1
|
Schneider AM, Buchan AM, Couch Y. The effects of fasting on acute ischemic infarcts in the rat. PLoS One 2024; 19:e0307313. [PMID: 39666751 PMCID: PMC11637405 DOI: 10.1371/journal.pone.0307313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/02/2024] [Indexed: 12/14/2024] Open
Abstract
Inflammation is largely detrimental early in the acute phase of stroke but beneficial at more chronic stages. Fasting has been shown to reduce inflammation acutely. This preliminary study aimed to determine whether post-ischemic fasting improves stroke outcomes through attenuated inflammation. After an endothelin-1 lesion was created in the striatum, Wistar rats were subjected to either regular feeding or water-only fasting for 24 hours. Brain damage and central inflammation were measured histologically, while systemic inflammation was assessed through blood analysis. After 24 hours, fasting was found to reduce infarct volume and BBB breakdown, and lower both circulating and brain neutrophils. These findings suggest that fasting may be a beneficial non-pharmacological additive therapeutic option for cerebral ischemia, potentially by reducing inflammation in the acute stage of the disease.
Collapse
Affiliation(s)
- Anna M. Schneider
- Radcliffe Department of Medicine, Acute Stroke Programme, University of Oxford, Oxford, United Kingdom
- Department of Neurology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Alastair M. Buchan
- Radcliffe Department of Medicine, Acute Stroke Programme, University of Oxford, Oxford, United Kingdom
| | - Yvonne Couch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Sato Y, Li Y, Kato Y, Kanoke A, Sun JY, Nishijima Y, Wang RK, Stryker M, Endo H, Liu J. Type 2 diabetes remodels collateral circulation and promotes leukocyte adhesion following ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619748. [PMID: 39484619 PMCID: PMC11526934 DOI: 10.1101/2024.10.23.619748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with impaired leptomeningeal collateral compensation and poor stroke outcome. Neutrophils tethering and rolling on endothelium after stroke can also independently reduce flow velocity. However, the chronology and topological changes in collateral circulation in T2DM is not yet defined. Here, we describe the spatial and temporal blood flow dynamics and vessel remodeling in pial arteries and veins and leukocyte-endothelial adhesion following middle cerebral artery (MCA) stroke using two-photon microscopy in awake control and T2DM mice. Relative to control mice prior to stroke, T2DM mice already exhibited smaller pial vessels with reduced flow velocity. Following stroke, T2DM mice displayed persistently reduced blood flow in pial arteries and veins, resulting in a poor recovery of downstream penetrating arterial flow and a sustained deficit in microvascular flow. There was also persistent increase of leukocyte adhesion to the endothelium of veins, coincided with elevated neutrophils infiltration into brain parenchyma in T2DM mice compared to control mice after stroke. Our data suggest that T2DM-induced increase in chronic inflammation may contribute to the remodeling of leptomeningeal collateral circulation and the observed hemodynamics deficiency that potentiates poor stroke outcome.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuya Kato
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Kanoke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jennifer Y Sun
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- University College London, Institute of Ophthalmology, London, UK
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ruikang K. Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Stryker
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Jialing Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- SFVAMC, San Francisco, CA, USA
| |
Collapse
|
3
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
4
|
Yang JX, Han YJ, Yang MM, Gao CH, Cao J. Risk factors and predictors of acute gastrointestinal injury in stroke patients. Clin Neurol Neurosurg 2023; 225:107566. [PMID: 36603338 DOI: 10.1016/j.clineuro.2022.107566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This prospective study investigates the incidence, risk factors, biological markers, and predictors of acute gastrointestinal injury (AGI) in patients with stroke. METHODS The study involved a total of 98 patients with acute cerebrovascular disease were included. According to the ESICM, the definition of AGI in intensive care patients is classified as grade 0, I, II and III. Patients' demographics, serological indicators (e.g., urea nitrogen, albumin, D-lactate, α-GST, neutrophil count and lymphocyte count), relevant scores (NIHSS score, GCS score, APACHE II score), length of hospital stay as well as the 7-day and 28-day mortality were recorded. RESULTS In 98 patients, the incidence of AGI was 90.8 %. The APACHE II, NIHSS, GCS and Hs-mGPS scores significantly increased the odds of a higher AGI grade (P < 0.05). Also, current use of antibiotics and the presence of pneumonia significantly increased the probability of a higher AGI grade (P < 0.05). NLR, diabetes and dehydrating drugs increased the probability of AGI grade II and III (P < 0.05). Finally, an early commencement of endovascular treatment significantly reduced the incidence of AGI class III (P < 0.05). Patients with higher AGI grades had longer hospital stays and higher 28-day mortality (P < 0.05). CONCLUSION The degree of the neurological deficit in stroke patients (high NIHSS score, low GCS score) in this study was associated with the development of AGI. The patients' gastrointestinal barrier function continued to deteriorate during the week of onset. The APACHE II score, NRL score and HS-mGPS score have some predictive value for the occurrence of AGI in stroke patients.
Collapse
Affiliation(s)
- Jia-Xin Yang
- Neurology Department,Neuromedical Center, First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Juan Han
- Neurology Department,Neuromedical Center, First Hospital of Jilin University, Changchun 130021, China
| | - Miao-Miao Yang
- Neurology Department,Neuromedical Center, First Hospital of Jilin University, Changchun 130021, China
| | - Cai-Hong Gao
- Neurology Department,Neuromedical Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jie Cao
- Neurology Department,Neuromedical Center, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Phthalide derivative CD21 regulates the platelet- neutrophil extracellular trap-thrombin axis and protects against ischemic brain injury in rodents. Int Immunopharmacol 2023; 114:109547. [PMID: 36527877 DOI: 10.1016/j.intimp.2022.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Prothrombotic and proinflammatory properties of neutrophil extracellular traps (NETs) contribute to brain damage after ischemic stroke. CD21 is a novel phthalide neuroprotectant against cerebral ischemia in rodents. This study investigated effects of CD21 on the platelet-NET-thrombin axis and ischemic brain injury and the underlying mechanism. CD21 exerteddose-dependent neuroprotectionin rats that were subjected to2 h middle cerebral artery occlusion,dose-dependentlyinhibited adenosine diphosphate-mediatedplatelet aggregationin rats, and dose-dependentlyexertedanti-thrombotic activityin rodents that received a collagen-epinephrine combination, ferric chloride, or an arteriovenous shunt. Equimolar CD21 doses exerted stronger efficacy than 3-N-butylphthalide (NBP, natural phthalide for the treatment of ischemic stroke). CD21 dose-dependently improved regional cerebral blood flow, neurobehavioral deficits, and infarct volume in mice that were subjected to photothrombotic stroke (PTS). CD21 (13.79 mg/kg, i.v.) significantly decreased NET components (plasma dsDNA concentrations; mRNA levels of elastase, myeloperoxidase, and neutrophil gelatinase-associated lipocalin and protein level of citrullinated histone H3 in ischemic brain tissues), mRNA and protein levels of peptidyl-arginine deiminase 4 (PDA4, NET formation enzyme), and mRNA levels of NET-related inflammatory mediators (interleukin-1β, interleukin-17A, matrix metalloproteinase 8, and matrix metalloproteinase 9) in ischemic brain tissues, despite no effect on mRNA levels of deoxyribonuclease I (NET elimination enzyme). Pretreatment with compound C (inhibitor of adenosine monophosphate-activated protein kinase [AMPK]) significantly reversed the inhibitory effects of CD21 on NETs, PDA4, and inflammatory mediators in PTS mice. These results suggest that CD21 might regulate the platelet-NET-thrombin axis and protect against ischemic brain injury partly through the induction of AMPK activation.
Collapse
|
6
|
Terlecki P, Przywara S, Terlecki K, Janczak D, Antkiewicz M, Zubilewicz T. Effect of Reconstructive Procedures of the Extracranial Segment of the Carotid Arteries on Damage to the Blood-Brain Barrier. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106210. [PMID: 35627746 PMCID: PMC9140649 DOI: 10.3390/ijerph19106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Endarterectomy and angioplasty of the internal carotid artery are surgical measures for the prevention of ischemic stroke. Perioperative complications are caused by concomitant embolism and reperfusion syndrome leading to damage of the blood-brain barrier. METHODS The study included 88 patients divided into two groups, depending on the surgical technique used: internal carotid artery endarterectomy (CEA), 66 patients, and percutaneous carotid angioplasty and stenting (CAS), 22 patients. Blood was drawn 24 h before surgery, as well as 8, 24, and 48 h post-surgery. The assessment of damage to the blood-brain barrier was based on the evaluation of the concentration of claudin-1 and occludin, aquaporin-4, the measurements of the activity of metalloproteinase-2 (MMP-2) and -9 (MMP-9), and the assessment of central nervous system damage, measured by changes in the blood S100β protein concentration. RESULTS A significant increase in the concentration of the blood-brain barrier damage markers and increased MMP-2 and MMP-9 activity were found in patient blood. The degree of damage to the blood-brain barrier was higher in the CEA group. CONCLUSIONS The authors' own research has indicated that revascularization of the internal carotid artery may lead to damage to the central nervous system secondary to damage to the blood-brain barrier.
Collapse
Affiliation(s)
- Piotr Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
| | - Stanisław Przywara
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
- Correspondence:
| | - Dariusz Janczak
- Department of Vascular Surgery, General and Transplant Surgery, Medical University in Wroclaw, 50-355 Wroclaw, Poland; (D.J.); (M.A.)
| | - Maciej Antkiewicz
- Department of Vascular Surgery, General and Transplant Surgery, Medical University in Wroclaw, 50-355 Wroclaw, Poland; (D.J.); (M.A.)
| | - Tomasz Zubilewicz
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
| |
Collapse
|
7
|
Sienel RI, Kataoka H, Kim SW, Seker FB, Plesnila N. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Front Neurol 2022; 12:807658. [PMID: 35140676 PMCID: PMC8818753 DOI: 10.3389/fneur.2021.807658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury. Methods Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII−/−)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by in vivo fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology. Results In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; p < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold (p < 0.01); the number of intraparenchymal leukocytes was not affected. Conclusions Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Rebecca Isabella Sienel
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Hiroharu Kataoka
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seong-Woong Kim
- Department of Neurosurgery, University of Giessen, Giessen, Germany
| | - Fatma Burcu Seker
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- *Correspondence: Nikolaus Plesnila
| |
Collapse
|
8
|
Polaryzacja mikrogleju i makrofagów w wybranych chorobach degeneracyjnych i zapalnych układu nerwowego. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Makrofagi to komórki efektorowe układu odpornościowego zdolne do polaryzacji, czyli zmiany fenotypu powiązanej ze zmianą aktywności. Można wyróżnić: polaryzację klasyczną (M1), która służy obronie przed patogenami, a makrofagi M1 mają aktywność ogólnie prozapalną, oraz polaryzację alternatywną (M2), która sprzyja wygaszaniu stanu zapalnego i regeneracji tkanki. Makrofagi zasiedlają niemal cały organizm, więc zjawisko ich polaryzacji ma wpływ na wiele procesów zachodzących w różnych tkankach. W układzie nerwowym reprezentacją osiadłych makrofagów jest mikroglej. Jednak w wielu sytuacjach patologicznych w mózgu pojawiają się także makrofagi rekrutowane z monocytów krążących we krwi. Choroby neurodegeneracyjne, urazy i choroby autoimmunologiczne są związane z reakcją układu odpornościowego, która może mieć istotny wpływ na dalszy przebieg choroby i na tempo regeneracji tkanki. Polaryzacja makrofagów ma w związku z tym znaczenie w chorobach centralnego układu nerwowego. Aktywność komórek M1 i M2 może bowiem różnie wpływać na przeżywalność neuronów i oligodendrocytów, na wzrost aksonów, na proces demielinizacji czy na szczelność bariery krew–mózg. Wynika to z różnic między fenotypami w wytwarzaniu reaktywnych form tlenu i tlenku azotu, wydzielaniu cytokin i czynników wzrostu, bezpośrednich oddziaływaniach na sąsiednie komórki i zdolnościach do fagocytozy. W artykule omówiono to zagadnienie w: udarze mózgu, urazie rdzenia kręgowego, chorobie Alzheimera, stwardnieniu zanikowym bocznym i stwardnieniu rozsianym. W wielu spośród tych patologii obserwuje się gradient czasowy lub przestrzenny rozmieszczenia w tkance poszczególnych fenotypów mikrogleju i/lub makrofagów. Wydaje się zatem, że zmiany polaryzacji makrofagów mogą potencjalnie sprzyjać regeneracji tkanki lub hamować rozwój chorób neurodegeneracyjnych.
Collapse
|
9
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
10
|
Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res 2021; 46:2800-2831. [PMID: 34282491 DOI: 10.1007/s11064-021-03402-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic injury is a leading cause of death and long-term disability throughout the world. Peroxisome proliferator-activated receptor gamma (PPAR-ɣ) is a ligand-activated nuclear transcription factor that is a member of the PPAR family. PPAR-ɣ has been shown in several in vitro and in vivo models to prevent post-ischemic inflammation and neuronal damage by negatively controlling the expression of genes modulated by cerebral ischemic injury, indicating a neuroprotective effect during cerebral ischemic injury. A extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the mechanistic role of Peroxisome proliferator activated receptor gamma and its modulation in Cerebral ischemic injury. PPAR-ɣ can interact with specific DNA response elements to control gene transcription and expression when triggered by its ligand. It regulates lipid metabolism, improves insulin sensitivity, modulates antitumor mechanisms, reduces oxidative stress, and inhibits inflammation. This review article provides insights on the current state of research into the neuroprotective effects of PPAR-ɣ in cerebral ischemic injury, as well as the cellular and molecular mechanisms by which these effects are modulated, such as inhibition of inflammation, reduction of oxidative stress, suppression of pro-apoptotic production, modulation of transcription factors, and restoration of injured tissue through neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Harmeet Kaur Kang
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
11
|
Danciu CG, Szladovits B, Crawford AH, Ognean L, De Decker S. Cerebrospinal fluid analysis lacks diagnostic specificity in dogs with vestibular disease. Vet Rec 2021; 189:e557. [PMID: 34101197 DOI: 10.1002/vetr.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/20/2021] [Accepted: 05/23/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Although, vestibular syndrome is a common neurological presentation, little is known about the diagnostic value of cerebrospinal fluid (CSF) analysis in vestibular syndrome in dogs. METHODS Medical records were retrospectively reviewed, and dogs with vestibular disease that had undergone magnetic resonance imaging of the head, CSF analysis and were diagnosed with central or peripheral vestibular syndrome were included. Disorders affecting the central vestibular system included meningoencephalitis of unknown origin (MUO), brain neoplasia, ischaemic infarct, intracranial empyema or metronidazole toxicity. Disorders affecting the peripheral vestibular system included idiopathic vestibular disease, otitis media/interna or neoplasia affecting the inner ear structures. Total nucleated cell concentration (TNCC), total protein concentration (TP) and cytologic assessment were recorded. RESULTS A total of 102 dogs met the inclusion criteria. The sensitivity and specificity of increased CSF TNCC to differentiate central from peripheral vestibular syndrome was 49% and 90%, while the sensitivity and specificity of increased TP was 58% and 39%, respectively. The TNCC and TP in dogs with MUO were significantly higher than in dogs with idiopathic vestibular disease (p = 0.000 and p = 0.004). MUO was associated with lymphocytic pleocytosis, while idiopathic vestibular disease and ischaemic infarct were associated with the presence of activated macrophages or normal cytology (p = 0.000). CONCLUSION Although consistent CSF abnormalities were observed in dogs with MUO, CSF analysis did not allow reliable differentiation between central and peripheral vestibular syndrome. CSF analysis is not reliable as the sole diagnostic technique in dogs with vestibular disease.
Collapse
Affiliation(s)
- Cecilia Gabriella Danciu
- Department of Veterinary Preclinical and Clinical Science and Service, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Balazs Szladovits
- Department of Pathobiology and Populations Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Abbe Harper Crawford
- Department of Veterinary Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, UK
| | - Laurentiu Ognean
- Department of Veterinary Preclinical and Clinical Science and Service, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Steven De Decker
- Department of Veterinary Clinical Science and Services, Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
12
|
Nelson AN, Calhoun MS, Thomas AM, Tavares JL, Ferretti DM, Dillon GM, Mandelblat-Cerf Y. Temporal Progression of Excitotoxic Calcium Following Distal Middle Cerebral Artery Occlusion in Freely Moving Mice. Front Cell Neurosci 2021; 14:566789. [PMID: 33424552 DOI: 10.3389/fncel.2020.566789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is recognized as one of the leading causes of adult disability, morbidity, and death worldwide. Following stroke, acute neuronal excitotoxicity can lead to many deleterious consequences, one of which is the dysregulation of intracellular calcium ultimately culminating in cell death. However, to develop neuroprotective treatments that target neuronal excitotoxicity, it is essential to know the therapeutic time window for intervention following an ischemic event. To address this question, the current study aimed to characterize the magnitude and temporal progression of neuronal intracellular calcium observed following distal middle cerebral artery occlusion (dMCAO) in mice. Using the calcium fluorescence indicator, GCaMP, we tracked neuronal population response in freely moving animals immediately following dMCAO in both the core infarct and peri-infarct regions. Our results demonstrate that calcium excitotoxicity following artery occlusion can be generally characterized by two phases: a transient increase in activity that lasts tens of minutes, followed by a long, slow sustained increase in fluorescence signal. The first phase is primarily thought to represent neuronal hyperexcitability, defining our therapeutic window, while the second may represent gradual cell death. Importantly, we show that the level of intracellular calcium following artery occlusion correlated with the infarct size at 24 h demonstrating a direct connection between excitotoxicity and cell death in our stroke model. In addition, we show that administration of the NMDA antagonist MK-801 resulted in both a decrease in calcium signal and a subsequent reduction in the infarct size. Altogether, this study represents the first demonstration in freely moving animals characterizing the temporal progression of toxic calcium signaling following artery occlusion. In addition, these results define a critical time window for neuroprotective therapeutic intervention in mice.
Collapse
|
13
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
14
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Affiliation(s)
- Anna M Planas
- From the Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Spain; and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
16
|
Faustino J, Chip S, Derugin N, Jullienne A, Hamer M, Haddad E, Butovsky O, Obenaus A, Vexler ZS. CX3CR1-CCR2-dependent monocyte-microglial signaling modulates neurovascular leakage and acute injury in a mouse model of childhood stroke. J Cereb Blood Flow Metab 2019; 39:1919-1935. [PMID: 30628839 PMCID: PMC6775594 DOI: 10.1177/0271678x18817663] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is among the top 10 causes of death in children. The developmental stage of the brain is central to stroke pathophysiology. The incidence of childhood arterial ischemic stroke (CAIS) is lower than of perinatal arterial ischemic stroke but the rate of recurrence is strikingly high. Vascular inflammation is seen as major contributor to CAIS but the mechanisms that govern structural-functional basis of vascular abnormalities remain poorly understood. To identify the contribution of immune-neurovascular interactions to CAIS, we established stroke model in postnatal day 21 (P21) mice. We demonstrate acute functional deficits and histological injury and chronic MRI-identifiable injury, brain atrophy and marked derangements in the vascular network. In contrast to negligible albumin leakage and neutrophil infiltration following acute perinatal stroke, CAIS leads to significantly increased albumin leakage and neutrophil infiltration in injured regions of wild type mice and mice with functional CX3CR1-CCR2 receptors. In mice with dysfunctional CX3CR1-CCR2 signaling, extravascular albumin leakage is significantly attenuated, infiltration of injurious Ccr2+-monocytes essentially aborted, accumulation of Ly6G+ neutrophils reduced and acute injury attenuated. Unique identifiers of microglia and monocytes revealed phenotypic changes in each cell subtype of the monocyte lineage after CAIS. Taken together, CX3CR1-CCR2-dependent microglia-monocyte signaling contributes to cerebrovascular leakage, inflammation and CAIS injury.
Collapse
Affiliation(s)
- Joel Faustino
- Department of Neurology, University California San Francisco, CA, USA
| | - Sophorn Chip
- Department of Neurology, University California San Francisco, CA, USA
| | - Nikita Derugin
- Department of Neurology, University California San Francisco, CA, USA
| | | | - Mary Hamer
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Elizabeth Haddad
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andre Obenaus
- Basic Sciences Department, Loma Linda University, Loma Linda, CA, USA.,Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, CA, USA
| |
Collapse
|
17
|
Świtońska M, Słomka A, Korbal P, Piekuś-Słomka N, Sinkiewicz W, Sokal P, Żekanowska E. Association of Neutrophil-to-Lymphocyte Ratio and Lymphocyte-to-Monocyte Ratio with Treatment Modalities of Acute Ischaemic Stroke: A Pilot Study. ACTA ACUST UNITED AC 2019; 55:medicina55070342. [PMID: 31284487 PMCID: PMC6680974 DOI: 10.3390/medicina55070342] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
Background and Objectives: Ischaemic stroke (IS) is the leading cause of death and disability worldwide. All stages of cerebral ischaemia, but especially acute phase, are associated with inflammatory response. Recent studies showed that neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) may be used to assess inflammation in IS. To test whether there is a relationship between these parameters and type of stroke treatment, we analysed NLR and LMR in IS patients treated with three different modalities. Materials and Methods: The study included 58 adults with acute IS. A total of 28 patients received intravenous thrombolysis. In another 10 patients, the thrombolytic therapy was followed by thrombectomy and 20 patients did not undergo causal treatment. Blood samples were obtained within 24 h of the stroke diagnosis to calculate NLR and LMR. Next, NLR and LMR of the study subgroups were compared. Results: Our study revealed that NLR was significantly higher in patients treated with thrombectomy following thrombolysis, compared to no causal treatment. Statistical analysis demonstrated that patients with high National Institutes of Health Stroke Scale (NIHSS) scores presented higher NLR than in those with low NIHSS scores. Additionally, patients with high-sensitivity C-reactive protein (hs-CRP) ≥ 3 mg/L presented with significantly higher NLR and significantly lower LMR than the group of patients with lower hs-CRP (<3 mg/L). Conclusions: The main finding of this pilot study was that NLR in IS patients treated using thrombectomy following thrombolysis was markedly higher than that in other treatment groups, which was associated with increased severity of the disease in these patients. Therefore, patients with higher NLR may be expected to have more severe stroke. The link between stroke severity and NLR deserves further study.
Collapse
Affiliation(s)
- Milena Świtońska
- Department of Neurosurgery and Neurology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-168 Bydgoszcz, Poland.
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Piotr Korbal
- Department of Propedeutics of Medicine, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Natalia Piekuś-Słomka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-089 Bydgoszcz, Poland
| | - Władysław Sinkiewicz
- 2nd Department of Cardiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-168 Bydgoszcz, Poland
| | - Paweł Sokal
- Department of Neurosurgery and Neurology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-168 Bydgoszcz, Poland
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 85-094 Bydgoszcz, Poland
| |
Collapse
|
18
|
Mai N, Miller-Rhodes K, Knowlden S, Halterman MW. The post-cardiac arrest syndrome: A case for lung-brain coupling and opportunities for neuroprotection. J Cereb Blood Flow Metab 2019; 39:939-958. [PMID: 30866740 PMCID: PMC6547189 DOI: 10.1177/0271678x19835552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and multi-organ failure represent hallmarks of the post-cardiac arrest syndrome (PCAS) and predict severe neurological injury and often fatal outcomes. Current interventions for cardiac arrest focus on the reversal of precipitating cardiac pathologies and the implementation of supportive measures with the goal of limiting damage to at-risk tissue. Despite the widespread use of targeted temperature management, there remain no proven approaches to manage reperfusion injury in the period following the return of spontaneous circulation. Recent evidence has implicated the lung as a moderator of systemic inflammation following remote somatic injury in part through effects on innate immune priming. In this review, we explore concepts related to lung-dependent innate immune priming and its potential role in PCAS. Specifically, we propose and investigate the conceptual model of lung-brain coupling drawing from the broader literature connecting tissue damage and acute lung injury with cerebral reperfusion injury. Subsequently, we consider the role that interventions designed to short-circuit lung-dependent immune priming might play in improving patient outcomes following cardiac arrest and possibly other acute neurological injuries.
Collapse
Affiliation(s)
- Nguyen Mai
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Kathleen Miller-Rhodes
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Sara Knowlden
- 2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Marc W Halterman
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol 2019; 137:321-341. [PMID: 30580383 PMCID: PMC6513908 DOI: 10.1007/s00401-018-1954-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Stroke attracts neutrophils to the injured brain tissue where they can damage the integrity of the blood-brain barrier and exacerbate the lesion. However, the mechanisms involved in neutrophil transmigration, location and accumulation in the ischemic brain are not fully elucidated. Neutrophils can reach the perivascular spaces of brain vessels after crossing the endothelial cell layer and endothelial basal lamina of post-capillary venules, or migrating from the leptomeninges following pial vessel extravasation and/or a suggested translocation from the skull bone marrow. Based on previous observations of microglia phagocytosing neutrophils recruited to the ischemic brain lesion, we hypothesized that microglial cells might control neutrophil accumulation in the injured brain. We studied a model of permanent occlusion of the middle cerebral artery in mice, including microglia- and neutrophil-reporter mice. Using various in vitro and in vivo strategies to impair microglial function or to eliminate microglia by targeting colony stimulating factor 1 receptor (CSF1R), this study demonstrates that microglial phagocytosis of neutrophils has fundamental consequences for the ischemic tissue. We found that reactive microglia engulf neutrophils at the periphery of the ischemic lesion, whereas local microglial cell loss and dystrophy occurring in the ischemic core are associated with the accumulation of neutrophils first in perivascular spaces and later in the parenchyma. Accordingly, microglia depletion by long-term treatment with a CSF1R inhibitor increased the numbers of neutrophils and enlarged the ischemic lesion. Hence, microglial phagocytic function sets a critical line of defense against the vascular and tissue damaging capacity of neutrophils in brain ischemia.
Collapse
|
20
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X, Liu C. The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: In vivo assessment and a randomized controlled trial. J Pineal Res 2018; 65:e12521. [PMID: 30098076 DOI: 10.1111/jpi.12521] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/25/2022]
Abstract
Carotid endarterectomy (CEA) is the treatment of choice for carotid stenosis. Some patients develop ischemia and reperfusion (I/R) injury after CEA. This study was designed to investigate the neuroprotective effects of melatonin on I/R injury in both rats and humans. To this end, 36 male rats were evaluated, and a double-blind randomized controlled trial (RCT) including 60 patients was performed. A rat model of middle cerebral artery occlusion was used to mimic cerebral I/R. After 2 hour of occlusion and 24 hour of reperfusion, blood samples and brain tissues were harvested for further assessments. Compared with the vehicle treatment, melatonin decreased the expression of nuclear factor κ light-chain-enhancer of activated B cells (NF-κB) and S100 calcium-binding protein β (S100β) (P < 0.05) and markedly increased the expression of nuclear erythroid 2-related factor 2 (Nrf2), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) (P < 0.05). The participants in the RCT took 6 mg/d melatonin orally from 3 days before surgery to 3 days after surgery. Blood samples were drawn at the following times: baseline; pre-anesthesia; carotid reconstruction completion; and 6, 24, and 72 hour after CEA. Compared with the oral placebo treatment, melatonin decreased the expression of NF-κB, tumor necrosis factor-α, interleukin-6 (IL-6), and S100β (P < 0.05) and increased the expression of Nrf2, SOD, CAT, and GPx (P < 0.05) in patients after CEA. Our findings suggested that melatonin could ameliorate brain I/R injury after CEA and that this outcome was essentially due to the antioxidant and anti-inflammatory effects of melatonin.
Collapse
Affiliation(s)
- Zhewei Zhao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chengran Lu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjia Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuebin Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
23
|
Magalhães TNC, Weiler M, Teixeira CVL, Hayata T, Moraes AS, Boldrini VO, dos Santos LM, de Campos BM, de Rezende TJR, Joaquim HPG, Talib LL, Forlenza OV, Cendes F, Balthazar MLF. Systemic Inflammation and Multimodal Biomarkers in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Mol Neurobiol 2017; 55:5689-5697. [DOI: 10.1007/s12035-017-0795-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022]
|
24
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
25
|
Frieler RA, Chung Y, Ahlers CG, Gheordunescu G, Song J, Vigil TM, Shah YM, Mortensen RM. Genetic neutrophil deficiency ameliorates cerebral ischemia-reperfusion injury. Exp Neurol 2017; 298:104-111. [PMID: 28865993 DOI: 10.1016/j.expneurol.2017.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/18/2017] [Accepted: 08/28/2017] [Indexed: 11/29/2022]
Abstract
Neutrophils respond rapidly to cerebral ischemia and are thought to contribute to inflammation-mediated injury during stroke. Using myeloid Mcl1 knockout mice as a model of genetic neutrophil deficiency, we investigated the contribution of neutrophils to stroke pathophysiology. Myeloid Mcl1 knockout mice were subjected to transient middle cerebral artery occlusion and infarct size was assessed by MRI after 24h reperfusion. Immune cell mobilization and infiltration was assessed by flow cytometry. We found that myeloid Mcl1 knockout mice had significantly reduced infarct size when compared to heterozygous and wild type control mice (MyMcl1+/+: 78.0mm3; MyMcl1+/-: 83.4mm3; MyMcl1-/-: 55.1mm3). This was accompanied by a nearly complete absence of neutrophils in the ischemic hemisphere of myeloid Mcl1 knockout mice. Although myeloid Mcl1 knockout mice were protected from cerebral infarction, no significant differences in neurological deficit or the mRNA expression of inflammatory genes (TNFα, IL-1β, and MCP1) were detected. Inhibition of neutrophil chemotaxis using CXCR2 pepducin treatment partially reduced neutrophil mobilization and recruitment to the brain after stroke, but did not reduce infarct size 24h after transient MCA occlusion. These data confirm that neutrophils have an important role in infarct development during stroke pathophysiology, and suggest that complete deficiency, but not partial inhibition, is necessary to prevent neutrophil-mediated injury during stroke.
Collapse
Affiliation(s)
- Ryan A Frieler
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Yutein Chung
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Carolyn G Ahlers
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - George Gheordunescu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Jianrui Song
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Thomas M Vigil
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
26
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|
27
|
Abstract
The immune response to acute cerebral ischemia is a major factor in stroke pathobiology and outcome. While the immune response starts locally in occluded and hypoperfused vessels and the ischemic brain parenchyma, inflammatory mediators generated in situ propagate through the organism as a whole. This "spillover" leads to a systemic inflammatory response first, followed by immunosuppression aimed at dampening the potentially harmful proinflammatory milieu. In this overview we will outline the inflammatory cascade from its starting point in the vasculature of the ischemic brain to the systemic immune response elicited by brain ischemia. Potential immunomodulatory therapeutic approaches, including preconditioning and immune cell therapy will also be discussed.
Collapse
Affiliation(s)
- Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Simats A, García-Berrocoso T, Montaner J. Natalizumab: a new therapy for acute ischemic stroke? Expert Rev Neurother 2016; 16:1013-21. [PMID: 27476862 DOI: 10.1080/14737175.2016.1219252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Natalizumab, a well-characterized treatment for multiple sclerosis, is a humanized antibody against alpha-4 integrin (CD49d) that mitigates the transmigration of leukocytes across the endothelium. Although numerous experimental studies have evaluated the efficacy of anti-CD49d antibody treatment for ischemic stroke, discrepancies in their results have raised concerns about the benefits of this approach. AREAS COVERED This article reviews the main experimental studies on the blockage of CD49d and identifies the potential underlying causes for their inconclusive results. Despite these divergences and the difficulties in translation of experimental studies, a phase II clinical trial has recently been conducted to evaluate the efficacy of natalizumab in stroke patients (ACTION trial). Preliminary results of the trial are also discussed here, together with a general overview of the emerged importance of the neuroprotective strategies based on the mitigation of post-stroke neuroinflammation. Expert commentary: Despite natalizumab showing positive effects on functional outcome similar to what was found in experimental models, a better understanding of how this happens without reducing the infarct volume requires further research. Therefore, new clinical trials are needed to confirm its neuroprotectant role in ischemic stroke.
Collapse
Affiliation(s)
- Alba Simats
- a Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR) , Universitat Autónoma de Barcelona , Barcelona , Spain
| | - Teresa García-Berrocoso
- a Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR) , Universitat Autónoma de Barcelona , Barcelona , Spain
| | - Joan Montaner
- a Neurovascular Research Laboratory, Institut de Recerca, Hospital Universitari Vall d'Hebron (VHIR) , Universitat Autónoma de Barcelona , Barcelona , Spain.,b Stroke Programme , Institute of Biomedicine of Seville (IBiS) , Seville , Spain
| |
Collapse
|
29
|
Paterniti I, Cordaro M, Esposito E, Cuzzocrea S. The antioxidative property of melatonin against brain ischemia. Expert Rev Neurother 2016; 16:841-8. [PMID: 27108742 DOI: 10.1080/14737175.2016.1182020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION This review briefly summarizes some of the large amount of data documenting the ability of melatonin to limit molecular and organ tissue damage in neural ischemia-reperfusion injury (stroke), where free radicals are generally considered as being responsible for much of the resulting tissue destruction. AREA COVERED Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes. Furthermore, several of its metabolites such as N(1)-acetyl-N(2)-formyl-5- methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine (AMF), are themselves scavengers suggesting that there is a cascade of reactions that greatly increase the efficacy of melatonin. Expert Commentary: However, the mechanisms by which melatonin is protective in such widely diverse areas of the cell and different organs are likely not yet all identified.
Collapse
Affiliation(s)
- Irene Paterniti
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Marika Cordaro
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Emanuela Esposito
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Salvatore Cuzzocrea
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy.,b Department of Pharmacological and Physiological Science , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
30
|
Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta Mol Basis Dis 2016; 1862:461-71. [DOI: 10.1016/j.bbadis.2015.10.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
|
31
|
Anrather J, Iadecola C, Hallenbeck J. Inflammation and Immune Response. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35:888-901. [PMID: 25806703 PMCID: PMC4640255 DOI: 10.1038/jcbfm.2015.45] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood-brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
33
|
Wharton's jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 2015; 117:329-38. [PMID: 25747736 DOI: 10.1016/j.acthis.2015.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/31/2015] [Accepted: 02/08/2015] [Indexed: 02/06/2023]
Abstract
Multipotent mesenchymal stromal cells, also known as mesenchymal stem cells (MSC), can be isolated from bone marrow or other tissues, including fat, muscle and umbilical cord. It has been shown that MSC behave in vitro as stem cells: they self-renew and are able to differentiate into mature cells typical of several mesenchymal tissues. Moreover, the differentiation toward non-mesenchymal cell lineages (e.g. neurons) has been reported as well. The clinical relevance of these cells is mainly related to their ability to spontaneously migrate to the site of inflammation/damage, to their safety profile thanks to their low immunogenicity and to their immunomodulation capacities. To date, MSCs isolated from the post-natal bone marrow have represented the most extensively studied population of adult MSCs, in view of their possible use in various therapeutical applications. However, the bone marrow-derived MSCs exhibit a series of limitations, mainly related to their problematic isolation, culturing and use. In recent years, umbilical cord (UC) matrix (i.e. Wharton's jelly, WJ) stromal cells have therefore emerged as a more suitable alternative source of MSCs, thanks to their primitive nature and the easy isolation without relevant ethical concerns. This review seeks to provide an overview of the main biological properties of WJ-derived MSCs. Moreover, the potential application of these cells for the treatment of some known dysfunctions in the central and peripheral nervous system will also be discussed.
Collapse
|
34
|
Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci 2015; 8:461. [PMID: 25642168 PMCID: PMC4294142 DOI: 10.3389/fncel.2014.00461] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023] Open
Abstract
The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke.
Collapse
Affiliation(s)
- Corinne Benakis
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
35
|
Semple BD, Trivedi A, Gimlin K, Noble-Haeusslein LJ. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis 2014; 74:263-80. [PMID: 25497734 DOI: 10.1016/j.nbd.2014.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further, WT mice treated acutely with the NE inhibitor showed no long-term behavioral or structural improvements. Together, these findings validate the central role of NE in both acute pathogenesis and chronic functional recovery, and support future exploration of the therapeutic window, taking into account the prolonged period of neutrophil trafficking into the injured immature brain.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC 3000, Australia.
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res 2014; 5:554-61. [PMID: 24696130 DOI: 10.1007/s12975-014-0341-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) infiltration into brain parenchyma after cerebrovascular accidents is viewed as a key component of secondary brain injury. Interestingly, a recent study of ischemic stroke suggests that after ischemic stroke, PMNs do not enter brain parenchyma and as such may cause no harm to the brain. Thus, the present study was designed to determine PMNs' behavior after intracerebral hemorrhage (ICH). Using the autologous blood injection model of ICH in rats and immunohistochemistry for PMNs and vascular components, we evaluated the temporal and spatial PMNs distribution in the ICH-affected brain. We found that, similar to ischemia, there is a robust increase in presence of PMNs in the ICH-injured tissue that lasts for at least 1 to 2 weeks. However, in contrast to what was suggested for ischemia, besides PMNs that stay in association with the vasculature, after ICH, we found abundance of intraparenchymal PMNs (with no obvious association with vessels) in the ICH core and hematoma border, especially between 1 and 7 days after the ictus. Interestingly, the increased presence of intraparenchymal PMNs after ICH coincided with the massive loss of microvascular integrity, suggesting vascular disruption as a potential cause of PMNs presence in the brain parenchyma. Our study indicates that in contrast to ischemic stroke, after ICH, PMNs target not only vascular compartment but also brain parenchyma in the affected brain. As such, it is possible that the pathogenic role and therapeutic implications of targeting PMNs after ICH could be different from these after ischemic stroke. Our work suggests the needs for more studies addressing the role of PMNs in ICH.
Collapse
|
37
|
Hyperbaric Oxygen Therapy Ameliorates Local Brain Metabolism, Brain Edema and Inflammatory Response in a Blast-Induced Traumatic Brain Injury Model in Rabbits. Neurochem Res 2014; 39:950-60. [DOI: 10.1007/s11064-014-1292-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 01/01/2023]
|
38
|
Medvedeva EV, Dmitrieva VG, Povarova OV, Limborska SA, Skvortsova VI, Myasoedov NF, Dergunova LV. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis. BMC Genomics 2014; 15:228. [PMID: 24661604 PMCID: PMC3987924 DOI: 10.1186/1471-2164-15-228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/18/2014] [Indexed: 01/09/2023] Open
Abstract
Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and functioning of the vascular system. The immunomodulating effect of the peptide discovered in our research and its impact on the vascular system during ischemia are likely to be the key mechanisms underlying the neuroprotective effects of the peptide.
Collapse
Affiliation(s)
- Ekaterina V Medvedeva
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
39
|
Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV, Broughton BRS, Drummond GR, Sobey CG. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:450-9. [PMID: 24326388 PMCID: PMC3948121 DOI: 10.1038/jcbfm.2013.217] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/29/2022]
Abstract
We tested whether significant leukocyte infiltration occurs in a mouse model of permanent cerebral ischemia. C57BL6/J male mice underwent either permanent (3 or 24 hours) or transient (1 or 2 hours+22- to 23-hour reperfusion) middle cerebral artery occlusion (MCAO). Using flow cytometry, we observed ∼15,000 leukocytes (CD45(+high) cells) in the ischemic hemisphere as early as 3 hours after permanent MCAO (pMCAO), comprising ∼40% lymphoid cells and ∼60% myeloid cells. Neutrophils were the predominant cell type entering the brain, and were increased to ∼5,000 as early as 3 hours after pMCAO. Several cell types (monocytes, macrophages, B lymphocytes, CD8(+) T lymphocytes, and natural killer cells) were also increased at 3 hours to levels sustained for 24 hours, whereas others (CD4(+) T cells, natural killer T cells, and dendritic cells) were unchanged at 3 hours, but were increased by 24 hours after pMCAO. Immunohistochemical analysis revealed that leukocytes typically had entered and widely dispersed throughout the parenchyma of the infarct within 3 hours. Moreover, compared with pMCAO, there were ∼50% fewer infiltrating leukocytes at 24 hours after transient MCAO (tMCAO), independent of infarct size. Microglial cell numbers were bilaterally increased in both models. These findings indicate that a profound infiltration of inflammatory cells occurs in the brain early after focal ischemia, especially without reperfusion.
Collapse
Affiliation(s)
- Hannah X Chu
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Hyun Ah Kim
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Seyoung Lee
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jeffrey P Moore
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Christopher T Chan
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Antony Vinh
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thiruma V Arumugam
- Department of Pharmacology, University of Queensland, St Lucia, Queensland, Australia
| | - Brad R S Broughton
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Easton AS. Neutrophils and stroke – Can neutrophils mitigate disease in the central nervous system? Int Immunopharmacol 2013; 17:1218-25. [DOI: 10.1016/j.intimp.2013.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 02/15/2013] [Accepted: 06/09/2013] [Indexed: 12/19/2022]
|
41
|
Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiol Dis 2013; 62:456-68. [PMID: 24184800 DOI: 10.1016/j.nbd.2013.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 01/05/2023] Open
Abstract
Inflammation contributes to ischemic brain injury. However, translation of experimental findings from animal models into clinical trials is still ineffective, since the majority of human stroke studies mainly focus on acute neuroprotection, thereby neglecting inflammatory mechanisms and inflammation-associated co-morbidity factors such as hypercholesterolemia. Therefore, both wildtype and ApoE(-/-) mice that exhibit increased serum plasma cholesterol levels fed with normal or high cholesterol diet were exposed to transient middle cerebral artery occlusion. Analysis of peripheral immune responses revealed an ischemia-induced acute leukocytosis in the blood, which was accompanied by enhanced myeloid cell and specifically granulocyte cell counts in the spleen and blood of ApoE(-/-) mice fed with Western diet. These cellular immune changes were further associated with increased levels of pro-inflammatory cytokines like IL-6 and TNF-α. Moreover, endogenous stroke-induced endothelial activation as well as CXCL-1 and CXCL-2 expression were increased, thus resulting in accelerated leukocyte, particularly granulocyte accumulation, and enhanced ischemic tissue damage. The latter was revealed by larger infarct volumes and increased local DNA fragmentation in ischemic brains of ApoE(-/-) mice on Western diet. These effects were not observed in wildtype mice on normal or Western diet and in ApoE(-/-) mice on normal diet. Our data demonstrate that the combination of both ApoE knockout and a high cholesterol diet leads to increased ischemia-induced peripheral and cerebral immune responses, which go along with enhanced cerebral tissue injury. Thus, clinically predisposing conditions related to peripheral inflammation such as hypercholesterolemia should be included in up-coming preclinical stroke research.
Collapse
|
42
|
Peripheral polymorphonuclear leukocyte activation as a systemic inflammatory response in ischemic stroke. Neurol Sci 2013; 34:1509-16. [DOI: 10.1007/s10072-013-1447-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/06/2013] [Indexed: 11/25/2022]
|
43
|
Kalimo H, del Zoppo GJ, Paetau A, Lindsberg PJ. Polymorphonuclear neutrophil infiltration into ischemic infarctions: myth or truth? Acta Neuropathol 2013; 125:313-6. [PMID: 23417713 DOI: 10.1007/s00401-013-1098-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, Prinz V, Dirnagl U, Endres M, Prinz M, Beschorner R, Harter PN, Mittelbronn M, Engelhardt B, Sorokin L. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 2013; 125:395-412. [PMID: 23269317 PMCID: PMC3578720 DOI: 10.1007/s00401-012-1076-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023]
Abstract
The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.
Collapse
Affiliation(s)
- Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Caroline Mysiorek
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Roser Gorina
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Yu-Jung Cheng
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Sharang Ghavampour
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | | | - Ulrich Dirnagl
- Department of Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité University, Berlin, Germany
| | - Matthias Endres
- Department of Neurology, Berlin, Germany
- Center for Stroke Research Berlin, Charité University, Berlin, Germany
| | - Marco Prinz
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Rudi Beschorner
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger Institute), University of Frankfurt, Frankfurt, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), University of Frankfurt, Frankfurt, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| |
Collapse
|
45
|
Yu L, Chen C, Wang LF, Kuang X, Liu K, Zhang H, Du JR. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS One 2013; 8:e55839. [PMID: 23437066 PMCID: PMC3577792 DOI: 10.1371/journal.pone.0055839] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ischemic brain injury is associated with neuroinflammatory response, which essentially involves glial activation and neutrophil infiltration. Transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) contribute to ischemic neuroinflammatory processes and secondary brain injury by releasing proinflammatory mediators. Kaempferol-3-O-rutinoside (KRS) and kaempferol-3-O- glucoside (KGS) are primary flavonoids found in Carthamus tinctorius L. Recent studies demonstrated that KRS protected against ischemic brain injury. However, little is known about the underlying mechanisms. Flavonoids have been reported to have antiinflammatory properties. Herein, we explored the effects of KRS and KGS in a transient focal stroke model. METHODOLOGY/PRINCIPAL FINDINGS Rats were subjected to middle cerebral artery occlusion for 2 hours followed by 22 h reperfusion. An equimolar dose of KRS or KGS was administered i.v. at the beginning of reperfusion. The results showed that KRS or KGS significantly attenuated the neurological deficits, brain infarct volume, and neuron and axon injury, reflected by the upregulation of neuronal nuclear antigen-positive neurons and downregulation of amyloid precursor protein immunoreactivity in the ipsilateral ischemic hemisphere. Moreover, KRS and KGS inhibited the expression of OX-42, glial fibrillary acidic protein, phosphorylated STAT3 and NF-κB p65, and the nuclear content of NF-κB p65. Subsequently, these flavonoids inhibited the expression of tumor necrosis factor α, interleukin 1β, intercellular adhesion molecule 1, matrix metallopeptidase 9, inducible nitric oxide synthase, and myeloperoxidase. CONCLUSION/SIGNIFICANCE Our findings suggest that postischemic treatment with KRS or KGS prevents ischemic brain injury and neuroinflammation by inhibition of STAT3 and NF-κB activation and has the therapeutic potential for the neuroinflammation-related diseases, such as ischemic stroke.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University “985 Projects – Science and Technology Innovation Platform for Novel Drug Development and Translational Neuroscience Center”, Chengdu, China
- Luzhou Medical College, Luzhou, Sichuan, China
| | - Chu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Liang-Fen Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University “985 Projects – Science and Technology Innovation Platform for Novel Drug Development and Translational Neuroscience Center”, Chengdu, China
| | - Xi Kuang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University “985 Projects – Science and Technology Innovation Platform for Novel Drug Development and Translational Neuroscience Center”, Chengdu, China
| | - Ke Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University “985 Projects – Science and Technology Innovation Platform for Novel Drug Development and Translational Neuroscience Center”, Chengdu, China
| | - Hao Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University “985 Projects – Science and Technology Innovation Platform for Novel Drug Development and Translational Neuroscience Center”, Chengdu, China
| | - Jun-Rong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University “985 Projects – Science and Technology Innovation Platform for Novel Drug Development and Translational Neuroscience Center”, Chengdu, China
| |
Collapse
|
46
|
Sousa LFDC, Coelho FM, Rodrigues DH, Campos AC, Barcelos LDS, Teixeira MM, Rachid MA, Teixeira AL. Blockade of CXCR1/2 chemokine receptors protects against brain damage in ischemic stroke in mice. Clinics (Sao Paulo) 2013; 68:391-4. [PMID: 23644861 PMCID: PMC3611745 DOI: 10.6061/clinics/2013(03)oa17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/22/2012] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Ischemic stroke may result from transient or permanent reductions of regional cerebral blood flow. Polymorphonuclear neutrophils have been described as the earliest inflammatory cells to arrive in ischemic tissue. CXCR1/2 receptors are involved in the recruitment of these cells. However, the contribution of these chemokine receptors during transient brain ischemia in mice remains poorly understood. In this work, we investigated the effects of reparixin, an allosteric antagonist of CXCR1/2 receptors, in a model of middle cerebral artery occlusion and reperfusion in mice. METHODS C57BL/6J male mice treated with reparixin or vehicle were subjected to a middle cerebral artery occlusion procedure 1 h after the treatment. Ninety minutes after ischemia induction, the monofilament that prevented blood flow was removed. Twenty-four hours after the reperfusion procedure, behavioral changes, including motor signs, were analyzed with the SmithKline/Harwell/lmperial College/Royal Hospital/Phenotype Assessment (SHIRPA) battery. The animals were sacrificed, and brain tissue was removed for histological and biochemical analyses. Histological sections were stained with hematoxylin and eosin, neutrophil infiltration was estimated by myeloperoxidase activity and the inflammatory cytokine IL-iβ was measured by ELISA. RESULTS Pre-treatment with reparixin reduced the motor deficits observed in this model of ischemia and reperfusion. Myeloperoxidase activity and IL-iβ were reduced in the reparixin-treated group. Histological analysis revealed that ischemic injury was also attenuated by reparixin pre-treatment. CONCLUSIONS Our results suggest that the blockade of the CXCR1/2 receptors by reparixin promotes neuroprotective effects by reducing the levels of polymorphonuclear infiltration in the brain and the tissue damage associated with middle cerebral artery occlusion and reperfusion.
Collapse
Affiliation(s)
- Larissa Fonseca da Cunha Sousa
- Departamento de Bioqufmica e Imunologia, Laboratorio de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Banks WA, Niehoff ML, Ponzio NM, Erickson MA, Zalcman SS. Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lipopolysaccharide-treated mice. J Neuroinflammation 2012; 9:231. [PMID: 23034075 PMCID: PMC3489553 DOI: 10.1186/1742-2094-9-231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Immune cell trafficking into the CNS and other tissues plays important roles in health and disease. Rapid quantitative methods are not available that could be used to study many of the dynamic aspects of immune cell-tissue interactions. METHODS We used pharmacokinetics and modeling to quantify and characterize the trafficking of radioactively labeled lymphocytes into brain and peripheral tissues. We used variance from two-way ANOVAs with 2 × 2 experimental designs to model the relative influences of lymphocytes and target tissues in trafficking. RESULTS We found that in male CD-1 mice, about 1 in 5,000 intravenously injected lymphocytes entered each gram of brain. Uptake by brain was 2 to 3 times higher in naïve SJL females, but uptake by spleen and clearance from blood was lower, demonstrating a dichotomy in immune cell distribution. Treatment of CD-1 mice with lipopolysaccharide (LPS) increased immune cell uptake into brain but decreased uptake by spleen and axillary nodes. CONCLUSIONS Differences in brain uptake and in uptake by spleen between SJL and CD-1 mice were primarily determined by lymphocytes, whereas differences in uptake with LPS were primarily determined by lymphocytes for the brain but by the tissues for the spleen and the axillary lymph node. These results show that immune cells normally enter the CNS and that tissues and immune cells interact in ways that can be quantified by pharmacokinetic models.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, USA
- VAPSHCS, Rm 810A, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Nicholas M Ponzio
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, USA
| | - Michelle A Erickson
- GRECC, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, USA
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, Saint Louis, USA
| | - Steven S Zalcman
- Department of Psychiatry-UMDNJ-New Jersey Medical School, Newark, USA
| |
Collapse
|
48
|
Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction. Atherosclerosis 2012; 222:464-7. [DOI: 10.1016/j.atherosclerosis.2012.02.042] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 11/22/2022]
|
49
|
Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. J Neurol Sci 2012; 318:25-30. [PMID: 22560605 DOI: 10.1016/j.jns.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
Abstract
In our previous study, we reported that lipopolysaccharide (LPS) activated microglia and accelerated cerebral ischemic injury in the rat brain through the overexpression of cytokines in microglia. In the present study, we investigated the effect of the intraperitoneal administration of fucoidin, a potent inhibitor of leukocyte rolling and anti-inflammatory agent, against accelerated cerebral ischemic injury by LPS pretreatment using rats. We found that fucoidin treatment inhibited the expressions of some brain cytokine or chemokine mRNA such as IL-8, TNF-α and iNOS in the brain of the rats treated only with LPS. We also observed that fucoidin treatment dramatically decreased the infarct size in accelerated cerebral ischemic injury induced by LPS treatment at an early time after ischemic injury. In addition, the immunoreactivity of myleoperoxidase (MPO), a marker for quantifying neutrophil accumulation, was distinctively decreased in the ischemic brain of the fucoidin-treated rat. In brief, our results indicate that fucoidin showed a neuroprotective effect on LPS accelerated cerebral ischemic injury through inhibiting the expression of some cytokine/chemokine and neutrophil recruitments.
Collapse
|
50
|
Khansari PS, Sperlagh B. Inflammation in neurological and psychiatric diseases. Inflammopharmacology 2012; 20:103-7. [PMID: 22361843 DOI: 10.1007/s10787-012-0124-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 01/09/2023]
Abstract
In recent years, compelling evidence suggests that inflammation plays a critical role in the pathology of a vast number of neurological diseases such as stroke, Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis as well as neuropsychiatric diseases such as major depression and schizophrenia. Despite emerging evidence in human and animal models alike, modulating inflammatory responses have yet to be proven as an effective treatment to prevent or delay the progression of these diseases. The primary focus of this special edition is to highlight some of our current findings on the complexities of targeting neuroinflammation as a novel therapy, and its role in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Parto S Khansari
- California Northstate University College of Pharmacy, Rancho Cordova, CA, USA.
| | | |
Collapse
|