a location determined by the point of sperm entry. Using inducible versions of axis-inducing proteins, it has been shown that, irrespective of the mode of secondary axis induction, organizer formation in the ventral marginal zone is temporally restricted from the midblastula transition to the onset of gastrulation. Here, we show that the competence of marginal zone cells to respond to organizer-inducing signals is under temporal control, one of the regulators being the homeobox transcription factor Xcad2. Overexpression of Xcad2 restricts the temporal competence for axis induction, whereas partial loss of function expands this competence, supporting our suggestion. We propose that Xcad2 competes with putative axis-inducing signals within the marginal zone to prevent expression of organizer-specific genes. Elimination of endogenous Xcad2 allows for the activation of organizer genes beyond the normal competence window during early/mid-gastrulation. We conclude that Xcad2, through its early expression in the ventrolateral marginal zone, terminates the competence of this embryonic region to respond to organizer-inducing signals by preventing the activation of organizer-specific genes.
Collapse
Affiliation(s)
- Vered Levy
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Maduro MF, Lin R, Rothman JH. Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression. Dev Biol 2002; 248:128-42. [PMID: 12142026 DOI: 10.1006/dbio.2002.0721] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
POP-1, a Tcf/Lef factor, functions throughout Caenorhabditis elegans development as a Wnt-dependent reiterative switch to generate nonequivalent sister cells that are born by anterior-posterior cell divisions. We have observed the interaction between POP-1 and a target gene that it represses as it responds to Wnt signaling. Dynamic observations in living embryos reveal that POP-1 undergoes Wnt-dependent nucleocytoplasmic redistribution immediately following cytokinesis, explaining the differential nuclear POP-1 levels in nonequivalent sister cells. In unsignaled (anterior) but not Wnt-signaled (posterior) sister cells, POP-1 progressively coalesces into subnuclear domains during interphase, coincident with its action as a repressor. While the asymmetric distribution of POP-1 in nonequivalent sisters apparently requires a 124-amino-acid internal domain, neither the HMG box nor beta-catenin interaction domains are required. We find that a transcriptional activator, MED-1, associates in vivo with the end-1 and end-3 target genes in the mesoderm (anterior sister) and in the endoderm (posterior sister) following the asymmetric cell division that subdivides the mesendoderm. However, in the anterior sister, binding of POP-1 to the end-1 and end-3 genes blocks their expression. In vivo, binding of POP-1 to the end-1 and end-3 targets (in the posterior sister) is blocked by Wnt/MAPK signaling. Thus, a Tcf/Lef factor represses transactivation of genes in an unsignaled daughter cell by abrogating the function of a bound activator.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
39
|
Friedle H, Knöchel W. Cooperative interaction of Xvent-2 and GATA-2 in the activation of the ventral homeobox gene Xvent-1B. J Biol Chem 2002; 277:23872-81. [PMID: 11964398 DOI: 10.1074/jbc.m201831200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xvent family of homeobox transcription factors is essential for the establishment of the dorsal-ventral body axis during Xenopus embryogenesis. In contrast to Xvent-2B and other members of the Xvent-2 subfamily, Xvent-1B is not a direct response gene of bone morphogenetic protein-4 signaling. Xvent-1B is activated by Xvent-2, but CHX experiments revealed the requirement of additional factors. In this study, we report on the cooperative effect of Xvent-2 and the zinc finger transcription factor GATA-2 on the promoter of the Xvent-1B gene. We show that GATA-2 is a direct target gene of bone morphogenetic protein-4 and that GATA-2 interacts with Xvent-2 to activate transcription of Xvent-1B. Both transcription factors bind to distinct elements within the Xvent-1B promoter, and GATA-2 physically interacts with the C-terminal domain of Xvent-2. Promoter/reporter studies in Xenopus embryos revealed that full activation of Xvent-1B requires both Xvent-2 and GATA-2. Moreover, the two factors are sufficient to direct transcription of Xvent-1B in the presence of CHX at the ventral side of the embryo. The failure of both factors to activate Xvent-1B on the dorsal side suggests the existence of a dorsal inhibitor. This inhibitor is likely a component of the dorsal Wnt signaling pathway because nuclear translocation of beta-catenin before midblastula transition results in a suppression of Xvent-1B transcription.
Collapse
Affiliation(s)
- Henner Friedle
- Abteilung Biochemie, Universität Ulm, Albert-Einstein Allee 11, Ulm 89081, Germany
| | | |
Collapse
|
40
|
Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 2002; 16:1167-81. [PMID: 12023297 DOI: 10.1101/gad.976502] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Scott Barolo
- Division of Biology/CDB, University of California San Diego, La Jolla, California 92093-0349, USA
| | | |
Collapse
|
41
|
Shi DL, Bourdelas A, Umbhauer M, Boucaut JC. Zygotic Wnt/beta-catenin signaling preferentially regulates the expression of Myf5 gene in the mesoderm of Xenopus. Dev Biol 2002; 245:124-35. [PMID: 11969260 DOI: 10.1006/dbio.2002.0633] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zygotic Wnt signaling has been shown to be involved in dorsoventral mesodermal patterning in Xenopus embryos, but how it regulates different myogenic gene expression in the lateral mesodermal domains is not clear. Here, we use transient exposure of embryos or explants to lithium, which mimics Wnt/beta-catenin signaling, as a tool to regulate the activation of this pathway at different times and places during early development. We show that activation of Wnt/beta-catenin signaling at the early gastrula stage rapidly induces ectopic expression of XMyf5 in both the dorsal and ventral mesoderm. In situ hybridization analysis reveals that the induction of ectopic XMyf5 expression in the dorsal mesoderm occurs within 45 min and is not blocked by the protein synthesis inhibitor cycloheximide. By contrast, the induction of XMyoD is observed after 2 h of lithium treatment and the normal expression pattern of XMyoD is blocked by cycloheximide. Analysis by RT-PCR of ectodermal explants isolated soon after midblastula transition indicates that lithium also specifically induces XMyf5 expression, which takes place 30 min following lithium treatment and is not blocked by cycloheximide, arguing strongly for an immediate-early response. In the early gastrula, inhibition of Wnt/beta-catenin signaling blocks the expression of XMyf5 and XMyoD, but not of Xbra. We further show that zygotic Wnt/beta-catenin signaling interacts specifically with bFGF and eFGF to promote XMyf5 expression in ectodermal cells. These results suggest that Wnt/beta-catenin pathway is required for regulating myogenic gene expression in the presumptive mesoderm. In particular, it may directly activate the expression of the XMyf5 gene in the muscle precursor cells.
Collapse
Affiliation(s)
- De-Li Shi
- Groupe de Biologie Expérimentale, Laboratoire de Biologie du Développement, CNRS UMR 7622, Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France.
| | | | | | | |
Collapse
|
42
|
Darken RS, Scola AM, Rakeman AS, Das G, Mlodzik M, Wilson PA. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J 2002; 21:976-85. [PMID: 11867525 PMCID: PMC125882 DOI: 10.1093/emboj/21.5.976] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The signaling mechanisms that specify, guide and coordinate cell behavior during embryonic morphogenesis are poorly understood. We report that a Xenopus homolog of the Drosophila planar cell polarity gene strabismus (stbm) participates in the regulation of convergent extension, a critical morphogenetic process required for the elongation of dorsal structures in vertebrate embryos. Overexpression of Xstbm, which is expressed broadly in early development and subsequently in the nervous system, causes severely shortened trunk structures; a similar phenotype results from inhibiting Xstbm translation using a morpholino antisense oligo. Experiments with Keller explants further demonstrate that Xstbm can regulate convergent extension in both dorsal mesoderm and neural tissue. The specification of dorsal tissues is not affected. The Xstbm phenotype resembles those obtained with several other molecules with roles in planar polarity signaling, including Dishevelled and Frizzled-7 and -8. Unlike these proteins, however, Stbm has little effect on conventional Wnt/beta-catenin signaling in either frog or fly assays. Thus our results strongly support the emerging hypothesis that a vertebrate analog of the planar polarity pathway governs convergent extension movements.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Cell Movement
- Cloning, Molecular
- Cytoskeletal Proteins/physiology
- DNA, Complementary/genetics
- Dishevelled Proteins
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/physiology
- Embryo, Nonmammalian/ultrastructure
- Gastrula/metabolism
- Gene Expression Regulation, Developmental
- Larva
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mesoderm/metabolism
- Molecular Sequence Data
- Morphogenesis/genetics
- Morphogenesis/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Nervous System/embryology
- Nervous System/ultrastructure
- Oligoribonucleotides, Antisense/pharmacology
- Phenotype
- Phosphoproteins/physiology
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins/physiology
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled
- Recombinant Fusion Proteins/physiology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Trans-Activators
- Wnt Proteins
- Xenopus Proteins/genetics
- Xenopus Proteins/physiology
- Xenopus laevis/embryology
- Xenopus laevis/genetics
- Xenopus laevis/growth & development
- Zebrafish Proteins
- beta Catenin
Collapse
Affiliation(s)
| | | | - Andrew S. Rakeman
- Department of Cell Biology, Weill Medical College, New York, NY 10021,
Molecular Biology Program, Sloan–Kettering Institute, New York, NY 10021 and Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA Corresponding author e-mail:
| | - Gishnu Das
- Department of Cell Biology, Weill Medical College, New York, NY 10021,
Molecular Biology Program, Sloan–Kettering Institute, New York, NY 10021 and Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA Corresponding author e-mail:
| | - Marek Mlodzik
- Department of Cell Biology, Weill Medical College, New York, NY 10021,
Molecular Biology Program, Sloan–Kettering Institute, New York, NY 10021 and Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA Corresponding author e-mail:
| | - Paul A. Wilson
- Department of Cell Biology, Weill Medical College, New York, NY 10021,
Molecular Biology Program, Sloan–Kettering Institute, New York, NY 10021 and Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA Corresponding author e-mail:
| |
Collapse
|
43
|
Kiecker C, Niehrs C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 2001; 128:4189-201. [PMID: 11684656 DOI: 10.1242/dev.128.21.4189] [Citation(s) in RCA: 357] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anteroposterior (AP) patterning of the vertebrate neural plate is initiated during gastrulation and is regulated by Spemann’s organizer and its derivatives. The prevailing model for AP patterning predicts a caudally increasing gradient of a ‘transformer’ which posteriorizes anteriorly specified neural cells. However, the molecular identity of the transforming gradient has remained elusive. We show that in Xenopus embryos (1) dose-dependent Wnt signalling is both necessary and sufficient for AP patterning of the neuraxis, (2) Wnt/β-catenin signalling occurs in a direct and long-range fashion within the ectoderm, and (3) that there is an endogenous AP gradient of Wnt/β-catenin signalling in the presumptive neural plate of the Xenopus gastrula. Our results indicate that an activity gradient of Wnt/β-catenin signalling acts as transforming morphogen to pattern the Xenopus central nervous system.
Collapse
Affiliation(s)
- C Kiecker
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
Abstract
In Xenopus, the Spemann organiser is defined as a dorsal territory in the early gastrula that initiates development of the embryonic axis. It has been shown that the early zygotic transcription factor Siamois is essential for Spemann's organiser formation. By the onset of gastrulation, the organiser is patterned into a vegetal head organiser, which induces anterior structures upon transplantation, and a more animal trunk organiser, which induces a posterior neuraxis. However, it is unclear when these distinct organiser domains are initially specified. To shed light on this question, we analysed the temporal activity of Siamois, as this factor induces both head and trunk development, when ectopically expressed via mRNA injection. In this study, we expressed Siamois ectopically at different time points and analysed the extent of axial development. Using a hormone-inducible version of Siamois, we found evidence for a tight window of competence during which ventral cells can respond to Siamois by commencing both the head and the trunk genetic programmes. The competence to form Spemann's organiser was lost 2 h before gastrulation, although partial axis formation could still occur following delayed activation of Siamois. We demonstrate that this late response to Siamois involves a new role for this gene, which can indirectly repress ventral gene expression, in the absence of known organiser genes.
Collapse
Affiliation(s)
- L Kodjabachian
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bldg 6B, Rm 420, 9200 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|