1
|
Mekbib KY, Muñoz W, Allington G, McGee S, Mehta NH, Shofi JP, Fortes C, Le HT, Nelson-Williams C, Nanda P, Dennis E, Kundishora AJ, Khanna A, Smith H, Ocken J, Greenberg ABW, Wu R, Moreno-De-Luca A, DeSpenza T, Zhao S, Marlier A, Jin SC, Alper SL, Butler WE, Kahle KT. Human genetics and molecular genomics of Chiari malformation type 1. Trends Mol Med 2023; 29:1059-1075. [PMID: 37802664 DOI: 10.1016/j.molmed.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Chiari malformation type 1 (CM1) is the most common structural brain disorder involving the craniocervical junction, characterized by caudal displacement of the cerebellar tonsils below the foramen magnum into the spinal canal. Despite the heterogeneity of CM1, its poorly understood patho-etiology has led to a 'one-size-fits-all' surgical approach, with predictably high rates of morbidity and treatment failure. In this review we present multiplex CM1 families, associated Mendelian syndromes, and candidate genes from recent whole exome sequencing (WES) and other genetic studies that suggest a significant genetic contribution from inherited and de novo germline variants impacting transcription regulation, craniovertebral osteogenesis, and embryonic developmental signaling. We suggest that more extensive WES may identify clinically relevant, genetically defined CM1 subtypes distinguished by unique neuroradiographic and neurophysiological endophenotypes.
Collapse
Affiliation(s)
- Kedous Y Mekbib
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - Garrett Allington
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - John P Shofi
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Carla Fortes
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Hao Thi Le
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rui Wu
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism and Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Grecco A, Macchiaroli N, Pérez MG, Casulli A, Cucher MA, Rosenzvit MC. microRNA silencing in a whole worm cestode model provides insight into miR-71 function. Int J Parasitol 2023; 53:699-710. [PMID: 37699506 DOI: 10.1016/j.ijpara.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.
Collapse
Affiliation(s)
- Andrés Grecco
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Gastón Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; European Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marcela Alejandra Cucher
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
3
|
He Y, Wang Z, Liu C, Gong Z, Li Y, Lu T, Hu G. Protocadherin 17 is a tumor suppressor and is frequently methylated in nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:1601-1613. [PMID: 30863170 PMCID: PMC6388982 DOI: 10.2147/cmar.s191102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Several PCDH genes were shown to be downregulated or silenced in carcinomas and act as candidate tumor suppressor genes. However, the functions of PCDH17 in nasopharyngeal carcinoma (NPC) remain unclear. Here, we investigated the PCDH17 promoter methylation status and its impact on the expression and functions of PCDH17 in NPC. Patients and methods To determine the mRNA levels and promoter methylation status of PCDH17 in NPC cell lines as well as 42 NPC patient specimens, we performed reverse transcription PCR, methylation-specific PCR, and bisulfite genome sequencing. The effects of ectopic PCDH17 expression in NPC cell lines were determined by colony formation, cell proliferation, wound healing, in vitro human umbilical vein endothelial cells tube formation, migration, invasion, cell cycle, and apoptosis assays and an in vivo subcutaneous tumor model. Results PCDH17 expression was almost absent or significantly reduced in 100% of the NPC cell lines (5/5). However, 5-aza-2′-deoxycytidine and trichostatin A treatment restored PCDH17 expression. Promoter methylation was involved in PCDH17 silencing. Ectopic expression of PCDH17 in silenced NPC cells reduced colony formation, cell migration, angiogenesis, VEGF secretion, and tumorigenicity. Conclusion PCDH17 plays a tumor suppressor role in NPC. PCDH17 methylation may be a tumor-specific event and can be used as an epigenetic biomarker for NPC.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, .,Department of Otolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhihai Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Chuan Liu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Zhitao Gong
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Yanshi Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Tao Lu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| | - Guohua Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
4
|
Ren D, Zhu X, Kong R, Zhao Z, Sheng J, Wang J, Xu X, Liu J, Cui K, Zhang XHF, Zhao H, Wong STC. Targeting Brain-Adaptive Cancer Stem Cells Prohibits Brain Metastatic Colonization of Triple-Negative Breast Cancer. Cancer Res 2018; 78:2052-2064. [PMID: 29567857 DOI: 10.1158/0008-5472.can-17-2994] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits more traits possessed by cancer stem cells (CSC) than other breast cancer subtypes and is more likely to develop brain metastases. TNBC patients usually have shorter survival time after diagnosis of brain metastasis, suggesting an innate ability of TNBC tumor cells in adapting to the brain. In this study, we establish novel animal models to investigate early tumor adaptation in brain metastases by introducing both patient-derived and cell line-derived CSC-enriched brain metastasis tumorsphere cells into mice. We discovered astrocyte-involved tumor activation of protocadherin 7 (PCDH7)-PLCβ-Ca2+-CaMKII/S100A4 signaling as a mediator of brain metastatic tumor outgrowth. We further identified and evaluated the efficacy of a known drug, the selective PLC inhibitor edelfosine, in suppressing the PCDH7 signaling pathway to prohibit brain metastases in the animal models. The results of this study reveal a novel signaling pathway for brain metastases in TNBC and indicate a promising strategy of metastatic breast cancer prevention and treatment by targeting organ-adaptive cancer stem cells.Significance: These findings identify a compound to block adaptive signaling between cancer stem cells and brain astrocytes. Cancer Res; 78(8); 2052-64. ©2018 AACR.
Collapse
Affiliation(s)
- Ding Ren
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Outpatient Center, PLA NO.85 Hospital, Shanghai, P.R. China
| | - Xiaoping Zhu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Ren Kong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China
| | - Zhen Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Jiang Wang
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Department of Orthopedics, Tongji Hospital, Wuhan, P.R. China
| | - Xiaoyun Xu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Jiyong Liu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Department of Pharmacy, Changhai Hospital, Shanghai, P.R. China
| | - Kemi Cui
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas. .,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
5
|
Zhou D, Tang W, Su G, Cai M, An HX, Zhang Y. PCDH18 is frequently inactivated by promoter methylation in colorectal cancer. Sci Rep 2017; 7:2819. [PMID: 28588296 PMCID: PMC5460281 DOI: 10.1038/s41598-017-03133-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/25/2017] [Indexed: 12/23/2022] Open
Abstract
Protocadherin18 (PCDH18) was found to be preferentially methylated and inactivated in colorectal cancer (CRC) using bioinformatics tools. However, its biologic role in tumorgenesis remains unclear. Herein, we aimed to elucidate its epigenetic regulation and biological functions in CRC. The methylation status of PCDH18 was significant higher in CRC tissues than in adjacent non-tumor tissues (median, 15.17% vs. median, 0.4438%). Expression level of PCDH18 was significantly lower in primary CRCs than in nonmalignant tissues. Importantly, methylation status of PCDH18 in cell-free DNA of CRC patients was also significantly higher than in healthy subjects. PCDH18 was readily expressed in NCM460 cells, but downregulated in 100% (4/4) of CRC cell lines by promoter methylation, despite its expression could be restored through demethylation treatment. Overexpression of PCDH18 suppressed CRC cell viability, colony formation and migration. Meanwhile, the depletion of PCDH18 by siRNA in NCM460 cells enhanced the colonogenicity and migration ability and promoted β-catenin nuclear accumulation, whereas it inhibited cell cycle arrest. These effects were associated with upregulation of phospho-GSK-3β and cyclin D1, and downregulation of caspase3 and p21. Our results suggested that PCDH18 was a putative tumor suppressor with epigenetic silencing in CRC and a potential biomarker for CRC diagnosis.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China.,Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Weiwei Tang
- Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guoqiang Su
- Department of Gastrointestinal surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mingquan Cai
- Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Han-Xiang An
- Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Yun Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China. .,Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China. .,Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Oishi K, Nakagawa N, Tachikawa K, Sasaki S, Aramaki M, Hirano S, Yamamoto N, Yoshimura Y, Nakajima K. Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex. eLife 2016; 5. [PMID: 26880563 PMCID: PMC4764574 DOI: 10.7554/elife.10907] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Many cell-intrinsic mechanisms have been shown to regulate neuronal subtype specification in the mammalian neocortex. However, how much cell environment is crucial for subtype determination still remained unclear. Here, we show that knockdown of Protocadherin20 (Pcdh20), which is expressed in post-migratory neurons of layer 4 (L4) lineage, caused the cells to localize in L2/3. The ectopically positioned "future L4 neurons" lost their L4 characteristics but acquired L2/3 characteristics. Knockdown of a cytoskeletal protein in the future L4 neurons, which caused random disruption of positioning, also showed that those accidentally located in L4 acquired the L4 characteristics. Moreover, restoration of positioning of the Pcdh20-knockdown neurons into L4 rescued the specification failure. We further suggest that the thalamocortical axons provide a positional cue to specify L4 identity. These results suggest that the L4 identity is not completely determined at the time of birth but ensured by the surrounding environment after appropriate positioning.
Collapse
Affiliation(s)
- Koji Oishi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Nao Nakagawa
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, Japan
| | - Kashiko Tachikawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Sasaki
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Michihiko Aramaki
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, Osaka, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Zhou LN, Hua X, Deng WQ, Wu QN, Mei H, Chen B. PCDH10 Interacts With hTERT and Negatively Regulates Telomerase Activity. Medicine (Baltimore) 2015; 94:e2230. [PMID: 26683936 PMCID: PMC5058908 DOI: 10.1097/md.0000000000002230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022] Open
Abstract
Telomerase catalyzes telomeric DNA synthesis, an essential process to maintain the length of telomere for continuous cell proliferation and genomic stability. Telomerase is activated in gametes, stem cells, and most tumor cells, and its activity is tightly controlled by a catalytic human telomerase reverse transcriptase (hTERT) subunit and a collection of associated proteins. In the present work, normal human testis tissue was used for the first time to identify proteins involved in the telomerase regulation under normal physiological conditions. Immunoprecipitation was performed using total protein lysates from the normal testis tissue and the proteins of interest were identified by microfluidic high-performance liquid chromatography and tandem mass spectrometry (HPLC-Chip-MS/MS). The regulatory role of PCDH10 in telomerase activity was confirmed by a telomeric repeat amplification protocol (TRAP) assay, and the biological functions of it were characterized by in vitro proliferation, migration, and invasion assays. A new in vivo hTERT interacting protein, protocadherin 10 (PCDH10), was identified. Overexpression of PCDH10 in pancreatic cancer cells impaired telomere elongation by inhibiting telomerase activity while having no obvious effect on hTERT expression at mRNA and protein levels. As a result of this critical function in telomerase regulation, PCDH10 was found to inhibit cell proliferation, migration, and invasion, suggesting a tumor suppressive role of this protein. Our data suggested that PCDH10 played a critical role in cancer cell growth, by negatively regulating telomerase activity, implicating a potential value in future therapeutic development against cancer.
Collapse
Affiliation(s)
- Li-Na Zhou
- From the Department of Endocrinology (L-NZ, W-QD, Q-NW, BC); Department of Ultrasound, Southwest Hospital, The Third Military Medical University, Chongqing, China (XH); and Biostatistics, Yale New Haven Health Services Corporation Center for Outcomes Research and Evaluation, New Haven, CT (HM)
| | | | | | | | | | | |
Collapse
|
8
|
Hu X, Sui X, Li L, Huang X, Rong R, Su X, Shi Q, Mo L, Shu X, Kuang Y, Tao Q, He C. Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. J Pathol 2013; 229:62-73. [PMID: 22926751 DOI: 10.1002/path.4093] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 01/13/2023]
Abstract
Gastric and colorectal cancers are among the most common cancers worldwide and cause serious cancer mortality. Both epigenetic and genetic disruptions of tumour suppressor genes (TSGs) are frequently involved in their pathogenesis. Here, we studied the epigenetic and genetic alterations of a novel TSG-PCDH17 and its functions in the pathogenesis of these tumours. We found that PCDH17 was frequently silenced and methylated in almost all gastric and colorectal tumour cell lines as well as in ∼95% of primary tumours, but not in normal gastric and colonic mucosa. Moreover, its deletion was detected in only 18% of gastric and 12% of colorectal cancer tissues, suggesting that epigenetic and genetic inactivation of PCDH17 are both involved in gastric and colorectal tumourigenesis. PCDH17 protein expression was significantly correlated with low tumour stage and less lymph node metastasis of gastric and colorectal cancer patients, indicating its potential as a tumour marker. Restoring PCDH17 expression inhibited tumour cell growth in vitro and in vivo through promoting apoptosis, as evidenced by increased TUNEL staining and caspase-3 activation. Furthermore, PCDH17-induced autophagy, along with increased numbers of autophagic vacuoles and up-regulated autophagic proteins Atg-5, Atg-12 and LC3B II. Thus, PCDH17 acts as a tumour suppressor, exerting its anti-proliferative activity through inducing apoptosis and autophagy, and is frequently silenced in gastric and colorectal cancers. PCDH17 methylation is a tumour-specific event that could serve as an epigenetic biomarker for these tumours.
Collapse
Affiliation(s)
- Xiaotong Hu
- Biomedical Research Centre and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17266-72. [PMID: 23045659 DOI: 10.1073/pnas.1121260109] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, β, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience.
Collapse
|
10
|
Walker MB, King BL, Paigen K. Clusters of ancestrally related genes that show paralogy in whole or in part are a major feature of the genomes of humans and other species. PLoS One 2012; 7:e35274. [PMID: 22563380 PMCID: PMC3338513 DOI: 10.1371/journal.pone.0035274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/14/2012] [Indexed: 11/22/2022] Open
Abstract
Arrangements of genes along chromosomes are a product of evolutionary processes, and we can expect that preferable arrangements will prevail over the span of evolutionary time, often being reflected in the non-random clustering of structurally and/or functionally related genes. Such non-random arrangements can arise by two distinct evolutionary processes: duplications of DNA sequences that give rise to clusters of genes sharing both sequence similarity and common sequence features and the migration together of genes related by function, but not by common descent [1], [2], [3]. To provide a background for distinguishing between the two, which is important for future efforts to unravel the evolutionary processes involved, we here provide a description of the extent to which ancestrally related genes are found in proximity. Towards this purpose, we combined information from five genomic datasets, InterPro, SCOP, PANTHER, Ensembl protein families, and Ensembl gene paralogs. The results are provided in publicly available datasets (http://cgd.jax.org/datasets/clustering/paraclustering.shtml) describing the extent to which ancestrally related genes are in proximity beyond what is expected by chance (i.e. form paraclusters) in the human and nine other vertebrate genomes, as well as the D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae genomes. With the exception of Saccharomyces, paraclusters are a common feature of the genomes we examined. In the human genome they are estimated to include at least 22% of all protein coding genes. Paraclusters are far more prevalent among some gene families than others, are highly species or clade specific and can evolve rapidly, sometimes in response to environmental cues. Altogether, they account for a large portion of the functional clustering previously reported in several genomes.
Collapse
Affiliation(s)
| | - Benjamin L. King
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Kenneth Paigen
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sui X, Wang D, Geng S, Zhou G, He C, Hu X. Methylated promoters of genes encoding protocadherins as a new cancer biomarker family. Mol Biol Rep 2011; 39:1105-11. [PMID: 21598112 DOI: 10.1007/s11033-011-0837-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 05/05/2011] [Indexed: 12/15/2022]
|
12
|
Abstract
The cadherin family is classified into classical cadherins, desmosomal cadherins and protocadherins (PCDHs). Genomic structures distinguish between PCDHs and other cadherins, and between clustered and non-clustered PCDHs. The phylogenetic analysis with full sequences of non-clustered PCDHs enabled them to be further classified into three subgroups: δ1 (PCDH1, PCDH7, PCDH9, PCDH11 and PCDH20), δ2 (PCDH8, PCDH10, PCDH12, PCDH17, PCDH18 and PCDH19) and ε (PCDH15, PCDH16, PCDH21 and MUCDHL). ε-PCDH members except PCDH21 have either higher or lower numbers of cadherin repeats than those of other PCDHs. Non-clustered PCDHs are expressed predominantly in the nervous system and have spatiotemporally diverse expression patterns. Especially, the region-specific expressions of non-clustered PCDHs have been observed in cortical area of early postnatal stage and in caudate putaman and/or hippocampal formation of mature brains, suggesting that non-clustered PCDHs play roles in the circuit formation and maintenance. The non-clustered PCDHs appear to have homophilic/heterophilc cell-cell adhesion properties, and each member has diverse cell signaling partnership distinct from those of other members (PCDH7/TAF1; PCDH8/TAO2β; PCDH10/Nap1; PCDH11/β-catenin; PCDH18/mDab1). Furthermore, each PCDH has several isoforms with differential cytoplasmic sequences, suggesting that one PCDH isoform could activate intracellular signaling differential from other isoforms. These facts suggest that non-clustered PCDHs play roles as a mediator of a regulator of other molecules as well as cell-cell adhesion. Furthermore, some non-clustered PCDHs have been considered to be involved in neuronal diseases such as autism-spectrum disorders, schizophrenia, and female-limited epilepsy and cognitive impairment, suggesting that they play multiple, tightly regulated roles in normal brain function. In addition, some non-clustered PCDHs have been suggested as candidate tumor suppressor genes in several tissues. Although molecular adhesive and regulatory properties of some PCDHs began to be unveiled, the endeavor to understand the molecular mechanism of non-clustered PCDH is still in its infancy and requires future study.
Collapse
Affiliation(s)
- Soo-Young Kim
- Department of Anatomy and Division of Brain Korea, Korea University College of Medicine; Anam-Dong, Seoul, South Korea
| | | | | | | | | |
Collapse
|
13
|
Haruki S, Imoto I, Kozaki KI, Matsui T, Kawachi H, Komatsu S, Muramatsu T, Shimada Y, Kawano T, Inazawa J. Frequent silencing of protocadherin 17 , a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis 2010; 31:1027-1036. [DOI: 10.1093/carcin/bgq053] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
14
|
Ahn K, Huh JW, Kim DS, Ha HS, Kim YJ, Lee JR, Kim HS. Quantitative analysis of alternative transcripts of human PCDH11X/Y genes. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:736-44. [PMID: 19859901 DOI: 10.1002/ajmg.b.31041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Protocadherin 11X/Y (PCDH11X/Y) gene pair has been proposed as a carrier of the variation relating to cerebral asymmetry and psychosis on the ground that the Y gene was generated by duplication at 6 million years (close to the chimpanzee-human separation) and there is a case for an X/Y determinant of cerebral asymmetry. The present article investigated the patterns of alternative splicing and expression of the PCDH11X/Y genes. Twelve alternative transcripts of PCDH11X/Y genes were presently identified by in silico analysis. To investigate the biological roles of alternative transcripts of PCDH11X/Y genes, the transcripts were analyzed by real-time reverse transcription-polymerase chain reaction amplification. A total of 31 normal tissues including 11 different regions of human brain were used to investigate a wide spectrum of expression profiles. Dominant expression patterns were identified in several tissues (Tx1-fetal liver; Tx3-adult brain; Tx4-adult brain and kidney; Tx5-bone marrow; Ty1-fetal brain; Ty2-adrenal gland). Tx4 transcripts showed specific expression patterns in olfactory tissues. The findings can guide functional investigation of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kung Ahn
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF. Global comparative transcriptome analysis of cartilage formation in vivo. BMC DEVELOPMENTAL BIOLOGY 2009; 9:20. [PMID: 19272164 PMCID: PMC2662817 DOI: 10.1186/1471-213x-9-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 03/10/2009] [Indexed: 12/18/2022]
Abstract
Background During vertebrate embryogenesis the initial stages of bone formation by endochondral ossification involve the aggregation and proliferation of mesenchymal cells into condensations. Continued growth of the condensations and differentiation of the mesenchymal cells into chondrocytes results in the formation of cartilage templates, or anlagen, which prefigure the shape of the future bones. The chondrocytes in the anlagen further differentiate by undergoing a complex sequence of maturation and hypertrophy, and are eventually replaced by mineralized bone. Regulation of the onset of chondrogenesis is incompletely understood, and would be informed by comprehensive analyses of in vivo gene expression. Results Tibial and fibular pre-condensed mesenchyme was microdissected from mouse hind limbs at 11.5 dpc, and the corresponding condensations at 12.5 dpc and cartilage anlagen at 13.5 dpc. Total RNA was isolated, and cRNA generated by linear amplification was interrogated using mouse whole genome microarrays. Differential expression was validated by quantitative PCR for Agc1, Bmp8a, Col2a1, Fgfr4, Foxa3, Gdf5, Klf2, Klf4, Lepre1, Ncad, Sox11, and Trpv4. Further, independent validation of the microarray data was achieved by in situ hybridization to analyse the expression of Lepre1, Pcdh8, Sox11, and Trpv4 from 11.5 dpc to 13.5 dpc during mouse hind limb development. We found significant differential expression of 931 genes during these early stages of chondrogenesis. Of these, 380 genes were down-regulated and 551 up-regulated. Our studies characterized the expression pattern of gene families previously associated with chondrogenesis, such as adhesion molecules, secreted signalling molecules, transcription factors, and extracellular matrix components. Gene ontology approaches identified 892 differentially expressed genes not previously identified during the initiation of chondrogenesis. These included several Bmp, Gdf, Wnt, Sox and Fox family members. Conclusion These data represent the first global gene expression profiling analysis of chondrogenic tissues during in vivo development. They identify genes for further study on their functional roles in chondrogenesis, and provide a comprehensive and important resource for future studies on cartilage development and disease.
Collapse
Affiliation(s)
- Trevor L Cameron
- Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
16
|
Royer-Zemmour B, Ponsole-Lenfant M, Gara H, Roll P, Lévêque C, Massacrier A, Ferracci G, Cillario J, Robaglia-Schlupp A, Vincentelli R, Cau P, Szepetowski P. Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Hum Mol Genet 2008; 17:3617-30. [PMID: 18718938 DOI: 10.1093/hmg/ddn256] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in SRPX2 (Sushi-Repeat Protein, X-linked 2) cause rolandic epilepsy with speech impairment (RESDX syndrome) or with altered development of the speech cortex (bilateral perisylvian polymicrogyria). The physiological roles of SRPX2 remain unknown to date. One way to infer the function of SRPX2 relies on the identification of the as yet unknown SRPX2 protein partners. Using a combination of interactome approaches including yeast two-hybrid screening, co-immunoprecipitation experiments, cell surface binding and surface plasmon resonance (SPR), we show that SRPX2 is a ligand for uPAR, the urokinase-type plasminogen activator (uPA) receptor. Previous studies have shown that uPAR(-/-) knock-out mice exhibited enhanced susceptibility to epileptic seizures and had brain cortical anomalies consistent with altered neuronal migration and maturation, all features that are reminiscent to the phenotypes caused by SRPX2 mutations. SPR analysis indicated that the p.Y72S mutation associated with rolandic epilepsy and perisylvian polymicrogyria, led to a 5.8-fold gain-of-affinity of SRPX2 with uPAR. uPAR is a crucial component of the extracellular plasminogen proteolysis system; two more SRPX2 partners identified here, the cysteine protease cathepsin B (CTSB) and the metalloproteinase ADAMTS4, are also components of the extracellular proteolysis machinery and CTSB is a well-known activator of uPA. The identification of functionally related SRPX2 partners provides the first and exciting insights into the possible role of SRPX2 in the brain, and suggests that a network of SRPX2-interacting proteins classically involved in the proteolytic remodeling of the extracellular matrix and including uPAR participates in the functioning, in the development and in disorders of the speech cortex.
Collapse
|
17
|
Emond MR, Jontes JD. Inhibition of protocadherin-alpha function results in neuronal death in the developing zebrafish. Dev Biol 2008; 321:175-87. [PMID: 18602383 DOI: 10.1016/j.ydbio.2008.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 01/10/2023]
Abstract
The pcdhalpha/CNR gene comprises a diverse array of neuronal cell-surface proteins of the cadherin superfamily, although very little is known about their role in neural development. Here we provide the first in-depth characterization of pcdh1alpha in zebrafish. Whole-mount immunocytochemistry demonstrates that a large proportion of endogenous cytoplasmic domain immunoreactivity is present in the nucleus, suggesting that endoproteolytic cleavage and nuclear translocation of the intracellular domain are important aspects of pcdh1alpha activity in vivo. Using whole-mount immunocytochemistry and BAC-based expression of Pcdh1alpha-GFP fusion proteins, we find that Pcdh1alpha does not appear to form stable, synaptic puncta at early stages of synaptogenesis. We also demonstrate that the presence of the Pcdh1alpha cytoplasmic domain is essential for normal function. Truncation of Pcdh1alpha proteins, using splice-blocking antisense morpholinos to prevent the addition of the common intracellular domain to the entire pcdh1alpha cluster, results in neuronal apoptosis throughout the developing brain and spinal cord, demonstrating an essential role for pcdh1alpha in early neural development. This cell death phenotype can be attenuated by the expression of a soluble Pcdh1alpha cytoplasmic domain.
Collapse
Affiliation(s)
- Michelle R Emond
- Center for Molecular Neurobiology and Department of Neuroscience, 115 Rightmire Hall, 1060 Carmack Road, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
18
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
19
|
Lee W, Cheng TW, Gong Q. Olfactory sensory neuron-specific and sexually dimorphic expression of protocadherin 20. J Comp Neurol 2008; 507:1076-86. [PMID: 18095321 DOI: 10.1002/cne.21569] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory sensory axons navigate from the nasal cavity to the olfactory bulb and sort from among 1,000 different odorant receptor-expressing types to converge upon the same two or three glomeruli. To achieve this task during development, it is likely that multiple classes of regulatory molecules, including cell adhesion molecules, are involved. Cell adhesion molecules have been shown to be important in controlling axon guidance, fasciculation, and synapse formation. To gain further understanding of the involvement of adhesion molecules in olfactory circuitry development, we examined the dynamic and cell type specific expression of a novel protocadherin, PCDH20, in the olfactory system. PCDH20 is specifically expressed in newly differentiated olfactory sensory neurons and their axons during development. PCDH20 expression is down-regulated in the adult olfactory system, except in a small olfactory sensory neuron population. These small, discrete numbers of PCDH20-positive glomeruli in the adult olfactory bulb are consistently clustered in the ventral-caudal region in both male and female mice. However, adult males have higher numbers of PCDH20-positive glomeruli with a broader distribution, whereas adult females have fewer PCDH20-positive glomeruli with a more restricted distribution. The gender difference in PCDH20 expression may reflect olfactory receptor expression differences for gender-specific social discrimination.
Collapse
Affiliation(s)
- Wooje Lee
- Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Davis, California 95616, USA
| | | | | |
Collapse
|
20
|
Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 2008; 318:335-46. [PMID: 18468594 DOI: 10.1016/j.ydbio.2008.03.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/21/2008] [Accepted: 03/26/2008] [Indexed: 11/20/2022]
Abstract
Protocadherin-18a (Pcdh18a) belongs to the delta 2-protocadherins, which constitute the largest subgroup within the cadherin superfamily. Here we present isolation of a full-length zebrafish cDNA that encodes a protein highly similar to human and mouse Pcdh18. Zebrafish pcdh18a is expressed in a complex and dynamic pattern in the nervous system from gastrula stages onward, with lesser expression in mesodermal derivatives. Pcdh18a-eGFP fusion protein is expressed in a punctate manner on the membranes between cells. Overexpression of pcdh18a in embryos caused cyclopia, mislocalization of hatching gland tissue, and duplication or splitting of the neural tube. Most neural markers tested were expressed in an approximately correct A-P pattern. By cell transplantation we showed that overexpression of pcdh18a causes diminished cell migration and reduced cell protrusions, resulting in a tendency of cells to stay more firmly aggregated, probably due to increased cell adhesion. In contrast, knockdown of pcdh18a by a morpholino oligonucleotide caused defects in epiboly, and led to reduced cell adhesion as shown by cell dissociation, sorting and transplantation experiments. These results suggest a role for Pcdh18a in cell adhesion, migration and behavior but not cell specification during gastrula and segmentation stages of development.
Collapse
|
21
|
Alagramam KN, Miller ND, Adappa ND, Pitts DR, Heaphy JC, Yuan H, Smith RJ. Promoter, alternative splice forms, and genomic structure of protocadherin 15. Genomics 2007; 90:482-92. [PMID: 17706913 PMCID: PMC2043478 DOI: 10.1016/j.ygeno.2007.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 05/31/2007] [Accepted: 06/20/2007] [Indexed: 10/22/2022]
Abstract
We originally showed that the protocadherin 15 gene (Pcdh15) is necessary for hearing and balance functions; mutations in Pcdh15 affect hair cell development in Ames waltzer (av) mice. Here we extend that study to understand better how Pcdh15 operates in a cell. The original report identified 33 exons in Pcdh15, with exon 1 being noncoding; additional exons of Pcdh15 have since been reported. The 33 exons of Pcdh15 described originally are embedded in 409 kb of mouse genomic sequence, while the corresponding exons of human PCDH15 are spread over 980 kb of genomic DNA; the exons in Pcdh15/PCDH15 range in size from 9 to approximately 2000 bp. The genomic organization of Pcdh15/PCDH15 bears similarity to that of cadherin 23, but differs significantly from other protocadherin genes, such as Pcdhalpha, beta, or gamma. A CpG island is located approximately 2900 bp upstream of the PCDH15 transcriptional start site. The Pcdh15/PCDH15 promoter lacks TATAA or CAAT sequences within 100 bases upstream of the transcription start site; deletion mapping showed that Pcdh15 harbors suppressor and enhancer elements. Preliminary searches for alternatively spliced transcripts of Pcdh15 identified novel splice variants not reported previously. Results from our study show that both mouse and human protocadherin 15 genes have complex genomic structures and transcription control mechanisms.
Collapse
Affiliation(s)
- Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim SY, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of non-clustered protocadherin family members in the developing rat brain. Neuroscience 2007; 147:996-1021. [PMID: 17614211 DOI: 10.1016/j.neuroscience.2007.03.052] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 02/04/2023]
Abstract
Protocadherins (PCDHs) consist of the largest subgroup of the cadherin superfamily, and most PCDHs are expressed dominantly in the CNS. Because PCDHs are involved in the homophilic cell-cell adhesion, PCDHs in the nervous system have been suggested to play roles in the formation and maintenance of the synaptic connections. Although many PCDHs (>50) are in tandem arranged as a cluster in a specific chromosome locus, there are also considerable numbers of non-clustered PCDH members (approximately 20). In this study, we examined the spatiotemporal distribution of mRNAs for 12 non-clustered PCDHs in rat brain using in situ hybridization. Some of them (PCDH1, PCDH7, PCDH9, PCDH10, PCDH11, PCDH17, and PCDH20) exhibited region-dependent expression pattern in the cerebral cortex during the early postnatal stage (P3), which is a critical period for the establishment of specific synaptic connections: PCDH7 and PCDH20 mRNAs were predominantly expressed in the somatosensory (parietal) and visual (occipital) cortices, whereas PCDH11 and PCDH17 mRNAs were preferentially expressed in the motor (forelimb and hindlimb areas) and auditory (temporal) cortices, and PCDH9 mRNA was highly expressed in the motor and main somatosensory cortices. These PCDHs were also expressed in the specific regions of the connecting thalamic nuclei. These cortical regionalization and thalamic nuclei-specificity appeared to be most distinct in P3 compared with those of embryonic and adult stages. Taken together, these results suggest that PCDHs may play specific roles in the establishment of selective synaptic connections of specific modality of cerebral cortex with other communicating brain regions such as the thalamus.
Collapse
Affiliation(s)
- S-Y Kim
- Department of Anatomy, Division of Brain Korea 21, Biomedical Science, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul 136-705, Korea
| | | | | | | |
Collapse
|
23
|
Zou C, Huang W, Ying G, Wu Q. Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires. Neuroscience 2007; 144:579-603. [PMID: 17110050 DOI: 10.1016/j.neuroscience.2006.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 09/14/2006] [Accepted: 10/04/2006] [Indexed: 11/30/2022]
Abstract
Three closely-linked clusters of protocadherin (Pcdh) genes (alpha, beta, and gamma) encoding more than 50 distinct mRNAs have been identified in humans and mice, and proposed to play important roles in neuronal connectivity in the CNS. The human and mouse Pcdh alpha and gamma clusters each span a region of about 300 kb genomic DNA, and are each organized into a tandem array of more than a dozen highly-similar "variable" exons, and three downstream "constant" exons. Little is known about the expression patterns of the alpha and gamma repertoires in the CNS. Here, we comprehensively analyzed the one megabase rat Pcdh genomic DNA sequences at the nucleotide level using various computational methods. We found that the clustered rat Pcdh genes display strict orthologous relationships with those of mice but not humans. Moreover, each rat Pcdh variable exon is preceded by a distinct promoter. We designed two complete sets of isoform-specific probes and extensively mapped the expression patterns for each member of the alpha and gamma repertoires in the adult rat CNS by non-isotopic in situ hybridization experiments. We found that most alpha and gamma mRNA isoforms are broadly expressed in similar patterns in subsets of cells (with some displaying interesting cortical layer-specific expression) throughout various CNS regions, including the olfactory bulb, cerebral cortex, hippocampus, cerebellum, and spinal cord. The broad expression of most alpha or gamma mRNAs throughout various regions of the CNS is consistent with the hypothesis that these genes may be used for neurons to establish their individuality and also provide the adhesive diversity required for complex synaptic connectivity in the mammalian CNS.
Collapse
Affiliation(s)
- C Zou
- Department of Human Genetics, University of Utah Medical School, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
24
|
Morishita H, Umitsu M, Murata Y, Shibata N, Udaka K, Higuchi Y, Akutsu H, Yamaguchi T, Yagi T, Ikegami T. Structure of the Cadherin-related Neuronal Receptor/Protocadherin-α First Extracellular Cadherin Domain Reveals Diversity across Cadherin Families. J Biol Chem 2006; 281:33650-63. [PMID: 16916795 DOI: 10.1074/jbc.m603298200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent explosion in genome sequencing has revealed the great diversity of the cadherin superfamily. Within the superfamily, protocadherins, which are expressed mainly in the nervous system, constitute the largest subgroup. Nevertheless, the structures of only the classical cadherins are known. Thus, to broaden our understanding of the adhesion repertoire of the cadherin superfamily, we determined the structure of the N-terminal first extracellular cadherin domain of the cadherin-related neuronal receptor/protocadherin-alpha4. The hydrophobic pocket essential for homophilic adhesiveness in the classical cadherins was not found, and the functional significance of this structural domain was supported by exchanging the first extracellular cadherin domains of protocadherin and classical cadherin. Moreover, potentially crucial variations were observed mainly in the loop regions. These included the protocadherin-specific disulfide-bonded Cys-X(5)-Cys motif, which showed Ca(2+)-induced chemical shifts, and the RGD motif, which has been suggested to be involved in heterophilic cell adhesion via the active form of beta1 integrin. Our findings reveal that the adhesion repertoire of the cadherin superfamily is far more divergent than would be predicted by studying the classical cadherins alone.
Collapse
Affiliation(s)
- Hirofumi Morishita
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cronin KD, Capehart AA. Gamma protocadherin expression in the embryonic chick nervous system. Int J Biol Sci 2006; 3:8-11. [PMID: 17200686 PMCID: PMC1622892 DOI: 10.7150/ijbs.3.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 11/12/2022] Open
Abstract
Protocadherin γ (pcdh-γ) family expression was examined in the embryonic chick central nervous system by in situ hybridization. Transcripts were visualized in discrete regions of fore-, mid-, and hindbrain at stages 23 and 25 and in spinal cord and optic lobe at stages 27 and 43, respectively. Results suggest that pcdh-γ may function cooperatively with other cell adhesion molecules in neuronal differentiation and establishment of neural networks in several areas of the developing brain, particularly regions involved in visual processing.
Collapse
Affiliation(s)
- Kenneth D Cronin
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
26
|
Bel Y, Escriche B. Common genomic structure for the Lepidoptera cadherin-like genes. Gene 2006; 381:71-80. [PMID: 16905280 DOI: 10.1016/j.gene.2006.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 06/12/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022]
Abstract
A cadherin-like protein present in the midgut epithelial cells of Lepidoptera is associated with insect resistance to Bacillus thuringiensis Cry toxins. We describe for the first time the genes that encode the cadherin-like proteins in Ostrinia nubilalis, Helicoverpa armigera, and Bombyx mori, and analyze their organization. These genes encompass 19.6 kb, 20.0 kb, and 41.8 kb of genomic DNA, respectively, and despite the size heterogeneity, they are all composed of 35 exons that are linked by 34 introns. In contrast to the high variability noted for the sizes of the introns, the sizes of the coding exons were almost completely preserved among the three species, because the intronic sequences (except the first and last one) were inserted in homologous positions in the respective cDNA sequences. In all cases, the first intron (the longest one) was located in the 5'-untranslated region. These results point out a highly conserved structure that indicates that these genes are orthologous. Analysis of the gene sequences showed a common GC-rich region located in exon 31 and several tandem repeats that were specific for each gene. Partial sequences from transposable elements were found only in B. mori and accounted, in part, for the large size of the insect gene. The in silico analysis of the protein products of these genes showed a common structure and grouped these proteins into the protocadherin family.
Collapse
Affiliation(s)
- Yolanda Bel
- Genetics Department, University of Valencia, Dr Moliner, 50, 46100, Burjassot, Valencia, Spain
| | | |
Collapse
|
27
|
Gaitan Y, Bouchard M. Expression of the δ-protocadherin gene Pcdh19 in the developing mouse embryo. Gene Expr Patterns 2006; 6:893-9. [PMID: 16682261 DOI: 10.1016/j.modgep.2006.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 01/15/2023]
Abstract
Protocadherins constitute a large family of transmembrane proteins primarily involved in weak homophilic adhesion in the brain and several other tissues. In a screen for potential regulators of kidney development, we have identified Pcdh19, a poorly characterized member of the delta-protocadherin subfamily. Here, we report the spatio-temporal expression pattern of Pcdh19 during mouse embryonic development. In midgestation embryos, Pcdh19 mRNA was detected in the mesonephros and in the neuroepithelium of the forebrain and midbrain. At later stages, Pcdh19 was expressed in other neural tissues such as the neural retina, nasal epithelium and spinal cord, as well as in the collecting duct and differentiating nephrons of the metanephros, in the glandular stomach, the exocrine pancreas and the hair follicles. Hence, the Pcdh19 gene is developmentally regulated during mouse organogenesis and shows a unique expression profile among protocadherins.
Collapse
Affiliation(s)
- Yaned Gaitan
- McGill Cancer Centre and Biochemistry Department, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Que., Canada H3G 1Y6
| | | |
Collapse
|
28
|
Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. ACTA ACUST UNITED AC 2006; 174:301-13. [PMID: 16847104 PMCID: PMC2064189 DOI: 10.1083/jcb.200602062] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. Moreover, loss of endogenous PAPC results in elevated C-cadherin adhesion activity in the dorsal mesoderm and interferes with the normal blastopore closure, a defect that can be rescued by a dominant-negative C-cadherin mutant. Importantly, activin induces PAPC expression, and PAPC is required for activin-induced regulation of C-cadherin adhesion activity and explant morphogenesis. Signaling through Frizzled-7 is not required for PAPC regulation of C-cadherin, suggesting that C-cadherin regulation and Frizzled-7 signaling are two distinct branches of the PAPC pathway that induce morphogenetic movements. Thus, spatial regulation of classical cadherin adhesive function by local expression of a protocadherin is a novel mechanism for controlling cell sorting and tissue morphogenesis.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
29
|
Hou R, Liu L, Anees S, Hiroyasu S, Sibinga NES. The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. ACTA ACUST UNITED AC 2006; 173:417-29. [PMID: 16682528 PMCID: PMC2063842 DOI: 10.1083/jcb.200508121] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The significance of cadherin superfamily proteins in vascular smooth muscle cell (VSMC) biology is undefined. Here we describe recent studies of the Fat1 protocadherin. Fat1 expression in VSMCs increases significantly after arterial injury or growth factor stimulation. Fat1 knockdown decreases VSMC migration in vitro, but surprisingly, enhances cyclin D1 expression and proliferation. Despite limited similarity to classical cadherins, the Fat1 intracellular domain (Fat1(IC)) interacts with beta-catenin, inhibiting both its nuclear localization and transcriptional activity. Fat1 undergoes cleavage and Fat1(IC) species localize to the nucleus; however, inhibition of the cyclin D1 promoter by truncated Fat1(IC) proteins corresponds to their presence outside the nucleus, which argues against repression of beta-catenin-dependent transcription by nuclear Fat1(IC). These findings extend recent observations about Fat1 and migration in other cell types, and demonstrate for the first time its anti-proliferative activity and interaction with beta-catenin. Because it is induced after arterial injury, Fat1 may control VSMC functions central to vascular remodeling by facilitating migration and limiting proliferation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Binding Sites/genetics
- Cadherins/genetics
- Cadherins/metabolism
- Cadherins/physiology
- Carotid Arteries/metabolism
- Carotid Artery Injuries/physiopathology
- Cell Line
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Movement/physiology
- Cell Nucleus/metabolism
- Cell Proliferation
- Cells, Cultured
- Gene Expression/drug effects
- Growth Substances/pharmacology
- Male
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Rats
- Rats, Sprague-Dawley
- Transcription, Genetic/genetics
- Transfection
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Rong Hou
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
30
|
Nonnenmacher M, Salmon J, Jacob Y, Orth G, Breitburd F. Cottontail rabbit papillomavirus E8 protein is essential for wart formation and provides new insights into viral pathogenesis. J Virol 2006; 80:4890-900. [PMID: 16641280 PMCID: PMC1472083 DOI: 10.1128/jvi.80.10.4890-4900.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cottontail rabbit papillomavirus (CRPV) a and b subtypes display a conserved E8 open reading frame encoding a 50-amino-acid hydrophobic protein, with structural similarities to the E5 transmembrane oncoprotein of genital human PVs (HPVs). CRPV E8 has been reported to play a role in papilloma growth but not to be essential in papilloma formation. Here we report that the knockout of E8 start codon almost prevented wart induction upon biobalistic inoculation of viral DNA onto rabbit skin. The scarce warts induced showed very slow growth, despite sustained expression of E6 and E7 oncogenes. This points to an essential role of E8 in disturbing epidermal homeostasis. Using a yeast two-hybrid screen, we found that E8 interacted with the zinc transporter ZnT1, protocadherin 1 (PCDH1), and AHNAK/desmoyokin, three proteins as yet unrelated to viral pathogenesis or cell transformation. HPV16 E5 also interacted with these proteins in two-hybrid assay. CRPV E8 mainly localized to the Golgi apparatus and the early endosomes of transfected keratinocytes and colocalized with ZnT1, PCDH1, and AHNAK. We showed that ZnT1 and PCDH1 formed a complex and that E8 disrupted this complex. CRPV E8, like HPV16 E5, increased epidermal growth factor (EGF)-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and both the EGF-dependent and the EGF-independent activity of activating protein-1 (AP-1). Competition experiments with a nonfunctional truncated ZnT1 protein showed that E8-ZnT1 interaction was required for AP-1 activation. Our data identify CRPV E8 as a key player in papilloma induction and unravel novel cellular targets for inducing the proliferation of keratinocytes.
Collapse
|
31
|
Imoto I, Izumi H, Yokoi S, Hosoda H, Shibata T, Hosoda F, Ohki M, Hirohashi S, Inazawa J. Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res 2006; 66:4617-26. [PMID: 16651412 DOI: 10.1158/0008-5472.can-05-4437] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protocadherins are a major subfamily of the cadherin superfamily, but little is known about their functions and intracellular signal transduction. We identified a homozygous loss of protocadherin 20 (PCDH20, 13q21.2) in the course of a program to screen a panel of non-small-cell lung cancer (NSCLC) cell lines (1 of 20 lines) for genomic copy number aberrations using an in-house array-based comparative genomic hybridization. PCDH20 mRNA was expressed in normal lung tissue but was not expressed in the majority of NSCLC cell lines without a homozygous deletion of this gene (10 of 19 lines, 52.6%). Expression of PCDH20 mRNA was restored in gene-silenced NSCLC cells after treatment with 5-aza 2'-deoxycytidine. The DNA methylation status of the PCDH20 CpG-rich region correlated inversely with the expression of the gene and a putative target region for methylation showed clear promoter activity in vitro. Methylation of this PCDH20 promoter was frequently observed in primary NSCLC tissues (32 of 59 tumors, 54.2%). Among our primary NSCLC cases, the methylated PCDH20 seemed to be associated with a shorter overall survival (P = 0.0140 and 0.0211 in all and stage I tumors, respectively; log-rank test), and a multivariate analysis showed that the PCDH20 methylation status was an independent prognosticator. Moreover, restoration of PCDH20 expression in NSCLC cells reduced cell numbers in colony formation and anchorage-independent assays. These results suggest that epigenetic silencing by hypermethylation of the CpG-rich promoter region of PCDH20 leads to loss of PCDH20 function, which may be a factor in the carcinogenesis of NSCLC.
Collapse
Affiliation(s)
- Issei Imoto
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu RY, Xu P, Chen YL, Lou X, Ding X. The role of Paraxial Protocadherin in Xenopus otic placode development. Biochem Biophys Res Commun 2006; 345:239-47. [PMID: 16678122 DOI: 10.1016/j.bbrc.2006.04.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Vertebrate inner ear develops from its rudiment, otic placode, which later forms otic vesicle and gives rise to tissues comprising the entire inner ear. Although several signaling molecules have been identified as candidates responsible for inner ear specification and patterning, many details remain elusive. Here, we report that Paraxial Protocadherin (PAPC) is required for otic vesicle formation in Xenopus embryos. PAPC is expressed strictly in presumptive otic placode and later in otic vesicle during inner ear morphogenesis. Knockdown of PAPC by dominant-negative PAPC results in the failure of otic vesicle formation and the loss of early inner ear markers Sox9 and Tbx2, suggesting the requirement of PAPC in the early stage of otic vesicle development. However, PAPC alone is not sufficient to induce otic placode formation.
Collapse
Affiliation(s)
- Rui-Ying Hu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
33
|
Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan ATC, Tao Q. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 2006; 25:1070-80. [PMID: 16247458 DOI: 10.1038/sj.onc.1209154] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 12/12/2022]
Abstract
Protocadherins constitute the largest subgroup in the cadherin superfamily of cell adhesion molecules. Their major functions are poorly understood, although some are implicated in nervous system development. As tumor-specific promoter methylation is a marker for tumor suppressor genes (TSG), we searched for epigenetically inactivated TSGs using methylation-subtraction combined with pharmacologic demethylation, and identified the PCDH10 CpG island as a methylated sequence in nasopharyngeal carcinoma (NPC). PCDH10 is broadly expressed in all normal adult and fetal tissues including the epithelia, though at different levels. It resides at 4q28.3--a region with hemizygous deletion detected by array-CGH in NPC cell lines; however, PCDH10 itself is not located within the deletion. In contrast, its transcriptional silencing and promoter methylation were frequently detected in multiple carcinoma cell lines in a biallelic way, including 12/12 nasopharyngeal, 13/16 esophageal, 3/4 breast, 5/5 colorectal, 3/4 cervical, 2/5 lung and 2/8 hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell line. Aberrant methylation was further frequently detected in multiple primary carcinomas (82% in NPC, 42-51% for other carcinomas), but not normal tissues. The transcriptional silencing of PCDH10 could be reversed by pharmacologic demethylation with 5-aza-2'-deoxycytidine or genetic demethylation with double knockout of DNMT1 and DNMT3B, indicating a direct epigenetic mechanism. Ectopic expression of PCDH10 strongly suppressed tumor cell growth, migration, invasion and colony formation. Although the epigenetic and genetic disruptions of several classical cadherins as TSGs have been well documented in tumors, this is the first report that a widely expressed protocadherin can also function as a TSG that is frequently inactivated epigenetically in multiple carcinomas.
Collapse
Affiliation(s)
- J Ying
- Cancer Epigenetics Laboratory, Sir YK Pao Cancer Center, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, and Department of Pathology, National University Hospital, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pawlowski KS, Kikkawa YS, Wright CG, Alagramam KN. Progression of inner ear pathology in Ames waltzer mice and the role of protocadherin 15 in hair cell development. J Assoc Res Otolaryngol 2006; 7:83-94. [PMID: 16408167 PMCID: PMC2504581 DOI: 10.1007/s10162-005-0024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 11/30/2005] [Indexed: 11/25/2022] Open
Abstract
The Ames waltzer (av) mouse mutant exhibits auditory and vestibular abnormalities resulting from mutation of protocadherin 15 (Pcdh15). Ames waltzer has been identified as an animal model for inner ear pathology associated with Usher syndrome type 1F. Studies correlating anatomical phenotype with severity of genetic defect in various av alleles are providing better understanding of the role played by Pcdh15 in inner ear development and of sensorineural abnormalities associated with alterations in Pcdh15 protein structure as a result of gene mutation. In this work we present new findings on inner ear pathology in four alleles of av mice with differing mutations of Pcdh15 as well as varying alterations in inner ear morphology. Two alleles with in-frame deletion mutations (Pcdh15 (av-J) and Pcdh15 (av-2J)) and two presumptive functional null alleles (Pcdh15 (av-3J) and Pcdh15 (av-Tg)) were studied. Light and electron microscopic observations demonstrated that the severity of cochlear and vestibular pathology in these animals correlates positively with the extent of mutation in Pcdh15 from embryonic day 18 (E18) up to 12 months. Electron microscopic analysis of immature ears indicated early abnormalities in the arrangement of stereocilia and the inner and outer hair cell cuticular plates, stereocilia rootlets, and the actin meshwork within the cuticular plate. In severe cases, displacement of the kinocilium and alterations in the shape of the cuticular plate was also observed. Mice harboring in-frame deletion mutations showed less disorganization of stereocilia and cuticular plates in the organ of Corti than the presumptive functional null alleles at P0-P10. A slower progression of pathology was also seen via light microscopy in older animals with in-frame deletions, compared to the presumptive functional null mutations. In summary, our results demonstrate that mutation in Pcdh15 affects the initial formation of stereocilia bundles with associated changes in the actin meshwork within the cuticular plate; these effects are more pronounced in the presumed null mutation compared to mutations that only affect the extracellular domain. The positive correlation of severity of effects with extent of mutation can be seen well into adulthood.
Collapse
Affiliation(s)
- Karen S Pawlowski
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-9035, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Cell-cell adhesion is fundamental to multicellular architecture. Several classes of adhesion molecule are used to achieve this, and cadherins represent a major family of such molecules. The cadherin family has multiple subfamilies. Members of the Fat cadherin subfamily, which is conserved across species, have an extraordinarily large extracellular region, comprising 34 repeated domains, making them the largest cadherin molecules. Classic Fat, identified in Drosophila, is known to regulate cell proliferation and planar cell polarity. Recent studies of one of its mammalian homologs, Fat1, have revealed novel functions of this molecule. Fat1 binds to Ena/VASP proteins and regulates actin dynamics at both cell-cell contacts and leading edges. These observations suggest that Fat1 is an important regulator of actin dynamics and controls cell-cell interactions through this activity.
Collapse
Affiliation(s)
- Takuji Tanoue
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
36
|
Ouyang XM, Yan D, Du LL, Hejtmancik JF, Jacobson SG, Nance WE, Li AR, Angeli S, Kaiser M, Newton V, Brown SDM, Balkany T, Liu XZ. Characterization of Usher syndrome type I gene mutations in an Usher syndrome patient population. Hum Genet 2005; 116:292-9. [PMID: 15660226 DOI: 10.1007/s00439-004-1227-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/07/2004] [Indexed: 12/01/2022]
Abstract
Usher syndrome type I (USH1), the most severe form of this syndrome, is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. At least seven USH1 loci, USH1A-G, have been mapped to the chromosome regions 14q32, 11q13.5, 11p15, 10q21-q22, 21q21, 10q21-q22, and 17q24-25, respectively. Mutations in five genes, including MYO7A, USH1C, CDH23, PCDH15 and SANS, have been shown to be the cause of Usher syndrome type 1B, type 1C, type 1D, type 1F and type 1G, respectively. In the present study, we carried out a systematic mutation screening of these genes in USH1 patients from USA and from UK. We identified a total of 27 different mutations; of these, 19 are novel, including nine missense, two nonsense, four deletions, one insertion and three splicing defects. Approximatelly 35-39% of the observed mutations involved the USH1B and USH1D genes, followed by 11% for USH1F and 7% for USH1C in non-Acadian alleles and 7% for USH1G. Two of the 12 MYO7A mutations, R666X and IVS40-1G > T accounted for 38% of the mutations at that locus. A 193delC mutation accounted for 26% of CDH23 (USH1D) mutations, confirming its high frequency. The most common PCDH15 (USH1F) mutation in this study, 5601-5603delAAC, accounts for 33% of mutant alleles. Interestingly, a novel SANS mutation, W38X, was observed only in the USA cohort. The present study suggests that mutations in MYO7A and CDH23 are the two major components of causes for USH1, while PCDH15, USH1C, and SANS are less frequent causes.
Collapse
Affiliation(s)
- Xiao Mei Ouyang
- Department of Otolaryngology (D-48), University of Miami, 1666 NW 12th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rampon C, Prandini MH, Bouillot S, Pointu H, Tillet E, Frank R, Vernet M, Huber P. Protocadherin 12 (VE-cadherin 2) is expressed in endothelial, trophoblast, and mesangial cells. Exp Cell Res 2005; 302:48-60. [PMID: 15541725 DOI: 10.1016/j.yexcr.2004.08.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/11/2004] [Indexed: 11/29/2022]
Abstract
Protocadherin 12 protein (PCDH12, VE-cadherin 2) is a cell adhesion molecule that has been isolated from endothelial cells. Here, we have used Northern and Western blots, immunohistology, and flow cytometry to examine the distribution of PCDH12 in mouse tissues. It is an N-glycosylated protein of 150-kDa mass. In the endothelium, PCDH12 immunoreactivity was variable and dependent upon the vascular bed. In both the embryo and embryonic stem cell differentiation system, signals were localized in vasculogenic rather than angiogenic endothelium. In addition, the protein was strongly expressed in a subset of invasive cells of the placenta, which were identified as glycogen-rich trophoblasts. In adult mice, strong PCDH12 signals were observed in mesangial cells of kidney glomeruli whereas expression was not detected in other types of perivascular cells. As opposed to most protocadherins, PCDH12 is not expressed in early embryonic (day 12.5) and adult brains. As a first approach to obtain insight into PCDH12 function, we produced transgenic mice deficient in PCDH12, which were viable and fertile. They did not display any obvious histomorphological defects. We conclude that PCDH12 has a unique expression pattern and that its deficiency does not lead to conspicuous abnormalities. Moreover, PCDH12 is the first specific marker for both glycogen-rich trophoblasts and mesangial cells.
Collapse
Affiliation(s)
- Christine Rampon
- Laboratoire Développement et Vieillissement de l'Endothélium CEA-Inserm EMI-0219, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang LY, Wang W, Peng JX, Yang JQ, Huang GW. Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol 2004; 10:3569-73. [PMID: 15534908 PMCID: PMC4611994 DOI: 10.3748/wjg.v10.i24.3569] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the difference in gene expression between solitary large hepatocellular carcinoma (SLHCC) and nodular hepatocellular carcinoma (NHCC).
METHODS: Polymerase chain reaction (PCR) products of 8464 human genes were spotted on a chip in array. DNAs were then fixed on a glass plate. Total RNA was isolated from freshly excised human SLHCC (n = 7) and NHCC (n = 15) tissues, and was reversely transcribed to cDNAs with the incorporation of fluorescent dUTP for preparation of hybridization probes. The mixed probes were then hybridized to the cDNA microarray. After highly stringent washing, cDNA microarray was scanned for the fluorescent signals to display the difference between the two kinds of HCC. In addition, the expression of RhoC and protocadherin LKC was also detected with the reverse transcriptase polymerase chain reaction (RT-PCR) method.
RESULTS: Among the 8464 human genes, 668 (7.89%) genes were expressed differentially at the mRNA levels between SLHCC and NHCC. Three hundred and fifty five (4.19%) genes, including protocadherin LKC, were up-regulated, whereas 313 (3.70%) genes, including RhoC, were down-regulated. The mRNA expression levels of RhoC and protocadherin LKC were confirmed by RT-PCR. Analysis of differentially expressed genes confirmed that our molecular data obtained by cDNA microarray were consistent with the published biochemical and clinical observations of SLHCC and NHCC.
CONCLUSION: cDNA microarray is an effective technique in screening the difference in gene expression between SLHCC and NHCC. Many of these differentially expressed genes are involved in the invasion and metastasis of HCC. Further analysis of these genes will help to understand the different molecular mechanisms of SLHCC and NHCC.
Collapse
Affiliation(s)
- Lian-Yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Changsha 410008, Hunan Province, China.
| | | | | | | | | |
Collapse
|
39
|
Makarenkova H, Sugiura H, Yamagata K, Owens G. Alternatively spliced variants of protocadherin 8 exhibit distinct patterns of expression during mouse development. ACTA ACUST UNITED AC 2004; 1681:150-6. [PMID: 15627506 DOI: 10.1016/j.bbaexp.2004.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 09/08/2004] [Accepted: 11/02/2004] [Indexed: 11/17/2022]
Abstract
Protocadherins, a subgroup of the cadherin superfamily of calcium-dependent cell adhesion molecules, are considered to play important roles in the developing embryo particularly in the central nervous system. The Protocadherin 8 (Pcdh8) gene comprises three coding exons in both human and mouse, and the exon junctions are precisely conserved between these two species. Alternative splicing of Pcdh8 RNA leads to the formation of two isoforms that differ in the length of the cytoplasmic domains. We have investigated the expression of these short and long variants of Pcdh8 during early mouse development by RT/PCR and in situ hybridization. We found that both isoforms were predominantly expressed in the nervous system, and that their expression patterns appeared to be developmentally regulated. However, the short variant had a broader pattern of expression than the long variant and was found in some non-neuronal tissues, such as paraxial mesoderm, developing somites, and in limb interdigital mesenchyme where massive programmed cell death occurs. The differential expression of two alternative cytoplasmic domain variants suggests that Pcdh8 may regulate cell adhesion in a variety of developmental processes, and that this may involve different intracellular interactions.
Collapse
Affiliation(s)
- Helen Makarenkova
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
40
|
Wang TF, Ding CN, Wang GS, Luo SC, Lin YL, Ruan Y, Hevner R, Rubenstein JLR, Hsueh YP. Identification of Tbr-1/CASK complex target genes in neurons. J Neurochem 2004; 91:1483-92. [PMID: 15584924 DOI: 10.1111/j.1471-4159.2004.02845.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tbr-1, a neuron-specific T-box transcription factor, plays a critical role in brain development. Here, we performed a computational search using the non-palindromic T-box binding sequence, namely the non-palindromic T-element, to determine the putative downstream target genes of Tbr-1. More than 20 identified genes containing the non-palindromic T-element in the 5' regulatory region were found expressed in brain. Luciferase reporter assays using cultured hippocampal neurons showed that overexpression of Tbr-1 and CASK-enhanced promoter activities of some of these putative target genes, including NMDAR subunit 2b (NR2b), glycine transporter, interleukin 7 receptor (IL-7R) and OX-2. Among these genes, NR2b promoter responded strongest to overexpression of Tbr-1 and CASK. Deletion of the non-palindromic T-elements from NR2b promoter impaired the induction by Tbr-1 and CASK. We also examined expression of these target genes in Tbr-1 knockout mice, it was found that NR2b expression was consistently downregulated. Similarly, both RNA and protein expression levels of NMDAR subunit 1 (NR1), which also contains the non-palindromic T-elements in its 5' regulatory region, were reduced in Tbr-1 knockout mice. We suggest that Tbr-1/CASK protein complex regulates expression of these downstream target genes and thus modulates neuronal activity and function.
Collapse
Affiliation(s)
- Ting-Fang Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Protocadherin (Pcad) is a group of molecules obtained by polymerase chain reaction (PCR) utilizing the sequence that is well preserved in the extracellular domain of cadherin. Sano et al. analyzed Pcad (PC42,43) that had been cloned from rats, and found that it basically had homology to cadherin, but contained more than six cadherin repeats with a completely different intracellular domains (Sano et al. 1993). In the present study, of the Pcad (Pcad-1,2) cloned from a human cDNA library, as-yet-unspecified Pcad-2 was analyzed for expression in the human fetal central nervous system (CNS). Northern blot analysis of adult human tissue showed that Pcad-2 was expressed in the brain and the placenta, and that Pcad-2 mRNA was expressed in actively dividing neural tumor cell lines. Monoclonal antibodies against Pcad-2 were then made, and the CNS of fetuses were immunohistochemically stained. The expression was hardly visible at the 6th week of pregnancy, and began to become visible along the nerve fiber in the brain stem at the 8th week, and spread over the entire brain at the 11th week. At the 18th week, however, expression in the nerve fascicles, which had been visible by that time, was no longer visible or had decreased. These results suggest that Pcad-2 appears relatively early in the critical stage of development of the fetal CNS, and is involved in the induction, fasciculation, and extension of axons.
Collapse
Affiliation(s)
- Hiroko Omi
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
42
|
Giouzeli M, Williams NA, Lonie LJ, DeLisi LE, Crow TJ. ProtocadherinX/Y, a candidate gene-pair for schizophrenia and schizoaffective disorder: a DHPLC investigation of genomic sequence. Am J Med Genet B Neuropsychiatr Genet 2004; 129B:1-9. [PMID: 15274028 DOI: 10.1002/ajmg.b.30036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protocadherin X and Protocadherin Y (PCDHX and PCDHY) are cell-surface adhesion molecules expressed predominantly in the brain. The PCDHX/Y gene-pair was generated by an X-Y translocation approximately 3 million years ago (MYA) that gave rise to the Homo sapiens-specific region of Xq21.3 and Yp11.2 homology. Genes within this region are expected to code for sexually dimorphic human characteristics, including, for example, cerebral asymmetry a dimension of variation that has been suggested is relevant to psychosis. We examined differences in patients with schizophrenic or schizoaffective psychosis in the genomic sequence of PCDHX and PCDHY in coding and adjacent intronic sequences using denaturing high performance liquid chromatography (DHPLC). Three coding variants were detected in PCDHX and two in PCDHY. However, neither the coding variants nor the intronic polymorphisms could be related to psychosis within families. Low sequence variation suggests selective pressure against sequence change in modern humans in contrast to the structural chromosomal and sequence changes including fixed X-Y differences that occurred in this region earlier in hominid evolution. Our findings exclude sequence variation in PCDHX/Y as relevant to the aetiology of psychosis. However, we note the unusual status of this region with respect to X-inactivation. Further investigation of the epigenetic control of PCDHX/Y in relation to psychosis is warranted.
Collapse
Affiliation(s)
- Maria Giouzeli
- Department of Psychiatry, POWIC SANE Research Centre, University of Oxford, Warneford Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Gooding JM, Yap KL, Ikura M. The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures. Bioessays 2004; 26:497-511. [PMID: 15112230 DOI: 10.1002/bies.20033] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity. Through intracellular interactions, cadherin enhances its adhesive properties binding the cytoskeleton via cytoplasmic associated factors alpha- catenin, beta-catenin and p120ctn. Recent structural studies on classic cadherins and these catenin molecules have provided new insight into the essential mechanisms underlying cadherin-mediated cell interaction and catenin-mediated cellular signalling. Remarkable structural diversity has been observed in beta-catenin recognition of other cellular factors including APC, Tcf and ICAT, proteins that contribute to or compete with cadherin/catenin functioning.
Collapse
Affiliation(s)
- Jane M Gooding
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
44
|
Brownstein Z, Ben-Yosef T, Dagan O, Frydman M, Abeliovich D, Sagi M, Abraham FA, Taitelbaum-Swead R, Shohat M, Hildesheimer M, Friedman TB, Avraham KB. The R245X mutation of PCDH15 in Ashkenazi Jewish children diagnosed with nonsyndromic hearing loss foreshadows retinitis pigmentosa. Pediatr Res 2004; 55:995-1000. [PMID: 15028842 DOI: 10.1203/01.pdr.0000125258.58267.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Usher syndrome is a frequent cause of the combination of deafness and blindness due to retinitis pigmentosa (RP). Five genes are known to underlie different forms of Usher syndrome type I (USH1). In the Ashkenazi Jewish population, the R245X mutation of the PCDH15 gene may be the most common cause of USH1 (Ben-Yosef T, Ness SL, Madeo AC, Bar-Lev A, Wolfman JH, Ahmed ZM, Desnick RK, Willner JP, Avraham KB, Ostrer H, Oddoux C, Griffith AJ, Friedman TB N Engl J Med 348: 1664-1670, 2003). To estimate what percentage of Ashkenazi Jewish children born with profound hearing loss will develop RP due to R245X, we examined the prevalence of the R245X PCDH15 mutation and its carrier rate among Ashkenazi Jews in Israel. Among probands diagnosed with nonsyndromic hearing loss not due to mutations of connexin 26 (GJB2) and/or connexin 30 (GJB6), and below the age of 10, 2 of 20 (10%) were homozygous for the R245X mutation. Among older nonsyndromic deaf individuals, no homozygotes were detected, although one individual was heterozygous for R245X. The carrier rate of the R245X mutation among the normal hearing Ashkenazi population in Israel was estimated at 1%. Ashkenazi Jewish children with profound prelingual hearing loss should be evaluated for the R245X PCDH15 mutation and undergo ophthalmologic evaluation to determine whether they will develop RP. Rehabilitation can then begin before loss of vision. Early use of cochlear implants in such cases may rescue these individuals from a dual neurosensory deficit.
Collapse
Affiliation(s)
- Zippora Brownstein
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Fat cadherins form a distinct subfamily of the cadherin gene superfamily, and are featured by their unusually large extracellular domain. In this work, we investigated the function of a mammalian Fat cadherin. Fat1 was localized at filopodial tips, lamellipodial edges, and cell–cell boundaries, overlapping with dynamic actin structures. RNA interference–mediated knockdown of Fat1 resulted in disorganization of cell junction–associated F-actin and other actin fibers/cables, disturbance of cell–cell contacts, and also inhibition of cell polarity formation at wound margins. Furthermore, we identified Ena/vasodilator-stimulated phosphoproteins as a potential downstream effector of Fat1. These results suggest that Fat1 regulates actin cytoskeletal organization at cell peripheries, thereby modulating cell contacts and polarity.
Collapse
Affiliation(s)
- Takuji Tanoue
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
46
|
McGarry LC, Winnie JN, Ozanne BW. Invasion of v-FosFBR-transformed cells is dependent upon histone deacetylase activity and suppression of histone deacetylase regulated genes. Oncogene 2004; 23:5284-92. [PMID: 15107823 DOI: 10.1038/sj.onc.1207687] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transformation of fibroblasts with the v-fos oncogene produces a highly invasive phenotype that is mediated by changes in gene expression. Inhibition of histone deacetylase (HDAC) activity with trichostatin A (TSA) or valproic acid (VPA) at concentrations that do not affect morphology, motility, chemotaxis or proliferation, strongly inhibits invasion and results in the re-expression of a significant proportion of those genes that are downregulated in the v-Fos-transformed cells. Independent expression of three of these re-expressed genes, (Ring1 and YY1 binding protein (RYBP); protocadherin gamma subfamily C,3 (PCDHGC3); and signal transducer and activator of transcription 6 (STAT6)) in Fos-transformed cells, has no effect on morphology, motility, chemotaxis or proliferation, but strongly inhibits invasion. Therefore, we conclude that the ability of v-Fos-transformed cells to invade is dependent upon repression of gene expression through either direct or indirect HDAC activity.
Collapse
Affiliation(s)
- Lynn C McGarry
- Beatson Laboratories, Beatson Institute for Cancer Research, Cancer Research UK, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
47
|
Johnson KJ, Zecevic A, Kwon EJ. Protocadherin α3 Acts at Sites Distinct from Classic Cadherins in Rat Testis and Sperm1. Biol Reprod 2004; 70:303-12. [PMID: 14522826 DOI: 10.1095/biolreprod.103.021758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The testis expresses a variety of cadherin superfamily members including classic cadherins and protocadherins. This report describes the first localization of a protocadherin protein in testis and sperm. After cloning rat cDNAs for protocadherin alpha3 and alpha4, isoform-specific polyclonal antibodies were generated against protocadherin alpha3. Western blotting of rat testis showed that protocadherin alpha3 was solubilized completely by Triton X-100, in contrast to the adhesion junction components N-cadherin, beta-catenin, and p120 catenin. Corroborating this data, protocadherin alpha3 was immunolocalized to the spermatid acrosomal area, intercellular bridge, and flagellum, but not classic cadherin-based adhesion junctions. Acrosome-associated protocadherin alpha3 was first detected at step 8 of spermiogenesis, and this association remained on cauda epididymal sperm. Acrosome immunostaining was reduced, but present, in acrosome-reacted sperm. Spermatid intercellular bridges became positive for protocadherin alpha3 coincident with the appearance of plectin, occurring at spermiogenic steps 8 to 9, and elongate spermatid bridges remained positive throughout spermatogenesis. The developing flagellum was uniformly immunostained for protocadherin alpha3 up to approximately spermiogenic step 17. Subsequently, flagellar immunostaining was confined to the principal piece, and this pattern continued in cauda epididymal sperm. These data show that protocadherin alpha3 performs functions unique from classic cadherins in spermatogenesis and suggest a role for protocadherin alpha3 in organizing germ cell-specific structures including the intercellular bridge, flagellum, and acrosome.
Collapse
Affiliation(s)
- Kamin J Johnson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
48
|
Capehart AA, Kern CB. Identification of ?A-like protocadherin expressed during chick development. J Cell Biochem 2003; 90:608-18. [PMID: 14523994 DOI: 10.1002/jcb.10670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The protocadherins are calcium-dependent cell adhesion molecules of the cadherin superfamily that have been described in numerous species. Although less well characterized than classical cadherins, the protocadherins are also thought to facilitate critical cell-cell interactions during embryonic development. We have cloned a novel protocadherin from the embryonic chick utilizing a monoclonal antibody produced against a peanut agglutinin-binding fraction of cultured chick limb tissue to screen a lambdaZAP cDNA expression library from the stage 25 limb. A 2.8 kb cDNA clone was obtained that encoded multiple cadherin-like ectodomains. Northern blotting revealed a single 4.6 kb RNA transcript that was highly enriched in the stage 43 chick brain. Utilization of 3' Rapid amplification of cDNA ends (RACE) identified the entire 2.4 kb reading frame. The chick protocadherin contained five cadherin-like extracellular repeats and a highly conserved cytoplasmic domain. Amino acid alignment of the extracellular domains revealed marked identity to the human gammaA protocadherin subfamily. In situ hybridization showed low levels of mRNA localization in several developing chick tissues, but stronger expression in the neural tube and dorsal root ganglia at stage 27. In the stage 43 chick brain, protocadherin mRNA was noted in discrete regions, particularly within the developing optic lobe. As for protocadherins described in other species, these results suggest that this novel gammaA-like protocadherin may also play a role in chick neural development.
Collapse
Affiliation(s)
- Anthony A Capehart
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA.
| | | |
Collapse
|
49
|
Hampton LL, Wright CG, Alagramam KN, Battey JF, Noben-Trauth K. A new spontaneous mutation in the mouse Ames waltzer gene, Pcdh15. Hear Res 2003; 180:67-75. [PMID: 12782354 DOI: 10.1016/s0378-5955(03)00107-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recessive deafness mutation in the mouse arose spontaneously and was identified in a colony segregating a null allele of the gastrin-releasing peptide receptor (Grpr) locus. Auditory-evoked brain stem response measurements revealed deafness in 7-week-old affected mice. By linkage analyses, the mutant phenotype was mapped near marker D10Mit186 and the protocadherin gene Pcdh15. As shown by complementation testing, the new mutation is allelic with Ames waltzer (Pcdh15(av)). Sequencing mutant-derived brain Pcdh15 cDNAs identified the insertion of a cytosine residue at nucleotide position c2099 (2099insC), which results in a frame-shift and premature stop codon. Abnormal stereocilia on inner and outer hair cells of the organ of Corti were identified by scanning electron microscopy as early as postnatal day 0 and cross-sectional histology revealed severe neuroepithelial degeneration in cochleas of 30-50-day-old mutants. The new allele of Ames waltzer, designated Pcdh15(av-Jfb), may aid in studying the histopathology associated with Usher syndrome type 1F, which is caused by a functional null allele of PCDH15.
Collapse
Affiliation(s)
- Lori L Hampton
- G-Protein Coupled Receptors Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Aoki E, Kimura R, Suzuki ST, Hirano S. Distribution of OL-protocadherin protein in correlation with specific neural compartments and local circuits in the postnatal mouse brain. Neuroscience 2003; 117:593-614. [PMID: 12617965 DOI: 10.1016/s0306-4522(02)00944-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OL-protocadherin (OL-pc) is a cell adhesion molecule that belongs to the cadherin superfamily. A previous study showed that expression of OL-pc mRNA was specific to certain brain nuclei including those of the olfactory and limbic systems, thus suggesting its involvement in neural circuit formation. Here, we examined the distribution of OL-pc protein in the postnatal mouse brain by immunohistochemistry to confirm the possibility of such a role. The results showed that the protein could be mapped to many brain compartments including brain nuclei and higher subdivisions as previously observed for the expression pattern of the mRNA. Sharp boundaries of the distribution were often seen in areas such as the interpedunclar nucleus, cerebellar cortex, and inferior olive. In addition, the protein was detected in some fibers that could not be examined by the previous study using in situ hybridization. For example, prominent staining was noted in the stria medularis, stria terminalis, fasciculus retroflexus, optic tract, and inferior thalamic radiation, structures that seem to connect OL-pc-positive brain regions. These OL-pc-positive brain nuclei and fiber tracts coincide with some local circuits of functional systems such as the olfactory system, nigrostriatal projection, olivo-cerebellar projection, and visual system. These results support the possibility that OL-pc is involved in the formation of specific neural compartments and circuits in the developing brain.
Collapse
Affiliation(s)
- E Aoki
- Institute for Developmental Research, Aichi Human Service Center, Kamiya-cho 713-8, Kasugai-City, Aichi 480-0392, Japan
| | | | | | | |
Collapse
|