1
|
Wu J, Yue B. Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. Biomed Pharmacother 2024; 174:116563. [PMID: 38583341 DOI: 10.1016/j.biopha.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mammalian skeletal myogenesis is a complex process that allows precise control of myogenic cells' proliferation, differentiation, and fusion to form multinucleated, contractile, and functional muscle fibers. Typically, myogenic progenitors continue growth and division until acquiring a differentiated state, which then permanently leaves the cell cycle and enters terminal differentiation. These processes have been intensively studied using the skeletal muscle developing models in vitro and in vivo, uncovering a complex cellular intrinsic network during mammalian skeletal myogenesis containing transcription factors, translation factors, extracellular matrix, metabolites, and mechano-sensors. Examining the events and how they are knitted together will better understand skeletal myogenesis's molecular basis. This review describes various regulatory mechanisms and recent advances in myogenic cell proliferation and differentiation during mammalian skeletal myogenesis. We focus on significant cell cycle regulators, myogenic factors, and chromatin regulators impacting the coordination of the cell proliferation versus differentiation decision, which will better clarify the complex signaling underlying skeletal myogenesis.
Collapse
Affiliation(s)
- Jiyao Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China; College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
2
|
Pomella S, Cassandri M, D'Archivio L, Porrazzo A, Cossetti C, Phelps D, Perrone C, Pezzella M, Cardinale A, Wachtel M, Aloisi S, Milewski D, Colletti M, Sreenivas P, Walters ZS, Barillari G, Di Giannatale A, Milano GM, De Stefanis C, Alaggio R, Rodriguez-Rodriguez S, Carlesso N, Vakoc CR, Velardi E, Schafer BW, Guccione E, Gatz SA, Wasti A, Yohe M, Ignatius M, Quintarelli C, Shipley J, Miele L, Khan J, Houghton PJ, Marampon F, Gryder BE, De Angelis B, Locatelli F, Rota R. MYOD-SKP2 axis boosts tumorigenesis in fusion negative rhabdomyosarcoma by preventing differentiation through p57 Kip2 targeting. Nat Commun 2023; 14:8373. [PMID: 38102140 PMCID: PMC10724275 DOI: 10.1038/s41467-023-44130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucrezia D'Archivio
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Doris Phelps
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonella Cardinale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Sara Aloisi
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - David Milewski
- Oncogenomics Section, Genetics Branch, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Zoë S Walters
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology, The Institute of Cancer Research, London, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | | | - Rita Alaggio
- Department of Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sonia Rodriguez-Rodriguez
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Enrico Velardi
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Beat W Schafer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Ernesto Guccione
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Ajla Wasti
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, UK
| | - Marielle Yohe
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, NIH, Frederick, MD, USA
| | - Myron Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Janet Shipley
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Francesco Marampon
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.
| |
Collapse
|
3
|
Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. J Anat 2022; 241:42-66. [PMID: 35146756 PMCID: PMC9178385 DOI: 10.1111/joa.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
The core cell cycle machinery is conserved from yeast to humans, and hence it is assumed that all vertebrates share the same set of players. Yet during vertebrate evolution, the genome was duplicated twice, followed by a further genome duplication in teleost fish. Thereafter, distinct genes were retained in different vertebrate lineages; some individual gene duplications also occurred. To which extent these diversifying tendencies were compensated by retaining the same expression patterns across homologous genes is not known. This study for the first time undertook a comprehensive expression analysis for the core cell cycle regulators in the chicken, focusing in on early neurula and pharyngula stages of development, with the latter representing the vertebrate phylotypic stage. We also compared our data with published data for the mouse, Xenopus and zebrafish, the other established vertebrate models. Our work shows that, while many genes are expressed widely, some are upregulated or specifically expressed in defined tissues of the chicken embryo, forming novel synexpression groups with markers for distinct developmental pathways. Moreover, we found that in the neural tube and in the somite, mRNAs of some of the genes investigated accumulate in a specific subcellular localisation, pointing at a novel link between the site of mRNA translation, cell cycle control and interkinetic nuclear movements. Finally, we show that expression patterns of orthologous genes may differ in the four vertebrate models. Thus, for any study investigating cell proliferation, cell differentiation, tissue regeneration, stem cell behaviour and cancer/cancer therapy, it has to be carefully examined which of the observed effects are due to the specific model organism used, and which can be generalised.
Collapse
Affiliation(s)
- Marta Alaiz Noya
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Neurociencias de Alicante, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Life Sciences Solutions, Thermo Fisher Scientific, Monza, Italy
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
4
|
Olguín HC. The Gentle Side of the UPS: Ubiquitin-Proteasome System and the Regulation of the Myogenic Program. Front Cell Dev Biol 2022; 9:821839. [PMID: 35127730 PMCID: PMC8811165 DOI: 10.3389/fcell.2021.821839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the ubiquitin-proteasome system (UPS) has emerged as an important regulator of stem cell function. Here we review recent findings indicating that UPS also plays critical roles in the biology of satellite cells, the muscle stem cell responsible for its maintenance and regeneration. While we focus our attention on the control of key transcriptional regulators of satellite cell function, we briefly discuss early studies suggesting the UPS participates more broadly in the regulation of satellite cell stemness and regenerative capacity.
Collapse
|
5
|
Dimartino D, Colantoni A, Ballarino M, Martone J, Mariani D, Danner J, Bruckmann A, Meister G, Morlando M, Bozzoni I. The Long Non-coding RNA lnc-31 Interacts with Rock1 mRNA and Mediates Its YB-1-Dependent Translation. Cell Rep 2019; 23:733-740. [PMID: 29669280 PMCID: PMC5917449 DOI: 10.1016/j.celrep.2018.03.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
Cytoplasmic long non-coding RNAs have been shown to act at many different levels to control post-transcriptional gene expression, although their role in translational control is poorly understood. Here, we show that lnc-31, a non-coding RNA required for myoblast proliferation, promotes ROCK1 protein synthesis by stabilizing its translational activator, YB-1. We find that lnc-31 binds to the Rock1 mRNA as well as to the YB-1 protein and that translational activation requires physical interaction between the two RNA species. These results suggest a localized effect of YB-1 stabilization on the Rock1 mRNA. ROCK1 upregulation by lnc-31, in proliferative conditions, correlates well with the differentiation-repressing activity of ROCK1. We also show that, upon induction of differentiation, the downregulation of lnc-31, in conjunction with miR-152 targeting of Rock1, establishes a regulatory loop that reinforces ROCK1 repression and promotes myogenesis. lnc-31 sustains myoblast proliferation, counteracting differentiation lnc-31 binds to Rock1 mRNA and YB-1 protein Rock-1 translation is favored through its interaction with lnc-31 and YB-1 protein lnc-31 counteracts YB-1 protein degradation, thus promoting Rock1 translation
Collapse
Affiliation(s)
- Dacia Dimartino
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Julie Martone
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Davide Mariani
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Johannes Danner
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Mariangela Morlando
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Irene Bozzoni
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
6
|
Primary myogenesis in the sand lizard (Lacerta agilis) limb bud. Dev Genes Evol 2019; 229:147-159. [PMID: 31214772 PMCID: PMC6867991 DOI: 10.1007/s00427-019-00635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/02/2019] [Indexed: 11/23/2022]
Abstract
Our studies conducted on reptilian limb muscle development revealed, for the first time, early forelimb muscle differentiation at the morphological and molecular level. Sand lizard skeletal muscle differentiation in the early forelimb bud was investigated by light, confocal, and transmission electron microscopy as well as western blot. The early forelimb bud, filled with mesenchymal cells, is surrounded by monolayer epithelium cells. The immunocytochemical analysis revealed the presence of Pax3- and Lbx-positive cells in the vicinity of the ventro-lateral lip (VLL) of the dermomyotome, suggesting that VLL is the source of limb muscle progenitor cells. Furthermore, Pax3- and Lbx-positive cells were observed in the dorsal and ventral myogenic pools of the forelimb bud. Skeletal muscle development in the early limb bud is asynchronous, which is manifested by the presence of myogenic cells in different stages of differentiation: multinucleated myotubes with well-developed contractile apparatus, myoblasts, and mitotically active premyoblasts. The western blot analysis revealed the presence of MyoD and Myf5 proteins in all investigated developmental stages. The MyoD western blot analysis showed two bands corresponding to monomeric (mMyoD) and dimeric (dMyoD) fractions. Two separate bands were also detected in the case of Myf5. The observed bands were related to non-phosphorylated (Myf5) and phosphorylated (pMyf5) fractions of Myf5. Our investigations on sand lizard forelimb myogenesis showed that the pattern of muscle differentiation in the early forelimb bud shares many features with rodents and chicks.
Collapse
|
7
|
Cell cycle-dependent phosphorylation and regulation of cellular differentiation. Biochem Soc Trans 2018; 46:1083-1091. [PMID: 30242121 DOI: 10.1042/bst20180276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Embryogenesis requires an exquisite regulation of cell proliferation, cell cycle withdrawal and differentiation into a massively diverse range of cells at the correct time and place. Stem cells also remain to varying extents in different adult tissues, acting in tissue homeostasis and repair. Therefore, regulated proliferation and subsequent differentiation of stem and progenitor cells remains pivotal throughout life. Recent advances have characterised the cell cycle dynamics, epigenetics, transcriptome and proteome accompanying the transition from proliferation to differentiation, revealing multiple bidirectional interactions between the cell cycle machinery and factors driving differentiation. Here, we focus on a direct mechanistic link involving phosphorylation of differentiation-associated transcription factors by cell cycle-associated Cyclin-dependent kinases. We discuss examples from the three embryonic germ layers to illustrate this regulatory mechanism that co-ordinates the balance between cell proliferation and differentiation.
Collapse
|
8
|
Meserve JH, Duronio RJ. A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye. Dev Biol 2017. [PMID: 28645749 DOI: 10.1016/j.ydbio.2017.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell cycle progression and differentiation are highly coordinated during the development of multicellular organisms. The mechanisms by which these processes are coordinated and how their coordination contributes to normal development are not fully understood. Here, we determine the developmental fate of a population of precursor cells in the developing Drosophila melanogaster retina that arrest in G2 phase of the cell cycle and investigate whether cell cycle phase-specific arrest influences the fate of these cells. We demonstrate that retinal precursor cells that arrest in G2 during larval development are selected as sensory organ precursors (SOPs) during pupal development and undergo two cell divisions to generate the four-cell interommatidial mechanosensory bristles. While G2 arrest is not required for bristle development, preventing G2 arrest results in incorrect bristle positioning in the adult eye. We conclude that G2-arrested cells provide a positional cue during development to ensure proper spacing of bristles in the eye. Our results suggest that the control of cell cycle progression refines cell fate decisions and that the relationship between these two processes is not necessarily deterministic.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Hardwick LJA, Davies JD, Philpott A. MyoD phosphorylation on multiple C terminal sites regulates myogenic conversion activity. Biochem Biophys Res Commun 2016; 481:97-103. [PMID: 27823936 PMCID: PMC5127879 DOI: 10.1016/j.bbrc.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/11/2023]
Abstract
MyoD is a master regulator of myogenesis with a potent ability to redirect the cell fate of even terminally differentiated cells. Hence, enhancing the activity of MyoD is an important step to maximising its potential utility for in vitro disease modelling and cell replacement therapies. We have previously shown that the reprogramming activity of several neurogenic bHLH proteins can be substantially enhanced by inhibiting their multi-site phosphorylation by proline-directed kinases. Here we have used Xenopus embryos as an in vivo developmental and reprogramming system to investigate the multi-site phospho-regulation of MyoD during muscle differentiation. We show that, in addition to modification of a previously well-characterised site, Serine 200, MyoD is phosphorylated on multiple additional serine/threonine sites during primary myogenesis. Through mutational analysis, we derive an optimally active phospho-mutant form of MyoD that has a dramatically enhanced ability to drive myogenic reprogramming in vivo. Mechanistically, this is achieved through increased protein stability and enhanced chromatin association. Therefore, multi-site phospho-regulation of class II bHLH proteins is conserved across cell lineages and germ layers, and manipulation of phosphorylation of these key regulators may have further potential for enhancing mammalian cell reprogramming.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; Peterhouse, University of Cambridge, Trumpington Street, Cambridge, CB2 1RD, UK.
| | - John D Davies
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
10
|
Unexpected Distinct Roles of the Related Histone H3 Lysine 9 Methyltransferases G9a and G9a-Like Protein in Myoblasts. J Mol Biol 2016; 428:2329-2343. [DOI: 10.1016/j.jmb.2016.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 01/14/2023]
|
11
|
Putarjunan A, Torii KU. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals. Dev Growth Differ 2016; 58:341-54. [PMID: 27125444 PMCID: PMC11520973 DOI: 10.1111/dgd.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/01/2024]
Abstract
Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
12
|
Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 2016; 15:196-212. [PMID: 26825227 PMCID: PMC4825819 DOI: 10.1080/15384101.2015.1120925] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/04/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control.
Collapse
Affiliation(s)
- Suzan Ruijtenberg
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
McDowell G, Philpott A. New Insights Into the Role of Ubiquitylation of Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:35-88. [DOI: 10.1016/bs.ircmb.2016.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Anderson KJ, Russell AP, Foletta VC. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio 2015; 5:668-81. [PMID: 26380811 PMCID: PMC4556729 DOI: 10.1016/j.fob.2015.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/11/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
The function of the stress-responsive N-myc downstream-regulated gene 2 (NDRG2) in the control of myoblast growth, and the amino acids contributing to its function, are not well characterized. Here, we investigated the effect of increased NDRG2 levels on the proliferation, differentiation and apoptosis in skeletal muscle cells under basal and stress conditions. NDRG2 overexpression increased C2C12 myoblast proliferation and the expression of positive cell cycle regulators, cdk2, cyclin B and cyclin D, and phosphorylation of Rb, while the serine/threonine-deficient NDRG2, 3A-NDRG2, had less effect. The onset of differentiation was enhanced by NDRG2 as determined through the myogenic regulatory factor expression profiles and myocyte fusion index. However, the overall level of differentiation in myotubes was not different. While NDRG2 up-regulated caspase 3/7 activities during differentiation, no increase in apoptosis was measured by TUNEL assay or through cleavage of caspase 3 and PARP proteins. During H2O2 treatment to induce oxidative stress, NDRG2 helped protect against the loss of proliferation and ER stress as measured by GRP78 expression with 3A-NDRG2 displaying less protection. NDRG2 also attenuated apoptosis by reducing cleavage of PARP and caspase 3 and expression of pro-apoptotic Bax while enhancing the pro-survival Bcl-2 and Bcl-xL levels. In contrast, Mcl-1 was not altered, and NDRG2 did not protect against palmitate-induced lipotoxicity. Our findings show that NDRG2 overexpression increases myoblast proliferation and caspase 3/7 activities without increasing overall differentiation. Furthermore, NDRG2 attenuates H2O2-induced oxidative stress and specific serine and threonine amino acid residues appear to contribute to its function in muscle cells.
Collapse
Key Words
- Acta1, skeletal muscle alpha-actin
- Akt, thymoma viral proto-oncogene
- Apoptosis
- Bax, Bcl-2-associated X protein
- Bcl-2, B cell leukemia/lymphoma 2
- Bcl-xL, Bcl-2-like 1
- Caspase, apoptosis-related cysteine peptidase
- Cdk, cyclin-dependent kinase
- Ckm, muscle creatine kinase
- Differentiation
- ER stress
- ER, endoplasmic reticulum
- GRP78, glucose-regulated protein 78
- H2O2, hydrogen peroxide
- Lipotoxicity
- MRFs, myogenic regulatory factors
- Mcl-1, myeloid cell leukemia 1
- Myf5, myogenic factor 5
- Myh7, myosin, heavy polypeptide 7
- MyoD, myogenic differentiation
- Myoblast
- Myotube
- NDRG2
- NDRG2, N-myc downstream-regulated gene 2
- Oxidative stress
- PA, palmitate
- PARP, poly (ADP-ribose) polymerase family, member
- PKCθ, protein kinase C theta
- Proliferation
- Rb, retinoblastoma
- SGK1, serum- and glucocorticoid-inducible kinase 1
- p21, p21 waf1/cip1
- p27, p27 kip1
Collapse
Affiliation(s)
- Kimberley J Anderson
- Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| | - Victoria C Foletta
- Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, Australia
| |
Collapse
|
15
|
PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nat Commun 2015; 6:6364. [PMID: 25751651 PMCID: PMC4366533 DOI: 10.1038/ncomms7364] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/22/2015] [Indexed: 12/14/2022] Open
Abstract
Mesoangioblasts are vessel-associated progenitor cells that show therapeutic promise for the treatment of muscular dystrophy. Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vessel wall regardless of the developmental stage at which they are isolated. Here we show that PW1/Peg3 is expressed at high levels in mesoangioblasts obtained from mouse, dog and human tissues and its level of expression correlates with their myogenic competence. Silencing PW1/Peg3 markedly inhibits myogenic potential of mesoangioblasts in vitro through MyoD degradation. Moreover, lack of PW1/Peg3 abrogates mesoangioblast ability to cross the vessel wall and to engraft into damaged myofibres through the modulation of the junctional adhesion molecule-A. We conclude that PW1/Peg3 function is essential for conferring proper mesoangioblast competence and that the determination of PW1/Peg3 levels in human mesoangioblasts may serve as a biomarker to identify the best donor populations for therapeutic application in muscular dystrophies. Mesoangioblasts are mesodermal stem cells with a therapeutic potential for treatment of muscular dystrophy due to their ability to differentiate into skeletal muscle. This study shows that the PW1/Peg3 protein is crucial for mesoangioblast myogenic and migratory potency and is a therapeutically relevant biomarker.
Collapse
|
16
|
Wu M, Yang G, Chen Y, Zhou X, Chen H, Li M, Yu K, Zhang X, Xie S, Zhang Y, Chu G, Mo D. CEP2 attenuates myoblast differentiation but does not affect proliferation. Int J Biol Sci 2015; 11:99-108. [PMID: 25552934 PMCID: PMC4278259 DOI: 10.7150/ijbs.8621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/11/2014] [Indexed: 12/30/2022] Open
Abstract
CEP2 (CDC42EP2) is a member of the CDC42 subfamily that belongs to the Rho family. The Rho family plays an important role in a variety of cellular processes including skeletal myogenesis. Here, we find the expression of CEP2 increased significantly during C2C12 myogenesis. Overexpression of CEP2 could attenuate myoblast differentiation, while knockdown of CEP2 by siRNA results in enhancing myogenesis. Furthermore, we demonstrate for the first time that CEP2 attenuates myoblast differentiation via suppression of muscle regulatory factors (MRFs) rather than influencing myoblast proliferation. These results indicate that CEP2 acts as a repressor during myogenesis, which provides new insights into the role of CEP2 in muscle development.
Collapse
Affiliation(s)
- Ming Wu
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Gongshe Yang
- 2. Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yaosheng Chen
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xingyu Zhou
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hu Chen
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mingsen Li
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kaifan Yu
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xumeng Zhang
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuihua Xie
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Zhang
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guiyan Chu
- 2. Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Delin Mo
- 1. State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Antagonism between the Master Regulators of Differentiation Ensures the Discreteness and Robustness of Cell Fates. Mol Cell 2014; 54:526-35. [DOI: 10.1016/j.molcel.2014.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/21/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022]
|
18
|
Singh K, Dilworth FJ. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J 2013; 280:3991-4003. [DOI: 10.1111/febs.12188] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Kulwant Singh
- Sprott Center for Stem Cell Research; Ottawa Hospital Research Institute; ON; Canada
| | | |
Collapse
|
19
|
The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle 2011; 1:29. [PMID: 21902831 PMCID: PMC3180440 DOI: 10.1186/2044-5040-1-29] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022] Open
Abstract
Myogenesis is a complex and tightly regulated process, the end result of which is the formation of a multinucleated myofibre with contractile capability. Typically, this process is described as being regulated by a coordinated transcriptional hierarchy. However, like any cellular process, myogenesis is also controlled by members of the protein kinase family, which transmit and execute signals initiated by promyogenic stimuli. In this review, we describe the various kinases involved in mammalian skeletal myogenesis: which step of myogenesis a particular kinase regulates, how it is activated (if known) and what its downstream effects are. We present a scheme of protein kinase activity, similar to that which exists for the myogenic transcription factors, to better clarify the complex signalling that underlies muscle development.
Collapse
|
20
|
Stuelsatz P, Pouzoulet F, Lamarre Y, Dargelos E, Poussard S, Leibovitch S, Cottin P, Veschambre P. Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. J Biol Chem 2010; 285:12670-83. [PMID: 20139084 PMCID: PMC2857084 DOI: 10.1074/jbc.m109.063966] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/25/2010] [Indexed: 01/24/2023] Open
Abstract
Calpain 3 is a calcium-dependent cysteine protease that is primarily expressed in skeletal muscle and is implicated in limb girdle muscular dystrophy type 2A. To date, its best characterized function is located within the sarcomere, but this protease is found in other cellular compartments, which suggests that it exerts multiple roles. Here, we present evidence that calpain 3 is involved in the myogenic differentiation process. In the course of in vitro culture of myoblasts to fully differentiated myotubes, a population of quiescent undifferentiated "reserve cells" are maintained. These reserve cells are closely related to satellite cells responsible for adult muscle regeneration. In the present work, we observe that reserve cells express higher levels of endogenous Capn3 mRNA than proliferating myoblasts. We show that calpain 3 participates in the establishment of the pool of reserve cells by decreasing the transcriptional activity of the key myogenic regulator MyoD via proteolysis independently of the ubiquitin-proteasome degradation pathway. Our results identify calpain 3 as a potential new player in the muscular regeneration process by promoting renewal of the satellite cell compartment.
Collapse
Affiliation(s)
- Pascal Stuelsatz
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Frédéric Pouzoulet
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Yann Lamarre
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Elise Dargelos
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Sylvie Poussard
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Serge Leibovitch
- the
Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/SupAgro, F-34060 Montpellier, France
| | - Patrick Cottin
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| | - Philippe Veschambre
- From the
Université Bordeaux 1, Unité Protéolyse Croissance et Développement Musculaire, Institut National de la Recherche Agronomique (INRA), USC 2009, Avenue des Facultés, F-33405 Talence, France and
| |
Collapse
|
21
|
Becher UM, Breitbach M, Sasse P, Garbe S, van der Ven PFM, Fürst DO, Fleischmann BK. Enrichment and terminal differentiation of striated muscle progenitors in vitro. Exp Cell Res 2009; 315:2741-51. [PMID: 19615359 DOI: 10.1016/j.yexcr.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Enrichment and terminal differentiation of mammalian striated muscle cells is severely hampered by fibroblast overgrowth, de-differentiation and/or lack of functional differentiation. Herein we report a new, reproducible and simple method to enrich and terminally differentiate muscle stem cells and progenitors from mice and humans. We show that a single gamma irradiation of muscle cells induces their massive differentiation into structurally and functionally intact myotubes and cardiomyocytes and that these cells can be kept in culture for many weeks. Similar results are also obtained when treating skeletal muscle-derived stem cells and progenitors with Mitomycin C.
Collapse
Affiliation(s)
- Ulrich M Becher
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn 2009; 238:1001-9. [PMID: 19301399 PMCID: PMC2799193 DOI: 10.1002/dvdy.21903] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Satellite cells are skeletal muscle stem cells that provide myogenic progeny for myofiber growth and repair. Temporal expression of muscle regulatory factors (MRFs) and the paired box transcription factor Pax7 defines characteristic phases of proliferation (Pax7(+)/MyoD(+)/myogenin(-)) and differentiation (Pax7(-)/MyoD(+)/myogenin(+)) during myogenesis of satellite cells. Here, using bromodeoxyuridine (BrdU) labeling and triple immunodetection, we analyzed expression patterns of Pax7 and the MRFs MyoD, Myf5, or myogenin within S phase myoblasts prepared from posthatch chicken muscle. Essentially, all BrdU incorporation was restricted to Pax7(+) cells, of which the majority also expressed MyoD. The presence of a minor BrdU(+)/Pax7(+)/myogenin(+) population in proliferation stage cultures suggests that myogenin up-regulation is alone insufficient for terminal differentiation. Myf5 was detected strictly within Pax7(+) cells and decreased during S phase while MyoD presence persisted in cycling cells. This study provides novel data in support of a unique role for Myf5 during posthatch myogenesis.
Collapse
Affiliation(s)
- Kenneth Day
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, 98195
| | - Bruce Paterson
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, 98195
| |
Collapse
|
23
|
Simoneau M, Boulanger J, Coulombe G, Renaud MA, Duchesne C, Rivard N. Activation of Cdk2 stimulates proteasome-dependent truncation of tyrosine phosphatase SHP-1 in human proliferating intestinal epithelial cells. J Biol Chem 2008; 283:25544-25556. [PMID: 18617527 DOI: 10.1074/jbc.m804177200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 is expressed in the nuclei of intestinal epithelial cells (IECs). Increased SHP-1 expression and phosphatase activity coincide with cell cycle arrest and differentiation in these cells. Suspecting the tumor-suppressive properties of SHP-1, a yeast two-hybrid screen of an IEC cDNA library was conducted using the full-length SHP-1 as bait. Characterization of many positive clones revealed sequences identical to a segment of the Cdk2 cDNA sequence. Interaction between SHP-1 and Cdk2 was confirmed by co-immunoprecipitations whereby co-precipitated Cdk2 phosphorylated SHP-1 protein. Inhibition of Cdk2 (roscovitine) or proteasome (MG132) was associated with an enhanced nuclear punctuate distribution of SHP-1. Double labeling localization studies with signature proteins of subnuclear domains revealed a co-localization between the splicing factor SC35 and SHP-1 in bright nucleoplasmic foci. Using Western blot analyses with the anti-SHP-1 antibody recognizing the C terminus, a lower molecular mass species of 45 kDa was observed in addition to the full-length 64-65-kDa SHP-1 protein. Treatment with MG132 led to an increase in expression of the full-length SHP-1 protein while concomitantly leading to a decrease in the levels of the lower mass 45-kDa molecular species. Further Western blots revealed that the 45-kDa protein corresponds to the C-terminal portion of SHP-1 generated from proteasome activity. Mutational analysis of Tyr(208) and Ser(591) (a Cdk2 phosphorylation site) residues on SHP-1 abolished the expression of the amino-truncated 45-kDa SHP-1 protein. In conclusion, our results indicate that Cdk2-associated complexes, by targeting SHP-1 for proteolysis, counteract the ability of SHP-1 to block cell cycle progression of IECs.
Collapse
Affiliation(s)
- Mélanie Simoneau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jim Boulanger
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Geneviève Coulombe
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Marc-André Renaud
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Cathia Duchesne
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathalie Rivard
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
24
|
Opposite roles of MRF4 and MyoD in cell proliferation and myogenic differentiation. Biochem Biophys Res Commun 2007; 364:476-82. [DOI: 10.1016/j.bbrc.2007.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/07/2007] [Indexed: 11/21/2022]
|
25
|
Vosper J, Fiore-Heriche C, Horan I, Wilson K, Wise H, Philpott A. Regulation of neurogenin stability by ubiquitin-mediated proteolysis. Biochem J 2007; 407:277-84. [PMID: 17623011 PMCID: PMC2049015 DOI: 10.1042/bj20070064] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 07/03/2007] [Accepted: 07/11/2007] [Indexed: 11/17/2022]
Abstract
NGN (neurogenin), a proneural bHLH (basic helix-loop-helix) transcription factor, plays a central role in promoting neuronal specification and differentiation in many regions of the central nervous system. NGN activity has been shown extensively to be controlled at the transcriptional level. However, in addition, recent findings have indicated that the levels of NGN protein may also be regulated. In the present study, we have demonstrated that NGN protein stability was regulated in both Xenopus embryos and P19 embryonal carcinoma cells, a mammalian neuronal model system. In both systems, NGN was a highly unstable protein that was polyubiquitinated for destruction by the proteasome. NGN binds to DNA in complex with its heterodimeric E-protein partners E12 or E47. We observed that NGN was stabilized by the presence of E12/E47. Moreover, NGN was phosphorylated, and mutation of a single threonine residue substantially reduced E12-mediated stabilization of NGN. Thus E-protein partner binding and phosphorylation events act together to stabilize NGN, promoting its accumulation when it can be active.
Collapse
Key Words
- neurogenin
- polyubiquitination
- protein stability
- ubiquitin–proteasome system
- xenopus neuronal differentiation
- (b)hlh, (basic) helix–loop–helix
- cdk, cyclin-dependent kinase
- chx, cycloheximide
- ckii, casein kinase ii
- gfp, green fluorescent protein
- ha, haemagglutinin
- hrp, horseradish peroxidase
- ivt, in vitro translated
- neurod, neurogenic differentiation
- ngn, neurogenin
- ivt 35s-ngn, ngn ivt in the presence of 35s-methionine
- ngnr1, ngn-related 1
- ni-nta, ni2+-nitrilotriacetate
- np40, nonidet p40
- ups, ubiquitin–proteasome system
- wt, wild-type
Collapse
Affiliation(s)
- Jonathan M. D. Vosper
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, U.K
| | - Christelle S. Fiore-Heriche
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, U.K
| | - Ian Horan
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, U.K
| | - Kate Wilson
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, U.K
| | - Helen Wise
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, U.K
| | - Anna Philpott
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, U.K
| |
Collapse
|
26
|
Olguin HC, Yang Z, Tapscott SJ, Olwin BB. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. ACTA ACUST UNITED AC 2007; 177:769-79. [PMID: 17548510 PMCID: PMC2064278 DOI: 10.1083/jcb.200608122] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal growth and regeneration of skeletal muscle requires a population of resident myogenic precursors named satellite cells. The transcription factor Pax7 is critical for satellite cell biogenesis and survival and has been also implicated in satellite cell self-renewal; however, the underlying molecular mechanisms remain unclear. Previously, we showed that Pax7 overexpression in adult primary myoblasts down-regulates MyoD and prevents myogenin induction, inhibiting myogenesis. We show that Pax7 prevents muscle differentiation independently of its transcriptional activity, affecting MyoD function. Conversely, myogenin directly affects Pax7 expression and may be critical for Pax7 down-regulation in differentiating cells. Our results provide evidence for a cross-inhibitory interaction between Pax7 and members of the muscle regulatory factor family. This could represent an additional mechanism for the control of satellite cell fate decisions resulting in proliferation, differentiation, and self-renewal, necessary for skeletal muscle maintenance and repair.
Collapse
Affiliation(s)
- Hugo C Olguin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
27
|
Yahi H, Philipot O, Guasconi V, Fritsch L, Ait-Si-Ali S. Chromatin modification and muscle differentiation. Expert Opin Ther Targets 2007; 10:923-34. [PMID: 17105377 DOI: 10.1517/14728222.10.6.923] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skeletal muscle differentiation is a multistep process, which begins with the commitment of multi-potent mesodermal precursor cells to the muscle fate. These committed cells, the myoblasts, then differentiate and fuse into multinucleated myotubes. The final step of muscle differentiation is the maturation of differentiated myotubes into myofibres. Skeletal muscle development requires the coordinated expression of various transcription factors like the members of the myocyte enhancer binding-factor 2 family and the muscle regulatory factors. These transcription factors, in collaboration with chromatin-remodelling complexes, act in specific combinations and within complex transcriptional regulatory networks to achieve skeletal myogenesis. Additional factors involved in the epigenetic regulation of this process continue to be discovered. In this review, the authors discuss the recent discoveries in the epigenetic regulation of myogenesis. They also summarise the role of chromatin-modifying enzymes regulating muscle gene expression. These different factors are often involved in multiple steps of muscle differentiation and have redundant activities. Altogether, the recent findings have allowed a better understanding of myogenesis and have raised new hopes for the pharmacological development of new therapies aimed at muscle degeneration diseases, such as myotonic dystrophy or Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Hakima Yahi
- Institut André Lwoff, Laboratoire Epigénétique et Cancer, FRE 2944, CNRS, 7 rue Guy Moquet, 94800 Villejuif, France
| | | | | | | | | |
Collapse
|
28
|
Batonnet-Pichon S, Tintignac LJ, Castro A, Sirri V, Leibovitch MP, Lorca T, Leibovitch SA. MyoD undergoes a distinct G2/M-specific regulation in muscle cells. Exp Cell Res 2006; 312:3999-4010. [PMID: 17014844 DOI: 10.1016/j.yexcr.2006.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/07/2006] [Accepted: 09/04/2006] [Indexed: 11/23/2022]
Abstract
The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.
Collapse
Affiliation(s)
- Sabrina Batonnet-Pichon
- Laboratoire de Génomique Fonctionnelle et Myogénèse, UMR 866 Différenciation, Cellulaire et Croissance, INRA UM II, Campus INRA/ENSA, 2 Place Pierre Viala, 34060, Montpellier, Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Simone C, Giordano A. Abrogation of signal-dependent activation of the cdk9/cyclin T2a complex in human RD rhabdomyosarcoma cells. Cell Death Differ 2006; 14:192-5. [PMID: 16841087 DOI: 10.1038/sj.cdd.4402008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
30
|
Doucet C, Gutierrez GJ, Lindon C, Lorca T, Lledo G, Pinset C, Coux O. Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC BIOCHEMISTRY 2005; 6:27. [PMID: 16321160 PMCID: PMC1322219 DOI: 10.1186/1471-2091-6-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/01/2005] [Indexed: 11/30/2022]
Abstract
Background The two myogenic regulatory factors Myf5 and MyoD are basic helix-loop-helix muscle transcription factors undergoing differential cell cycle dependent proteolysis in proliferating myoblasts. This regulated degradation results in the striking expression of these two factors at distinct phases of the cell cycle, and suggests that their precise and alternated disappearance is an important feature of myoblasts, maybe connected to the maintenance of the proliferative status and/or commitment to the myogenic lineage of these cells. One way to understand the biological function(s) of the cyclic expression of these proteins is to specifically alter their degradation, and to analyze the effects of their stabilization on cells. To this aim, we undertook the biochemical analysis of the mechanisms governing Myf5 mitotic degradation, using heterologous systems. Results We show here that mitotic degradation of Myf5 is conserved in non-myogenic cells, and is thus strictly under the control of the cell cycle apparatus. Using Xenopus egg extracts as an in vitro system to dissect the main steps of Myf5 mitotic proteolysis, we show that (1) Myf5 stability is regulated by a complex interplay of phosphorylation/dephosphorylation, probably involving various kinases and phosphatases, (2) Myf5 is ubiquitylated in mitotic extracts, and this is a prerequisite to its degradation by the proteasome and (3) at least in the Xenopus system, the E3 responsible for its mitotic degradation is not the APC/C (the major E3 during mitosis). Conclusion Altogether, our data strongly suggest that the mitotic degradation of Myf5 by the ubiquitin-proteasome system is precisely controlled by multiple phosphorylation of the protein, and that the APC/C is not involved in this process.
Collapse
Affiliation(s)
- Christine Doucet
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gustavo J Gutierrez
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
- Present address: Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Catherine Lindon
- Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge, UK
| | - Thierry Lorca
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gwendaline Lledo
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | | | - Olivier Coux
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| |
Collapse
|
31
|
Reid MB. Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1423-31. [PMID: 15886351 DOI: 10.1152/ajpregu.00545.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ubiquitin-proteasome pathway plays a critical role in the adaptation of skeletal muscle to persistent decreases or increases in muscle activity. This article outlines the basics of pathway function and reviews what we know about pathway responses to altered muscle use. The ubiquitin-proteasome pathway regulates proteolysis in mammalian cells by attaching ubiquitin polymers to damaged proteins; this targets the protein for degradation via the 26S proteasome. The pathway is constitutively active in muscle and continually regulates protein turnover. Conditions of decreased muscle use, e.g., unloading, denervation, or immobilization, stimulate general pathway activity. This activity increase is caused by upregulation of regulatory components in the pathway and leads to accelerated proteolysis, resulting in net loss of muscle protein. Pathway activity is also increased in response to exercise, a two-phase response. An immediate increase in selective ubiquitin conjugation by constitutive pathway components contributes to exercise-stimulated signal transduction. Over hours-to-days, exercise also stimulates a delayed increase in general ubiquitin conjugating activity by inducing expression of key components in the pathway. This increase mediates a late-phase rise in protein degradation that is required for muscle adaptation to exercise. Thus the ubiquitin-proteasome pathway functions as an essential mediator of muscle remodeling, both in atrophic states and exercise training.
Collapse
Affiliation(s)
- Michael B Reid
- Department of Physiology, University of Kentucky, 800 Rose St., Rm. MS-509, Lexington, KY 40536-0298, USA.
| |
Collapse
|
32
|
Hirasaka K, Nikawa T, Yuge L, Ishihara I, Higashibata A, Ishioka N, Okubo A, Miyashita T, Suzue N, Ogawa T, Oarada M, Kishi K. Clinorotation prevents differentiation of rat myoblastic L6 cells in association with reduced NF-kappa B signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:130-40. [PMID: 15777848 DOI: 10.1016/j.bbamcr.2004.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/06/2004] [Accepted: 09/08/2004] [Indexed: 11/30/2022]
Abstract
In this study, we examined effects of the three-dimensional (3D)-clinorotation, a simulated-model of microgravity, on proliferation/differentiation of rat myoblastic L6 cells. Differentiation of L6 cells into myotubes was significantly disturbed in the 3D-clinorotation culture system, although the 3D-clinorotation had no effect on the proliferation. The 3D-clinorotation also suppressed the expression of myogenesis marker proteins, such as myogenin and myosin heavy chain (MHC), at the mRNA level. In association with this reduced differentiation, we found that the 3D-clinorotation prevented accumulation of ubiquitinated proteins, compared with non-rotation control cells. Based on these findings, we focused on the ubiquitin-dependent degradation of I kappa B, a myogenesis inhibitory protein, to clarify the mechanism of this impaired differentiation. A decline in the amount of I kappa B protein in L6 cells was significantly prevented by the rotation, while the amount of the protein in the non-rotated cells decreased along with the differentiation. Furthermore, the 3D-clinorotation reduced the NF-kappaB-binding activity in L6 cells and prevented the ubiquitination of I kappa B proteins in the I kappa B- and ubiquitin-expressing Cos7 cells. Other myogenic regulatory factors, such as deubiquitinases, cyclin E and oxygen, were not associated with the differentiation impaired by the clinorotation. Our present results suggest that simulated microgravity such as the 3D-clinorotation may disturb skeletal muscle cell differentiation, at least in part, by inhibiting the NF-kappa B pathway.
Collapse
Affiliation(s)
- Katsuya Hirasaka
- Department of Nutrition, The University of Tokushima School of Medicine, Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS, van Wijnen AJ. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J Biol Chem 2005; 280:20274-85. [PMID: 15781466 PMCID: PMC2895256 DOI: 10.1074/jbc.m413665200] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Runx2 (CBFA1/AML3/PEBP2alphaA) transcription factor promotes skeletal cell differentiation, but it also has a novel cell growth regulatory activity in osteoblasts. We addressed here whether Runx2 activity is functionally linked to cell cycle-related mechanisms that control normal osteoblast proliferation and differentiation. We found that the levels of Runx2 gene transcription, mRNA and protein, are each up-regulated with cessation of cell growth (i.e. G(0)/G(1) transition) in preconfluent MC3T3 osteoblastic cells that do not yet express mature bone phenotypic gene expression. Cell growth regulation of Runx2 is also observed in primary calvarial osteoblasts and other osteoblastic cells with relatively normal cell growth characteristics, but not in osteosarcoma cells (e.g. SAOS-2 and ROS17/2.8). Runx2 levels are cell cycle-regulated in MC3T3 cells with respect to the G(1)/S and M/G(1) transitions: oscillates from maximal expression levels during early G(1) to minimal levels during early S phase and mitosis. However, in normal or immortalized (e.g. ATDC5) chondrocytic cells, Runx2 expression is suppressed during quiescence, and Runx2 levels are not regulated during G(1) and S phase in ATDC5 cells. Antisense or small interfering RNA-mediated reduction of the low physiological levels of Runx2 in proliferating MC3T3 cells does not accelerate cell cycle progression. However, forced expression of Runx2 suppresses proliferation of MC3T3 preosteoblasts or C2C12 mesenchymal cells which have osteogenic potential. Forced elevation of Runx2 in synchronized MC3T3 cells causes a delay in G(1). We propose that Runx2 levels and function are biologically linked to a cell growth-related G(1) transition in osteoblastic cells.
Collapse
Affiliation(s)
- Mario Galindo
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jitesh Pratap
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Daniel W. Young
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Hayk Hovhannisyan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Hee-Jeong Im
- Departments of Biochemistry and Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois 60612
| | - Je-Yong Choi
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- To whom correspondence should be addressed: Dept. of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655. Tel.: 508-856-5625; Fax: 508-856-6800;
| |
Collapse
|
34
|
Messina G, Blasi C, La Rocca SA, Pompili M, Calconi A, Grossi M. p27Kip1 acts downstream of N-cadherin-mediated cell adhesion to promote myogenesis beyond cell cycle regulation. Mol Biol Cell 2005; 16:1469-80. [PMID: 15647380 PMCID: PMC551508 DOI: 10.1091/mbc.e04-07-0612] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 12/02/2004] [Accepted: 12/23/2004] [Indexed: 12/31/2022] Open
Abstract
It is widely acknowledged that cultured myoblasts can not differentiate at very low density. Here we analyzed the mechanism through which cell density influences myogenic differentiation in vitro. By comparing the behavior of C2C12 myoblasts at opposite cell densities, we found that, when cells are sparse, failure to undergo terminal differentiation is independent from cell cycle control and reflects the lack of p27Kip1 and MyoD in proliferating myoblasts. We show that inhibition of p27Kip1 expression impairs C2C12 cell differentiation at high density, while exogenous p27Kip1 allows low-density cultured C2C12 cells to enter the differentiative program by regulating MyoD levels in undifferentiated myoblasts. We also demonstrate that the early induction of p27Kip1 is a critical step of the N-cadherin-dependent signaling involved in myogenesis. Overall, our data support an active role of p27Kip1 in the decision of myoblasts to commit to terminal differentiation, distinct from the regulation of cell proliferation, and identify a pathway that, reasonably, operates in vivo during myogenesis and might be part of the phenomenon known as "community effect".
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cadherins/chemistry
- Cell Adhesion
- Cell Cycle
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Differentiation
- Cell Line
- Cell Proliferation
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p27
- Fibroblasts/metabolism
- Humans
- Immunoprecipitation
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Models, Biological
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscles/cytology
- Muscles/metabolism
- Mutation
- MyoD Protein/metabolism
- Oligonucleotides, Antisense/chemistry
- Phosphorylation
- Protein Processing, Post-Translational
- RNA/metabolism
- Rats
- Time Factors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Graziella Messina
- Istituto Pasteur-Fondazione Cenci-Bolognetti, Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma "La Sapienza", 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Boulanger J, Vézina A, Mongrain S, Boudreau F, Perreault N, Auclair BA, Lainé J, Asselin C, Rivard N. Cdk2-dependent phosphorylation of homeobox transcription factor CDX2 regulates its nuclear translocation and proteasome-mediated degradation in human intestinal epithelial cells. J Biol Chem 2005; 280:18095-107. [PMID: 15741163 DOI: 10.1074/jbc.m502184200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
By having demonstrated previously that p27(Kip1), a potent inhibitor of G(1) cyclin-cyclin-dependent kinases complexes, increases markedly during intestinal epithelial cell differentiation, we examined the effect of p27(Kip1) on the activity of the transcription factor CDX2. The present results revealed the following. 1) p27(Kip1) interacts with the CDX2 transcription factor. 2) In contrast to CDX2 mRNA levels, CDX2 protein expression levels significantly increased as soon as Caco-2/15 cells reached confluence, slowed their proliferation, and began their differentiation. The mechanism of CDX2 regulation is primarily related to protein stability, because inhibition of proteasome activity increased CDX2 levels. The half-life of CDX2 protein was significantly enhanced in differentiated versus undifferentiated proliferative intestinal epithelial cells. 3) Cdk2 interacted with CDX2 and phosphorylated CDX2, as determined by pull-down glutathione S-transferase and immunoprecipitation experiments with proliferating undifferentiated Caco-2/15 cell extracts. 4) Treatment of Caco-2/15 cells with MG132 (a proteasome inhibitor) and (R)-roscovitine (a specific Cdk2 inhibitor) induced an increase in CDX2 protein levels. 5) Conversely, ectopic expression of Cdk2 resulted in decreased expression of CDX2 protein. 6) Of note, treatment of proliferative Caco-2/15 cells with (R)-roscovitine or leptomycin (an inhibitor of nuclear export through CRM1) led to an accumulation of CDX2 into the nucleus. These data suggest that CDX2 undergoes CRM1-dependent nuclear export and cytoplasmic degradation in cells in which Cdk2 is activated, such as in proliferative intestinal epithelial cells. The targeted degradation of CDX2 following its phosphorylation by Cdk2 identifies a new mechanism through which CDX2 activity can be regulated in coordination with the cell cycle machinery.
Collapse
Affiliation(s)
- Jim Boulanger
- Canadian Institutes of Health Research Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA. Degradation of MyoD Mediated by the SCF (MAFbx) Ubiquitin Ligase. J Biol Chem 2005; 280:2847-56. [PMID: 15531760 DOI: 10.1074/jbc.m411346200] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MyoD controls myoblast identity and differentiation and is required for myogenic stem cell function in adult skeletal muscle. MyoD is degraded by the ubiquitin-proteasome pathway mediated by different E3 ubiquitin ligases not identified as yet. Here we report that MyoD interacts with Atrogin-1/MAFbx (MAFbx), a striated muscle-specific E3 ubiquitin ligase dramatically up-regulated in atrophying muscle. A core LXXLL motif sequence in MyoD is necessary for binding to MAFbx. MAFbx associates with MyoD through an inverted LXXLL motif located in a series of helical leucine-charged residue-rich domains. Mutation in the LXXLL core motif represses ubiquitination and degradation of MyoD induced by MAFbx. Overexpression of MAFbx suppresses MyoD-induced differentiation and inhibits myotube formation. Finally the purified recombinant SCF(MAFbx) complex (SCF, Skp1, Cdc53/Cullin 1, F-box protein) mediated MyoD ubiquitination in vitro in a lysine-dependent pathway. Mutation of the lysine 133 in MyoD prevented its ubiquitination by the recombinant SCF(MAFbx) complex. These observations thus demonstrated that MAFbx functions in ubiquitinating MyoD via a sequence found in transcriptional coactivators. These transcriptional coactivators mediate the binding to liganded nuclear receptors. We also identified a novel protein-protein interaction module not yet identified in F-box proteins. MAFbx may play an important role in the course of muscle differentiation by determining the abundance of MyoD.
Collapse
Affiliation(s)
- Lionel A Tintignac
- Laboratoire de Génomique Fonctionnelle et Myogénèse, UMR866 Différenciation Cellulaire et Croissance, INRA UM II, Campus INRA/ENSA, 2 Place Pierre Viala, 34060, Montpellier, Cedex 1, France
| | | | | | | | | | | |
Collapse
|
37
|
Viñals F, Ventura F. Myogenin Protein Stability Is Decreased by BMP-2 through a Mechanism Implicating Id1. J Biol Chem 2004; 279:45766-72. [PMID: 15322112 DOI: 10.1074/jbc.m408059200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) induces a switch in differentiation of mesenchymal cells from the myogenic to the osteogenic lineage. Here we describe that in C2C12 cells, BMP-2 decreases myogenin expression induced by des-(1,3) insulin-like growth factor-1 (des-(1,3)IGF-1) or ectopically expressed from a constitutive promoter, even in conditions where myogenin mRNA levels were unaffected. Addition of BMP-2 decreases myogenin protein half-life to 50%, whereas proteasome inhibitors abolish these effects. Forced expression of Id1, either by transient transfection or under the control of an inducible system, causes degradation of myogenin in the absence of BMP-2. In contrast, E47 overexpression blocks the inhibitory effect of BMP-2 on myogenin levels. Finally, expression of E47 in 293 cells stabilizes myogenin, an effect that is dependent on the heterodimerization mediated by their helix-loop-helix. Our findings indicate that induction of Id1 not only blocks transcriptional activity but also induces myogenin degradation by blocking formation of myogenin-E47 protein complexes.
Collapse
Affiliation(s)
- Francesc Viñals
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, E-08907 L'Hospitalet de Llobregat, Spain
| | | |
Collapse
|
38
|
Barani AE, Durieux AC, Sabido O, Freyssenet D. Age-related changes in the mitotic and metabolic characteristics of muscle-derived cells. J Appl Physiol (1985) 2004; 95:2089-98. [PMID: 14555672 DOI: 10.1152/japplphysiol.00437.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Age-related sarcopenia could partly result from cumulative repeated episodes of incomplete repair and regeneration. We hypothesized that mitotic and metabolic events associated with satellite cell activation and proliferation could be altered with aging. Muscle-derived cells (mdc) were isolated from gastrocnemius and quadriceps muscles of young (3 wk old), adult (9 mo old), and old (24 mo old) Sprague-Dawley male rats (n = 10/group). The mdc from young growing rats started to proliferate earlier compared with adult and old animals. Cell cycle duration was significantly reduced with aging from 36.5 +/- 3.2 to 28.0 +/- 2.2 h. However, the proportion of noncycling (G0 phase) and cycling (G1 + S + G2 + M phases) cultured mdc was statistically unchanged among the three age groups. Significantly lower increase in c-met and proliferating cell nuclear antigen expression were observed in cultured mdc of old rats upon serum stimulation. Major changes in the expression of citrate synthase, lactate dehydrogenase, proteasome, caspase 3, plasminogen activators (PAs), and matrix metalloproteinase 2-9 (MMP2-9) were observed upon serum stimulation, but no age-related difference was noted. However, when measured on crushed muscle extracts, PAs and MMP2-9 enzyme activities were significantly decreased with aging. Our results show that cellular and biochemical events associated with the control of mdc activation and proliferation occur with aging. These alterations may participate in the accumulation of repeated episodes of incomplete repair and regeneration throughout the life span, thus contributing to the loss of skeletal muscle mass and function with aging.
Collapse
Affiliation(s)
- Aude E Barani
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et du Handicap-Groupement d'Intérêt Public Exercice Sport Santé, Faculté de Médecine, 42023 Saint-Etienne, France
| | | | | | | |
Collapse
|
39
|
Richard-Parpaillon L, Cosgrove RA, Devine C, Vernon AE, Philpott A. G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus. Development 2004; 131:2577-86. [PMID: 15115752 DOI: 10.1242/dev.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell division and differentiation are largely incompatible but the molecular links between the two processes are poorly understood. Here, we overexpress G1/S phase cyclins and cyclin-dependent kinases in Xenopus embryos to determine their effect on early development and differentiation. Overexpression of cyclin E prior to the midblastula transition (MBT), with or without cdk2, results in a loss of nuclear DNA and subsequent apoptosis at early gastrula stages. By contrast, overexpressed cyclin A2 protein does not affect early development and, when stabilised by binding to cdk2, persists to tailbud stages. Overexpression of cyclin A2/cdk2 in post-MBT embryos results in increased proliferation specifically in the epidermis with concomitant disruption of skin architecture and delay in differentiation. Moreover, ectopic cyclin A2/cdk2 also inhibits differentiation of primary neurons but does not affect muscle. Thus, overexpression of a single G1/S phase cyclin/cdk pair disrupts the balance between division and differentiation in the early vertebrate embryo in a tissue-specific manner.
Collapse
Affiliation(s)
- Laurent Richard-Parpaillon
- Department of Oncology, Cambridge University, Hutchison/MRC Research Centre, Addenbrookes Hospital, Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | | | |
Collapse
|
40
|
Tintignac LAJ, Sirri V, Leibovitch MP, Lécluse Y, Castedo M, Metivier D, Kroemer G, Leibovitch SA. Mutant MyoD lacking Cdc2 phosphorylation sites delays M-phase entry. Mol Cell Biol 2004; 24:1809-21. [PMID: 14749395 PMCID: PMC344165 DOI: 10.1128/mcb.24.4.1809-1821.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G(2)/M transition by controlling the expression of p21(Waf1/Cip1) (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G(2). In growing myoblasts, MyoD reaccumulates during G(2) concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G(2) and delays M-phase entry. This G(2) arrest is not observed in p21(-/-) cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G(2)/M transition.
Collapse
Affiliation(s)
- Lionel A J Tintignac
- Laboratoire de Génétique Oncologique, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC, Germani A. Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem 2004; 279:16332-8. [PMID: 14754880 DOI: 10.1074/jbc.m313931200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells undergo a variety of biological responses when placed in hypoxic conditions, including alterations in metabolic state and growth rate. Here we investigated the effect of hypoxia on the ability of myogenic cells to differentiate in culture. Exposure of myoblasts to hypoxia strongly inhibited multinucleated myotube formation and the expression of differentiation markers. We showed that hypoxia reversibly inhibited MyoD, Myf5, and myogenin expression. One key step in skeletal muscle differentiation involves the up-regulation of the cell cycle-dependent kinase inhibitors p21 and p27 as well as the product of the retinoblastoma gene (pRb). Myoblasts cultured under hypoxic conditions in differentiation medium failed to up-regulate both p21 and pRb despite the G1 cell cycle arrest, as evidenced by p27 accumulation and pRb hypophosphorylation. Hypoxia-dependent inhibition of differentiation was associated with MyoD degradation by the ubiquitin-proteasome pathway. MyoD overexpression in C2C12 myoblasts overrode the differentiation block imposed by hypoxic conditions. Thus, hypoxia by inducing MyoD degradation blocked accumulation of early myogenic differentiation markers such as myogenin and p21 and pRb, preventing both permanent cell cycle withdraw and terminal differentiation. Our study revealed a novel anti-differentiation effect exerted by hypoxia in myogenic cells and identified MyoD degradation as a relevant target of hypoxia.
Collapse
Affiliation(s)
- Anna Di Carlo
- Laboratorio di Biologia Vascolare e Terapia Genica, Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, 20138 Milan, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Batonnet S, Leibovitch MP, Tintignac L, Leibovitch SA. Critical Role for Lysine 133 in the Nuclear Ubiquitin-mediated Degradation of MyoD. J Biol Chem 2004; 279:5413-20. [PMID: 14660660 DOI: 10.1074/jbc.m310315200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is responsible for the regulation and turnover of the nuclear transcription factor MyoD. The degradation of MyoD can occur via an NH2 terminus-dependent pathway or a lysine-dependent pathway, suggesting that MyoD ubiquitination may be driven by different mechanisms. To understand this process, deletion analysis was used to identify the region of MyoD that is required for rapid proteolysis in the lysine-dependent pathway. Here we report that the basic helix-loop-helix domain is required for ubiquitination and lysine-dependent degradation of MyoD in the nucleus. Site-directed mutagenesis in MyoD revealed that lysine 133 is the major internal lysine of ubiquitination. The half-life of the MyoD K133R mutant protein was longer than that of wild type MyoD, substantiating the implication of lysine 133 in the turnover of MyoD in myoblasts. In addition, the MyoD K133R mutant displayed activity 2-3-fold higher than the wild type in transactivation muscle-specific gene and myogenic conversion of 10T1/2 cells. Taken together, our data demonstrate that lysine 133 is targeted for ubiquitination and rapid degradation of MyoD in the lysine-dependent pathway and plays an integral role in compromising MyoD activity in the nucleus.
Collapse
Affiliation(s)
- Sabrina Batonnet
- Laboratoire de Génétique Oncologique, UMR 8125 CNRS, 94805 Villejuif, France
| | | | | | | |
Collapse
|
43
|
Duguez S, Bihan MCL, Gouttefangeas D, Féasson L, Freyssenet D. Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. Am J Physiol Endocrinol Metab 2003; 285:E206-15. [PMID: 12791605 DOI: 10.1152/ajpendo.00331.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Skeletal muscle has a remarkable capacity to regenerate after injury. To determine whether changes in the expression of proteinases, 73-kDa constitutive heat shock cognate protein (Hsc70) and stress-inducible 72-kDa heat shock protein (Hsp70) (Hsc/Hsp70), and Bcl-2-associated gene product-1 (BAG-1) contribute to the remodeling response of muscle tissue, tibialis anterior muscles of male Sprague-Dawley rats were injected with 0.75% bupivacaine and removed at 3, 5, 7, 10, 14, 21, or 35 days postinjection (n = 5-7/group). The immunohistochemical analysis of desmin, alpha-actin, and developmental/neonatal myosin heavy chain expressions indicated the presence of myoblasts (days 3-7), inflammatory cells (days 3-7), degenerating myofibers (days 3-7), regenerating myofibers (days 5-10), and growing mature myofibers (days 10-21) in regenerating muscles. Our biochemical analysis documented profound adaptations in proteolytic metabolism characterized by significant increases in the enzyme activities of matrix metalloproteinases 2 and 9 and plasminogen activators (days 3-14), calpains 1 and 2 (days 3-7), cathepsins B and L(days 3-10), and proteasome (days 3-14). Proteasome activity was strongly correlated with proliferating cell nuclear antigen protein level, suggesting that proteasome played a key role in myoblast proliferation. The expression pattern of BAG-1, a regulatory cofactor of Hsc/Hsp70 at the interface between protein folding and proteasomal proteolysis, did not corroborate the changes in proteasome enzyme activity, suggesting that BAG-1 may promote other functions, such as the folding capacity of Hsc/Hsp70. Altogether, the diversity of functions attributed to proteinases in the present study was strongly supported by the relative changes in the proportion of myogenic and nonmyogenic cells over the time course of regeneration.
Collapse
Affiliation(s)
- Stéphanie Duguez
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et Handicap, Groupement d'Intérêt Public-Exercise Sport Santé, Faculté de Médecine, Saint-Etienne, France
| | | | | | | | | |
Collapse
|
44
|
Barani AE, Sabido O, Freyssenet D. Mitotic activity of rat muscle satellite cells in response to serum stimulation: relation with cellular metabolism. Exp Cell Res 2003; 283:196-205. [PMID: 12581739 DOI: 10.1016/s0014-4827(02)00030-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular and molecular adaptations of satellite cells isolated from rat hindlimb muscles (n = 10) were investigated in response to serum stimulation. Flow cytometry analysis of the amounts of DNA and RNA indicated that 97.7 +/- 0.7% of satellite cells were in G0 at the end of the isolation procedure, whereas 93.2 +/- 2.0% of cells were cycling after serum exposure. The length of cell division was 34.0 +/- 2.8 h. Myoblast proliferation was asynchronous, suggesting the existence of heterogeneous cell populations in skeletal muscle. Myoblast proliferation was also accompanied by a significant increase in c-met expression, and major adaptations of energetic and proteolytic metabolisms, including an increase in the relative contribution of glycolytic metabolism for energy production, an increase in proteasome and matrix metalloproteinases 2 and 9 activities, and a decrease in plasminogen activator activities. Our data suggest that, along with molecular adaptations leading to cell cycle activation itself, adaptations in energetic and proteolytic metabolisms are crucial events involved in satellite cell activation and myoblast proliferation.
Collapse
Affiliation(s)
- Aude E Barani
- Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et du Handicap, Groupement d'Intérêt Public-Exercice Sport Santé, Faculté de Médecine, 15 rue Ambroise Paré, 42023 Saint-Etienne, France
| | | | | |
Collapse
|
45
|
Baccini V, Roy L, Vitrat N, Chagraoui H, Sabri S, Le Couedic JP, Debili N, Wendling F, Vainchenker W. Role of p21(Cip1/Waf1) in cell-cycle exit of endomitotic megakaryocytes. Blood 2001; 98:3274-82. [PMID: 11719364 DOI: 10.1182/blood.v98.12.3274] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21(Waf-1/Cip-1) is expressed at high level during megakaryocyte differentiation, but its precise function remains unknown. In this study, it is confirmed that p21 was expressed at a high level in hypoploid (2N and 4N) and polyploid (at least 8N) human megakaryocytes derived from CD34(+) cells. A high expression of p27(Kip1), p16, cyclin E, and cyclin D3 was also found in both populations associated with a hypophosphorylated form of retinoblastoma protein, suggesting that the majority of hypoploid and polyploid megakaryocytes are G(1)-arrested cells. As human megakaryocytes grown in vitro present a defect in their polyploidization, the study switched to the murine model. The modal ploidy of megakaryocytes derived from lineage-negative cells was 32N, and an elevated expression of p21 was found in high-ploidy megakaryocytes. In addition, p21 and p27 were coexpressed in the majority of mature polyploid megakaryocytes. The p21 was detected by immunofluorescence in megakaryocytes derived from p53(-/-) mice, demonstrating a p53-independent regulation during megakaryocyte differentiation. Megakaryocytopoiesis of p21(-/-) mice was subsequently studied. No marked abnormality in the ploidy of primary or cultured megakaryocytes was detected. Overexpression of p21 in p21(-/-) or normal murine megakaryocytes and in human megakaryocytes showed in all these cases a marked inhibition in megakaryocyte polyploidization. In conclusion, while a reciprocal relation is observed between p21 levels in megakaryocytes and the cycling state of the cells, p21 is not essential for the determination of the ploidy profile in normal megakaryocytes in vivo. However, high levels of its expression in cultured megakaryocytes arrest the endomitotic cell cycle.
Collapse
Affiliation(s)
- V Baccini
- INSERM U 362, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Perry RL, Parker MH, Rudnicki MA. Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 2001; 8:291-301. [PMID: 11545732 DOI: 10.1016/s1097-2765(01)00302-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To elucidate the mechanism through which MAPK signaling regulates the MyoD family of transcription factors, we investigated the role of the signaling intermediate MEK1 in myogenesis. Transfection of activated MEK1 strongly repressed gene activation and myogenic conversion by the MyoD family. This repression was not mediated by direct phosphorylation of MyoD or by changes in MyoD stability or subcellular distribution. Deletion mapping revealed that MEK1-mediated repression required the MyoD amino-terminal transactivation domain. Moreover, activated MEK1 was nuclearly localized and bound a complex containing MyoD in a manner that is dependent on the presence of the MyoD amino terminus. Together, these data demonstrate that MEK1 signaling has a strong negative effect on MyoD activity via a novel mechanism involving binding of MEK1 to the nuclear MyoD transcriptional complex.
Collapse
Affiliation(s)
- R L Perry
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
47
|
Mal A, Sturniolo M, Schiltz R, Ghosh MK, Harter ML. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J 2001; 20:1739-53. [PMID: 11285237 PMCID: PMC145490 DOI: 10.1093/emboj/20.7.1739] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Revised: 02/12/2000] [Accepted: 02/12/2000] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanism(s) that are responsible for suppressing MyoD's transcriptional activities in undifferentiated skeletal muscle cells have not yet been determined. We now show that MyoD associates with a histone deacetylase-1 (HDAC1) in these cells and that this interaction is responsible for silencing MyoD-dependent transcription of endogenous p21 as well as muscle-specific genes. Specifically, we present evidence that HDAC1 can bind directly to MyoD and use an acetylated MyoD as a substrate in vitro, whereas a mutant version of HDAC1 (H141A) can not. Further more, this mutant also fails to repress MyoD-mediated transcription in vivo, and unlike wild-type HDAC1 it can not inhibit myogenic conversion, as judged by confocal microscopy. Finally, we show that an endogenous MyoD can be acetylated upon its conversion to a hypophosphorylated state and only when the cells have been induced to differentiate. These results provide for a model which postulates that MyoD may be co-dependent on HDAC1 and P/CAF for temporally controlling its transcriptional activity before and after the differentiation of muscle cells.
Collapse
Affiliation(s)
| | | | - R.Louis Schiltz
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 and
Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Corresponding author e-mail:
| | | | - Marian L. Harter
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 and
Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA Corresponding author e-mail:
| |
Collapse
|