1
|
Zhao YZ, Zhang M, Tian XQ, Zheng L, Lu CT. Using basic fibroblast growth factor nanoliposome combined with ultrasound-introduced technology to early intervene the diabetic cardiomyopathy. Int J Nanomedicine 2016; 11:675-86. [PMID: 26937188 PMCID: PMC4762584 DOI: 10.2147/ijn.s99376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Basic fibroblast growth factor (bFGF)-loaded liposome (bFGF-lip) combined with ultrasound-targeted microbubble destruction (UTMD) technique was investigated to prevent diabetic cardiomyopathy (DCM). Cardiac function and myocardial ultrastructure were assessed. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, immunohistochemistry staining, and Western blot assay were used to investigate the signal pathway underlying the expression of bFGF in DCM treatment. From Mason staining and TUNEL staining, bFGF-lip + UTMD group showed significant differences from the diabetes group and other groups treated with bFGF or bFGF-lip. The diabetes group showed similar results (myocardial capillary density, collagen volume fraction, and cardiac myocyte apoptosis index) to other bFGF treatment groups. Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis, and metabolic disturbances could be suppressed by the different extents of twice-weekly bFGF treatments for 12 consecutive weeks (free bFGF or bFGF-lip +/− UTMD), with the strongest improvements observed in the bFGF-lip + UTMD group. The group combining bFGF-lip with UTMD demonstrated the highest level of bFGF expression among all the groups. The bFGF activated the PI3K/AKT signal pathway, causing the reduction of myocardial cell apoptosis and increase of microvascular density. This strategy using bFGF-lip and UTMD is a potential strategy in early intervention of DCM in diabetes.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China; Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ming Zhang
- College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Xin-Qiao Tian
- Department of Ultrasonic Diagnosis, Henan Provincial People's Hospital, Zhengzhou City, Henan, People's Republic of China
| | - Lei Zheng
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cui-Tao Lu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China; Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Markitantova YV, Avdonin PP, Grigoryan EN. FGF2 signaling pathway components in tissues of the posterior eye sector in the adult newt Pleurodeles waltl. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014040074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Zhao H, Yang T, Madakashira BP, Thiels CA, Bechtle CA, Garcia CM, Zhang H, Yu K, Ornitz DM, Beebe DC, Robinson ML. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev Biol 2008; 318:276-88. [PMID: 18455718 DOI: 10.1016/j.ydbio.2008.03.028] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/19/2022]
Abstract
The vertebrate lens provides an excellent model to study the mechanisms that regulate terminal differentiation. Although fibroblast growth factors (FGFs) are thought to be important for lens cell differentiation, it is unclear which FGF receptors mediate these processes during different stages of lens development. Deletion of three FGF receptors (Fgfr1-3) early in lens development demonstrated that expression of only a single allele of Fgfr2 or Fgfr3 was sufficient for grossly normal lens development, while mice possessing only a single Fgfr1 allele developed cataracts and microphthalmia. Profound defects were observed in lenses lacking all three Fgfrs. These included lack of fiber cell elongation, abnormal proliferation in prospective lens fiber cells, reduced expression of the cell cycle inhibitors p27(kip1) and p57(kip2), increased apoptosis and aberrant or reduced expression of Prox1, Pax6, c-Maf, E-cadherin and alpha-, beta- and gamma-crystallins. Therefore, while signaling by FGF receptors is essential for lens fiber differentiation, different FGF receptors function redundantly.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Enlargement
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cyclin-Dependent Kinase Inhibitor p57/metabolism
- Eye Abnormalities/embryology
- Fibroblast Growth Factors/metabolism
- Gene Targeting
- Homeodomain Proteins/metabolism
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Mice
- Mutation
- Proto-Oncogene Proteins c-maf/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Haotian Zhao
- Graduate Program in Molecular, Cellular and Developmental Biology, College of Biological Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Xi JH, Bai F, Gross J, Townsend RR, Menko AS, Andley UP. Mechanism of small heat shock protein function in vivo: a knock-in mouse model demonstrates that the R49C mutation in alpha A-crystallin enhances protein insolubility and cell death. J Biol Chem 2007; 283:5801-14. [PMID: 18056999 DOI: 10.1074/jbc.m708704200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
alphaA-crystallin (Cryaa/HSPB4) is a small heat shock protein and molecular chaperone that prevents nonspecific aggregation of denaturing proteins. Several point mutations in the alphaA-crystallin gene cause congenital human cataracts by unknown mechanisms. We took a novel approach to investigate the molecular mechanism of cataract formation in vivo by creating gene knock-in mice expressing the arginine 49 to cysteine mutation (R49C) in alphaA-crystallin (alphaA-R49C). This mutation has been linked with autosomal dominant hereditary cataracts in a four-generation Caucasian family. Homologous recombination in embryonic stem cells was performed using a plasmid containing the C to T transition in exon 1 of the cryaa gene. alphaA-R49C heterozygosity led to early cataracts characterized by nuclear opacities. Unexpectedly, alphaA-R49C homozygosity led to small eye phenotype and severe cataracts at birth. Wild type littermates did not show these abnormalities. Lens fiber cells of alphaA-R49C homozygous mice displayed an increase in cell death by apoptosis mediated by a 5-fold decrease in phosphorylated Bad, an anti-apoptotic protein, but an increase in Bcl-2 expression. However, proliferation measured by in vivo bromodeoxyuridine labeling did not decline. The alphaA-R49C heterozygous and homozygous knock-in lenses demonstrated an increase in insoluble alphaA-crystallin and alphaB-crystallin and a surprising increase in expression of cytoplasmic gamma-crystallin, whereas no changes in beta-crystallin were observed. Co-immunoprecipitation analysis showed increased interaction between alphaA-crystallin and lens substrate proteins in the heterozygous knock-in lenses. To our knowledge this is the first knock-in mouse model for a crystallin mutation causing hereditary human cataract and establishes that alphaA-R49C promotes protein insolubility and cell death in vivo.
Collapse
Affiliation(s)
- Jing-hua Xi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
5
|
Tholozan FMD, Gribbon C, Li Z, Goldberg MW, Prescott AR, McKie N, Quinlan RA. FGF-2 release from the lens capsule by MMP-2 maintains lens epithelial cell viability. Mol Biol Cell 2007; 18:4222-31. [PMID: 17699594 PMCID: PMC2043559 DOI: 10.1091/mbc.e06-05-0416] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The lens is an avascular tissue, separated from the aqueous and vitreous humors by its own extracellular matrix, the lens capsule. Here we demonstrate that the lens capsule is a source of essential survival factors for lens epithelial cells. Primary and immortalized lens epithelial cells survive in low levels of serum and are resistant to staurosporine-induced apoptosis when they remain in contact with the lens capsule. Physical contact with the capsule is required for maximal resistance to stress. The lens capsule is also a source of soluble factors including fibroblast growth factor 2 (FGF-2) and perlecan, an extracellular matrix component that enhances FGF-2 activity. Matrix metalloproteinase 2 (MMP-2) inhibition as well as MMP-2 pretreatment of lens capsules greatly reduced the protective effect of the lens capsule, although this could be largely reversed by the addition of either conditioned medium or recombinant FGF-2. These data suggest that FGF-2 release from the lens capsule by MMP-2 is essential to lens epithelial cell viability and survival.
Collapse
Affiliation(s)
- Frederique M D Tholozan
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Kampmeier J, Baldysiak-Figiel A, de Jong-Hesse Y, Lang GK, Lang GE. Effect of growth factors on proliferation and expression of growth factor receptors in a human lens epithelial cell line. J Cataract Refract Surg 2006; 32:510-4. [PMID: 16631066 DOI: 10.1016/j.jcrs.2005.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), and transforming growth factor beta 2 (TGFbeta2) on proliferation of a human lens epithelial cell line (HLEC-SRA 01/04); the effect of bFGF and TGFbeta2 on proliferation of human lens epithelial cells (HLECs); and the expression of bFGF, EGF, IGF-1, and TGFbeta2 receptors in an HLEC-SRA 01/04 cell line. SETTING Department of Ophthalmology, University of Ulm, Ulm, Germany. METHODS Both HLEC and HLEC-SRA 01/04 were treated with 1 to 50 ng/mL bFGF and TGFbeta2) Additionally, HLEC-SRA 01/04 were cultured with EGF and IGF-1 at a concentration of 1 to 50 ng/mL for 48 hours in the presence of [3H]-thymidine. In all experiments, untreated serum-free negative controls were used. (3H)-thymidine incorporation as a direct measure of lens epithelial cell proliferation was assessed by liquid scintillation counting. The expression of bFGF, EGF, IGF-1, and TGFbeta2 receptors in HLEC-SRA 01/04 were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was performed using the 2-sample t test for the means. RESULTS Proliferation of HLECs was dose dependently induced by bFGF and TGFbeta2, showing maximum effects at 10 ng/mL (P = .0003) and at 50 ng/mL (P < .0001), respectively. Proliferation of HLEC-SRA 01/04 was also induced by bFGF, showing slight but significant effects (P < .03). Additionally, HLEC-SRA 01/04 proliferation was dose-dependently induced by EGF with a maximum effect at 5 ng/mL (P < .01), IGF-1 with a maximum effect at 5 ng/mL (P < .0001), and TGFbeta2 with a maximum effect at 10 ng/mL (P < .0001) compared with the control. The RT-PCR analysis revealed bFGF, EGF, IGF-1, and TGFbeta2 receptor expression in the HLEC-SRA 01/04 cell line. CONCLUSIONS The data showed that bFGF and TGFbeta2 are strong mitogens for HLEC. The HLEC-SRA 01/04 cell line derived from HLEC reacted to growth factors, with cell proliferation only to a lesser extent. Such quiescence of these cells, when compared with cells in primary culture, cannot be explained by the lack of respective receptors for growth factors. Further investigation of growth factor-induced responses of both cell types will provide new insight into the proliferative processes involved in postoperative secondary cataract formation.
Collapse
|
7
|
Yuan ZR, Wang R, Solomon J, Luo X, Sun H, Zhang L, Shi Y. Identification and Characterization of Survival-Related Gene, a Novel Cell Survival Gene Controlling Apoptosis and Tumorigenesis. Cancer Res 2005; 65:10716-24. [PMID: 16322216 DOI: 10.1158/0008-5472.can-05-2176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis plays a critical role in cellular homeostasis during development, immune responses, and tumorigenesis. Recent studies have identified a number of genes that control this process. We report here our identification of a novel cell survival-related gene (SRG) from a human expression cDNA library by functional cloning. SRG shows no significant nucleotide sequence homology to any known genes in the Genbank. Our fluorescence in situ hybridization analysis has estimated that SRG is located at 1p36, agreeing with the location at 1p36.22 in the human genome sequence. SRG encodes a putative protein of 172 amino acids, which is mainly located in the perinuclear region. Northern blotting analysis indicates that SRG is highly expressed in many human cancer cell lines although it is low in most tissues except liver and placenta. To investigate the function of SRG in apoptosis, we transfected SRG cDNA into BAF/BO3 and B16/F0 cells and induced apoptosis by cytokine/serum deprivation. We found that SRG-transfected cells are resistant to apoptosis induced by cytokine/serum deprivation. In addition, mice bearing SRG-transfected melanoma had more tumor formation and larger tumor growth. Melanoma transfected with antisense SRG showed significantly less tumor formation and smaller tumor growth. Interestingly, mouse SRG gene was also identified on chromosome 4 and blocking SRG expression with small interfering RNA promoted serum deprivation-induced apoptosis of NIH3T3 cells. Our results show that SRG is a novel cell survival gene that critically controls apoptosis and tumor formation.
Collapse
Affiliation(s)
- Zeng-Rong Yuan
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, Galiano RD, Tomic-Canic M. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:59-69. [PMID: 15972952 PMCID: PMC1603435 DOI: 10.1016/s0002-9440(10)62953-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lack of understanding of the molecular mechanisms and pathogenesis of impaired healing in chronic ulcers is a serious health issue that contributes to excessive limb amputations and mortality. Here we show that beta-catenin and its downstream targets in keratinocytes, c-myc, and keratins K6 and K16, play important roles in the development of chronic wounds. In contrast to normal epidermis, we observed a significant nuclear presence of beta-catenin and elevated c-myc expression at the nonhealing wound edge of chronic ulcers from 10 patients. In vitro studies indicated that stabilization of nuclear beta-catenin inhibited wound healing and keratinocyte migration by blocking epidermal growth factor response, inducing c-myc and repressing the K6/K16 keratins (cytoskeletal components important for migration). The molecular mechanism of K6/K16 repression involved beta-catenin and arginine methyltransferase (CARM-1) acting as co-repressors of glucocorticoid receptor monomers. We conclude that activation of the beta-catenin/c-myc pathway(s) contributes to impaired healing by inhibiting keratinocyte migration and altering their differentiation. The presence of activated beta-catenin and c-myc in the epidermis of chronic wounds may serve as a molecular marker of impaired healing and may provide future targets for therapeutic intervention.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 550 First Ave., TH100, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
de Jong-Hesse Y, Kampmeier J, Lang GK, Lang GE. Effect of extracellular matrix on proliferation and differentiation of porcine lens epithelial cells. Graefes Arch Clin Exp Ophthalmol 2005; 243:695-700. [PMID: 15702326 DOI: 10.1007/s00417-004-1116-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 12/01/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Proliferation and differentiation of lens epithelial cells (LECs) are important mechanisms of secondary cataract formation. After extracapsular cataract extraction the extracellular matrix (ECM) around the remaining LECs is altered compared with the intact lens. This study investigated the effects of different ECMs on cell proliferation and alpha-smooth muscle actin (alpha-SMA) expression, a marker for myofibroblasts, in cultured porcine LECs. METHODS Porcine LECs were cultured for 3 days (cell proliferation assay) or 4 days (alpha-SMA expression) on wells and glass cover slips, respectively, coated with laminin, fibronectin, type I collagen or type IV collagen. LECs cultured on uncoated wells or cover slips served as control. Proliferative response was measured by [(3)H]-thymidine incorporation into DNA. alpha-SMA was detected immunocytochemically with a mouse monoclonal antibody, and the relative numbers of alpha-SMA-positive cells were calculated. Statistical analysis was performed using Student's unpaired t-test. RESULTS Cell proliferation was significantly increased by coating with fibronectin (10,320.5+/-6,073 counts per minute; p<0.0001) (mean +/- SD), type I collagen (12,507.3+/-3,914.2 CPM; p<0.0001) and type IV collagen (9,591.4+/-4,088 CPM; p<0.0001) compared with control (1,876.5+/-998 CPM), whereas coating with laminin had no effect (1,760.8+/-812.6 CPM; p=0.7271). The ratio of alpha-SMA-positive LECs cultured on uncoated cover slips for a period of 4 days was 12.2+/-3.51%. This ratio was significantly increased by coating with fibronectin (24.3+/-4.56%; p=0.0001) and type I collagen (21.2+/-8.48%; p=0.0142). Coating with laminin (9.8+/-3.67%; p=0.1682) and type IV collagen (9.0+/-7.09 %; p=0.2491) slightly decreased alpha-SMA expression, but this effect was not statistically significant. CONCLUSIONS Fibronectin and type I collagen stimulated both cell proliferation and alpha-SMA expression in cultured porcine LECs. Because fibronectin and type I collagen are not normally present in the adult lens, their possible introduction into the lens capsule after cataract surgery may play a critical role in the development of posterior capsule opacification.
Collapse
Affiliation(s)
- Yvonne de Jong-Hesse
- Department of Ophthalmology, University of Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany
| | | | | | | |
Collapse
|
10
|
Saika S. Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res 2004; 23:283-305. [PMID: 15177204 DOI: 10.1016/j.preteyeres.2004.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The type of healing process that occurs in response to cataract surgery and intraocular lens (IOL) implantation is dependent on a complex set of variables. Their interactions determine whether or not optical clarity is restored as a result of this procedure. In this process, wound healing entails cells undergoing either epithelial-mesenchymal transition, resulting in the generation of fibroblastic cells and accumulation of extracellular matrix, or lenticular structure formation. Such desperate cellular behaviors are regulated by the localized release of different cytokines, including transforming growth factor beta and fibroblast growth factors, which can result in post-operative capsular opacification. Other factors affecting the biological and mechanical outcome of IOL implantation are its composition, surface properties and shape.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan.
| |
Collapse
|
11
|
Valverde P, Obin MS, Taylor A. Role of Gas6/Axl signaling in lens epithelial cell proliferation and survival. Exp Eye Res 2004; 78:27-37. [PMID: 14667825 DOI: 10.1016/j.exer.2003.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axl is a receptor tyrosine kinase that is activated by Gas6, a growth factor that belongs to the vitamin K-dependent protein family. Although Gas6 binding to Axl has been shown to transmit mitogenic and/or antiapoptotic signals to a variety of cell types, the role of the Axl-Gas6 system in normal and pathological lens biology is not known. We demonstrate for the first time that Axl protein is expressed in normal rat and bovine lens and that its ligand, Gas6, is present in bovine aqueous humor. In addition, we have detected tyrosine-phosphorylated Axl in normal rat and bovine lens epithelial tissues. We further show that human recombinant Gas6 is able to act as a growth factor in cultured human lens epithelial cells by activating Axl and then the AKT signaling pathway. Gas6 mediates a survival and anti-apoptotic response in cultured human lens epithelial cells subjected to serum-starvation (48-72hr), or treated with transforming growth factor beta1 (5 ng ml(-1), 48hr) or tumor necrosis alpha (100 ng ml(-1), 48hr), as demonstrated by increased number of viable cells, and decreased DNA condensation or caspase-3 activity. In contrast, Gas6 is not able to block apoptosis induced by staurosporin (1microM, 5-24hr) in human lens epithelial cells. Taken together, these data suggest that the Gas6/Axl signaling plays an important role in the control of lens epithelial cell growth and survival and hence in the maintenance of lens homeostasis.
Collapse
Affiliation(s)
- P Valverde
- JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA 02111, USA.
| | | | | |
Collapse
|
12
|
Nishida S, Nagamine H, Tanaka Y, Watanabe G. Protective effect of basic fibroblast growth factor against myocyte death and arrhythmias in acute myocardial infarction in rats. Circ J 2003; 67:334-9. [PMID: 12655165 DOI: 10.1253/circj.67.334] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study in rats investigated whether basic fibroblast growth factor (bFGF) plays an important role in cardioprotection against myocardial cell death and arrhythmias in acute myocardial infarction (AMI). After ligating the left coronary artery in 62 Wistar rats, 20 Eg of human recombinant bFGF was injected into the infarcted myocardium in 33 rats (group F), while saline was used for 29 control rats (group C). The development of ventricular tachyarrhythmias was assessed during the first 30 min of ischemia. After 24 h occlusion, the hearts of the surviving rats (group F: n=13, group C: n=10) were excised to assess minimum infarct wall thickness and infarct size, determine the number of TUNEL-positive cardiomyocytes and to analyze Bcl-2 and Bax expression by immunohistochemical staining and Western blotting. The incidence of ventricular tachycardia was higher in group C than in group F (p<0.05). The thinning ratio was higher in group F than in group C (p<0.05). There were fewer TUNEL-positive cardiomyocytes in the infarct border area in group F than in group C (p<.0001). Western blot analysis showed greater expression of Bcl-2 in group F than in group C (p<0.05), but similar expression of Bax in the 2 groups. In conclusion, intramyocardial administration of bFGF prevented ischemia-induced myocardial cell death and arrhythmias.
Collapse
Affiliation(s)
- Satoru Nishida
- Department of Surgery (I), Kanazawa University School of Medicine, Japan.
| | | | | | | |
Collapse
|
13
|
Lee CK, Piedrahita JA. Inhibition of apoptosis in serum starved porcine embryonic fibroblasts. Mol Reprod Dev 2002; 62:106-12. [PMID: 11933167 DOI: 10.1002/mrd.10058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In nuclear transplantation, serum starvation is a general method to synchronize donor cells at the quiescent stage (G(0)) of the cell cycle. However, serum starvation during culture of mammalian cells may induce cell death, especially through apoptosis, thus contributing to the low efficiency of nuclear transplantation. This study was performed to characterize apoptosis during serum starvation and to determine the effects of apoptosis inhibitors such as a protease inhibitor [alpha(2)-macroglobulin (MAC)] and antioxidants [N-acetylcysteine (NAC), glutathione (GSH)] on serum starved porcine embryonic fibroblasts (PEF). PEF, collected from day 25-30 porcine fetuses, were cultured for 5 days in media containing 0.5% FBS to induce quiescence. Serum starved PEF showed typical morphology of apoptotic cells and stained for DNA fragmentation by TUNEL assay (26.7%). All apoptosis inhibitors tested in this study significantly (P < 0.05) reduced apoptosis of serum starved PEF, with antioxidants having better results (MAC: 7.4% vs. NAC: 1.0%, and GSH: 0.8%). Equally and importantly, the treatment with apoptosis inhibitors did not change the proportion of G(0)/G(1) stage cells. Therefore, the addition of MAC and antioxidants during serum starvation of PEF reduces apoptosis of quiescent fibroblasts and may contribute to increasing the efficiency of nuclear transplantation by improving the quality of donor nuclei.
Collapse
Affiliation(s)
- Chang-Kyu Lee
- Department of Animal Science, Texas A&M University, College Station, TX 77843-4458, USA
| | | |
Collapse
|
14
|
Xie Z, Koyama T, Suzuki J, Fujii Y, Togashi H, Sawa H, Nagashima K. Coronary reperfusion following ischemia: different expression of bcl-2 and bax proteins, and cardiomyocyte apoptosis. JAPANESE HEART JOURNAL 2001; 42:759-70. [PMID: 11933925 DOI: 10.1536/jhj.42.759] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this work was to examine factors that could be involved in the occurrence of apoptosis in rat hearts subjected to coronary occlusion followed by reperfusion. To this end, we studied the expression of the pro- and anti-apoptotic factors, bax and bcl-2, respectively, in reperfused ischemic hearts and in hearts injected with bFGF or saline. In anesthetized rats the left coronary artery was occluded for 45 min, the anesthesia withdrawn and the occlusion removed to allow reperfusion; in sham-operated rats the occlusion was omitted. After 4 hours the rats were decapitated and the heart excised. Sections from the left ventricle were stained with anti-bcl-2-antibody and anti-bax-antibody using the TUNEL method which detects apoptosis. Fragmentation of DNA isolated from reperfused ventricles was examined by agarose electrophoresis. In reperfused hearts no bcl-2 staining was observed in the discrete area in which many cardiomyocyte nuclei were stained by the TUNEL method; outside this area staining for bcl-2 was more marked than in sham-operated rats. Sections from reperfused hearts were stained for bax protein over a wide area including the apoptotic region; sham-operated hearts showed little reaction. Staining for bcl-2 was demonstrable in some nuclei in hearts from saline-injected rats; the numbers were unaffected by i. v. bFGF. Ischemia/reperfusion increases the overall expression of both bcl-2 and bax proteins, but bcl-2 is lost from the reperfused area as indicated by TUNEL staining. Accordingly, the ratio of bcl-2 to bax was reduced in the reperfused area, indicating a pro-apoptotic trend. The marked increase in bcl-2 outside the reperfused area could be a mechanism with which to salvage surviving cardiomyocytes.
Collapse
Affiliation(s)
- Z Xie
- Research Institute of Electronics Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Guo YL, Wang S, Colman RW. Kininostatin, an angiogenic inhibitor, inhibits proliferation and induces apoptosis of human endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21:1427-33. [PMID: 11557667 DOI: 10.1161/hq0901.095277] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We recently reported that domain 5 (D5) of high-molecular-weight kininogen inhibited critical steps required for angiogenesis. Thus, it was named kininostatin. To understand its mechanism of action, we further investigated the effects of D5 on basic fibroblast growth factor (bFGF)-induced endothelial cell proliferation and cell viability. We report here that D5-inhibited cell proliferation of human endothelial cells stimulated by bFGF was associated with a significant reduction of cyclin D1 expression, which is a critical component required for the transition from G(1) to S phase of the cell cycle. However, inhibition of cell proliferation by D5 was not due to an inhibition of extracellular signal-regulated protein kinase activity. Endothelial cells underwent apoptosis when cultured in a serum-free medium, which was prevented by bFGF. D5 reversed the protective effect of bFGF by 80%. Cells treated with D5 in the presence of bFGF showed typical morphological features of apoptosis, which was further confirmed by 2 additional assays: Hoechst 33258 cell staining and DNA fragmentation analysis. We conclude that the inhibition of endothelial cell proliferation and induction of apoptosis together represent a major contribution to the antiangiogenic activity of D5.
Collapse
Affiliation(s)
- Y L Guo
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
16
|
Belkacémi Y, Touboul E, Méric JB, Rat P, Warnet JM. [Radiation-induced cataract: physiopathologic, radiobiologic and clinical aspects]. Cancer Radiother 2001; 5:397-412. [PMID: 11525197 DOI: 10.1016/s1278-3218(01)00111-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cataractogenesis is a widely reported late effect of irradiated crystalline lens. In this review the authors discussed the different aspects of radiation cataract pathogenesis, and the different mechanisms involved in the lens opacification, particularly the epithelium modifications such as epithelial cell death. The authors also reported the influence of radiation exposure on cataract formation following total body irradiation (TBI) and autologous or allogeneic bone marrow transplantation for hematologic malignancies. Moreover, the radiobiological parameters are not studied for the crystalline lens of human. We applied for the first time the linear-quadratic (LQ) and biological effective dose (BED) concept to TBI data. The calculated value of alpha/beta of 1 Gy is in the range of the values reported for the other late responding tissues. The other risk factors for cataract development after TBI such as age, gender, central nervous system boost, long-term steroid therapy and heparin administration are discussed. In terms of cataract or sicca syndrome prevention, numerous compounds have been successfully tested in experimental models or used for the prevention of radiation-induced xerostomia in patients treated for head and neck cancer. However, none of them has been clinically evaluated for ocular radiation late effects prevention. In this report the authors discussed some of the radioprotectors potentially interesting for radiation-induced cataract or sicca syndrome prevention.
Collapse
Affiliation(s)
- Y Belkacémi
- Laboratoire de toxicologie, UFR pharmacie, université Paris V. Unité de pharmacotoxicologie cellulaire, service pharmacie, 75012 Paris, France.
| | | | | | | | | |
Collapse
|
17
|
Messmer UK, Briner VA, Pfeilschifter J. Basic fibroblast growth factor selectively enhances TNF-alpha-induced apoptotic cell death in glomerular endothelial cells: effects on apoptotic signaling pathways. J Am Soc Nephrol 2000; 11:2199-2211. [PMID: 11095643 DOI: 10.1681/asn.v11122199] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Endothelial cell damage of glomeruli and kidney arterioles seems to play a pivotal role in several pathologic situations, such as Gram-negative sepsis, glomerulonephritis, and acute renal failure. Bacterial lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) have been identified as potent inducers of apoptotic cell death in bovine glomerular endothelial cells. Both agents elicited apoptotic DNA laddering within 12 to 24 h. Basic fibroblast growth factor (bFGF) was generally described as a protective factor for endothelial cells against radiation-, TNF-alpha-, and UV-light-induced programmed cell death. Therefore, whether bFGF also affects apoptosis of microvascular endothelial cells was questioned. Surprising was that simultaneous treatment of glomerular endothelial cells with bFGF and either LPS or TNF-alpha left LPS-induced death unaffected, whereas TNF-alpha-induced death induction was potentiated, amounting to 48.9+/-6.3% versus 22.4+/-4.3% DNA degradation with TNF-alpha alone. Comparably, acidic FGF also selectively potentiated TNF-alpha-induced apoptosis. In mechanistic terms, bFGF synergistically increased TNF-alpha-induced mitochondrial permeability transition, the release of cytochrome c from mitochondria to the cytosol, and upregulation of the proapoptotic protein Bak and significantly enhanced activation of caspase-8 protease activity. In contrast, stress-activated protein kinase and nuclear factor kappaB activation, which represent primary signals of TNF/TNF receptor interaction, downregulation of the antiapoptotic protein Bcl-x(L), and caspase-3-like protease activation, were unaffected. As bFGF did not affect LPS-induced apoptotic cell death, bFGF also left LPS-induced Bak upregulation and Bcl-x(L) downregulation unaffected. The results point to a selective bFGF-mediated enhancement of distinct proapoptotic pathways induced by TNF-alpha in glomerular endothelial cells.
Collapse
Affiliation(s)
- Udo K Messmer
- Pharmacenter Frankfurt, Klinikum der Johann Wolfgang Goethe-University Hospital, Frankfurt am Main, Germany
| | - Verena A Briner
- Department of Medicine, Kantonsspital Luzern, Luzern, Switzerland
| | - Josef Pfeilschifter
- Pharmacenter Frankfurt, Klinikum der Johann Wolfgang Goethe-University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Désiré L, Courtois Y, Jeanny JC. Endogenous and exogenous fibroblast growth factor 2 support survival of chick retinal neurons by control of neuronal neuronal bcl-x(L) and bcl-2 expression through a fibroblast berowth factor receptor 1- and ERK-dependent pathway. J Neurochem 2000; 75:151-63. [PMID: 10854258 DOI: 10.1046/j.1471-4159.2000.0750151.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor (FGF) 2 is a survival factor for various cell types, including retinal neurons. However, little is understood about the molecular bases of the neuroprotective role of FGF2 in the retina. In this report, FGF2 survival activity was studied in chick retinal neurons subjected to apoptosis by serum deprivation. Exogenous FGF2 supported neuronal survival after serum deprivation and increased neuronal bcl-x(L) and bcl-2 expression, through binding to its receptor R1 (FGF-R1), and subsequent extracellular signal-regulated kinase (ERK) activation. Endogenous FGF2 was transiently overexpressed after serum deprivation. Its down-regulation by antisense oligonucleotides and blockade of its signaling pathway (binding to FGF-R1, tyrosine phosphorylation, and ERK inhibition) decreased bcl-x(L) and bcl-2 levels and and enhanced apoptosis, suggesting that endogenous FGF2 supported neuronal survival through a pathway similar to that of exogenous FGF2. This pathway may serve to up-regulate, or maintain, bcl-x(L) and bcl-2 levels that normally decrease during the onset of apoptosis. Indeed, long-term ERK activation and high bcl-x(L) levels are necessary for the survival activity of both exogenous and endogenous FGF2. Because FGF2 is upregulated following retinal injury in vivo, we suggest that an injury-stimulated autocrine/paracrine FGF2 loop may serve to maintain high levels of survival proteins, such as Bcl-x(L), through ERK activation in retinal neurons.
Collapse
Affiliation(s)
- L Désiré
- INSERM U. 450, Développement, Vieillissement et Pathologie de la Rétine, INSERM, Affiliée CNRS, Association Claude Bernard, Paris, France
| | | | | |
Collapse
|
19
|
Polansky JR, Fauss DJ, Zimmerman CC. Regulation of TIGR/MYOC gene expression in human trabecular meshwork cells. Eye (Lond) 2000; 14 ( Pt 3B):503-14. [PMID: 11026980 DOI: 10.1038/eye.2000.137] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glucocorticoid (GC) treatment of human trabecular meshwork (HTM) cells produces delayed, progressive cellular and extracellular protein/glycoprotein inductions with characteristics matching those for intraocular pressure elevation with corticosteroid eyedrops. The cloning of the Trabecular Meshwork Inducible Glucocorticoid Response (TIGR) gene from this system has suggested possible environmental and genetic influences in relation to glaucoma mechanisms. As reported here, the major GC-induced increase of TIGR expression in HTM cells is reduced approximately 4-fold by basic fibroblast growth factor (bFGF, 100-1000 pM), with a somewhat smaller inhibition noted with the thyroid hormone triiodothyronine (T3, 100 nM). Such endogenous 'protective' factors could help balance stimulatory effects on TIGR gene expression from 'stress' and/or mechanical perturbations in the trabecular meshwork. TIGR coding region mutations affecting the gene's olfactomedin (OLF) homology domain may also perturb biosynthetic pathways and cellular homeostatic functions. Our recent studies have shown the OLF domain corresponds to a major translocational 'pause', an area where critical processes for normal TIGR biogenesis are expected to take place. Observations that Glu323Lys (and other mutations early in the OLF domain) altered the pattern of paused protein intermediates provide possible clues to previously unexplained pathogenetic mechanisms. HTM cell transfection studies using TIGR-green fluorescent protein (GFP) fusions showed increased and altered distribution of the expressed protein with constructs missing the OLF domain, an effect also found with the Pro370 Leu mutation for early-onset glaucoma. The data suggest an activation of stress/apoptotic pathways in HTM cells as a potential mechanism for environmental/genetic interactions in glaucoma pathogenesis.
Collapse
Affiliation(s)
- J R Polansky
- Department of Ophthalmology, University of California Medical Center, San Francisco 94143-0730, USA.
| | | | | |
Collapse
|