1
|
Torres-Romero JC, Alvarez-Sánchez ME, Morales-Reyna M, Bellavista-Caballero A, Arreola R, Alvarez-Sánchez LC, Lara-Riegos J. Metacaspases-Like Proteases of Trichomonas vaginalis: In Silico Identification and Characterization. J Basic Microbiol 2025:e2400786. [PMID: 39865582 DOI: 10.1002/jobm.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Metacaspases (MCA), are cysteine-dependent proteases closely related to caspases. In protozoa, MCA plays an important role in programmed cell death (PCD). In Trichomonas vaginalis, a kind of PCD that resembles apoptosis has been described, but the activators of this mechanism have not been demonstrated. We performed a genome-wide in silico analysis in the T. vaginalis database using consensus MCA domains. A total of 15 protein annotations for MCA-like sequences were retrieved. Only 7/15 (TvMCA1-6 and TvMCA9) of the sequences were annotated as putative MCA and exhibited a similar range of amino acid length in comparison to the consensus sequences used for the query. By in silico analysis, we found that they are thermostable, hydrophilic proteins with molecular weights ranging from 27 to 33 KDa and their theoretical isoelectric points are in a 5.08-8.57 range. The phylogenetic analysis showed the similarity of conserved motifs for the predicted TvMCA proteins. 3D structure prediction by homology modeling demonstrated that TvMCA proteins show a similar conformation to crystallized MCA proteins. Taken together, our results indicate that these trichomonad proteins have conserved sequences like MCA proteins and suggest that they may be responsible for proteolytic activity during a PCD-like mechanism in this parasite.
Collapse
Affiliation(s)
- Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Marcos Morales-Reyna
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico, México
| | - Andrea Bellavista-Caballero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, México City, México
| | - Leidi C Alvarez-Sánchez
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
2
|
Blanco CM, de Souza HADS, Martins PDC, Almeida-Silva J, Suarez-Fontes AM, Chaves YO, Vannier-Santos MA, Pratt-Riccio LR, Daniel-Ribeiro CT, Lopes SCP, Totino PRR. Cell Death of P. vivax Blood Stages Occurs in Absence of Classical Apoptotic Events and Induces Eryptosis of Parasitized Host Cells. Pathogens 2024; 13:673. [PMID: 39204273 PMCID: PMC11357032 DOI: 10.3390/pathogens13080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Elucidation of pathways regulating parasite cell death is believed to contribute to identification of novel therapeutic targets for protozoan diseases, and in this context, apoptosis-like cell death has been reported in different groups of protozoa, in which metacaspases seem to play a role. In the genus Plasmodium, apoptotic markers have been detected in P. falciparum and P. berghei, and no study focusing on P. vivax cell death has been reported so far. In the present study, we investigated the susceptibility of P. vivax to undergo apoptotic cell death after incubating mature trophozoites with the classical apoptosis inducer staurosporine. As assessed by flow cytometry assays, staurosporine inhibited parasite intraerythrocytic development, which was accompanied by a decrease in cell viability, evidenced by reduced plasmodial mitochondrial activity. However, typical signs of apoptosis, such as DNA fragmentation, chromatin condensation, and nuclear segregation, were not detected in the parasites induced to cell death, and no significant alteration in metacaspase gene expression (PvMCA1) was observed under cell death stimulus. Interestingly, dying parasites positively modulated cell death (eryptosis) of host erythrocytes, which was marked by externalization of phosphatidylserine and cell shrinkage. Our study shows for the time that P. vivax blood stages may not be susceptible to apoptosis-like processes, while they could trigger eryptosis of parasitized cells by undergoing cell death. Further studies are required to elucidate the cellular machinery involved in cell death of P. vivax parasites as well as in the modulation of host cell death.
Collapse
Affiliation(s)
- Carolina Moreira Blanco
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Hugo Amorim dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Priscilla da Costa Martins
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Juliana Almeida-Silva
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Ana Marcia Suarez-Fontes
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus 69057-070, Brazil; (Y.O.C.); (S.C.P.L.)
| | - Marcos André Vannier-Santos
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Stefanie Costa Pinto Lopes
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus 69057-070, Brazil; (Y.O.C.); (S.C.P.L.)
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| |
Collapse
|
3
|
Thomas L, Khan NA, Siddiqui R, Alawfi BS, Lloyd D. Cell death of Acanthamoeba castellanii following exposure to antimicrobial agents commonly included in contact lens disinfecting solutions. Parasitol Res 2023; 123:16. [PMID: 38060008 DOI: 10.1007/s00436-023-08061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Several antimicrobial agents are commonly included in contact lens disinfectant solutions including chlorhexidine diacetate (CHX), polyhexamethylene biguanide (PHMB) or myristamidopropyl dimethylamine (MAPD); however, their mode of action, i.e. necrosis versus apoptosis is incompletely understood. Here, we determined whether a mechanism of cell death resembling that of apoptosis was present in Acanthamoeba castellanii of the T4 genotype (NEFF) following exposure to the aforementioned antimicrobials using the anticoagulant annexin V that undergoes rapid high affinity binding to phosphatidylserine in the presence of calcium, making it a sensitive probe for phosphatidylserine exposure. The results revealed that under the conditions employed in this study, an apoptotic pathway of cell death in this organism at the tested conditions does not occur. Our findings suggest that necrosis is the likely mode of action; however, future mechanistic studies should be accomplished in additional experimental conditions to further comprehend the molecular mechanisms of cell death in Acanthamoeba.
Collapse
Affiliation(s)
- Louise Thomas
- Microbiology Research, School of Biosciences, Cardiff University, P. O. Box 915, Cardiff, CF10 3AX, UK
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS, UK
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - David Lloyd
- Microbiology Research, School of Biosciences, Cardiff University, P. O. Box 915, Cardiff, CF10 3AX, UK.
| |
Collapse
|
4
|
Bandyopadhyay A, Ghosh SK. Apoptosis-inducing factor-like protein-mediated stress and metronidazole-responsive programmed cell death pathway in Entamoeba histolytica. Mol Microbiol 2023; 119:640-658. [PMID: 37037799 DOI: 10.1111/mmi.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Apoptosis-inducing factor (AIF) is the major component of the caspase-independent cell death pathway that is considered to be evolutionarily ancient. Apoptosis is generally evolved with multicellularity as a prerequisite for the elimination of aged, stressed, or infected cells promoting the survival of the organism. Our study reports the presence of a putative AIF-like protein in Entamoeba histolytica, a caspase-deficient primitive protozoan, strengthening the concept of occurrence of apoptosis in unicellular organisms as well. The putative cytoplasmic EhAIF migrates to the nucleus on receiving stresses that precede its binding with DNA, following chromatin degradation and chromatin condensation as evident from both in vitro and in vivo experiments. Down-regulating the EhAIF expression attenuates the apoptotic features of insulted cells and increases the survival potency in terms of cell viability and vitality of the trophozoites, whereas over-expression of the EhAIF effectively enhances the phenomena. Interestingly, metronidazole, the most widely used drug for amoebiasis treatment, is also potent to elicit similar AIF-mediated cell death responses like other stresses indicating the AIF-mediated cell death could be the probable mechanism of trophozoite-death by metronidazole treatment. The occurrence of apoptosis in a unicellular organism is an interesting phenomenon that might signify the altruistic death that overall improves the population health.
Collapse
Affiliation(s)
| | - Sudip Kumar Ghosh
- Department of Biotechnology, IIT Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
5
|
Oxidative damage by 1,10-phenanthroline-5,6-dione and its silver and copper complexes lead to apoptotic-like death in Trichomonas vaginalis. Res Microbiol 2022; 174:104015. [PMID: 36566772 DOI: 10.1016/j.resmic.2022.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Trichomoniasis is a neglected, parasitic, sexually transmitted infection. Resistance to the only approved drugs is increasing worldwide, leaving millions of people without alternative medications. Thus, the search for new therapeutic options against this infection is necessary. Previously, our group reported that 1,10-phenanthroline-5,6-dione (phendione) and its silver(I) and copper(II) complexes (abbreviated as Ag-phendione and Cu-phendione, respectively) presented activity against the amitochondriate parasite Trichomonas vaginalis, with Cu-phendione being the most effective (IC50 = 0.84 μM). Methods: qRT-PCR, SEM, flow cytometry. The current study on the effects of Cu-phendione on the antioxidant metabolism of T. vaginalis by qRT-PCR revealed that the complex causes a decrease in the relative expression of mRNA of NADH oxidase, flavin reductase, superoxide dismutase, peroxiredoxin, iron-sulfur flavoprotein, rubrerythrin and osmotically inducible proteins. In contrast, the mRNA expression of flavodiiron protein was increased. Detoxification-related enzymes were downregulated, impairing oxygen metabolism in trophozoites and triggering a subsequent accumulation of the superoxide anion. Although no DNA fragmentation was observed, the treatment of parasites with Cu-phendione led to a significant reduction in cell size and a concomitant increase in granularity. The complex promoted phosphatidylserine exposure at the plasma membrane (as judged by Annexin V binding) and propidium iodide was unable to passively permeate the parasites. All of these outcomes are classical hallmarks of cell death by apoptosis. In essence, the trichomonacidal effect of Cu-phendione operates through redox homeostasis imbalance, which is a mode of action that is quite distinct from that caused by metronidazole.
Collapse
|
6
|
Lam AYF, Vuong D, Jex AR, Piggott AM, Lacey E, Emery-Corbin SJ. TriTOX: A novel Trichomonas vaginalis assay platform for high-throughput screening of compound libraries. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:68-80. [PMID: 33601283 PMCID: PMC7897990 DOI: 10.1016/j.ijpddr.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
Trichomonas vaginalis is a neglected urogenital parasitic protist that causes 170 million cases of trichomoniasis annually, making it the most prevalent non-viral, sexually transmitted disease. Trichomoniasis treatment relies on nitroheterocyclics, such as metronidazole. However, with increasing drug-resistance, there is an urgent need for novel anti-trichomonals. Little progress has been made to translate anti-trichomonal research into commercialised therapeutics, and the absence of a standardised compound-screening platform is the immediate stumbling block for drug-discovery. Herein, we describe a simple, cost-effective growth assay for T. vaginalis and the related Tritrichomonas foetus. Tracking changes in pH were a valid indicator of trichomonad growth (T. vaginalis and T. foetus), allowing development of a miniaturised, chromogenic growth assay based on the phenol red indicator in 96- and 384-well microtiter plate formats. The outputs of this assay can be quantitatively and qualitatively assessed, with consistent dynamic ranges based on Z' values of 0.741 and 0.870 across medium- and high-throughput formats, respectively. We applied this high-throughput format within the largest pure-compound microbial metabolite screen (812 compounds) for T. vaginalis and identified 43 hit compounds. We compared these identified compounds to mammalian cell lines, and highlighted extensive overlaps between anti-trichomonal and anti-tumour activity. Lastly, observing nanomolar inhibition of T. vaginalis by fumagillin, and noting this compound has reported activity in other protists, we performed in silico analyses of the interaction of fumagillin with its molecular target methionine aminopeptidase 2 for T. vaginalis, Giardia lamblia and Entamoeba histolytica, highlighting potential for fumagillin as a broad-spectrum anti-protistal against microaerophilic protists. Together, this new platform will accelerate drug-discovery efforts, underpin drug-resistance screening in trichomonads, and contributing to a growing body of evidence highlighting the potential of microbial natural products as novel anti-protistals.
Collapse
Affiliation(s)
- Alexander Y F Lam
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, Australia; Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Nair JJ, van Staden J. Antiprotozoal alkaloid principles of the plant family Amaryllidaceae. Bioorg Med Chem Lett 2019; 29:126642. [PMID: 31515186 DOI: 10.1016/j.bmcl.2019.126642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Protozoan-borne diseases are prominent amongst diseases caused by parasites. Given their alarming morbidity and mortality statistics, there is ever growing interest in new therapies against these diseases. Whilst synthetic drugs such as benznidazole and melarsoprol have had a profound influence on the clinical setup, there has been significant interest in the phytochemical platform to also deliver such drug candidates. The plant family Amaryllidaceae is recognizable for its isoquinoline alkaloids, which exhibit attractive molecular architectures and interesting biological properties. This survey focuses on the antiprotozoal activities of 73 of such substances described in 18 different species of the Amaryllidaceae. Of these, 2-O-acetyllycorine was identified as the most potent (IC50 0.15 μg/mL against Trypansoma brucei brucei). Also considered are structure-activity relationships which have served to modulate activities, as well as the plausible mechanisms that underpin these effects and afford insight to the Amaryllidaceae alkaloid antiprotozoal pharmacophore.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
8
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C. Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
9
|
Gadelha APR, Bravim B, Vidal J, Reignault LC, Cosme B, Huber K, Bracher F, de Souza W. Alterations on growth and cell organization of Giardia intestinalis trophozoites after treatment with KH-TFMDI, a novel class III histone deacetylase inhibitor. Int J Med Microbiol 2019; 309:130-142. [PMID: 30665874 DOI: 10.1016/j.ijmm.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.
Collapse
Affiliation(s)
- Ana Paula R Gadelha
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Bárbara Bravim
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Juliana Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lissa Catherine Reignault
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Cosme
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wanderley de Souza
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Trichomonas vaginalis Macrophage Migration Inhibitory Factor Mediates Parasite Survival during Nutrient Stress. mBio 2018; 9:mBio.00910-18. [PMID: 29946046 PMCID: PMC6020296 DOI: 10.1128/mbio.00910-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trichomonas vaginalis is responsible for the most prevalent non-viral sexually transmitted disease worldwide, and yet the mechanisms used by this parasite to establish and maintain infection are poorly understood. We previously identified a T. vaginalis homologue (TvMIF) of a human cytokine, human macrophage migration inhibitory factor (huMIF). TvMIF mimics huMIF’s role in increasing cell growth and inhibiting apoptosis in human host cells. To interrogate a role of TvMIF in parasite survival during infection, we asked whether overexpression of TvMIF (TvMIF-OE) confers an advantage to the parasite under nutrient stress conditions by comparing the survival of TvMIF-OE parasites to that of empty vector (EV) parasites. We found that under conditions of serum starvation, overexpression of TvMIF resulted in increased parasite survival. Serum-starved parasites secrete 2.5-fold more intrinsic TvMIF than unstarved parasites, stimulating autocrine and paracrine signaling. Similarly, we observed that addition of recombinant TvMIF increased the survival of the parasites in the absence of serum. Recombinant huMIF likewise increased the parasite survival in the absence of serum, indicating that the parasite may use this host survival factor to resist its own death. Moreover, TvMIF-OE parasites were found to undergo significantly less apoptosis and reactive oxygen species (ROS) generation under conditions of serum starvation, consistent with increased survival being the result of blocking ROS-induced apoptosis. These studies demonstrated that a parasitic MIF enhances survival under adverse conditions and defined TvMIF and huMIF as conserved survival factors that exhibit cross talk in host-pathogen interactions. Macrophage migration inhibitory factor (MIF) is a conserved protein found in most eukaryotes which has been well characterized in mammals but poorly studied in other eukaryotes. The limited analyses of MIF proteins found in unicellular eukaryotes have focused exclusively on the effect of parasitic MIF on the mammalian host. This was the first study to assess the function of a parasite MIF in parasite biology. We demonstrate that the Trichomonas vaginalis MIF functions to suppress cell death induced by apoptosis, thereby enhancing parasite survival under adverse conditions. Our research reveals a conserved survival mechanism, shared by a parasite and its host, and indicates a role for a conserved protein in mediating cross talk in host-pathogen interactions.
Collapse
|
11
|
Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3-GENES GENOMES GENETICS 2018; 8:2121-2134. [PMID: 29703784 PMCID: PMC5982838 DOI: 10.1534/g3.118.200295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptotic cell death is a type of eukaryotic cell death. In animals, it regulates development, is involved in cancer suppression, and causes cell death during pathological aging of neuronal cells in neurodegenerative diseases such as Alzheimer's. Mitochondrial apoptotic-like cell death, a form of primordial apoptosis, also occurs in unicellular organisms. Here, we ask the question why the apoptosis machinery has been acquired and maintained in unicellular organisms and attempt to answer it by performing ancestral state reconstruction. We found indications of an ancient evolutionary arms race between protomitochondria and host cells, leading to the establishment of the currently existing apoptotic pathways. According to this reconstruction, the ancestral protomitochondrial apoptosis machinery contained both caspases and metacaspases, four types of apoptosis induction factors (AIFs), both fungal and animal OMI/HTR proteases, and various apoptotic DNases. This leads to the prediction that in extant unicellular eukaryotes, the apoptotic factors are involved in mitochondrial respiration and their activity is needed exclusively in aerobic conditions. We test this prediction experimentally using yeast and find that a loss of the main apoptotic factors is beneficial under anaerobic conditions yet deleterious under aerobic conditions in the absence of lethal stimuli. We also point out potential medical implications of these findings.
Collapse
|
12
|
Baig AM, Lalani S, Khan NA. Apoptosis in Acanthamoeba castellanii
belonging to the T4 genotype. J Basic Microbiol 2017; 57:574-579. [DOI: 10.1002/jobm.201700025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/02/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Abdul M. Baig
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Salima Lalani
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Naveed A. Khan
- Faculty of Science and Technology, Department of Biological Sciences; Sunway University; Bandar Sunway Selangor Malaysia
| |
Collapse
|
13
|
Arbabi M, Delavari M, Fakhrieh Kashan Z, Taghizadeh M, Hooshyar H. Ginger (Zingiber officinale) induces apoptosis in Trichomonas vaginalis in vitro. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.11.691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13:031001. [DOI: 10.1088/1478-3975/13/3/031001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Matadamas-Martínez F, Castillo R, Hernández-Campos A, Méndez-Cuesta C, de Souza W, Gadelha AP, Nogueda-Torres B, Hernández JM, Yépez-Mulia L. Proteomic and ultrastructural analysis of the effect of a new nitazoxanide-N-methyl-1H-benzimidazole hybrid against Giardia intestinalis. Res Vet Sci 2016; 105:171-9. [DOI: 10.1016/j.rvsc.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
|
16
|
Novel insights into the molecular events linking to cell death induced by tetracycline in the amitochondriate protozoan Trichomonas vaginalis. Antimicrob Agents Chemother 2015; 59:6891-903. [PMID: 26303799 DOI: 10.1128/aac.01779-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Trichomonas vaginalis colonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. The in vitro effect of TET on the growth of T. vaginalis was examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome of T. vaginalis in response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistant T. vaginalis isolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we provide in vitro evidence that TET is a potential alternative therapeutic choice for treating MTZ-resistant T. vaginalis. The in-depth transcriptomic signatures in T. vaginalis upon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms.
Collapse
|
17
|
Cheng WH, Huang KY, Huang PJ, Hsu JH, Fang YK, Chiu CH, Tang P. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit Vectors 2015. [PMID: 26205151 PMCID: PMC4513698 DOI: 10.1186/s13071-015-1000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. Methods T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. Results We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. Conclusion The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1000-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Kuo-Yang Huang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jo-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Yi-Kai Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Morin-Adeline V, Fraser ST, Stack C, Šlapeta J. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts. Exp Parasitol 2015; 157:68-77. [PMID: 26160677 DOI: 10.1016/j.exppara.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023]
Abstract
The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity.
Collapse
Affiliation(s)
| | - Stuart T Fraser
- Disciplines of Physiology, Anatomy & Histology, School of Medical Sciences, University of Sydney, NSW, Australia
| | - Colin Stack
- School of Science and Health, University of Western Sydney, NSW, Australia
| | - Jan Šlapeta
- Faculty of Veterinary Science, University of Sydney, NSW, Australia.
| |
Collapse
|
19
|
The effect of 3-(biphenyl-4-yl)-3-hydoxyquinuclidine (BPQ-OH) and metronidazole on Trichomonas vaginalis: a comparative study. Parasitol Res 2014; 113:2185-97. [DOI: 10.1007/s00436-014-3871-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
|
20
|
Medel Flores O, Gómez García C, Sánchez Monroy V, Villalba Magadaleno JDA, Nader García E, Pérez Ishiwara DG. Entamoeba histolytica P-glycoprotein (EhPgp) inhibition, induce trophozoite acidification and enhance programmed cell death. Exp Parasitol 2013; 135:532-40. [DOI: 10.1016/j.exppara.2013.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/15/2013] [Accepted: 08/25/2013] [Indexed: 12/31/2022]
|
21
|
Gannavaram S, Debrabant A. Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity. Front Cell Infect Microbiol 2012; 2:95. [PMID: 22919685 PMCID: PMC3417670 DOI: 10.3389/fcimb.2012.00095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/21/2012] [Indexed: 11/13/2022] Open
Abstract
Demonstration of features of a programmed cell death (PCD) pathway in protozoan parasites initiated a great deal of interest and debate in the field of molecular parasitology. Several of the markers typical of mammalian apoptosis have been shown in Leishmania which suggested the existence of an apoptosis like death in these organisms. However, studies to elucidate the downstream events associated with phosphotidyl serine exposure, loss of mitochondrial membrane potential, cytochrome c release, and caspase-like activities in cells undergoing such cell death remain an ongoing challenge. Recent advances in genome sequencing, chemical biology should help to solve some of these challenges. Leishmania genetic mutants that lack putative regulators/effectors of PCD pathway should not only help to demonstrate the mechanisms of PCD but also provide tools to better understand the putative role for this pathway in population control and in the establishment of a successful infection of the host.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
22
|
Subversion of Immunity by Leishmania amazonensis Parasites: Possible Role of Phosphatidylserine as a Main Regulator. J Parasitol Res 2012; 2012:981686. [PMID: 22518276 PMCID: PMC3306939 DOI: 10.1155/2012/981686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/26/2011] [Indexed: 12/18/2022] Open
Abstract
Leishmania amazonensis parasites cause progressive disease in most inbred mouse strains and are associated with the development of diffuse cutaneous leishmaniasis in humans. The poor activation of an effective cellular response is correlated with the ability of these parasites to infect mononuclear phagocytic cells without triggering their activation or actively suppressing innate responses of these cells. Here we discuss the possible role of phosphatidylserine exposure by these parasites as a main regulator of the mechanism underlying subversion of the immune system at different steps during the infection.
Collapse
|
23
|
Giordani RB, Vieira PDB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. PHYTOCHEMISTRY 2011; 72:645-650. [PMID: 21324496 DOI: 10.1016/j.phytochem.2011.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 05/30/2023]
Abstract
In this study, the mechanism of action of the pro-apoptotic alkaloid lycorine on an amitochondriate cell, the parasite Trichomonas vaginalis, was investigated. The cytotoxicity of lycorine against T. vaginalis was studied from 2.5 to 1000μM and several important ultrastructural alterations were observed by electron microscopy. Lycorine arrested the T. vaginalis cell cycle, although no hallmarks of apoptosis, such as apoptotic bodies, were observed. Consequently, the underlying mechanism of action fails to completely fulfill the criteria for apoptosis. However, some similarities to paraptotic cell death were observed.
Collapse
Affiliation(s)
- Raquel Brandt Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaczanowski S, Sajid M, Reece SE. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors 2011; 4:44. [PMID: 21439063 PMCID: PMC3077326 DOI: 10.1186/1756-3305-4-44] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/25/2011] [Indexed: 11/10/2022] Open
Abstract
Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.
Collapse
Affiliation(s)
- Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa Pawinskiego 5A 02-106, Poland.
| | | | | |
Collapse
|
25
|
Giordani RB, Vieira PDB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T. Candimine-induced cell death of the amitochondriate parasite Trichomonas vaginalis. JOURNAL OF NATURAL PRODUCTS 2010; 73:2019-2023. [PMID: 21105684 DOI: 10.1021/np100449g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Candimine (1), an alkaloid from the bulbs of Hippeastrum morelianum, was found to be cytotoxic for the amitochondriate parasite Trichomonas vaginalis. Candimine (1) induced cell death with an unprecedented group of effects that failed to fulfill the criteria for apoptosis and apoptosis-like death already reported in trichomonads. Arrest of the parasite cell cycle, and morphologic and ultrastructural alterations, including marked cytoplasmic vacuolization, were induced by 1. The present findings suggest some similarities to paraptotic cell death, described for multicellular organisms. This study contributes to both a better understanding of the biological effects of 1 and T. vaginalis cell biology.
Collapse
Affiliation(s)
- Raquel B Giordani
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Nandi N, Sen A, Banerjee R, Kumar S, Kumar V, Ghosh AN, Das P. Hydrogen peroxide induces apoptosis-like death in Entamoeba histolytica trophozoites. Microbiology (Reading) 2010; 156:1926-1941. [DOI: 10.1099/mic.0.034066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (PCD) is an essential process in the growth and development of multicellular organisms. However, accumulating evidence indicates that unicellular eukaryotes can also undergo PCD with apoptosis-like features. This study demonstrates that after exposure to 0.8 mM H2O2 for 9 h Entamoeba histolytica presents morphological and biochemical evidence of apoptosis-like death. Morphological characteristics of apoptosis-like death including DNA fragmentation, increased vacuolization, nuclear condensation and cell rounding were observed for H2O2-exposed trophozoites with preservation of membrane integrity. Biochemical alteration in ion fluxes is also a key feature in PCD, and H2O2-exposed trophozoites showed overproduction of reactive oxygen species, increased cytosolic Ca2+ and decreased intracellular pH. Phosphatidylserine was also found to be expressed in the outer leaflet of the plasma membrane of the H2O2-treated trophozoites. Pretreatment with the cysteine protease inhibitor E-64d, the extracellular and intracellular Ca2+ chelators EGTA and BAPTA/AM, and the Ca2+ influx inhibitor verapamil prior to H2O2 exposure abolished DNA fragmentation. The oxidatively stressed trophozoites also showed an increased calpain activity, indicating involvement of Ca2+-dependent calpain-like cysteine proteases in PCD of E. histolytica. A homogeneous caspase assay showed no significant caspase activity, and administration of caspase 1 inhibitor also did not prevent the death phenotype for the oxidatively stressed trophozoites, indicating a caspase-independent apoptosis-like death. Our observations clearly demonstrate that there is a distinct calpain-dependent but caspase-independent pathway for apoptosis-like death in oxidatively stressed E. histolytica trophozoites.
Collapse
Affiliation(s)
- Nilay Nandi
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Abhik Sen
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Rajdeep Banerjee
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Sudeep Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Vikash Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Amar Nath Ghosh
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata-700010, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| |
Collapse
|
28
|
Staurosporine-induced programmed cell death in Blastocystis occurs independently of caspases and cathepsins and is augmented by calpain inhibition. Microbiology (Reading) 2010; 156:1284-1293. [DOI: 10.1099/mic.0.034025-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the protozoan parasite Blastocystis exhibits apoptotic features with caspase-like activity upon exposure to a cytotoxic monoclonal antibody or the anti-parasitic drug metronidazole. The present study reports that staurosporine (STS), a common apoptosis inducer in mammalian cells, also induces cytoplasmic and nuclear features of apoptosis in Blastocystis, including cell shrinkage, phosphatidylserine (PS) externalization, maintenance of plasma membrane integrity, extensive cytoplasmic vacuolation, nuclear condensation and DNA fragmentation. STS-induced PS exposure and DNA fragmentation were abolished by the mitochondrial transition pore blocker cyclosporine A and significantly inhibited by the broad-range cysteine protease inhibitor iodoacetamide. Interestingly, the apoptosis phenotype was insensitive to inhibitors of caspases and cathepsins B and L, while calpain-specific inhibitors augmented the STS-induced apoptosis response. While the identities of the proteases responsible for STS-induced apoptosis warrant further investigation, these findings demonstrate that programmed cell death in Blastocystis is complex and regulated by multiple mediators.
Collapse
|
29
|
Corrêa G, Vilela R, Menna-Barreto RF, Midlej V, Benchimol M. Cell death induction in Giardia lamblia: Effect of beta-lapachone and starvation. Parasitol Int 2009; 58:424-37. [DOI: 10.1016/j.parint.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/28/2009] [Accepted: 08/10/2009] [Indexed: 12/18/2022]
|
30
|
QI XH, CHEN XM, FENG ZQ, GUAN XH, WU J, CHEN Q, KAN YJ, TONG H. Preparation, Characterization and Preliminary Trichomonacidal Effect of Poly Aspartic Acid-metronidazole Nanoprodrug*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Segovia M, Berges JA. INHIBITION OF CASPASE-LIKE ACTIVITIES PREVENTS THE APPEARANCE OF REACTIVE OXYGEN SPECIES AND DARK-INDUCED APOPTOSIS IN THE UNICELLULAR CHLOROPHYTE DUNALIELLA TERTIOLECTA(1). JOURNAL OF PHYCOLOGY 2009; 45:1116-1126. [PMID: 27032357 DOI: 10.1111/j.1529-8817.2009.00733.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When the chlorophyte alga Dunaliella tertiolecta Butcher is placed in darkness, a form of programmed cell death with many similarities to apoptosis is induced, including the induction of caspase-like proteases. Many uncertainties about the regulation and mediators that participate in the process remain. To examine the relationship between caspase-like activities and different apoptotic events (i.e., phosphatidylserine [PS] translocation), increases in membrane permeability and numbers of dead cells revealed by SYTOX-green staining, and the generation of reactive oxygen species (ROS), we used the broad-range caspase inhibitor Boc-D-FMK to block the activity of the whole class of caspase-like proteins simultaneously. In the presence of the inhibitor, ROS were not produced, and cells did not die. Loss of membrane asymmetry, indicated by external labeling of PS by annexin V, was apparent at midstages of light deprivation, although it did not conform to the typical pattern for PS exposure observed in metazoans or vascular plants, which occurs at early stages of the apoptotic event. Thus, we have evidence for a link between ROS and cell death involving caspase-like enzymes in an alga. The fact that caspase-like inhibitors prevent not only cell death, but also ROS and loss of cell membrane integrity and asymmetry, suggests that caspase-like proteases might have regulatory roles early in cell death, in addition to dismantling functions.
Collapse
Affiliation(s)
- María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, 29071-Málaga, SpainDepartment of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA
| | - John A Berges
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, 29071-Málaga, SpainDepartment of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
32
|
Ofer K, Gold D, Flescher E. Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. Int J Parasitol 2008; 38:959-68. [DOI: 10.1016/j.ijpara.2007.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 11/30/2022]
|
33
|
Tiwari P, Singh D, Singh MM. Anti-Trichomonas activity of Sapindus saponins, a candidate for development as microbicidal contraceptive. J Antimicrob Chemother 2008; 62:526-34. [PMID: 18544604 DOI: 10.1093/jac/dkn223] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Trichomoniasis is the most common non-viral sexually transmitted disease and is caused by the protozoan Trichomonas vaginalis. In view of increased resistance of the parasite to classical drugs of the metronidazole family, the need for new unrelated agents is increasing. This study evaluates anti-Trichomonas activity of Sapindus saponins, a component of a herbal local contraceptive Consap recently marketed in India. METHODS The parasites were treated with saponins for MIC determination. Anti-Trichomonas activity of the saponins was evaluated using a cytoadherence assay, the substrate gel electrophoresis method and RT-PCR analysis. The effect of saponins on the mitochondrial potential of the host was determined by florescence-activated cell sorter. Actin cytoskeletal staining was used to determine the effect on parasite cytoskeleton. RESULTS Using in vitro susceptibility assay, the MIC of Sapindus saponins for T. vaginalis (0.005%) was found to be 10-fold lower than its effective spermicidal concentration (0.05%). Saponins concentration dependently inhibited the ability of parasites to adhere to HeLa cells and decreased proteolytic activity of the parasite's cysteine proteinases. This was associated with decreased expression of adhesin AP65 and membrane-expressed cysteine proteinase TvCP2 genes. Saponins produced no adverse effect on host cells in mitochondrial reduction potential measurement assay. Saponins also reversed the inhibitory mechanisms exerted by Trichomonas for evading host immunity. Early response of saponins to disrupt actin cytoskeleton in comparison with their effect on the nucleus suggests a membrane-mediated mode of action rather than via induction of apoptosis. CONCLUSIONS Findings demonstrate the potential of Sapindus saponins for development as a microbicidal contraceptive for human use. Further studies are required to evaluate its microbicidal activity against other sexually transmitted infections.
Collapse
Affiliation(s)
- Pratibha Tiwari
- Division of Endocrinology, Central Drug Research Institute, Lucknow 226 001, India
| | | | | |
Collapse
|
34
|
Deponte M. Programmed cell death in protists. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1396-405. [PMID: 18291111 DOI: 10.1016/j.bbamcr.2008.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/19/2008] [Indexed: 12/01/2022]
Abstract
Programmed cell death in protists does not seem to make sense at first sight. However, apoptotic markers in unicellular organisms have been observed in all but one of the six/eight major groups of eukaryotes suggesting an ancient evolutionary origin of this regulated process. This review summarizes the available data on apoptotic markers in non-opisthokonts and elucidates potential functions and evolution of programmed cell death. A newly discovered family of caspase-like proteases, the metacaspases, is considered to exert the function of caspases in unicellular organisms. Important results on metacaspases, however, showed that they cannot be always correlated to the measured proteolytic activity during protist cell death. Thus, a major challenge for apoptosis research in a variety of protists remains the identification of the molecular cell death machinery.
Collapse
Affiliation(s)
- Marcel Deponte
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
35
|
Bruchhaus I, Roeder T, Rennenberg A, Heussler VT. Protozoan parasites: programmed cell death as a mechanism of parasitism. Trends Parasitol 2007; 23:376-83. [PMID: 17588817 DOI: 10.1016/j.pt.2007.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/27/2007] [Accepted: 06/06/2007] [Indexed: 12/25/2022]
Abstract
Programmed cell death (PCD) is a potent mechanism to remove parasitized cells, but it has also been shown that protozoan parasites can induce or inhibit apoptosis in host cells. In recent years, it has become clear that unicellular parasites can also undergo PCD, meaning that they commit suicide in response to various stimuli. This review focuses on the role of protozoan PCD and on the interaction between protozoan parasites and the host cell death machinery from the perspective of parasite survival strategies.
Collapse
Affiliation(s)
- Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
36
|
da Silva NS, Ribeiro CDM, Machado AHA, Pacheco-Soares C. Ultrastructural changes in Tritrichomonas foetus after treatments with AlPcS4 and photodynamic therapy. Vet Parasitol 2007; 146:175-81. [PMID: 17399904 DOI: 10.1016/j.vetpar.2007.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
The Tritrichomonas foetus is an amitochondrial parasitic protist which causes bovine trichomoniasis, a major sexually transmitted disease in cattle. No effective drugs for this disease have been approved to this date. Photodynamic therapy (PDT) is an experimental treatment that shows great potential for treating bacteria, fungi, yeasts, and viruses. However, the cytotoxic effect of PDT on protozoan has been poorly studied. In this study, PDT with aluminum phthalocyanine tetrasulfonated (AlPcS4) photosensitizer was efficient in killing T. foetus. The mode of cell death in T. foetus after PDT was investigated by transmission electron microscopy. Morphological changes, such as membrane projections, nucleus fragmentation with peripheral masses of heterochromatin, endoplasmic reticulum proliferation, intense cytoplasmic vacuolization, fragmented axostyle-pelta complex, and internalized flagella could be observed. This is the first report to demonstrate cell death in T. foetus after PDT, and thus will open up new lines of investigation to develop new treatments for bovine trichomoniasis.
Collapse
Affiliation(s)
- Newton Soares da Silva
- Laboratório de Biologia Celular e Tecidual, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000 São José dos Campos, SP, Brasil.
| | | | | | | |
Collapse
|
37
|
Guha M, Choubey V, Maity P, Kumar S, Shrivastava K, Puri SK, Bandyopadhyay U. Overexpression, purification and localization of apoptosis related protein from Plasmodium falciparum. Protein Expr Purif 2007; 52:363-72. [PMID: 17182255 DOI: 10.1016/j.pep.2006.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/03/2006] [Accepted: 11/05/2006] [Indexed: 01/27/2023]
Abstract
A growing body of evidence has ascertained that apoptosis is not only restricted to metazoans but also exists in unicellular parasites. In Plasmodium falciparum, the presence of a putative gene having sequence homology with apoptosis related protein (PfARP) (Gene ID PFI0450c) has raised enormous interest to unravel the function of this unique protein in cell death of malaria parasite. To characterize this protein, the PfARP gene has been amplified from the P. falciparum transcriptome by RT-PCR and the amplified gene has been successfully cloned, over-expressed and purified to homogeneity. The purified PfARP exhibits minimum subunit MW of approximately 24kDa as evident from SDS-PAGE. CD analysis reveals that the alpha and beta content of the recombinant PfARP are 61% and 15%, respectively. Semiquantitative RT-PCR analysis indicates the expression of PfARP at both metabolically less active ring and highly active trophozoite stages of malaria parasite. Immunofluorescence microscopy further supports that PfARP expresses stage specifically with the highest expression at trophozite stage and very little in the schizont stage. PfARP is a cytosolic protein as evident from immunofluorescence microscopy. The role of this protein in P. falciparum cell death and stage progression is not yet known. The identification, purification and characterization would certainly be a step to initiate work on this protein to evaluate its role in P. falciparum growth, multiplication and stage progression.
Collapse
Affiliation(s)
- Mithu Guha
- Drug Target Discovery and Development Division, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | | | | | | | | | | | | |
Collapse
|
38
|
Ramos E, Olivos-García A, Nequiz M, Saavedra E, Tello E, Saralegui A, Montfort I, Pérez Tamayo R. Entamoeba histolytica: apoptosis induced in vitro by nitric oxide species. Exp Parasitol 2007; 116:257-65. [PMID: 17336295 DOI: 10.1016/j.exppara.2007.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 11/30/2022]
Abstract
Apoptosis has been described in some parasites like Leishmania, Trypanosoma, and Trichomonas. This phenomenon has not been observed yet in Entamoeba histolytica. This work analyzed the in vitro effect of sodium nitroprusside, sodium nitrite and sodium nitrate (NOs) on E. histolytica apoptosis. Parasites incubated for 1h with NOs revealed apoptosis 6h later (95% viability), demonstrated by YOPRO-1, TUNEL, DNA fragmentation and low ATP levels. The caspase inhibitor Z-VAD-FMK inhibited total intracellular cysteine protease activity (CPA) but had no effect on apoptosis. When treated with NOs some amebic functions like complement resistance and hemolytic activity decreased but CPA and erythrophagocytosis remained unchanged. After treatment in vitro with NOs, parasite death was almost complete at 24h; but when injected into hamster livers they disappeared in less than 6h. These results show that apoptosis is induced in vitro by NOs in E. histolytica and renders them incapable of surviving in hamster's livers.
Collapse
Affiliation(s)
- Espiridión Ramos
- Departamento de Medicina, Experimental, Facultad de Medicina;Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim YS, Song HO, Choi IH, Park SJ, Ryu JS. Hydrogenosomal activity of Trichomonas vaginalis cultivated under different iron conditions. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 44:373-8. [PMID: 17170580 PMCID: PMC2559125 DOI: 10.3347/kjp.2006.44.4.373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate whether iron concentration in TYM medium influence on hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of Trichomonas vaginalis, trophozoites were cultivated in irondepleted, normal and iron-supplemented TYM media. The mRNA of hydrogenosomal enzymes, such as pyruvate ferredoxin oxidoreductase (PFOR), hydrogenase, ferredoxin and malic enzyme, was increased with iron concentrations in T. vaginalis culture media, measured by RT-PCR. Hydrogenosomal membrane potentials measured with DiOC6 also showed similar tendency, e.g. T. vaginalis cultivated in iron-depleted and iron-supplemented media for 3 days showed a significantly reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Therefore, it is suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and hydrogenosomal membrane potential.
Collapse
Affiliation(s)
- Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
40
|
Mariante RM, Vancini RG, Benchimol M. Cell death in trichomonads: new insights. Histochem Cell Biol 2005; 125:545-56. [PMID: 16273383 DOI: 10.1007/s00418-005-0098-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2005] [Indexed: 01/14/2023]
Abstract
Tritrichomonas foetus is an amitochondriate parasite that possesses hydrogenosomes, unusual anerobic energy-producing organelles. In these organisms the "mitochondrial cell death machinery" is supposed to be absent, and the mechanisms that lead to cell demise remain to be elucidated. The presence of a cell death program in trichomonads has already been reported, suggesting the existence of a caspase-like execution pathway in such organisms. Here we demonstrate the alterations provoked by the fungicide griseofulvin and raise the possibility that other cell death pathways may exist in T. foetus. Dramatic changes in trichomonads morphology are presented after griseofulvin treatment, such as intense plasma membrane and nuclear envelope blebbing, nucleus fragmentation, and an abnormal number of oversized vacuoles. One important finding was the exposition of phosphatidylserine (PS) in the outer leaflet of the plasma membrane in cells after drug treatment, and also the presence of a high amount of misshapen flagella and tubulin precipitates as vacuolar contents, suggesting an autophagic process of abnormal cellular elements. Interestingly, immunoreactivity for activated caspase-3 was not detected during griseofulvin treatment, a finding distinct from the observed when this cell was treated with H(2)O(2). The possibility of the existence of different pathways to cell death in trichomonads is discussed.
Collapse
Affiliation(s)
- Rafael M Mariante
- Programa de Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | |
Collapse
|
41
|
Deolindo P, Teixeira-Ferreira AS, Melo EJT, Arnholdt ACV, Souza WD, Alves EW, DaMatta RA. Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom. Mem Inst Oswaldo Cruz 2005; 100:33-8. [PMID: 15867960 DOI: 10.1590/s0074-02762005000100006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cells die through a programmed process or accidental death, know as apoptosis or necrosis, respectively. Bothrops jararaca is a snake whose venom inhibits the growth of Trypanosoma cruzi epimastigote forms causing mitochondrion swelling and cell death. The aim of the present work was to determine the type of death induced in epimastigotes of T. cruzi by this venom. Parasite growth was inhibited after venom treatment, and 50% growth inhibition was obtained with 10 microg/ml. Ultrastructural observations confirmed mitochondrion swelling and kinetoplast disorganization. Furthermore, cytoplasmic condensation, loss of mitochondrion membrane potential, time-dependent increase in phosphatidylserine exposure at the outer leaflet plasma membrane followed by permeabilization, activation of caspase like protein and DNA fragmentation were observed in epimastigotes throughout a 24 h period of venom treatment. Taken together, these results indicate that the stress induced in epimastigote by this venom, triggers a programmed cell death process, similar to metazoan apoptosis, which leads to parasite death.
Collapse
Affiliation(s)
- Poliana Deolindo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-600 Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
van der Giezen M, Tovar J, Clark CG. Mitochondrion‐Derived Organelles in Protists and Fungi. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:175-225. [PMID: 16157181 DOI: 10.1016/s0074-7696(05)44005-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The mitochondrion is generally considered to be a defining feature of eukaryotic cells, yet most anaerobic eukaryotes lack this organelle. Many of these were previously thought to derive from eukaryotes that diverged prior to acquisition of the organelle through endosymbiosis. It is now known that all extant eukaryotes are descended from an ancestor that had a mitochondrion and that in anaerobic eukaryotes the organelle has been modified into either hydrogenosomes, which continue to generate energy for the host cell, or mitosomes, which do not. These organelles have each arisen independently several times. Recent evidence suggests a shared derived characteristic that may be responsible for the retention of the organelles in the absence of the better-known mitochondrial functions--iron-sulfur cluster assembly. This review explores the events leading to this new understanding of mitochondrion-derived organelles in amitochondriate eukaryotes, the current state of our knowledge, and future areas for investigation.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Marcel Deponte
- Interdisciplinary Research Center, Giessen University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | |
Collapse
|
44
|
Chose O, Sarde CO, Noël C, Gerbod D, Jimenez JC, Brenner C, Capron M, Viscogliosi E, Roseto A. Cell death in protists without mitochondria. Ann N Y Acad Sci 2004; 1010:121-5. [PMID: 15033707 DOI: 10.1196/annals.1299.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Some protozoans, such as Trichomonad species, do not possess mitochondria. Most of the time, they harbor another type of membrane-bounded organelle, called hydrogenosome from its capacity to produce H(2). This is the case for the human parasite Trichomonas vaginalis. Some other parasites, such as the protist Giardia lamblia, do not harbor any of these organelles. From this observation arises naturally a naive question: How do cells die when the mitochondrion, the cornerstone of apoptotic process, is absent? Data strongly suggest that the mitochondrion and the hydrogenosome arose from a common ancestral endosymbiont. But hydrogenosomes do not appear to directly substitute for mitochondria in apoptotic functions. Thus, it appears judicious to examine more closely the genome of unicellular cells, which do not harbor mitochondria, and search for new molecules that could participate in the apoptotic process in these microorganisms.
Collapse
Affiliation(s)
- Olivier Chose
- Laboratoire de Génie Enzymatique et Cellulaire, UMR CNRS 6022, Université de Technologie de Compiegne, B.P. 20529, 60205 Compiègne Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moreira MEC, Barcinski MA. Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems. AN ACAD BRAS CIENC 2004; 76:93-115. [PMID: 15048198 DOI: 10.1590/s0001-37652004000100009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Cell death by apoptosis is characterized by specific biochemical changes, including the exposure of multiple ligands, expected to tag the dying cell for prompt recognition by phagocytes. In non-pathological conditions, an efficient clearance is assured by the redundant interaction between apoptotic cell ligands and multiple receptor molecules present on the engulfing cell surface. This review concentrates on the molecular interactions operating in mammalian and non-mammalian systems for apoptotic cell recognition, as well as on the consequences of their signaling. Furthermore, some cellular models where the exposure of the phosphatidylserine (PS) phospholipid, a classical hallmark of the apoptotic phenotype, is not followed by cell death will be discussed.
Collapse
Affiliation(s)
- Maria Elisabete C Moreira
- Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro, RJ, 20231-050, Brasil.
| | | |
Collapse
|
46
|
Chose O, Sarde CO, Gerbod D, Viscogliosi E, Roseto A. Programmed cell death in parasitic protozoans that lack mitochondria. Trends Parasitol 2003; 19:559-64. [PMID: 14642765 DOI: 10.1016/j.pt.2003.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Olivier Chose
- Laboratoire Génie Enzymatique et Cellulaire, UMR CNRS 6022, Université de Technologie de Compiègne, 1 rue Personne de Roberval, BP 20529, 60205 Compiègne cedex, France
| | | | | | | | | |
Collapse
|
47
|
Golstein P, Aubry L, Levraud JP. Cell-death alternative model organisms: why and which? Nat Rev Mol Cell Biol 2003; 4:798-807. [PMID: 14570057 DOI: 10.1038/nrm1224] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Classical model organisms have helped greatly in our understanding of cell death but, at the same time, might have constrained it. The use of other, non-classical model organisms from all biological kingdoms could reveal undetected molecular pathways and better-defined morphological types of cell death. Here we discuss what is known and what might be learned from these alternative model systems.
Collapse
Affiliation(s)
- Pierre Golstein
- Pierre Golstein, Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-l'Université de la Mediteranée, Parc Scientifique de Luminy, Case 906, 13288 Marseille cedex 9, France.
| | | | | |
Collapse
|
48
|
Verrax J, Cadrobbi J, Delvaux M, Jamison JM, Gilloteaux J, Summers JL, Taper HS, Buc Calderon P. The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy. Eur J Med Chem 2003; 38:451-7. [PMID: 12767595 DOI: 10.1016/s0223-5234(03)00082-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deficiency of alkaline and acid DNase is a hallmark in all non-necrotic cancer cells in animals and humans. These enzymes are reactivated at early stages of cancer cell death by vitamin C (acid DNase) and vitamin K(3) (alkaline DNase). Moreover, the coadministration of these vitamins (in a ratio of 100:1, for C and K(3), respectively) produced selective cancer cell death. Detailed morphological studies indicated that cell death is produced mainly by autoschizis, a new type of cancer cell death. Several mechanisms are involved in such a cell death induced by CK(3), they included: formation of H(2)O(2) during vitamins redox cycling, oxidative stress, DNA fragmentation, no caspase-3 activation, and cell membrane injury with progressive loss of organelle-free cytoplasm. Changes in the phosphorylation level of some critical proteins leading to inactivation of NF-kappaB appear as main intracellular signal transduction pathways. The increase knowledge in the mechanisms underlying cancer cells death by CK(3) may ameliorate the techniques of their in vivo administration. The aim is to prepare the introduction of the association of vitamins C and K(3) into human clinics as a new, non-toxic adjuvant cancer therapy.
Collapse
Affiliation(s)
- Julien Verrax
- Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Département des sciences pharmaceutiques, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Noël C, Gerbod D, Delgado-Viscogliosi P, Fast NM, Younes AB, Chose O, Roseto A, Capron M, Viscogliosi E. Morphogenesis during division and griseofulvin-induced changes of the microtubular cytoskeleton in the parasitic protist, Trichomonas vaginalis. Parasitol Res 2003; 89:487-94. [PMID: 12658461 DOI: 10.1007/s00436-002-0811-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 11/25/2002] [Indexed: 10/25/2022]
Abstract
The behavior of microtubular structures during division was followed by immunofluorescence in Trichomonas vaginalis using an anti-alpha-tubulin monoclonal antibody together with nuclear staining by DAPI, allowing us to describe successive mitotic stages. In contrast to recent reports, we showed that: (1) the microtubular axostyle-pelta complex depolymerized during division, (2) the flagella were assembled during mitosis, and (3) the flagellar number was restored in each daughter kinetid before cytokinesis. Observation of griseofulvin-treated T. vaginalis cells revealed that the elongation of the mitotic spindle or paradesmosis was not the main motile force separating the daughter kinetids to opposite poles during division, suggesting the existence of other mechanisms and/or molecules involved in this morphogenetic event. Examination of treated cells re-incubated in fresh medium showed the nucleation of microtubules radiating from the perinuclear area, the origin of which is discussed. Finally, we confirm the effectiveness of griseofulvin against T. vaginalis and propose that this antifungal drug could be a promising antitrichomonal agent.
Collapse
Affiliation(s)
- C Noël
- Institut Pasteur, Unité Mixte INSERM-IPL U547, 1 Rue du Professeur Calmette, B.P. 245, 59019, Lille cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chose O, Noël C, Gerbod D, Sarde CO, Brenner C, Viscogliosi E, Roseto A. Mort cellulaire des protistes amitochondriaux : une mort programmée ? Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021889808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|