1
|
Torres RJ. Current understanding of Lesch-Nyhan disease and potential therapeutic targets. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1652597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rosa J. Torres
- Department of Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain and Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Araki K, Suzuki H, Uno K, Tomifuji M, Shiotani A. Gene Therapy for Recurrent Laryngeal Nerve Injury. Genes (Basel) 2018; 9:E316. [PMID: 29941853 PMCID: PMC6071248 DOI: 10.3390/genes9070316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022] Open
Abstract
Recurrent laryngeal nerve (RLN) injury has considerable clinical implications, including voice and swallowing dysfunction, which may considerably impair the patient’s quality of life. Recovery of vocal fold movement is an essential novel treatment option for RLN injury. The potential of gene therapy for addressing this issue is highly promising. The target sites for RLN gene therapy are the central nervous system, nerve fibers, laryngeal muscles, and vocal cord mucosa. Gene transduction has been reported in each site using viral or non-viral methods. The major issues ensuing after RLN injury are loss of motoneurons in the nucleus ambiguus, degeneration and poor regeneration of nerve fibers and motor end plates, and laryngeal muscle atrophy. Gene therapy using neurotrophic factors has been assessed for most of these issues, and its efficacy has been reported. Another important matter for functional vocal fold movement recovery is misdirected regeneration, in which the wrong neurons may innervate other laryngeal muscles, where even if innervation is reestablished, proper motor function is not restored. Novel strategies involving gene therapy bear promise for overcoming this issue and further investigations are underway.
Collapse
Affiliation(s)
- Koji Araki
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Saitama 3598513, Japan.
| | - Hiroshi Suzuki
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Saitama 3598513, Japan.
| | - Kosuke Uno
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Saitama 3598513, Japan.
| | - Masayuki Tomifuji
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Saitama 3598513, Japan.
| | - Akihiro Shiotani
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Saitama 3598513, Japan.
| |
Collapse
|
3
|
Abstract
Despite the tremendous inter-individual variability in the response to inhaled toxins, we simply do not understand why certain people develop disease when challenged with environmental agents and others remain healthy. To address this concern, we investigated whether the Toll-4 (TLR4) gene, that has been shown to affect lipopolysaccharide (LPS) responsiveness in mice, underlies the variability in airway responsiveness to inhaled LPS in humans. Here we show that common, co-segregating missense mutations (Asp299Gly and Thr399Ile) in the extracellular domain of the TLR4 receptor are associated with a significantly blunted response to inhaled LPS in 83 humans. Transfection of THP-1 cells demonstrates that the Asp299Gly mutation (but not the Thr399Ile mutation) interrupts TLR4-mediated LPS signaling. Moreover, the wild-type allele of TLR4 rescues the LPS hyporesponsive phenotype in either primary airway epithelial cells or alveolar macrophages obtained from individuals with the TLR4 mutations. Our findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene sequence changes can alter the ability of the host to respond to environmental stress.
Collapse
Affiliation(s)
- David A. Schwartz
- Pulmonary and Critical Care Division, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, , Department of Veterans Affairs Medical Center and Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Louboutin JP, Marusich E, Fisher-Perkins J, Dufour JP, Bunnell BA, Strayer DS. Gene transfer to the rhesus monkey brain using SV40-derived vectors is durable and safe. Gene Ther 2011; 18:682-91. [DOI: 10.1038/gt.2011.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
6
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
7
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
8
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
9
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
10
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
11
|
Ishikawa E, Ooboshi H, Kumai Y, Takada J, Nakamura K, Ago T, Sugimori H, Kamouchi M, Kitazono T, Ibayashi S, Iida M. Midkine gene transfer protects against focal brain ischemia and augments neurogenesis. J Neurol Sci 2009; 285:78-84. [PMID: 19535098 DOI: 10.1016/j.jns.2009.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/18/2009] [Accepted: 05/22/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Midkine is a heparin-binding growth factor having various biological activities including chemotaxis of inflammatory cells, angiogenesis and migration of neuronal cells. These biological activities are expected to have a great impact on the pathology of brain infarction in subacute phase. Therefore, we investigated the effect of post-ischemic gene transfer of midkine in the phase. METHODS Brain ischemia was produced by the photothrombotic distal middle cerebral artery occlusion in spontaneously hypertensive rats. We measured cerebral blood flow by laser Doppler flowmetry. At 90 min after induction of brain ischemia, adenovirus vectors encoding mouse midkine (AdMK) or enhanced green fluorescence protein (AdGFP) were injected into the lateral ventricle. At 7 days after brain ischemia, the infarct volume, angiogenesis, inflammation and neuronal regeneration were evaluated. RESULTS There were no differences in cerebral blood flow changes between AdMK and AdGFP groups. However, infarct volume of AdMK group was significantly smaller than AdGFP group by 33%. The vascular density, the numbers of leukocytes in blood vessels, infiltrated macrophages and proliferated neuronal precursor cells were not significantly different between both groups. Contrastingly the numbers of migrating neuronal precursor cells toward the brain infarction were significantly increased in AdMK group than AdGFP group. CONCLUSIONS Neuroprotective effect of midkine gene transfer persisted until the subacute phase of brain infarction. Midkine may contribute to neuronal regeneration. These results suggest the usefulness of midkine gene transfer for treatment of brain infarction.
Collapse
Affiliation(s)
- Eiichi Ishikawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leskinen H, Rauma-Pinola T, Szokodi I, Kerkelä R, Pikkarainen S, Uusimaa P, Hautala T, Vuolteenaho O, Ruskoaho H. Adaptive or maladaptive response to adenoviral adrenomedullin gene transfer is context-dependent in the heart. J Gene Med 2008; 10:867-77. [DOI: 10.1002/jgm.1219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Kao LTH, Hsu HY, Gratzl M. Reagentless pH-stat for Microliter Fluid Specimens. Anal Chem 2008; 80:4065-9. [DOI: 10.1021/ac800161y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linus T.-H. Kao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hung-Yi Hsu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Miklós Gratzl
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
14
|
Heavner SB, Rubin AD, Fung K, Old M, Hogikyan ND, Feldman EL. Dysfunction of the recurrent laryngeal nerve and the potential of gene therapy. Ann Otol Rhinol Laryngol 2007; 116:441-8. [PMID: 17672247 DOI: 10.1177/000348940711600609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Injury to the recurrent laryngeal nerve causes vocal fold paresis or paralysis resulting in poor voice quality, and possibly swallowing dysfunction and/or airway compromise. Injury can occur as part of a neurodegenerative disease process or can be due to direct nerve trauma or tumor invasion. Management depends upon symptoms, the cause and severity of injury, and the prognosis for recovery of nerve function. Surgical treatment techniques can improve symptoms, but do not restore physiologic motion. Gene therapy may be a useful adjunct to enhance nerve regeneration in the setting of neurodegenerative disease or trauma. Remote injection of viral vectors into the recurrent laryngeal nerve is the least invasive way to deliver neurotrophic factors to the nerve's cell bodies within the nucleus ambiguus, and in turn to promote nerve regeneration and enhance both nuclear and nerve survival. The purpose of this review is to discuss the potential role for gene therapy in treatment of the unsolved problem of vocal fold paralysis.
Collapse
Affiliation(s)
- S Brett Heavner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
15
|
Rauma-Pinola T, Pääkkö P, Ilves M, Serpi R, Romppanen H, Vuolteenaho O, Ruskoaho H, Hautala T. Adrenomedullin gene transfer induces neointimal apoptosis and inhibits neointimal hyperplasia in injured rat artery. J Gene Med 2006; 8:452-8. [PMID: 16389603 DOI: 10.1002/jgm.865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arterial wall injury leads to inflammatory reaction and release of growth factors that may mediate intimal regrowth. It is hypothesized that the neointimal cells may originate from adventitial myofibroblasts, medial smooth muscle cells, or differentiated bone marrow derived cells. Adrenomedullin (AM), an auto/paracrine cardiovascular peptide that is secreted from fibroblasts, endothelial cells, and vascular smooth muscle cells, may have a regulatory role in the intimal regeneration. In order to investigate the role of AM in neointimal growth, stimulation of stem cell migration, and apoptosis, we overexpressed AM with recombinant adenovirus in a rat arterial injury model. The intimae were significantly thinner in the arteries treated with AM adenovirus compared to the control group. Intima/media ratios were 0.48 +/- 0.18 and 1.01 +/- 0.20 (P < 0.05) in the AM group and the control group, respectively. In addition, a significantly higher apoptotic index of neointimal cells was seen in the AM gene transfer group compared to the control (2.78 +/- 0.5 vs. 0.57 +/- 0.20, P < 0.01). The neointimal cells stained positive for alpha-smooth muscle actin and negative for desmin suggesting possible myofibroblast origin. Very few c-Kit+ or MDR1+ cells were detected 2 weeks after the injury. We conclude that AM overexpression inhibits neointimal growth. The inhibition is associated with enhanced apoptosis of the neointimal cells which may be of myofibroblast origin.
Collapse
Affiliation(s)
- Tanja Rauma-Pinola
- Department of Pharmacology and Toxicology, University of Oulu, Biocenter Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lubaroff DM, Konety B, Link BK, Ratliff TL, Madsen T, Shannon M, Ecklund D, Williams RD. Clinical protocol: phase I study of an adenovirus/prostate-specific antigen vaccine in men with metastatic prostate cancer. Hum Gene Ther 2006; 17:220-9. [PMID: 16454655 DOI: 10.1089/hum.2006.17.220] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- David M Lubaroff
- Department of Urology and Roland and Ruby Holden Cancer Research Laboratories, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lubaroff DM, Konety B, Link BK, Link TL, Madsen T, Shannon M, Ecklund D, Williams RD. Clinical Protocol: Phase I Study of an Adenovirus/Prostate-Specific Antigen Vaccine in Men with Metastatic Prostate Cancer. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Schmidt A, Böckmann M, Stoll A, Racek T, Pützer BM. Analysis of adenovirus gene transfer into adult neural stem cells. Virus Res 2005; 114:45-53. [PMID: 15996786 DOI: 10.1016/j.virusres.2005.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 05/18/2005] [Accepted: 05/27/2005] [Indexed: 11/16/2022]
Abstract
Adult neural stem cells (aNSCs) represent an attractive source for the production of specific types of neurons in degenerative CNS diseases and for the development of new regenerative gene therapies. However, the use of adult NSCs for transplantation and gene replacement strategies requires efficient gene expression in the cells. Due to the low pathogenicity of adenovirus (Ad) for humans, its large delivery capacity, and long-term transgene expression, Ad vectors are widely used. Here, we tested the potential of the Ad vector system to transduce adult NSCs. Analysis of Ad receptor expression in primary aNSCs revealed a complete lack of the coxsackie-adenovirus receptor and no or low expression of alphanu- and beta5-integrins, respectively, on mRNA and protein level. Consistently, transduction at different multiplicities of infection using an Ad vector expressing the enhanced green fluorescent protein (GFP) showed that adult NSCs are particularly resistant to Ad infection even at highest MOI (1000) in contrast to differentiated types of neural cells.
Collapse
Affiliation(s)
- A Schmidt
- Department of Vectorology and Experimental Gene Therapy, University of Rostock Medical School, Schillingallee 70, Rostock 18057, Germany
| | | | | | | | | |
Collapse
|
19
|
Deng W, Bivalacqua TJ, Chattergoon NN, Jeter JR, Kadowitz PJ. Engineering ex vivo-expanded marrow stromal cells to secrete calcitonin gene-related peptide using adenoviral vector. Stem Cells 2005; 22:1279-91. [PMID: 15579646 DOI: 10.1634/stemcells.2004-0032] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated CGRP gene transfer into ex vivo-expanded MSCs, rat MSCs were isolated, ex vivo expanded, and transduced with adenoviruses. Adprepro-CGRP and AdntlacZ, adenoviral vectors containing prepro-CGRP or nuclear-targeted beta-galactosidase reporter gene ntlacZ under the control of Rous sarcoma virus promoter, were used. In this study, it can be shown that transduction efficiency of adenoviral-mediated gene transfer into ex vivo-expanded MSCs is dose dependent, transgene expression persists for more than 21 days in culture, and adenoviral transduction does not alter the proliferation or viability of MSCs. Transduced MSCs retain multipotentiality and transgene expression after cell differentiation. The expression and secretion of CGRP by Adprepro- CGRP-transduced MSCs was confirmed by Western blot analysis and enzyme immunoassay. The secretion of CGRP by Adprepro-CGRP-transduced MSCs is dose dependent, and the transduced cells release as much as 9.5 +/- 0.4 pmol CGRP/1 x 10(6) cells/48 hours (mean +/- standard error of mean, n = 3) into culture medium at a multiplicity of infection of 300. Furthermore, culture supernatant from Adprepro-CGRP-transduced MSCs increases intracellular cyclic AMP levels in pulmonary artery smooth muscle cells in culture. These findings suggest that replication-deficient recombinant adenovirus can be used to gene engineer ex vivo-expanded MSCs and that high-level secretion of biologically active CGRP can be achieved, underscoring the clinical potential of using this novel adult stem cell-based cell and gene therapy strategy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Weiwen Deng
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
20
|
Ooboshi H, Ibayashi S, Shichita T, Kumai Y, Takada J, Ago T, Arakawa S, Sugimori H, Kamouchi M, Kitazono T, Iida M. Postischemic Gene Transfer of Interleukin-10 Protects Against Both Focal and Global Brain Ischemia. Circulation 2005; 111:913-9. [PMID: 15710762 DOI: 10.1161/01.cir.0000155622.68580.dc] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Gene therapy may be a promising approach for treatment of brain ischemia, although the efficiency of postischemic gene therapy is not established. Our goal in this study was to examine the effects of gene transfer of interleukin-10 (IL-10), an antiinflammatory cytokine, after induction of brain ischemia.
Methods and Results—
Brain ischemia was produced by either photochemical occlusion of distal middle cerebral artery for focal ischemia or bilateral carotid occlusion for global ischemia in spontaneously hypertensive rats. Adenoviral vectors encoding human IL-10 (AdIL10) or β-galactosidase (control) were injected into the lateral ventricle 90 or 60 minutes after focal or global ischemia. Five days after ischemia, IL-10, IL-1β, or tissue necrosis factor-α in the cerebrospinal fluid, infarct volume, infiltrations of leukocytes/macrophages in the infarct area, or hippocampal neuronal damages were determined. The transduced IL-10 was released to the cerebrospinal fluid from the ventricular wall and increased to 7623±2965 pg/mL 5 days after AdIL10 transfection. Cerebral blood flow during ischemia was not different between treatments in either focal or global ischemia. Brain infarction of the AdIL10 group was significantly smaller and infiltrations of leukocytes and macrophages were fewer in the IL-10 treatment than control. Hippocampal neurons after global ischemia were more preserved, and the terminal deoxynucleotidyl transferase–mediated dUTP-biotin in situ nick end labeling–positive cells were diminished by the IL-10 gene transfer with attenuated IL-1β and augmented tissue necrosis factor-α.
Conclusions—
Postischemic gene transfer of IL-10 into the lateral ventricle attenuated brain infarction and hippocampal damages, suggesting the promise for treatment of brain ischemia.
Collapse
Affiliation(s)
- Hiroaki Ooboshi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumai Y, Ooboshi H, Kitazono T, Takada J, Ibayashi S, Fujishima M, Iida M. Brain ischemia augments exo-focal transgene expression of adenovirus-mediated gene transfer to ependyma in hypertensive rats. Exp Neurol 2003; 184:904-11. [PMID: 14769382 DOI: 10.1016/j.expneurol.2003.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 08/18/2003] [Accepted: 08/26/2003] [Indexed: 11/29/2022]
Abstract
The ependyma is one of the feasible targets for gene transfer to the brain. Using two different replication-deficient recombinant adenoviral vectors, AdCMVbetaGal or AdRSVIL10, we examined effects of cortical brain ischemia on transgene expression in the ependyma after administration of the vector into the lateral ventricle of spontaneously hypertensive rats (SHR). Expression of the reporter gene lacZ at the lateral ventricle was detected by histochemistry for semiquantitative scoring or by biochemical assay for quantitative analysis. Ependymal cells in the ventricles expressed the transgene as early as 6 h after gene transfer in both sham treatment and ischemia treatment. In the sham treatment, the expression peaked at 12 h and slowly decreased toward day 4 and day 7. However, transgene expressions in the ischemic brain on day 4 and day 7 were significantly higher than sham treatment. In the biochemical assay, beta-galactosidase activity detected on day 4 at the periventricular area of the ischemic group (37 +/- 9 mU/mg protein) was significantly greater than that of the sham group (12 +/- 4, P < 0.01). In the enzyme-linked immunosorbent assay for gene transfer of interleukin-10 (IL-10), IL-10 in the cerebrospinal fluid (CSF) of the ischemic group (11,633 +/- 4322 pg/ml) was significantly greater than that in the sham group (2460 +/- 1486, P < 0.05) on day 5. These results suggest that transgene expression in the exo-focal remote area of ependyma is augmented by cortical ischemia, and the ependyma may be a promising target of gene transfer of brain ischemia.
Collapse
Affiliation(s)
- Yasuhiro Kumai
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Deng W, Bivalacqua TJ, Chattergoon NN, Hyman AL, Jeter JR, Kadowitz PJ. Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am J Physiol Cell Physiol 2003; 285:C1322-9. [PMID: 12878489 DOI: 10.1152/ajpcell.00141.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is an attractive target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold great promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated eNOS gene transfer into ex vivo expanded MSCs, rat MSCs (rMSCs) were isolated, expanded ex vivo, and transduced with Ad5RSVeNOS, an adenoviral vector containing the eNOS gene under the control of the Rous sarcoma virus promoter. The presence of eNOS protein in Ad5RSVeNOS-transduced rMSCs was confirmed by immunohistochemical and Western blot analysis. Transduction efficiency was dose dependent, and eNOS transgene expression in rMSCs persisted for > or =21 days in culture. The rMSCs retained multipotential differentiation capability after adenoviral-mediated eNOS gene transfer. Furthermore, intracavernosal injection of Ad5RSVeNOS-transduced rMSCs increased the expression of eNOS in the corpus cavernosum, and stem cells were identified within corporal sinusoids. These findings demonstrate that replication-deficient recombinant adenovirus can be used to engineer ex vivo expanded rMSCs and that high-level eNOS transgene expression can be achieved, pointing out the clinical potential of using this novel adult stem cell-based gene therapy method for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Weiwen Deng
- Department of Pharmacology, SL83, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
23
|
Garrity-Moses ME, Liu JK, Boulis NM. Molecular biology and gene therapy in the treatment of chronic pain. Neurosurg Clin N Am 2003; 14:419-35. [PMID: 14567143 DOI: 10.1016/s1042-3680(03)00008-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Technologic advancements have made cell type-specific targeting, expression control, and safe and stable gene transfer possible. Animal research has provided increasing experience with gene transfer to the nervous system and sensory neurons in particular. Gene-based neuromodultion can be achieved through neuronal delivery of transgenes capable of altering synaptic function. Alternatively, ex vivo gene transfer can be used to create cell lines capable of secreting analgesic neurepeptides. Translatation of these grafts and direct gene-based neuromoduation can be applied to the control of pain and the root causes of pain. These approaches combine anatomic and pharmacologic specificity. As the technology continues to improve, clinical application of cellular and molecular pain control is likely.
Collapse
Affiliation(s)
- Mary E Garrity-Moses
- Department of Neurosurgery, Room S31, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
24
|
Rubin A, Mobley B, Hogikyan N, Bell K, Sullivan K, Boulis N, Feldman E. Delivery of an adenoviral vector to the crushed recurrent laryngeal nerve. Laryngoscope 2003; 113:985-9. [PMID: 12782809 DOI: 10.1097/00005537-200306000-00013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Objectives were to create a model of recurrent laryngeal nerve injury for testing the efficacy of potential therapeutic viral gene therapy vectors and to demonstrate that remote injection of a viral vector does not cause significant additional neuronal injury. STUDY DESIGN Animal model. METHODS Rats were randomly assigned to three groups of 10 animals each. In group I, the recurrent laryngeal nerve was crushed. In group II, the nerve was crushed and then injected with an adenoviral vector containing no transgene. In group III, the nerve was identified but was not crushed. Rats were killed at 1 week, and their larynges and brainstems were cryosectioned in 15-microm sections. Laryngeal cryosections were processed for acetylcholine histochemical analysis (motor endplates) followed by neurofilament immunoperoxidase (nerve fibers). Percentage of nerve-endplate contact was determined and compared between groups. Fluorescent in situ hybridization was performed on brainstem sections from rats in group II to confirm the presence of virus. RESULTS No significant difference in percentage of nerve-endplate contact exists between the two crushed-nerve groups (groups I and II) (P =.88). The difference between both crushed-nerve groups and the group with noncrushed nerves (group III) was highly significant (P <.0001). The presence of virus was confirmed in group II rats. CONCLUSIONS Crush provides a significant measurable injury to the recurrent laryngeal nerve and may be used as a model to explore therapeutic interventions for nerve injury. The remote injection of viral vector did not cause significant additional neuronal injury. Remote delivery of viral vectors to the central nervous system holds promise in the treatment of recurrent laryngeal nerve injury and central nervous system diseases.
Collapse
Affiliation(s)
- Adam Rubin
- Department of Otorhinolaryngology, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lowenstein PR, Suwelack D, Hu J, Yuan X, Jimenez-Dalmaroni M, Goverdhana S, Castro MG. Nonneurotropic adenovirus: a vector for gene transfer to the brain and gene therapy of neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 55:3-64. [PMID: 12968530 PMCID: PMC2902245 DOI: 10.1016/s0074-7742(03)01001-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pedro R Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine, UCLA, Los Angeles, California 90048, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kraemer DF, Fortin D, Neuwelt EA. Chemotherapeutic dose intensification for treatment of malignant brain tumors: recent developments and future directions. Curr Neurol Neurosci Rep 2002; 2:216-24. [PMID: 11937000 DOI: 10.1007/s11910-002-0080-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite a large amount of research on malignant brain tumors over the past 70 years, the prognosis for most tumor types is poor. One current focus of research is increasing dose intensity of chemotherapeutic agents. Various ways to increase dose intensity include high-dose chemotherapy followed by stem cell rescue (eg, bone marrow transplant), blood-brain barrier disruption or use of RMP7 to increase transvascular drug delivery, local delivery of chemotherapeutic agents (convection enhancement or clysis, antibody conjugates, and biodegradable polymers), chemoprotective agents, and tumor sensitizers. Improved identification of patients likely to respond to a given regimen may also increase the effectiveness of chemotherapy. We also discuss approaches to improve the design of nonrandomized trials by identifying and controlling potential confounding variables. This will improve the quality of individual studies and perhaps the comparability across studies.
Collapse
Affiliation(s)
- Dale F Kraemer
- Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
27
|
Brooks AI, Stein CS, Hughes SM, Heth J, McCray PM, Sauter SL, Johnston JC, Cory-Slechta DA, Federoff HJ, Davidson BL. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci U S A 2002; 99:6216-21. [PMID: 11959904 PMCID: PMC122929 DOI: 10.1073/pnas.082011999] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gene transfer vectors based on lentiviruses can transduce terminally differentiated cells in the brain; however, their ability to reverse established behavioral deficits in animal models of neurodegeneration has not previously been tested. When recombinant feline immunodeficiency virus (FIV)-based vectors expressing beta-glucuronidase were unilaterally injected into the striatum of adult beta-glucuronidase deficient [mucopolysaccharidosis type VII (MPS VII)] mice, an animal model of lysosomal storage disease, there was bihemispheric correction of the characteristic cellular pathology. Moreover, after the injection of FIV-based vectors expressing beta-glucuronidase into brains of beta-glucuronidase-deficient mice with established impairments in spatial learning and memory, there was dramatic recovery of behavioral function. Cognitive improvement resulting from expression of beta-glucuronidase was associated with alteration in expression of genes associated with neuronal plasticity. These data suggest that enzyme replacement to the MPS VII central nervous system goes beyond restoration of beta-glucuronidase activity in the lysosome, and imparts improvements in plasticity and spatial learning.
Collapse
Affiliation(s)
- Andrew I Brooks
- Department of Internal Medicine, University of Iowa Program in Gene Therapy, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Asthma is a complex genetic disorder that is caused by a number of unique gene-gene and gene-environment interactions. The search for asthma susceptibility genes has been complicated by the broad clinical phenotype of asthma, the polygenic inheritance pattern of this disease, and the substantial role of environmental exposures in the development and progression of asthma. Inhaled environmental agents induce several biologic responses in asthmatics; including the induction of acquired and innate immunity that leads to acute and chronic forms of airway inflammation and airway remodeling. Acquired immune responses to protein antigens, such as house dust mite allergen, often induce type 2 T lymphocyte-driven responses (Th2) which appear to be important in atopic asthma. Recent studies by our group and others demonstrate that innate immunity, initiated by inhalation of bacterial and viral pathogens, organic dusts, endotoxin or lipopolysaccharide (LPS), air pollution particulate matter, and ozone, can also cause acute and chronic forms of airflow obstruction, airway inflammation, and even airway remodeling. Emerging evidence indicates that both acquired and innate immune responses in the lung may be influenced by polymorphic genes. For instance, functional polymorphisms in the IL-4 receptor gene are thought to preferentially stimulate acquired Th2 immune responses to inhaled allergens, and we have recently shown that common co-segregating mutations in TLR4 (a transmembrane receptor for LPS) are associated with diminished airway responsiveness to inhaled LPS. These observations suggest that environmental challenges can be used to narrow the phenotype of asthma and allow scientists to investigate unique gene-environment interactions that are involved in the development of biologically specific forms of asthma.
Collapse
Affiliation(s)
- David A Schwartz
- Pulmonary and Critical Care Division, Department of Internal Medicine, Department of Genetics, Department of Veterans Affairs Medical Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
29
|
Elzey BD, Siemens DR, Ratliff TL, Lubaroff DM. Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int J Cancer 2001; 94:842-9. [PMID: 11745487 DOI: 10.1002/ijc.1556] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate-specific antigen (PSA) is expressed by prostate epithelial cells and has a highly restricted tissue distribution. Prostatic malignancies in 95% of patients continue to express PSA, making this antigen a good candidate for targeted immunotherapy. The goals of our studies are to generate a recombinant PSA adenovirus type 5 (Ad5-PSA) that is safe and effectively activates a PSA-specific T-cell response capable of eliminating prostate cancer cells, and to characterize the immunologic basis for this rejection. Here we show that immunization of mice with Ad5-PSA induced PSA-specific cellular and humoral immunity that was protective against a subcutaneous challenge with RM11 prostate cancer cells expressing PSA (RM11psa), but not mock-transfected RM11 tumor cells (RM11neo). Mice immunized with recombinant adenovirus type 5 encoding beta-galactosidase (Ad5-lacZ) did not generate protective immunity. Antitumor activity was predominantly mediated by CD8(+) T lymphocytes. Although Ad5-PSA immunization prior to RM11psa challenge was protective, Ad5-PSA immunization alone was not able to control the growth of existing RM11psa tumors. In contrast, established RM11psa tumors ranging in size from 500 to 1,000 mm(3) were efficiently eliminated if Ad5-PSA priming was followed 7 days later by intratumoral injection of recombinant canarypox viruses (ALVAC) encoding interleukin-12 (IL-12), IL-2, and tumor necrosis factor-alpha. In this case, antitumor immunity was still dominated by CD8(+) T lymphocytes, but natural killer cells became necessary for a maximal response. These data provide information on the effector cell populations in a protective immune response to prostate cancer and demonstrate the utility of an Ad5-PSA vaccine combined with cytokine gene delivery to eliminate large established tumors that are refractory to other interventional methods.
Collapse
Affiliation(s)
- B D Elzey
- Department of Microbiology, University of Iowa, Iowa City, IA 55242, USA
| | | | | | | |
Collapse
|
30
|
Emborg ME, Deglon N, Leventhal L, Aebischer P, Kordower JH. Viral vector-mediated gene therapy for Parkinson's disease. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-2772(01)00027-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ. Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 2001; 15:2283-5. [PMID: 11511531 DOI: 10.1096/fj.01-0321fje] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the central nervous system (CNS), there are innate obstacles to the modification of neurons: their relative low abundance versus glia and oligodendrocytes, the inaccessibility of certain target populations, and the volume one can inject safely. Our aim in this study was to characterize the in vivo efficacy of a novel viral vector derived from a canine adenovirus (CAV-2). Here we show that CAV-2 preferentially transduced i) rat olfactory sensory neurons; ii) rodent CNS neurons in vitro and in vivo; and, more clinically relevant, iii) neurons in organotypic slices of human cortical brain. CAV-2 also showed a high disposition for retrograde axonal transport in vivo. We examined the molecular basis of neuronal targeting by CAV-2 and suggest that due to CAR (coxsackie adenovirus receptor) expression on neuronal cells-and not oligodendrocytes, glia, myofibers, and nasal epithelial cells-CAV-2 vectors transduced neurons preferentially in these diverse tissues.
Collapse
Affiliation(s)
- C Soudais
- Généthon III/CNRS 1923, Evry, France
| | | | | | | |
Collapse
|
32
|
Rauma T, Kumpumäki S, Anderson R, Davidson BL, Ruotsalainen H, Myllylä R, Hautala T. Adenoviral gene transfer restores lysyl hydroxylase activity in type VI Ehlers-Danlos syndrome. J Invest Dermatol 2001; 116:602-5. [PMID: 11286629 DOI: 10.1046/j.1523-1747.2001.01300.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type VI Ehlers-Danlos syndrome is a disease characterized by disturbed lysine hydroxylation of collagen. The disease is caused by mutations in lysyl hydroxylase 1 gene and it affects several organs including the cardiovascular system, the joint and musculoskeletal system, and the skin. The skin of type VI Ehlers-Danlos syndrome patients is hyperelastic, scars easily, and heals slowly and poorly. We hypothesized that providing functional lysyl hydroxylase 1 gene to the fibroblasts in and around wounds in these patients would improve healing. In this study we tested the feasibility of transfer of the lysyl hydroxylase 1 gene into fibroblasts derived from rats and a type VI Ehlers-Danlos syndrome patient (in vitro) and into rat skin (in vivo). We first cloned human lysyl hydroxylase 1 cDNA into a recombinant adenoviral vector (Ad5RSV-LH). Transfection of human type VI Ehlers-Danlos syndrome fibroblasts (about 20% of normal lysyl hydroxylase 1 activity) with the vector increased lysyl hydroxylase 1 activity in these cells to near or greater levels than that of wild type, unaffected fibroblasts. The adenoviral vector successfully transfected rat fibroblasts producing both beta-galactosidase and lysyl hydroxylase 1 gene activity. We next expanded our studies to a rodent model. Intradermal injections of the vector to the abdominal skin of rats produced lysyl hydroxylase 1 mRNA and elevated lysyl hydroxylase 1 activity, in vivo. These data suggest the feasibility of gene replacement therapy to modify skin wound healing in type VI Ehlers-Danlos syndrome patients.
Collapse
Affiliation(s)
- T Rauma
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Ooboshi H, Ibayashi S, Takada J, Yao H, Kitazono T, Fujishima M. Adenovirus-mediated gene transfer to ischemic brain: ischemic flow threshold for transgene expression. Stroke 2001; 32:1043-7. [PMID: 11283409 DOI: 10.1161/01.str.32.4.1043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Gene therapy may be a promising approach for treatment of brain ischemia, although protein synthesis is generally inhibited in ischemic conditions. Our goal in this study was to examine effects of brain ischemia on transgene expression of adenovirus-mediated gene transfer to ischemic brain. METHODS Brain ischemia was produced by photochemical occlusion of the distal middle cerebral artery of spontaneously hypertensive rats (n=15). Ninety minutes after ischemia, adenoviral vectors encoding bacterial beta-galactosidase were injected into ipsilateral (nonischemic [I-n], peri-ischemic [I-p], and ischemic core [I-c] areas) and contralateral parietal (C) cortices. Cerebral blood flow before and during ischemia at each injected area was measured by laser-Doppler flowmetry. Expression of transgene was detected by histochemistry for semiquantitative scoring or by biochemical assay for quantitative analysis. RESULTS Blood flow to the cortex decreased to 72+/-10% (mean+/-SEM) at I-n, 41+/-6% at I-p, and 23+/-3% at I-c after 10 minutes of ischemia. Expression of the reporter gene was consistently detected at C and I-n at each survival period. The semiquantitative score for transgene expression decreased according to severity of ischemia (C, 2.3; I-n, 2.6; I-p, 1.1; I-c, 0.3; mean values). beta-Galactosidase activity detected by chemiluminescent assay revealed that the values (mean+/-SEM) in the ischemic area (I-p, 15.9+/-9.2 mU/mg protein; I-c, 1.3+/-0.5) were significantly smaller than that of the nonischemic area (C, 45.4+/-6.9). Analysis of cerebral blood flow at I-p revealed that cerebral blood flow threshold for transgene expression was approximately 40% of the resting value. CONCLUSIONS Adenovirus-mediated gene transfer into the ischemic brain provided effective expression of transgene at the nonischemic and peri-ischemic areas. Gene transfer to the ischemic brain may be a promising approach for treatment of ischemic penumbra.
Collapse
Affiliation(s)
- H Ooboshi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Emborg ME, Kordower JH. Delivery of therapeutic molecules into the CNS. PROGRESS IN BRAIN RESEARCH 2001; 128:323-32. [PMID: 11105691 DOI: 10.1016/s0079-6123(00)28029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- M E Emborg
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| | | |
Collapse
|
35
|
Vasquez EC, Beltz TG, Haskell RE, Johnson RF, Meyrelles SS, Davidson BL, Johnson AK. Adenovirus-mediated gene delivery to cells of the magnocellular hypothalamo-neurohypophyseal system. Exp Neurol 2001; 167:260-71. [PMID: 11161614 DOI: 10.1006/exnr.2000.7557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the present study was to define the optimum conditions for using replication-defective adenovirus (Ad) to transfer the gene for the green fluorescent protein (GFP) to the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei and cells of the neurohypophysis (NH). As indicated by characterizing cell survival over 15 days in culture and in electrophysiological whole cell patch-clamp studies, viral concentrations up to 2 x 10(7) pfu/coverslip did not affect viability of transfected PVN and NH cultured cells from preweanling rats. At 2 x 10(7) pfu, GFP gene expression was higher (40% of GFP-positive cells) and more sustained (up to 15 days). Using a stereotaxic approach in adult rats, we were able to directly transduce the PVN, SON, and NH and visualize gene expression in coronal brain slices and in the pituitary 4 days after injection of Ad. In animals receiving NH injections of Ad, the virus was retrogradely transported to PVN and SON neurons as indicated by the appearance of GFP-positive neurons in cultures of dissociated cells from those brain nuclei and by polymerase chain reaction and Western blot analyses of PVN and SON tissues. Adenoviral concentrations of up to 8 x 10(6) pfu injected into the NH did not affect cell viability and did not cause inflammatory responses. Adenoviral injection into the pituitary enabled the selective delivery of genes to the soma of magnocellular neurons. The experimental approaches described here provide potentially useful strategies for the treatment of disordered expression of the hormones vasopressin or oxytocin.
Collapse
Affiliation(s)
- E C Vasquez
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Alisky JM, Davidson BL. Gene therapy for amyotrophic lateral sclerosis and other motor neuron diseases. Hum Gene Ther 2000; 11:2315-29. [PMID: 11096437 DOI: 10.1089/104303400750038435] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are several incurable diseases of motor neuron degeneration, including amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, hereditary spastic hemiplegia, spinal muscular atrophy, and bulbospinal atrophy. Advances in gene transfer techniques coupled with new insights into molecular pathology have opened promising avenues for gene therapy aimed at halting disease progression. Nonviral preparations and recombinant adenoviruses, adeno-associated viruses, herpesviruses, and lentiviruses may ultimately transduce sufficient numbers of cerebral, brainstem, and spinal cord neurons for therapeutic applications. This could be accomplished by direct injection, transduction of lower motor neurons via retrograde transport after intramuscular injection, or cell-based therapies. Studies using transgenic mice expressing mutant superoxide dismutase 1 (SOD1), a model for one form of ALS, established that several proteins were neuroprotective, including calbindin, bcl-2, and growth factors. These same molecules promoted neuronal survival in other injury models, suggesting general applicability to all forms of ALS. Potentially correctable genetic lesions have also been identified for hereditary spastic hemiplegia, bulbospinal atrophy, and spinal muscular atrophy. Finally, it may be possible to repopulate lost corticospinal and lower motor neurons by transplanting stem cells or stimulating native progenitor populations. The challenge ahead is to translate these basic science breakthroughs into workable clinical practice.
Collapse
Affiliation(s)
- J M Alisky
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
37
|
Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25:187-91. [PMID: 10835634 DOI: 10.1038/76048] [Citation(s) in RCA: 1472] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is much variability between individuals in the response to inhaled toxins, but it is not known why certain people develop disease when challenged with environmental agents and others remain healthy. To address this, we investigated whether TLR4 (encoding the toll-like receptor-4), which has been shown to affect lipopolysaccharide (LPS) responsiveness in mice, underlies the variability in airway responsiveness to inhaled LPS in humans. Here we show that common, co-segregating missense mutations (Asp299Gly and Thr399Ile) affecting the extracellular domain of the TLR4 receptor are associated with a blunted response to inhaled LPS in humans. Transfection of THP-1 cells demonstrates that the Asp299Gly mutation (but not the Thr399Ile mutation) interrupts TLR4-mediated LPS signalling. Moreover, the wild-type allele of TLR4 rescues the LPS hyporesponsive phenotype in either primary airway epithelial cells or alveolar macrophages obtained from individuals with the TLR4 mutations. Our findings provide the first genetic evidence that common mutations in TLR4 are associated with differences in LPS responsiveness in humans, and demonstrate that gene-sequence changes can alter the ability of the host to respond to environmental stress.
Collapse
Affiliation(s)
- N C Arbour
- [1] Department of Medicine, Department of Veterans Affairs Medical Center, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL. A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther 2000; 7:1034-8. [PMID: 10871752 DOI: 10.1038/sj.gt.3301197] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recombinant adenoviruses are useful vectors for basic research. When the vectors are used for delineating protein function, several viruses, each containing a mutated version of the transgene are compared at the same time. However, methods to generate multiple vectors simultaneously within a short time period are cumbersome. In this report, we show that a novel backbone plasmid, when cotransfected with routinely used shuttle vectors into HEK293 cells allowed for production of recombinant viruses in an average of 14 days. The recombinant viruses had no detectable wild-type virus contamination by A549 plaque assay and only three to 300 E1a copies per 109 adenovirus genomes by a sensitive PCR-based assay. Further culturing or serial amplification did not result in wild-type revertants nor did cultures show increased levels of E1a copy number by quantitative PCR. Thus, recombinant adenovirus vectors can be produced very simply, rapidly and with little to no contaminating wild-type particles. This system should facilitate the generation of multiple genetic variants by eliminating the need for time-consuming plaque purification and the need to manipulate and screen very large plasmids. We call this the RAPAd.I system.
Collapse
Affiliation(s)
- R D Anderson
- Department of Internal Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
39
|
Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 2000; 97:3428-32. [PMID: 10688913 PMCID: PMC16256 DOI: 10.1073/pnas.97.7.3428] [Citation(s) in RCA: 407] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in the central nervous system (CNS), but it is not known how other rAAV serotypes perform as CNS gene transfer vectors. Serotypes 4 and 5 are distinct from rAAV2 and from each other in their capsid regions, suggesting that they may direct binding and entry into different cell types. In this study, we examined the tropisms and transduction efficiencies of beta-galactosidase-encoding vectors made from rAAV4 and rAAV5 compared with similarly designed rAAV2-based vectors. Injection of rAAV5 beta-galactosidase (betagal) or rAAV4betagal into the lateral ventricle resulted in stable transduction of ependymal cells, with approximately 10-fold more positive cells than in mice injected with rAAV2betagal. Major differences between the three vectors were revealed upon striatal injections. Intrastriatal injection of rAAV4betagal resulted again in striking ependyma-specific expression of transgene, with a notable absence of transduced cells in the parenchyma. rAAV2betagal and rAAV5betagal intrastriatal injections led to beta-gal-positive parenchymal cells, but, unlike rAAV2betagal, rAAV5betagal transduced both neurons and astrocytes. The number of transgene-positive cells in rAAV5betagal-injected brains was 130 and 5,000 times higher than in rAAV2betagal-injected brains at 3 and 15 wk, respectively. Moreover, transgene-positive cells were widely dispersed throughout the injected hemisphere in rAAV5betagal-transduced animals. Together, our data provide in vivo support for earlier in vitro work, suggesting that rAAV4 and rAAV5 gain cell entry by means of receptors distinct from rAAV2. These differences could be exploited to improve gene therapy for CNS disorders.
Collapse
Affiliation(s)
- B L Davidson
- Program in Gene Therapy, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10688913 PMCID: PMC16256 DOI: 10.1073/pnas.050581197] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in the central nervous system (CNS), but it is not known how other rAAV serotypes perform as CNS gene transfer vectors. Serotypes 4 and 5 are distinct from rAAV2 and from each other in their capsid regions, suggesting that they may direct binding and entry into different cell types. In this study, we examined the tropisms and transduction efficiencies of beta-galactosidase-encoding vectors made from rAAV4 and rAAV5 compared with similarly designed rAAV2-based vectors. Injection of rAAV5 beta-galactosidase (betagal) or rAAV4betagal into the lateral ventricle resulted in stable transduction of ependymal cells, with approximately 10-fold more positive cells than in mice injected with rAAV2betagal. Major differences between the three vectors were revealed upon striatal injections. Intrastriatal injection of rAAV4betagal resulted again in striking ependyma-specific expression of transgene, with a notable absence of transduced cells in the parenchyma. rAAV2betagal and rAAV5betagal intrastriatal injections led to beta-gal-positive parenchymal cells, but, unlike rAAV2betagal, rAAV5betagal transduced both neurons and astrocytes. The number of transgene-positive cells in rAAV5betagal-injected brains was 130 and 5,000 times higher than in rAAV2betagal-injected brains at 3 and 15 wk, respectively. Moreover, transgene-positive cells were widely dispersed throughout the injected hemisphere in rAAV5betagal-transduced animals. Together, our data provide in vivo support for earlier in vitro work, suggesting that rAAV4 and rAAV5 gain cell entry by means of receptors distinct from rAAV2. These differences could be exploited to improve gene therapy for CNS disorders.
Collapse
|
41
|
Ideguchi M, Kajiwara K, Yoshikawa K, Uchida T, Ito H. Local adenovirus-mediated CTLA4-immunoglobulin expression suppresses the immune responses to adenovirus vectors in the brain. Neuroscience 2000; 95:217-26. [PMID: 10619478 DOI: 10.1016/s0306-4522(99)00402-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of local administration of two adenovirus vectors, one of which expressed CTLA4-immunoglobulin (AdCTLA), which blocks the B7-CD28 co-stimulatory pathway of T cell activation in the inflammatory response to adenovirus vectors was investigated. Mice injected with AdCTLA and an E1-deleted adenovirus vector that encodes the lacZ gene (AdRL) into the brain showed inflammatory cell infiltration from the early phase until day 6 after injection that was not different from that seen in control mice injected with an E1-deleted adenovirus vector containing no transgene (Ad0) and AdRL. After day 6 the inflammation in the control mice increased, peaked by day 15 and then decreased gradually but persisted until day 60. By contrast, in mice treated with AdCTLA and AdRL the inflammation, especially T cell infiltration, was suppressed after day 15. The anti-adenovirus antibody titer increased gradually until day 60 in the Ad0-AdRL control group, and whereas the mice injected with AdCTLA and AdRL showed lower anti-adenovirus antibody titers than the control group mice after day 15. Neutralizing antibody was not detected in either group. Expression of beta-galactosidase, the gene product of AdRL, at the injection site in the striatum and corpus callosum peaked on day 6 and remained until day 60 although it was very low in both groups; beta-galactosidase expression was similar in the two groups in spite of the difference in the degree and extent of the local immune response in the brain. This study demonstrated that the injection of an adenovirus vector expressing CTLA4-immunoglobulin into the brain suppressed not only local cell infiltration in the brain but also reduced the humoral immune response to adenovirus vectors.
Collapse
Affiliation(s)
- M Ideguchi
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | |
Collapse
|
42
|
Stein CS, Martins I, Davidson BL. Long-term reversal of hypercholesterolemia in low density lipoprotein receptor (LDLR)-deficient mice by adenovirus-mediated LDLR gene transfer combined with CD154 blockade. J Gene Med 2000; 2:41-51. [PMID: 10765504 DOI: 10.1002/(sici)1521-2254(200001/02)2:1<41::aid-jgm79>3.0.co;2-p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Deficiency of the low density lipoprotein receptor (LDLR) results in abnormal elevation of cholesterol within the intermediate and low density plasma lipoproteins (IDL/LDL), and predisposes to early onset atherosclerosis. Cholesterol reduction after adenovirus-mediated LDLR gene transfer to LDLR-deficient animals is transient, due to the elicitation of an immune response. METHODS The LDLR-deficient mouse was used as a model to investigate adenovirus-mediated LDLR gene transfer combined with short-term immunosuppression as a cholesterol lowering therapy. Mice were infused with replication-deficient recombinant adenovirus encoding LDLR under control of the cytomegalovirus promoter/enhancer (AdLDLR), and injected with a blocking antibody directed against CD154 (CD40 ligand) to suppress immune responses against the vector and foreign transgene product. RESULTS Mice given AdLDLR and treated with anti-CD154 expressed LDLR on hepatocytes and maintained cholesterol levels below or within normal range for at least 92 days. In contrast, without adjunct immunosuppression LDLR expression was transient, corresponding to temporary decline in cholesterol levels. Analysis of cholesterol concentrations in fractionated plasma showed remarkable reduction in all lipoprotein fractions at early time-points after gene transfer. At later time-points, non-immunosuppressed control mice regained the disease profile with elevated IDL/LDL cholesterol, while profiles of anti-CD154-treated mice were similar to normal. LDLR mRNA transcripts were present in livers of the anti-CD154-treated mice but not controls, 93 days after AdLDLR injection. However, vector DNA was detected in livers of both groups. These results suggest that loss of LDLR expression in the non anti-CD154-treated mice was in part due to immune-mediated promoter silencing, and that anti-CD154 prevented this effect. CONCLUSION Treatment with anti-CD154 antibody inhibits immune-mediated loss of transgene expression, enabling long-term reduction in cholesterol levels after AdLDLR gene transfer to LDLR-deficient mice.
Collapse
Affiliation(s)
- C S Stein
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
43
|
Durbeej M, Cohn RD, Hrstka RF, Moore SA, Allamand V, Davidson BL, Williamson RA, Campbell KP. Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol Cell 2000; 5:141-51. [PMID: 10678176 DOI: 10.1016/s1097-2765(00)80410-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Limb-girdle muscular dystrophy type 2E (LGMD 2E) is caused by mutations in the beta-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscle. beta-sarcoglycan-deficient (Sgcb-null) mice developed severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. The sarcoglycan-sarcospan and dystroglycan complexes were disrupted in skeletal, cardiac, and smooth muscle membranes. epsilon-sarcoglycan was also reduced in membrane preparations of striated and smooth muscle. Loss of the sarcoglycan-sarcospan complex in vascular smooth muscle resulted in vascular irregularities in heart, diaphragm, and kidneys. Further biochemical characterization suggested the presence of a distinct epsilon-sarcoglycan complex in skeletal muscle that was disrupted in Sgcb-null mice. Thus, perturbation of vascular function together with disruption of the epsilon-sarcoglycan-containing complex represents a novel mechanism in the pathogenesis of LGMD 2E.
Collapse
Affiliation(s)
- M Durbeej
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Southgate TD, Bain D, Fairbanks LD, Morelli AE, Larregina AT, Simmonds HA, Castro MG, Löwenstein PR. Adenoviruses encoding HPRT correct biochemical abnormalities of HPRT-deficient cells and allow their survival in negative selection medium. Metab Brain Dis 1999; 14:205-21. [PMID: 10850548 DOI: 10.1023/a:1020728924026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Lesch-Nyhan syndrome is an X-linked disorder caused by a virtually complete absence of the key enzyme of purine recycling, hypoxanthine-guanine phosphoribosyltransferase (HPRT). It is characterized by uric acid overproduction and severe neurological dysfunction. No treatment is yet available for the latter symptoms. A possible long-term solution is gene therapy, and recombinant adenoviruses have been proposed as vectors for gene transfer into postmitotic neuronal cells. We have constructed an adenoviral vector expressing the human HPRT cDNA under the transcriptional control of a short human cytomegalovirus major immediate early promoter (RAd-HPRT). Here we show that infection of human 1306, HPRT-negative cells with RAd-HPRT, expressed high enough levels of HPRT enzyme activity, as to reverse their abnormal biochemical phenotype, thus enhancing hypoxanthine incorporation and restoring purine recycling, increasing GTP levels, decreasing adenine incorporation, and allowing cell survival in HAT medium in which only cells expressing high levels of HPRT can survive. Infection of murine STO cells, increased hypoxanthine incorporation and restored purine recycling, thus allowing cell survival in HAT medium, and reduced de novo purine synthesis. Although both cells were able to survive in HAT medium post infection with RAd-HPRT, some of the biochemical consequences differed. In summary, even though adenoviral vectors do not integrate into the genome of target HPRT-deficient human or murine cells, RAd-HPRT mediated enzyme replacement corrects abnormal purine metabolism, increases intracellular GTP levels, and allows cells to survive in a negative selection medium.
Collapse
Affiliation(s)
- T D Southgate
- Molecular Medicine and Gene Therapy Unit, School of Medicine, University of Manchester, England
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kordower JH, Bloch J, Ma SY, Chu Y, Palfi S, Roitberg BZ, Emborg M, Hantraye P, Déglon N, Aebischer P. Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 1999; 160:1-16. [PMID: 10630186 DOI: 10.1006/exnr.1999.7178] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lentiviral vectors infect quiescent cells and allow for the delivery of genes to discrete brain regions. The present study assessed whether stable lentiviral gene transduction can be achieved in the monkey nigrostriatal system. Three young adult Rhesus monkeys received injections of a lentiviral vector encoding for the marker gene beta galatosidase (beta Gal). On one side of the brain, each monkey received multiple lentivirus injections into the caudate and putamen. On the opposite side, each animal received a single injection aimed at the substantia nigra. The first two monkeys were sacrificed 1 month postinjection, while the third monkey was sacrificed 3 months postinjection. Robust incorporation of the beta Gal gene was seen in the striatum of all three monkeys. Stereological counts revealed that 930,218; 1,192,359; and 1,501,217 cells in the striatum were beta Gal positive in monkeys 1 (n = 2) and 3 (n = 1) months later, respectively. Only the third monkey had an injection placed directly into the substantia nigra and 187,308 beta Gal-positive cells were identified in this animal. The injections induced only minor perivascular cuffing and there was no apparent inflammatory response resulting from the lentivirus injections. Double label experiments revealed that between 80 and 87% of the beta Gal-positive cells were neurons. These data indicate that robust transduction of striatal and nigral cells can occur in the nonhuman primate brain for up to 3 months. Studies are now ongoing testing the ability of lentivirus encoding for dopaminergic trophic factors to augment the nigrostriatal system in nonhuman primate models of Parkinson's disease.
Collapse
Affiliation(s)
- J H Kordower
- Department of Neurological Sciences, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ghodsi A, Stein C, Derksen T, Martins I, Anderson RD, Davidson BL. Systemic hyperosmolality improves beta-glucuronidase distribution and pathology in murine MPS VII brain following intraventricular gene transfer. Exp Neurol 1999; 160:109-16. [PMID: 10630195 DOI: 10.1006/exnr.1999.7205] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidosis VII, a classical lysosomal storage disease, is caused by deficiency of the enzyme beta-glucuronidase. Central nervous system (CNS) manifestations are severe with accumulations of storage vacuoles in all cell types. Intraventricular gene transfer can lead to transduction of the ependyma, with production and secretion of beta-glucuronidase into the cerebral spinal fluid and underlying cortex resulting in reversal of disease pathology restricted to the periventricular areas. We tested if systemic hyperosmolality would increase the distribution of beta-glucuronidase in brain parenchyma after intraventricular virus injection. Mice were administered mannitol, intraperitoneally, 20 days after gene transfer and 1 day prior to sacrifice. Mannitol-induced systemic hyperosmolality caused a marked penetration of beta-glucuronidase into the brain parenchyma. If mannitol was administered at the time of the intraventricular injection of virus, there was penetration of vector across the ependymal cell layer, with infection of cells in the subependymal region. This also resulted in increased beta-glucuronidase activity throughout the brain. Sections of brains from beta-glucuronidase-deficient mice showed correction of cellular pathology in the subependymal region plus cortical structures away from the ventricular wall. These data indicate that virus-mediated gene transfer to the brain via the ventricles, coupled with systemic mannitol administration, can lead to extensive CNS distribution of beta-glucuronidase with concomitant correction of the storage defect. Our findings have positive therapeutic implications for the treatment of CNS disorders with gene transfer vectors and recombinant proteins.
Collapse
Affiliation(s)
- A Ghodsi
- Department of Neurosurgery, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Adenovirus interaction with alphav integrins is important for virus entry. We have examined the effects of adenovirus attachment on intracellular signaling in HeLa cells, with an emphasis on pathways known to be activated following integrin interaction with other ligands. We found no evidence for [Ca(2+)](c)-mediated signaling or for tyrosine phosphorylation of pp125(FAK), p130(CAS), and paxillin. However, adenovirus attachment is known to activate phosphatidylinositol-3 kinase, which in turn may regulate endocytosis via rab5 GTPase. We found that adenovirus uptake was increased by overexpression of wild-type rab5 and decreased by dominant-negative rab5. These results indicate a role for rab5 in adenovirus entry.
Collapse
Affiliation(s)
- T Rauma
- Department of Pharmacology, University of Oulu, 90220 Oulu, Finland
| | | | | | | | | |
Collapse
|
48
|
Vasquez EC, Beltz TG, Meyrelles SS, Johnson AK. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice. Hypertension 1999; 34:756-61. [PMID: 10523356 DOI: 10.1161/01.hyp.34.4.756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.
Collapse
Affiliation(s)
- E C Vasquez
- Department of Physiological Sciences, Biomedical Center, UFES, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
49
|
Abstract
A simple method of manipulating neuronal gene expression would greatly facilitate the design of experiments to increase our understanding of and ability to treat diseases of the CNS. However, until recently most transfection methods could only deliver DNA into dividing cells and it was only possible to manipulate neuronal gene expression through the production of transgenic animals. The development of powerful new viral-based gene transfer systems has generated a great deal of research interest in the field of therapeutic gene transfer during the last decade. One of the most powerful and versatile gene delivery systems currently available is the recombinant adenovirus (Ad) vector. These vectors can transfect postmitotic neurons in the CNS, but have not yet been fully evaluated as CNS gene therapy vectors. Brattleboro rats contain a point mutation in the arginine vasopressin (AVP) gene that results in a pathological phenotype characterized by a lack of circulating AVP. This decrease in AVP in turn causes the characteristics signs of diabetes insipidus, with the production of large volumes of dilute urine and a compensatory drinking of large volumes of water (equivalent to the body weight of the rat per day). We have shown that injection of an Ad encoding the arginine vasopressin cDNA into the supraoptic nuclei of the hypothalamus results in the long-term reversal of this pathological phenotype. This was demonstrated by reduced daily water intake and micturition, as well as increased urine osmolality lasting 4 months. The highly characterized Brattleboro rat model of hypothalamic diabetes insipidus, therefore, provides the means to examine noninvasively the efficacy of viral and nonviral gene therapy strategies in the CNS.
Collapse
Affiliation(s)
- B J Geddes
- Department of Medicine Laboratories, University of Bristol, United Kingdom
| | | | | | | |
Collapse
|
50
|
Lake-Bruse KD, Faraci FM, Shesely EG, Maeda N, Sigmund CD, Heistad DD. Gene transfer of endothelial nitric oxide synthase (eNOS) in eNOS-deficient mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H770-6. [PMID: 10444505 DOI: 10.1152/ajpheart.1999.277.2.h770] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Relaxation to acetylcholine (ACh) and calcium ionophore (A-23187) is absent in aortas from endothelial nitric oxide synthase (eNOS)-deficient (eNOS -/-) mice. We hypothesized that gene transfer of eNOS would restore relaxation to ACh and A-23187 in eNOS -/- mice. Aortic rings from eNOS -/- and eNOS +/+ mice were exposed in vitro to vehicle or adenoviral vectors encoding beta-galactosidase (lacZ) or eNOS. Histochemical staining for beta-galactosidase and eNOS demonstrated transduction of endothelial cells and adventitia. Vehicle-treated vessels from eNOS -/- mice did not relax to ACh or A-23187 compared with eNOS +/+ mice. In contrast, relaxation to nitroprusside (NP) was significantly greater in eNOS -/- mice than in eNOS +/+ mice. Gene transfer of eNOS, but not lacZ, to vascular rings of eNOS -/- mice restored relaxation to ACh and A-23187. In vessels from eNOS -/- mice that were transduced with eNOS, N(omega)-nitro-L-arginine (10(-4) M) inhibited relaxation to ACh and A-23187 but not NP. Thus vascular function can be significantly improved by gene transfer in vessels where a major relaxation mechanism is genetically absent.
Collapse
Affiliation(s)
- K D Lake-Bruse
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa, 52242, USA
| | | | | | | | | | | |
Collapse
|