1
|
Fakriadis I, Meiri-Ashkenazi I, Bracha C, Rosenfeld H, Corriero A, Zupa R, Pousis C, Papadaki M, Mylonas CC. Gonadotropin expression, pituitary and plasma levels in the reproductive cycle of wild and captive-reared greater amberjack (Seriola dumerili). Gen Comp Endocrinol 2024; 350:114465. [PMID: 38336122 DOI: 10.1016/j.ygcen.2024.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
We compared the endocrine status of the pituitary-gonad axis of wild and captive-reared greater amberjack (Seriola dumerili) during the reproductive cycle (April - July), reporting on the expression and release of the two gonadotropins for the first time in the Mediterranean Sea. Ovaries from wild females were characterized histologically as DEVELOPING in early May and SPAWNING capable in late May-July, the latter having a 3 to 4-fold higher gonadosomatic index (GSI). SPAWNING capable wild females exhibited an increase in pituitary follicle stimulating hormone (Fsh) content, plasma testosterone (T) and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P), while almost a 10-fold increase was observed in pituitary luteinizing hormone (Lh) content. An increasing trend of plasma 17β-estradiol (E2) was also recorded between the two reproductive stages in wild females. Captive-reared females sampled during the reproductive cycle exhibited two additional reproductive categories, with REGRESSED females having extensive follicular atresia and fish in the REGENERATING stage having only primary oocytes in their ovaries. Pituitary content of Fsh and Lh, fshb and lhb expression and plasma levels of Fsh and Lh remained unchanged among the four reproductive stages in captive females, in contrast with plasma E2 and T that decreased in the REGENERATING stage, and 17,20β-P which increased after the DEVELOPING stage. In general, no significant hormonal differences were recorded between captive-reared and wild DEVELOPING females, in contrast to SPAWNING capable females, where pituitary Lh content, plasma Fsh and T were found to be lower in females in captivity. Overall, the captive females lagged behind in reproductive development compared to the wild ones and this was perhaps related to the multiple handling of the sea cages where all the sampled fish were maintained. Between wild males in the DEVELOPING and SPAWNING capable stages, pituitary Lh content, plasma T and 17,20β-P, and GSI exhibited 3 to 4-fold increases, while an increasing trend of pituitary Fsh content, lhb expression levels and plasma 11-ketotestosterone (11-KT) was also observed, and an opposite trend was observed in plasma Lh. Captive males were allocated to one more category, with REGRESSED individuals having no spermatogenic capacity. During the SPAWNING capable phase, almost all measured parameters were lower in captive males compared to wild ones. More importantly, captive males showed significant differences from their wild counterparts throughout the reproductive season, starting already from the DEVELOPING stage. Therefore, it appears that captivity already exerted negative effects in males prior to the onset of the study and the multiple handling of the cage where sampled fish were reared. Overall, the present study demonstrated that female greater amberjack do undergo full vitellogenesis in captivity, albeit with some dysfunctions that may be related to the husbandry of the experiment, while males, on the other hand, may be more seriously affected by captivity even before the onset of the study.
Collapse
Affiliation(s)
- Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece; University of Crete, Department of Biology, P.O. Box 2208, Heraklion 71409, Crete, Greece.
| | - Iris Meiri-Ashkenazi
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Chen Bracha
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Hanna Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | - Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | | | - Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| |
Collapse
|
2
|
Molés G, Hausken K, Carrillo M, Zanuy S, Levavi-Sivan B, Gómez A. Generation and use of recombinant gonadotropins in fish. Gen Comp Endocrinol 2020; 299:113555. [PMID: 32687933 DOI: 10.1016/j.ygcen.2020.113555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/09/2023]
Abstract
Understanding the differential roles of the pituitary gonadotropins Fsh and Lh in gonad maturation is crucial for a successful manipulation of the reproductive process in fish, and requires species-specific tools and appropriate active hormones. With the increasing availability of fish cDNAs coding for gonadotropin subunits, the production of recombinant hormones in heterologous systems has gradually substituted the approach of isolating native hormones. These recombinant hormones can be continually produced without depending on the fish as starting material and no cross-contamination with other pituitary glycoproteins is assured. Recombinant gonadotropins should be produced in eukaryotic cells, which have glycosylation capacity, but this post-translational modification varies greatly depending on the cell system, influencing hormone activity and stability. The production of recombinant gonadotropin beta-subunits to be used as antigens for antibody production has allowed the development of immunoassays for quantification of gonadotropins in some fish species. The administration in vivo of dimeric homologous recombinant gonadotropins has been used in basic studies and as a biotechnological approach to induce gametogenesis. In addition, gene-based therapies using somatic transfer of the gonadotropin genes have been tested as an alternative for hormone delivery in vivo. In summary, the use of homologous hormonal treatments can open new strategies in aquaculture to solve reproductive problems or develop out-of-season breeding programs.
Collapse
Affiliation(s)
- G Molés
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - K Hausken
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - M Carrillo
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - S Zanuy
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain
| | - B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - A Gómez
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Ribera de Cabanes s/n, 12595 Castelló, Spain.
| |
Collapse
|
3
|
Nocillado J, Palma P, Fielder S, Zanardini M, Dennis LP, Elizur A. Development of specific enzyme-linked immunosorbent assay for yellowtail kingfish (Seriola lalandi) follicle stimulating hormone using recombinant gonadotropins. Gen Comp Endocrinol 2019; 282:113208. [PMID: 31226255 DOI: 10.1016/j.ygcen.2019.113208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
We developed a specific competitive enzyme-linked immunosorbent assay (ELISA) for yellowtail kingfish (Seriola lalandi) follicle stimulating hormone (FSH). We previously produced a full-length single chain recombinant yellowtail kingfish FSH using the Pichia pastoris expression system. We used the same method to produce the β subunit of the hormone, against which polyclonal antibodies were raised in rabbits. We first confirmed immunoreactivity of the polyclonal antibodies with the recombinant full length FSH and FSHβ as well as plasma and pituitary FSH of sexually immature and mature yellowtail kingfish by Western blot analysis. We then developed a precise and reproducible ELISA for yellowtail kingfish FSH and validated the assay in plasma and pituitary extracts. The intra- and inter-assay coefficients of variation was <2.2% and 10.2%, respectively. The sensitivity of the assay was 78 pg/ml. For further validation of the assay, we measured the plasma FSH in immature yellowtail kingfish treated with increasing doses (blank, 50, 100 and 150 µg/kg) of kisseptin2-10 peptide from a previous study. The dose response observed in treated females was not significant, however the increased plasma FSH levels coincided with the significantly higher estradiol levels we previously reported in the treated groups. We assessed the applicability of the assay in measuring circulating FSH in other species. We observed parallelism between the linearized FSH standard curve and displacement curves of serially diluted plasma from Atlantic bluefin tuna (Thunnus thynnus) and tilapia (Oreochromis niloticus). We also observed similar parallelism with full length recombinant giant grouper (Epinephelus lanceolatus) FSH. The ELISA we developed for yellowtail kingfish FSH will be useful in understanding the reproductive biology of the species as well as enhancing its aquaculture.
Collapse
Affiliation(s)
- Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan 5021, Iloilo, Philippines
| | - Stewart Fielder
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Locked Bag 1, Nelson Bay 2315, New South Wales, Australia
| | - Maya Zanardini
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Lachlan P Dennis
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
4
|
Establishment of specific enzyme-linked immunosorbent assay (ELISA) for measuring Fsh and Lh levels in medaka ( Oryzias latipes), using recombinant gonadotropins. MethodsX 2019; 6:1473-1479. [PMID: 31293904 PMCID: PMC6594921 DOI: 10.1016/j.mex.2019.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The paucity of information on understanding the regulatory mechanisms that are involved in the control of piscine Fsh and Lh synthesis, secretion, and function, prompted the present work. Part of the problem is related to the molecular heterogeneity and the unavailability of Fsh and Lh assays for quantifying gonadotropins, in particular assays regarding the measurement of Fsh, and such assays are available today for only a few teleost species. The present study reports the development and validation of competitive ELISAs for quantitative determination of medaka Fsh and Lh by first producing medaka recombinant (md) gonadotropins mdFshβ, mdLhβ, mdFshβα, and mdLhβα by Pichia pastoris, generating specific antibodies against their respective β subunits, and their use within the development of ELISAs. The advantages of this protocol include: The reproducibility of the ELISA demonstrated was relatively high, as shown by reasonably low intra- (Fsh 2.7%, Lh 3%) and interassay CVs (Fsh 5.3%, Lh 5.7%). The high degree of parallelism between serial dilutions of the recombinant and native pituitary-derived Fsh and Lh, may be a sign of similar structures and immunologically similarity. Two new competitive ELISAs for the quantification of medaka Fsh and Lh were established for the first time.
Collapse
|
5
|
Burow S, Fontaine R, von Krogh K, Mayer I, Nourizadeh-Lillabadi R, Hollander-Cohen L, Cohen Y, Shpilman M, Levavi-Sivan B, Weltzien FA. Medaka follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression levels. Gen Comp Endocrinol 2019; 272:93-108. [PMID: 30576646 DOI: 10.1016/j.ygcen.2018.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 02/06/2023]
Abstract
The two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are of particular importance within the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates. In the current study, we demonstrate the production and validation of Japanese medaka (Oryzias latipes) recombinant (md) gonadotropins Fshβ (mdFshβ), Lhβ (mdLhβ), Fshβα (mdFshβα), and Lhβα (mdLhβα) by Pichia pastoris, the generation of specific rabbit antibodies against their respective β subunits, and their use within the development and validation of competitive enzyme-linked immunosorbent assays (ELISAs) for quantification of medaka Fsh and Lh. mdFsh and mdLh were produced as single-chain polypeptides by linking the α subunit with mdFshβ or mdLhβ mature protein coding sequences to produce a "tethered" polypeptide with the β-chain at the N-terminal and the α-chain at the C-terminal. The specificity of the antibodies raised against mdFshβ and mdLhβ was determined by immunofluorescence (IF) for Fshβ and Lhβ on medaka pituitary tissue, while comparison with fluorescence in situ hybridization (FISH) for fshb and lhb mRNA was used for validation. Competitive ELISAs were developed using antibodies against mdFshβ or mdLhβ, and the tethered proteins mdFshβα or mdLhβα for standard curves. The standard curve for the Fsh ELISA ranged from 97.6 pg/ml to 50 ng/ml, and for the Lh ELISA from 12.21 pg/ml to 6.25 ng/ml. The sensitivity of the assays for Fsh and Lh was 44.7 and 70.8 pg/ml, respectively. A profile of pituitary protein levels of medaka Fsh and Lh comparing juveniles with adults showed significant increase of protein amount from juvenile group (body length from 12 mm to 16.5 mm) to adult group (body length from 21 mm to 26.5 mm) for both hormones in male medaka. Comparing these data to a developmental profile of pituitary mRNA expression of medaka fshb and lhb, the mRNA expression of lhb also increased during male maturation and a linear regression analysis revealed a significant increase of lhb expression with increased body length that proposes a linear model. However, fshb mRNA expression did not change significantly during male development and therefore was not correlated with body length. In summary, we have developed and validated homologous ELISA assays for medaka Fsh and Lh based on proteins produced in P. pastoris, assays that will be used to study the functions and regulations of Fsh and Lh in more detail.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Yaron Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
6
|
Zmora N, Wong TT, Stubblefield J, Levavi-Sivan B, Zohar Y. Neurokinin B regulates reproduction via inhibition of kisspeptin in a teleost, the striped bass. J Endocrinol 2017; 233:159-174. [PMID: 28330973 DOI: 10.1530/joe-16-0575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Kisspeptin and neurokinin B (NKB) are neuropeptides co-expressed in the mammalian hypothalamus and coordinately control GnRH signaling. We have found that Nkb and kisspeptin neurons are distinct in the teleost, striped bass (STB) and capitalized on this phenomenon to study the mode of action of Nkb and its related neuropeptide-F (Nkf), both of which are encoded by the tac3 gene. In vitro brain slices and in vivo administration studies revealed that Nkb/f consistently downregulated kiss2, whereas antagonist (AntD) administration restored this effect. Overall, a minor effect was noted on gnrh1 expression, whereas Gnrh1 content in the pituitaries was reduced after Nkb/f treatment and increased with AntD. Concomitantly, immunostaining demonstrated that hypothalamic Nkb neurons border and densely innervate the largest kiss2 neuronal population in the hypothalamus, which also coexpresses Nkb receptor. No expression of Nkb receptor or Nkb neuronal projections was detected near/in Gnrh1 soma in the preoptic area. At the level of the pituitary, however, the picture was more complex: both Nkb/f and AntD upregulated lhb and fshb expression and Lh secretion in vivo Together with the stimulatory effect of Nkb/f on Lh/Fsh secretion from pituitary cells, in vitro, this may indicate an additional independent action of Nkb/f within the pituitary, in which the hypothalamic pathway is more dominant. The current study demonstrates that Nkb/f utilizes multiple pathways to regulate reproduction in the STB and that in the brain, Nkb mainly acts as a negative modulator of kiss2 to regulate the release of Gnrh1.
Collapse
Affiliation(s)
- Nilli Zmora
- Department of Marine BiotechnologyInstitute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine BiotechnologyInstitute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - John Stubblefield
- Department of Marine BiotechnologyInstitute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Berta Levavi-Sivan
- Department of Animal SciencesFaculty of Agriculture, Food and Environment, The Hebrew University, Rehobot, Israel
| | - Yonathan Zohar
- Department of Marine BiotechnologyInstitute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Plasma levels of follicle-stimulating and luteinizing hormones during the reproductive cycle of wild and cultured Senegalese sole ( Solea senegalensis ). Comp Biochem Physiol A Mol Integr Physiol 2016; 191:35-43. [DOI: 10.1016/j.cbpa.2015.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022]
|
8
|
Nyuji M, Kazeto Y, Izumida D, Tani K, Suzuki H, Hamada K, Mekuchi M, Gen K, Soyano K, Okuzawa K. Greater amberjack Fsh, Lh, and their receptors: Plasma and mRNA profiles during ovarian development. Gen Comp Endocrinol 2016; 225:224-234. [PMID: 26519759 DOI: 10.1016/j.ygcen.2015.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022]
Abstract
To understand the endocrine regulation of ovarian development in a multiple spawning fish, the relationship between gonadotropins (Gths; follicle-stimulating hormone [Fsh] and luteinizing hormone [Lh]) and their receptors (Gthrs; Fshr and Lhr) were investigated in greater amberjack (Seriola dumerili). cDNAs encoding the Gth subunits (Fshβ, Lhβ, and glycoprotein α [Gpα]) and Gthrs were cloned. The in vitro reporter gene assay using recombinant hormones revealed that greater amberjack Fshr and Lhr responded strongly to their own ligands. Competitive enzyme-linked immunosorbent assays (ELISAs) were developed for measuring greater amberjack Fsh and Lh. Anti-Fsh and anti-Lh antibodies were raised against recombinant chimeric single-chain Gths consisting of greater amberjack Fshβ (or Lhβ) with rabbit GPα. The validation study showed that the ELISAs were precise (intra- and inter-assay coefficient of variation, <10%) and sensitive (detection limit of 0.2ng/ml for Fsh and 0.8ng/ml for Lh) with low cross-reactivity. A good parallelism between the standard curve and serial dilutions of greater amberjack plasma and pituitary extract were obtained. In female greater amberjack, pituitary fshb, ovarian fshr, and plasma E2 gradually increased during ovarian development, and plasma Fsh significantly increased during the post-spawning period. This suggests that Fsh plays a role throughout ovarian development and during the post-spawning period. Pituitary lhb, ovarian lhr, and plasma Lh were high during the spawning period, suggesting that the synthesis and secretion of Lh, and Lhr expression are upregulated to induce final oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Daisuke Izumida
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kosuke Tani
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Hiroshi Suzuki
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Kazuhisa Hamada
- Komame Branch, Stock Enhancement Technology Development Center, National Research Institute of Aquaculture, Fisheries Research Agency, Otsuki 788-0315, Japan
| | - Miyuki Mekuchi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2231, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Koichi Okuzawa
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| |
Collapse
|
9
|
Rhody NR, Davie A, Zmora N, Zohar Y, Main KL, Migaud H. Influence of tidal cycles on the endocrine control of reproductive activity in common snook (Centropomus undecimalis). Gen Comp Endocrinol 2015; 224:247-59. [PMID: 26261080 DOI: 10.1016/j.ygcen.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
The aim of our study was to confirm the role of tidal pattern on the coordination of oocyte maturation and spawning in common snook Centropomus undecimalis. To do so, we studied oocyte maturation during the spawning season in relation to the tidal pattern in both males and females by means of histology and hormonal profiling along the pituitary-gonadal axis. Plasma LH levels, as well as transcript levels of gonadotropin genes (fshβ and lhβ) from the pituitaries of sexually mature male and female common snook were analyzed using a heterologous ELISA and quantitative RT-PCR, respectively. The fshβ and lhβ cDNAs were isolated and phylogenetic analysis of the deduced amino acid sequences revealed strong identity with other teleosts (75-90%). A strong link was found between tide and follicular development irrespective of the time of the day: female snook sampled on the rising tide were all found to have oocytes in the Secondary Growth Stage whereas females sampled at high tide or on the falling tide had oocytes in the later stages of maturation and ovulation. In addition, LH plasma and mRNA levels of fshβ and lhβ increased during the later stages of vitellogenesis peaking at ovulation in females. Plasma estradiol and testosterone significantly increased in late vitellogenesis (Secondary Growth Stage) and oocyte maturation (Eccentric Germinal Vesicle Step) respectively. Among male common snook sampled, no correlation was identified between tide and gonadal development. In addition, lhβ mRNA expression in males peaked at the mid germinal epithelium stage as for testosterone and 11-KT in the blood while fshβ expression and plasma LH levels peaked at late germinal epithelium stage. This study confirms the role played by tidal cycle on the entrainment of the later stages of oogenesis of common snook and provides a better understanding of the link between environmental and endocrine control of reproduction in this species.
Collapse
Affiliation(s)
- Nicole R Rhody
- Mote Marine Laboratory, Directorate of Fisheries and Aquaculture, 874 WR Mote Way, Sarasota, FL 34240, USA.
| | - Andrew Davie
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Nilli Zmora
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Yonathan Zohar
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Kevan L Main
- Mote Marine Laboratory, Directorate of Fisheries and Aquaculture, 874 WR Mote Way, Sarasota, FL 34240, USA
| | - Hervé Migaud
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
10
|
Mazón MJ, Molés G, Rocha A, Crespo B, Lan-Chow-Wing O, Espigares F, Muñoz I, Felip A, Carrillo M, Zanuy S, Gómez A. Gonadotropins in European sea bass: Endocrine roles and biotechnological applications. Gen Comp Endocrinol 2015; 221:31-41. [PMID: 26002037 DOI: 10.1016/j.ygcen.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.
Collapse
Affiliation(s)
- María José Mazón
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Rocha
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Berta Crespo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Olivier Lan-Chow-Wing
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Felipe Espigares
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain.
| |
Collapse
|
11
|
Zmora N, Stubblefield JD, Wong TT, Levavi-Sivan B, Millar RP, Zohar Y. Kisspeptin Antagonists Reveal Kisspeptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis. Biol Reprod 2015; 93:76. [PMID: 26246220 DOI: 10.1095/biolreprod.115.131870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/03/2015] [Indexed: 11/01/2022] Open
Abstract
The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning.
Collapse
Affiliation(s)
- Nilli Zmora
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| | - John David Stubblefield
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| | - Ten-Tsao Wong
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, the Hebrew University, Rehobot, Israel
| | - Robert Peter Millar
- Mammal Research Institute, Department of Zoology, University of Pretoria, Pretoria, South Africa University of Cape Town/Medical Research Council Receptor Biology Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Yonathan Zohar
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
12
|
Abstract
We introduce a novel endocrine approach for assessing the unresolved matter of the timing of sexual maturation in western Atlantic bluefin tuna (ABFT), a highly migratory population whose status remains uncertain. Ratios of follicle stimulating hormone to luteinizing hormone, a sexual maturity indicator, in all ABFT ≥134 cm curved fork length (CFL) were <0.4, similar to Mediterranean spawners, indicating that western ABFT mature at considerably smaller sizes and at a much younger age than currently assumed (≥185 cm CFL).
Collapse
|
13
|
Zmora N, Stubblefield J, Golan M, Servili A, Levavi-Sivan B, Zohar Y. The medio-basal hypothalamus as a dynamic and plastic reproduction-related kisspeptin-gnrh-pituitary center in fish. Endocrinology 2014; 155:1874-86. [PMID: 24484170 DOI: 10.1210/en.2013-1894] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Kisspeptin regulates reproductive events, including puberty and ovulation, primarily via GnRH neurons. Prolonged treatment of prepubertal striped bass females with kisspeptin (Kiss) 1 or Kiss2 peptides failed to enhance puberty but suggested a gnrh-independent pituitary control pathway. Kiss2 inhibited, but Kiss1 stimulated, FShβ expression and gonadal development, although hypophysiotropic gnrh1 and gnrh receptor expression remained unchanged. In situ hybridization and immunohistochemistry on brains and pituitaries revealed a differential plasticity between the 2 kisspeptin neurons. The differences were most pronounced at the prespawning phase in 2 regions along the path of gnrh1 axons: the nucleus lateralis tuberis (NLT) and the neurohypophysis. Kiss1 neurons appeared in the NLT and innervated the neurohypophysis of prespawning males and females, reaching Lh gonadotropes in the proximal pars distalis. Males, at all reproductive stages, had Kiss2 innervations in the NLT and the neurohypophysis, forming large axonal bundles in the former and intermingling with gnrh1 axons. Unlike in males, only preovulatory females had massive NLT-neurohypophysis staining of kiss2. Kiss2 neurons showed a distinct appearance in the NLT pars ventralis-equivalent region only in spawning zebrafish, indicating that this phenomenon is widespread. These results underscore the NLT as important nuclei for kisspeptin action in 2 facets: 1) kisspeptin-gnrh interaction, both kisspeptins are involved in the regulation of gnrh release, in a stage- and sex-dependent manner, especially at the prespawning phase; and 2) gnrh-independent effect of Kiss peptides on the pituitary, which together with the plastic nature of their neuronal projections to the pituitary implies that a direct gonadotropic regulation is plausible.
Collapse
MESH Headings
- Animals
- Aquaculture
- Axons/drug effects
- Axons/metabolism
- Bass/physiology
- Dose-Response Relationship, Drug
- Drug Implants
- Female
- Fertility Agents, Female/pharmacology
- Fish Proteins/biosynthesis
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Follicle Stimulating Hormone, beta Subunit/biosynthesis
- Follicle Stimulating Hormone, beta Subunit/genetics
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamo-Hypophyseal System/cytology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/growth & development
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus, Middle/cytology
- Hypothalamus, Middle/drug effects
- Hypothalamus, Middle/growth & development
- Hypothalamus, Middle/metabolism
- Kisspeptins/administration & dosage
- Kisspeptins/metabolism
- Kisspeptins/pharmacology
- Maryland
- Pituitary Gland, Posterior/cytology
- Pituitary Gland, Posterior/drug effects
- Pituitary Gland, Posterior/growth & development
- Pituitary Gland, Posterior/metabolism
- Sexual Maturation/drug effects
- Up-Regulation/drug effects
- Xenopus Proteins/administration & dosage
- Xenopus Proteins/metabolism
- Xenopus Proteins/pharmacology
Collapse
Affiliation(s)
- Nilli Zmora
- Department of Marine Biotechnology (N.Z., J.S., Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202; Faculty of Agriculture, Food and Environment (M.G., B.L.-S.), The Hebrew University, Rehobot, Israel 76100; and Ifremer (A.S.), Unité de Physiologie Fonctionnelle des Organismes Marins, Laboratoire des sciences de l'environnement marin Unité mixte de recherche 6539, Plouzané 29280, France
| | | | | | | | | | | |
Collapse
|
14
|
Berkovich N, Corriero A, Santamaria N, Mylonas CC, Vassallo-Aguis R, de la Gándara F, Meiri-Ashkenazi I, Zlatnikov V, Gordin H, Bridges CR, Rosenfeld H. Intra-pituitary relationship of follicle stimulating hormone and luteinizing hormone during pubertal development in Atlantic bluefin tuna (Thunnus thynnus). Gen Comp Endocrinol 2013; 194:10-23. [PMID: 23973326 DOI: 10.1016/j.ygcen.2013.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 01/13/2023]
Abstract
As part of the endeavor aiming at the domestication of Atlantic bluefin tuna (BFT; Thunnus thynnus), first sexual maturity in captivity was studied by documenting its occurrence and by characterizing the key hormones of the reproductive axis: follicle stimulating hormone (FSH) and luteinizing hormone (LH). The full length sequence encoding for the related hormone β-subunits, bftFSHβ and bftLHβ, were determined, revealing two bftFSHβ mRNA variants, differing in their 5' untranslated region. A quantitative immuno-dot-blot assay to measure pituitary FSH content in BFT was developed and validated enabling, for the first time in this species, data sets for both LH and FSH to be compared. The expression and accumulation patterns of LH in the pituitary showed a steady increase of this hormone, concomitant with fish age, reaching higher levels in adult females compared to males of the same age class. Conversely, the pituitary FSH levels were elevated only in 2Y and adult fish. The pituitary FSH to LH ratio was consistently higher (>1) in immature than in maturing or pubertal fish, resembling the situation in mammals. Nevertheless, the results suggest that a rise in the LH storage level above a minimum threshold may be an indicator of the onset of puberty in BFT females. The higher pituitary LH levels in adult females over males may further support this notion. In contrast three year-old (3Y) males were pubertal while cognate females were still immature. However, it is not yet clear whether the advanced puberty in the 3Y males was a general feature typifying wild BFT populations or was induced by the culture conditions. Future studies testing the effects of captivity and hormonal treatments on precocious maturity may allow for improved handling of this species in a controlled environment which would lead to more cost-efficient farming.
Collapse
Affiliation(s)
- Nadia Berkovich
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, Israel; Department of Life Sciences, Ben-Gurion University, Eilat Campus, Eilat, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shimizu A, Ohkubo M, Hamaguchi M. Development of non-competitive enzyme-linked immunosorbent assays for mummichog Fundulus heteroclitus gonadotropins - examining seasonal variations in plasma FSH and LH levels in both sexes. Gen Comp Endocrinol 2012; 178:463-9. [PMID: 22819935 DOI: 10.1016/j.ygcen.2012.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 12/31/2022]
Abstract
The mummichog Fundulus heteroclitus is an excellent experimental fish for reproductive physiology because of its adequate size, easiness for rearing, and controllable reproduction under laboratory conditions. Furthermore, it is the only species that the native GtHs and their subunits have been purified among small experimental fishes. In this study, homologous non-competitive enzyme-linked immunosorbent assays (ELISAs) for the mummichog FSH and LH were developed by raising monoclonal and polyclonal antibodies against the purified GtHs or their subunits, and the plasma hormone levels in various seasons were examined. The cross-reactivity of LH in the FSH ELISA and the cross-reactivity of FSH in the LH ELISA were low, 2.3% and 0.2% respectively, indicating high specificities of both GtH assays. The practical detection limits were 10 pg/well (0.125 ng/ml plasma) for the FSH ELISA and 8 pg/well (0.1 ng/ml plasma) for the LH ELISA. Plasma FSH levels in females indicated distinct correlations with ovarian stages: they were almost undetectable (<0.125 ng/ml) during the post-spawning immature phase (September), low values (0.3 ng/ml) during the cortical alveoli accumulation phase (December), considerably high (1.8 ng/ml) in the vitellogenic phase (February), and very high values (12 ng/ml) during the spawning season (June). The male FSH levels showed similar pattern of changes to that of females, also indicating distinct correlations with testicular activities. Plasma LH levels were considerably high during the spawning period in both sexes (3.3 ng/ml in females and 4.5 ng/ml in males). They were low or undetectable values in non-spawning seasons, and clear correlation with the gonadal stages was not observed. These results indicate the importance of FSH for various reproductive events in multiple spawning fishes, and are consistent with the general understanding that the LH is responsible for final gametes maturation in both sexes. Nonetheless, they further suggest that the role of LH for various reproductive events other than the final maturation may be limited.
Collapse
Affiliation(s)
- Akio Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan.
| | | | | |
Collapse
|
16
|
Zmora N, Stubblefield J, Zulperi Z, Biran J, Levavi-Sivan B, Muñoz-Cueto JA, Zohar Y. Differential and Gonad Stage-Dependent Roles of Kisspeptin1 and Kisspeptin2 in Reproduction in the Modern Teleosts, Morone Species1. Biol Reprod 2012; 86:177. [DOI: 10.1095/biolreprod.111.097667] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Molés G, Gómez A, Carrillo M, Zanuy S. Development of a homologous enzyme-linked immunosorbent assay for European sea bass FSH. Reproductive cycle plasma levels in both sexes and in yearling precocious and non-precocious males. Gen Comp Endocrinol 2012; 176:70-8. [PMID: 22227219 DOI: 10.1016/j.ygcen.2011.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022]
Abstract
Since the late 1980s, gonadotropins have been isolated and characterized in several fish species, but specific immunoassays for the follicle-stimulating hormone (FSH) have only been developed for a few. The present study reports the development and use of a specific and homologous competitive ELISA for measuring FSH in European sea bass (Dicentrarchus labrax) using a recombinant FSH and its specific antiserum. Recombinant European sea bass FSHβ and FSH heterodimer were produced in the methylotrophic yeast Pichia pastoris and a baculovirus expression system, respectively. Specific polyclonal antibodies, generated by rabbit immunization against recombinant FSHβ, were used at a final dilution of 1:8000. Recombinant FSH heterodimer was used to generate a standard curve and for coating of microplates (166 μg/ml). The sensitivity of the assay was 0.5 ng/ml [B(0)-2SD], and the intra- and inter-assay coefficients of variation were 2.12% (n=10) and 5.44% (n=16) (B(i)/B(0) ∼45%), respectively. A high degree of parallelism was observed between the standard curve and serially diluted plasma and pituitary samples of European sea bass. The ELISA developed was used to study the plasma FSH profiles of mature males and females during the reproductive cycle, and those of immature juvenile males under different light regimes. The analysis showed that FSH increased significantly during the intermediate stages of spermatogenesis and during vitellogenesis. Analyses in immature juvenile males showed that the continuous light photoperiod significantly reduced plasma FSH levels, and consequently, testicular growth and precocious puberty. In conclusion, the immunoassay developed has proven to be sensitive, specific and accurate for measuring European sea bass FSH, and it represents a valuable tool for future studies on the reproductive endocrinology of this species.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de Sal, Spanish National Research Council (CSIC), Torre de Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | |
Collapse
|
18
|
Rosenfeld H, Mylonas CC, Bridges CR, Heinisch G, Corriero A, Vassallo-Aguis R, Medina A, Belmonte A, Garcia A, De la Gándara F, Fauvel C, De Metrio G, Meiri-Ashkenazi I, Gordin H, Zohar Y. GnRHa-mediated stimulation of the reproductive endocrine axis in captive Atlantic bluefin tuna, Thunnus thynnus. Gen Comp Endocrinol 2012; 175:55-64. [PMID: 22015989 DOI: 10.1016/j.ygcen.2011.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
Abstract
A controlled-release implant loaded with GnRH agonist (GnRHa) was used to induce spawning in Atlantic bluefin tuna (Thunnus thynnus) during two consecutive reproductive seasons. The fish were implanted underwater and sampled between days 2 and 8 after treatment. At the time of GnRHa treatment, females were in full vitellogenesis and males in spermiation. There was a rapid burst of pituitary luteinizing hormone (LH) release at day 2 after treatment in GnRHa-treated fish, and circulating LH remained elevated up to day 8 after treatment. In contrast, control fish had significantly lower levels in the plasma, but higher LH content in the pituitary, as observed in many other cultured fishes that fail to undergo oocyte maturation, ovulation and spawning unless induced by an exogenous GnRHa. Plasma testosterone (T) and 17β-estradiol (E(2)) were elevated in response to the GnRHa treatment in females, while 11-ketotestosterone (11-KT) but not T was elevated in males. Even though oocyte maturation and ovulation did occur in GnRHa-induced fish, no significant elevations in 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) or 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S), in either the free, conjugated or 5β-reduced,3α-hydroxylated forms was observed in fish sampled within 6 days after treatment. Interestingly, a significant peak in plasma free 17,20β-P levels occurred in both males and females at day 8 after treatment. Histological sections of the ovaries in these females contained oocytes at the migrating germinal vesicle stage, suggesting the role of this hormone as a maturation-inducing steroid in Atlantic bluefin tuna. In conclusion, the GnRHa implants activated effectively the reproductive endocrine axis in captive Atlantic bluefin tuna broodstocks, through stimulation of sustained elevations in plasma LH, which in turn evoked the synthesis and secretion of the relevant sex steroids leading to gamete maturation and release.
Collapse
Affiliation(s)
- H Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, PO Box 1212, Eilat 88112, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim DJ, Kawazoe I, Jung JH, An CM, Kim YC, Aida K. Purification and characterization of luteinizing hormone from pituitary glands of rockfish, Sebastes schlegeli. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:104-9. [DOI: 10.1016/j.cbpb.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022]
|
20
|
Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. Gen Comp Endocrinol 2010; 165:483-515. [PMID: 19442666 DOI: 10.1016/j.ygcen.2009.05.004] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/30/2022]
Abstract
Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.
Collapse
|
21
|
Levy G, Gothilf Y, Degani G. Brain gonadotropin releasing hormone3 expression variation during oogenesis and sexual behavior and its effect on pituitary hormonal expression in the blue gourami. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:241-8. [DOI: 10.1016/j.cbpa.2009.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 02/07/2023]
|
22
|
Kazeto Y, Kohara M, Miura T, Miura C, Yamaguchi S, Trant JM, Adachi S, Yamauchi K. Japanese eel follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): production of biologically active recombinant Fsh and Lh by Drosophila S2 cells and their differential actions on the reproductive biology. Biol Reprod 2008; 79:938-46. [PMID: 18685126 DOI: 10.1095/biolreprod.108.070052] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), control gonadal steroidogenesis and gametogenesis in vertebrates, including teleost fish. Here, we report on the production of biologically active recombinant Fsh (rec-Fsh) and Lh (rec-Lh) in Japanese eel using Drosophila S2 cells. The three subunits composing Gths, i.e., glycoprotein hormone, alpha polypeptide (Cga), follicle-stimulating hormone, beta polypeptide (Fshb), and luteinizing hormone, beta polypeptide (Lhb), were at first independently produced and were proven to be glycosylated and secreted as the mature peptides. Each beta subunit, along with its Cga, was simultaneously coexpressed to produce heterodimeric rec-Fsh and rec-Lh that were subsequently highly purified. The biological activity of rec-Gths was demonstrated in various in vitro assays. The rec-Gths differentially activated their receptors, which resulted in an increase in 11-ketotestosterone (11KT) secretion, a differential alteration of gene expression of steroidogenic enzymes in immature testis, and the induction of the complete process of spermatogenesis in vitro. The data strongly suggest that Fsh and Lh differentially play important roles in the reproductive physiology of the Japanese eel. By contrast, these rec-Gths exhibited little activity in the gonad when administered in vivo. This difference between in vitro and in vivo bioactivity is probably due to the qualitative nature of glycosylation in S2 cells, which resulted in degradation of the recombinant protein in vivo. These differences in the carbohydrate moieties need to be elucidated and ameliorated.
Collapse
Affiliation(s)
- Yukinori Kazeto
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise 516-0193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Molés G, Gómez A, Rocha A, Carrillo M, Zanuy S. Purification and characterization of follicle-stimulating hormone from pituitary glands of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2008; 158:68-76. [PMID: 18558403 DOI: 10.1016/j.ygcen.2008.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Follicle-stimulating hormone (FSH) was purified from pituitaries of sea bass (Dicentrarchus labrax), and its biochemical and biological properties were studied. Sea bass FSH (sbsFSH) was purified by ethanol extraction-precipitation (40-85%), followed by anion-exchange chromatography on a LKB Ultropac TSK-DEAE column using a linear gradient of ammonium bicarbonate (50-1000 mM) and reverse phase chromatography on a RESOURCE 15RPC column with a linear gradient of acetonitrile (0-50%), using a FPLC system. The molecular mass of the purified sbsFSH, estimated by mass spectrometry, was of 28.5 kDa for the dimer, 12.6 kDa for the glycoprotein alpha (GPalpha) and 13.6 kDa for FSHbeta subunits. After separation by SDS-PAGE under reducing condition, the intact sbsFSH was dissociated in the respective subunits (GPalpha and FSHbeta). Subunit identity was confirmed by immunological detection and N-terminal amino acid sequencing. Deglycosylation treatment with N-glycosidase F, decreased the molecular mass of both subunits. Intact sbsFSH activated the sea bass FSH receptor stably expressed in the cell line HEK 293, in a dose dependent manner. Purified sbsFSH showed gonadotropic activity, by stimulating the release of estradiol-17beta (E2) from sea bass ovary and testosterone (T) and 11-ketotestosterone (11KT) from testicular tissue cultured in vitro, in a dose and time dependent manner. These results showed that the purified sbsFSH is a heterodimeric hormone, composed of two distinct glycoprotein subunits (GPalpha and FSHbeta), and has biological activity judged by its ability to stimulate its receptor in a specific manner and to promote steroid release from gonadal tissue fragments.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas, 12595 Torre la Sal, Ribera de Cabanes s/n, Castellón, Spain
| | | | | | | | | |
Collapse
|
24
|
Mylonas CC, Bridges C, Gordin H, Ríos AB, García A, De La Gándara F, Fauvel C, Suquet M, Medina A, Papadaki M, Heinisch G, De Metrio G, Corriero A, Vassallo-Agius R, Guzmán JM, Mañanos E, Zohar Y. Preparation and Administration of Gonadotropin-Releasing Hormone Agonist (GnRHa) Implants for the Artificial Control of Reproductive Maturation in Captive-Reared Atlantic Bluefin Tuna (Thunnus thynnus thynnus). ACTA ACUST UNITED AC 2007. [DOI: 10.1080/10641260701484572] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Aizen J, Kasuto H, Levavi-Sivan B. Development of specific enzyme-linked immunosorbent assay for determining LH and FSH levels in tilapia, using recombinant gonadotropins. Gen Comp Endocrinol 2007; 153:323-32. [PMID: 17507016 DOI: 10.1016/j.ygcen.2007.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/25/2007] [Accepted: 04/01/2007] [Indexed: 11/21/2022]
Abstract
We recently produced Oreochromis niloticus recombinant LH and FSH as single-chain polypeptides in the methylotrophic yeast Pichia pastoris. Glycoprotein subunit alpha was joined with tilapia (t) LHbeta or tFSHbeta mature protein-coding sequences to form a fusion gene that encodes a ;;tethered" polypeptide, in which the gonadotropin beta-subunit forms the N-terminal part and the alpha-subunit forms the C-terminal part. Recombinant (r) gonadotropins were used to develop specific and homologous competitive ELISAs for measurements of FSH and LH in the plasma and pituitary of tilapia, using primary antibodies against rtLHbeta or rtFSHbeta, respectively, and rtLHbetaalpha or rtFSHbetaalpha for the standard curves. The wells were coated with either rtLHbeta (2ng/ml) or rtFSHbeta (0.5ng/well), and the final concentrations of the antisera were 1:5000 (for tLH) or 1:50,000 (for tFSH). The sensitivity of the assay was 15.84pg/ml for tLH and 0.24pg/ml for tFSH measurements in the plasma, whereas for the measurements in the pituitary, the sensitivity was 2.43ng/ml and 1.52ng/ml for tLH and tFSH, respectively. The standard curves for tFSH and tLH paralleled those of serially diluted pituitary extracts of other cichlids, as well as of serially diluted pituitary extract of seabream, European seabass and hybrid bass. We examined plasma tFSH and tLH levels in the course of one reproductive cycle, between two successive spawnings, in three individual tilapia females. Plasma levels of both FSH and LH increased during the second day after the eggs had been removed, probably related to the vitellogenic phase. LH levels increased toward spawning, which occurred on the 11th day. FSH levels also increased on day of cycle, probably due to recruitment of a new generation of follicles for the successive spawning. The development of specific ELISAs using recombinant gonadotropins is expected to advance the study of the distinct functions of each of these important hormones.
Collapse
Affiliation(s)
- Joseph Aizen
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | | | | |
Collapse
|
26
|
Aizen J, Kasuto H, Golan M, Zakay H, Levavi-Sivan B. Tilapia Follicle-Stimulating Hormone (FSH): Immunochemistry, Stimulation by Gonadotropin-Releasing Hormone, and Effect of Biologically Active Recombinant FSH on Steroid Secretion1. Biol Reprod 2007; 76:692-700. [PMID: 17192515 DOI: 10.1095/biolreprod.106.055822] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In fish, FSH is generally important for early gonadal development and vitellogenesis. As in mammals, FSH is a heterodimer composed of an alpha subunit that is noncovalently associated with the hormone-specific beta subunit. The objective of the present study was to express glycosylated, properly folded, and biologically active tilapia FSH (tFSH) using the Pichia pastoris expression system. Using this material, we aimed to develop a specific ELISA and to enable the study of FSH response to GnRH. The methylotrophic yeast P. pastoris was used to coexpress recombinant genes formed by fusion of mating factor alpha leader and tilapia fshb and cga coding sequences. Western blot analysis of tilapia pituitary FSH, resolved by SDS-PAGE, yielded a band of 15 kDa, while recombinant tFSH beta (rtFSH beta) and rtFSH beta alpha had molecular masses of 17-18 kDa and 26-30 kDa, respectively. Recombinant tFSH beta alpha was found to bear only N-linked carbohydrates. Recombinant tFSH beta alpha significantly enhanced 11-ketotestosterone (11-KT) and estradiol secretion from tilapia testes and ovaries, respectively, in a dose-dependent manner (similar to tilapia pituitary extract, affinity-purified pituitary FSH, and porcine FSH). Using antibodies raised against rtFSH beta, FSH-containing cells were localized adjacent to hypothalamic nerve fibers ramifying in the proximal pars distalis (PPD), while LH cells were localized in a more peripheral region of the PPD. Moreover, FSH is under the control of hypothalamic decapeptide GnRH, an effect that was abolished through the use of specific bioneutralizing antisera, anti-rtFSH beta. It also reduced basal secretion of 11-KT.
Collapse
Affiliation(s)
- Joseph Aizen
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
27
|
Moles G, Carrillo M, Mañanós E, Mylonas CC, Zanuy S. Temporal profile of brain and pituitary GnRHs, GnRH-R and gonadotropin mRNA expression and content during early development in European sea bass (Dicentrarchus labrax L.). Gen Comp Endocrinol 2007; 150:75-86. [PMID: 16962597 DOI: 10.1016/j.ygcen.2006.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/23/2022]
Abstract
A likely endocrine control mechanism for sexual differentiation in size-graded populations of European sea bass (Dicentrarchus labrax) is proposed by evaluating the brain expression and pituitary content of two forms of gonadotropin-releasing hormone (GnRH), namely sea bream (sbGnRH) and salmon (sGnRH), the pituitary expression of one subtype of GnRH receptor (dlGnRH-R-2A) and the three gonadotropin (GtH) subunits, namely glycoprotein alpha (GPalpha), follicle-stimulating hormone beta (FSHbeta) and luteinizing hormone beta (LHbeta), as well as the pituitary and plasma LH levels between 50 and 300 days post-hatching (dph). Four gradings were conducted between 2 and 8 months after hatching, resulting in a population of large and small individuals, having 96.5% females (female-dominant population) and 69.2% males (male-dominant population), respectively, after the last grading. The onset of gonadal differentiation was different in the two sexes, and coincided with a peak of expression of sbGnRH or sGnRH. Furthermore, the expression of these GnRHs was correlated with the expression of dlGnRH-R-2A. Sex-related differences in the brain and pituitary content of sbGnRH were also found at the time of sexual differentiation. Moreover, the observed sexual dimorphism at the transcriptional or synthesis level of these GnRH forms suggests that a different neuro-hormonal regulation is operating according to sex. At the onset of sex differentiation, FSHbeta transcriptional activity reached maximal values, which were maintained until the completion of the process. The present study suggests a role for sbGnRH, sGnRH and the dlGnRH-R-2A during gonadal differentiation, possibly through enhancement of FSHbeta gene expression. In males, a different endocrine regulation seems to exist also during spermiogenesis and spermiation, when gene transcription, peptide synthesis and release of LH are of greater importance.
Collapse
Affiliation(s)
- G Moles
- CSIC-Instituto de Acuicultura de Torre de la Sal, Ribera de Cabanes, 12595 Torre de la Sal, Castellón, Spain
| | | | | | | | | |
Collapse
|
28
|
Levavi-Sivan B, Biran J, Fireman E. Sex steroids are involved in the regulation of gonadotropin-releasing hormone and dopamine D2 receptors in female tilapia pituitary. Biol Reprod 2006; 75:642-50. [PMID: 16807382 DOI: 10.1095/biolreprod.106.051540] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although molecular mechanisms underlying steroid effects on GnRH and dopamine receptors are well documented in mammals, little is known in fish. Herein, we describe the expression of pituitary GnRH and dopamine receptors relative to gonadotropin expression and release. We exposed female tilapia to graded doses of estradiol or 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP) in vitro, and of estradiol in vivo, and determined mRNA levels of gnrhr1, gnrhr3, drd2, lhb, and fshb by real-time PCR. We also determined gonadotropin levels using specific ELISAs. Exposure to low doses of estradiol caused increased gnrhr3 mRNA levels in vivo and in vitro, probably related to positive feedback on FSH release. Increasing concentrations of estradiol resulted in increased drd2 mRNA levels in vivo and in vitro, inhibition of LH and FSH release, and inhibition of lhb mRNA levels in vivo, possibly related to negative feedback. At high doses of estradiol, FSH release increased in preparation for a new generation of follicles. Exposure to nanomolar doses of DHP resulted in increased drd2 mRNA levels, probably related to negative feedback on LH release. A decrease in drd2 levels at the micromolar range of DHP (concomitant with increased gnrhr3 and fshb mRNA levels) may be related to the recruitment of a new generation of oocytes. Exposure to DHP also resulted in increased lhb mRNA levels toward final oocyte maturation. Salmon GnRH analog (sGnRHa) increased mRNA levels of gnrh1and gnrh3; when combined with DHP, sGnRHa synergistically increased expression of gnrh3 only. These results emphasize the role of sex steroids on positive and negative feedbacks controlling the reproductive cycle.
Collapse
Affiliation(s)
- Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University, Rehovot 76100, Israel.
| | | | | |
Collapse
|
29
|
Rodríguez L, Begtashi I, Zanuy S, Carrillo M. Long-term exposure to continuous light inhibits precocity in European male sea bass (Dicentrarchus labrax, L.): hormonal aspects. Gen Comp Endocrinol 2005; 140:116-25. [PMID: 15613274 DOI: 10.1016/j.ygcen.2004.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 10/13/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
The effect of long-term exposure to continuous light on the hormonal aspects of the reproductive axis was investigated in juvenile male sea bass (Dicentrarchus labrax, L.) during the first annual cycle. Four-month-old fish were exposed to a simulated natural photoperiod (NP) and a continuous light (24 h) regime (LL) under natural conditions of temperature (13.3-25.8 degrees C). A dot-blot technique was used to analyse gonadotropin (the common glycoprotein alpha, GPalpha; the follicle stimulating hormone beta, FSHbeta; and the luteinizing hormone beta, LHbeta, subunits) mRNA levels in the pituitary during the experiment. A homologous ELISA was used to determine pituitary sea bream gonadotropin-releasing hormone (sbGnRH) and LH and plasma LH levels; gonadal and plasma sex steroids concentrations were determined by specific immunoassays. LL significantly inhibited the expression of all three gonadotropins subunits in the pituitary. However, no significant differences on plasma LH levels were observed between NP and LL groups throughout the period of the experience. Long-term exposure to LL regime was extremely effective in inhibiting gonadal growth and hence precocious maturation as well as the accumulation of Testosterone (T) and 11-ketotestosterone (11-KT) in the gonads compared to the control group. 11-KT plasma levels remained low and unchanged in the LL group during the study. This work describe important alterations of the endocrine system, particularly at the pituitary-gonad axis provoked by exposure to continuous illumination and discusses the mechanism by which precocity in male sea bass is generated.
Collapse
Affiliation(s)
- Lucinda Rodríguez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Acuicultura de Torre la Sal, Ribera de Cabanes, 12595 Torre de la Sal, Castellón, Spain
| | | | | | | |
Collapse
|
30
|
Wong TT, Zohar Y. Novel expression of gonadotropin subunit genes in oocytes of the gilthead seabream (Sparus aurata). Endocrinology 2004; 145:5210-20. [PMID: 15284199 DOI: 10.1210/en.2004-0558] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is widely believed that FSH and LH, which are known to play key roles in controlling the production of functional oocytes in vertebrates, are synthesized and secreted exclusively by the anterior pituitary. Here we present evidence for the novel expression of FSHbeta, LHbeta, and the common glycoprotein-alpha (Cgalpha) in the gilthead seabream ovary. Using in situ hybridization and immunocytochemistry, FSHbeta was detected in primary-growth and secondary-growth-I oocytes, LHbeta was found in secondary-growth oocytes, and Cgalpha was observed in both primary and secondary-growth oocytes. Northern blot analyses demonstrated that Fshbeta transcript is 0.6 kb in both pituitary and ovary, whereas the ovarian Lhbeta transcript (1.1 kb), unexpectedly, is longer than the known pituitary Lhbeta transcript (0.6 kb). Sequence analyses revealed that ovarian Lhbeta is driven by a different promoter than pituitary Lhbeta, which generates an additional 459 bases at the distal portion of the 5'-untranslated region of the ovarian Lhbeta. Furthermore, using in vitro ovarian fragment incubation, we demonstrated that mammalian GnRH analog agonist enhanced the expression of ovarian Fshbeta (up to 2.7-fold), Lhbeta (up to 1.4-fold), Cgalpha (up to 1.8-fold), and the secretion of ovarian LH (up to 2.2-fold). In contrast, GnRH antagonist, analog E, suppressed the secretion of ovarian LH. Our findings suggest that a GnRH-gonadotropin axis is present in the gilthead seabream ovary and that FSH and LH, the well-characterized pituitary hormones, may have prominent novel roles in teleost intraovarian communication between oocytes and ovarian follicle cells.
Collapse
Affiliation(s)
- Ten-Tsao Wong
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, Maryland 21202, USA.
| | | |
Collapse
|
31
|
Bayarri MJ, Rodríguez L, Zanuy S, Madrid JA, Sánchez-Vázquez FJ, Kagawa H, Okuzawa K, Carrillo M. Effect of photoperiod manipulation on the daily rhythms of melatonin and reproductive hormones in caged European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2004; 136:72-81. [PMID: 14980798 DOI: 10.1016/j.ygcen.2003.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 12/01/2003] [Accepted: 12/05/2003] [Indexed: 10/26/2022]
Abstract
Reproduction in fish is cyclical and timed to guarantee the survival of the offspring. Seasonal variations in reproductive hormones of fish have been deeply investigated in fish over the last years. However, there are few studies regarding the daily changes in reproductive hormone profiles in teleosts. The aim of the present research was to investigate the effects of photoperiod manipulation on melatonin and reproductive hormones (pituitary sbGnRH, pituitary LH and plasma LH, testosterone [T], and 11-ketotestosterone [11KT]) daily rhythms in male sea bass, kept in net cages under farming conditions in winter (9L:15D). Fish were distributed in two groups, one under constant long photoperiod (18L:6D) and the other under natural photoperiod. The photoperiod strongly influenced the daily melatonin profile, so that the duration of the nocturnal melatonin rise was longer in the control group than in the group exposed to the artificial photoperiod (18L:6D). A daily rhythm was observed in the pituitary sbGnRH profile in both groups, showing the lowest levels during the dark period. A daily rhythm of pituitary LH was detected in the control group, which was suppressed in the group under long photoperiod. Daily variations in plasma LH were observed, the highest levels being found in the dark phase in both groups, although this profile was significantly altered by artificial light, maintaining a fixed relationship between the first nocturnal rise of melatonin and the nocturnal peaks of plasma LH in both groups. Plasma T levels showed significant fluctuations in their daily cycle following a sinusoidal pattern with an acrophase around sunrise in both groups, without any influence of light regime. No significant daily variations in plasma levels of 11-KT were observed in none of the groups. Our results provide the first evidence of the presence of daily variations in pituitary sbGnRH content, pituitary and plasma LH, and plasma T in sea bass. Artificial lights suppressed the circulating melatonin and significantly affected the daily rhythm of LH storage and release.
Collapse
Affiliation(s)
- M J Bayarri
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B. The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:447-77. [PMID: 15123185 DOI: 10.1016/j.cbpb.2003.11.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/05/2003] [Accepted: 11/06/2003] [Indexed: 02/03/2023]
Abstract
The key component regulating vertebrate puberty and sexual maturation is the endocrine system primarily effectuated along the brain-pituitary-gonad (BPG) axis. By far most investigations on the teleost BPG axis have been performed on salmonids, carps, catfish and eels. Accordingly, earlier reviews on the BPG axis in teleosts have focused on these species, and mainly on females (e.g. 'Fish Physiology, vol. IXA. Reproduction (1983) pp. 97'; 'Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish. FishSymp91, Sheffield, UK, 1991, pp. 2'; 'Curr. Top. Dev. Biol. 30 (1995) pp. 103'; 'Rev. Fish Biol. Fish. 7 (1997) pp. 173'; 'Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. John Grieg A/S, Bergen, Norway, 2000, pp. 211'). However, in recent years new data have emerged on the BPG axis in flatfish, especially at the level of the brain and pituitary. The evolutionarily advanced flatfishes are important model species both from an evolutionary point of view and also because many are candidates for aquaculture. The scope of this paper is to review the present status on the male teleost BPG axis, with an emphasis on flatfish. In doing so, we will first discuss the present understanding of the individual constituents of the axis in the best studied teleost models, and thereafter discuss available data on flatfish. Of the three constituents of the BPG axis, we will focus especially on the pituitary and gonadotropins. In addition to reviewing recent information on flatfish, we present some entirely new information on the phylogeny and molecular structure of teleost gonadotropins.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | | | | | |
Collapse
|
33
|
Drennon K, Moriyama S, Kawauchi H, Small B, Silverstein J, Parhar I, Shepherd B. Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus): assessment of environmental salinity and GH secretogogues on plasma GH levels. Gen Comp Endocrinol 2003; 133:314-22. [PMID: 12957475 DOI: 10.1016/s0016-6480(03)00194-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the development of a sensitive, and specific, competitive, antigen-capture enzyme-linked immunosorbent assay for the measurement of channel catfish (Ictalurus punctatus) growth hormone (cfGH). The detection limit of the assay (90% binding) was 2.0ng/ml and the ED(50) value (standard curve range 150-0.59 ng/ml) was 67.3 ng/ml. Recovery of cfGH-spiked plasma samples was determined to be 102%. Dose-response inhibition curves using serially diluted pituitary homogenates and plasma samples consistently showed parallelism with the standard curves using purified cfGH. The GH antibody (rabbit anti-catfish GH) specificity was demonstrated in competitive binding curves employing heterologous hormones and purified channel catfish prolactin (cfPRL). These studies show that there was no significant (0.006%) binding of cfPRL (competitive inhibition of cfGH binding), or heterologous hormones, within the working range of the assay. To physiologically validate the assay, catfish were injected (100 microg/g body weight, 3 injections every 5 days) with either bovine GHRH(1-29)-amide or the synthetic hexapeptide GHRP-2 (KP-102: D-Ala-D-beta-Nal-Ala-Trp-D-Phe-Lys-NH(2)) suspended in corn oil. Following the last injection, half of the animals were sampled for plasma and the remaining transferred from fresh water (FW) to 12 ppt seawater (BW: brackish water). Twenty-four hours after transfer to BW, animals were again sampled for plasma. Plasma GH levels were significantly (p<0.001) elevated in all the BW groups (control, KP-102, and bGHRH), compared with the FW (fresh water) groups. In addition, plasma GH levels were significantly (p<0.001) elevated by treatment with either of the GH secretogogues, KP-102 or bGHRH. Our findings demonstrate that two regulatory mechanisms of GH elevation, one which is seen in euryhaline teleosts (salinity-induced GH levels) and another, which has been recently described in teleosts (GHRP-induced GH levels), are present in the stenohaline channel catfish.
Collapse
Affiliation(s)
- Katherine Drennon
- Department of Biology, University of Kentucky, T.H. Morgan School of Biological Sciences, 101 T.H. Morgan Building, Lexington, KY 40506-0225, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Weltzien FA, Norberg B, Swanson P. Isolation and characterization of FSH and LH from pituitary glands of Atlantic halibut (Hippoglossus hippoglossus L.). Gen Comp Endocrinol 2003; 131:97-105. [PMID: 12679086 DOI: 10.1016/s0016-6480(02)00526-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two gonadotropins (GtH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), were isolated and characterized from pituitary glands of Atlantic halibut (Hippoglossus hippoglossus L.). Glycoproteins were extracted in 40% ethanol followed by precipitation in 85% ethanol. Subsequently, glycoproteins were fractionated by ion-exchange chromatography on a Whatman DE-52 column using a stepwise gradient of ammonium bicarbonate (50-1000 mM). Intact FSH and LH were finally purified on rpHPLC using an AsahiPak C4P-50 column with an acetonitrile gradient (10-60%). SDS-PAGE showed a molecular mass of 33 and 32 kDa for intact FSH and LH, respectively. Final purification of subunits was performed by a subsequent purification step on rpHPLC using a Phenomenex Jupiter C18 column with an acetonitrile gradient (10-60%). FSHbeta, LHbeta, and the common alpha subunit showed molecular masses of 25, 24, and 19 kDa, respectively. Subunit identity was confirmed by N-terminal amino acid sequencing. Intact FSH and LH showed gonadotropic activity by stimulating release of 11-ketotestosterone from turbot (Scophthalmus maximus L.) testicular tissue in vitro. This provides the first purification of two distinct GtHs from an evolutionary advanced pleuronectiform teleost.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | |
Collapse
|
35
|
Holland MCH, Hassin S, Zohar Y. The effects of long-term testosterone, gonadotropin-releasing hormone agonist and pimozide treatments on testicular development and luteinizing hormone levels in juvenile and early maturing striped bass, Morone saxatilis. Gen Comp Endocrinol 2002; 129:178-87. [PMID: 12460602 DOI: 10.1016/s0016-6480(02)00532-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was conducted to test the responsiveness of the juvenile male reproductive axis to hormonal stimulation and to compare it to that of early maturing males. Long-term treatments with various combinations of T, GnRHa and pimozide did not result in an increased incidence of early maturing males, but did stimulate spermatogenesis slightly in juvenile fish. In early maturing males, the treatments appeared to be inhibitory since they resulted in a reduction of the GSI and a lower incidence of spermiating males. In early maturing males, pituitary LH content was elevated by GnRHa treatments alone while in juvenile males a combination of T and GnRHa was needed to increase the levels of LH in the pituitary. Thus, T may play an important role during puberty by potentiating the effects of GnRH on LH synthesis. In both juvenile and early maturing males, plasma LH levels could be increased only by high doses of GnRHa (in combination with T). Therefore, LH synthesis and release probably require different levels of GnRH stimulation. A GnRH challenge (single injection of 50 microg GnRHa/kg) at the end of the experiment resulted in a dramatic elevation of plasma LH levels in almost all animals. This finding demonstrates that pituitaries from juvenile and early maturing males were responsive to GnRHa stimulation, even after long-term hormonal treatments. The addition of pimozide did not affect the T- and GnRHa-induced increase in pituitary LH content but inhibited the release of LH in response to a GnRHa challenge. In conclusion, high doses of GnRHa in combination with T can increase plasma LH levels in juvenile males but do not induce complete testicular maturation. Factors other than T, GnRHa or LH are probably involved in the induction and completion of spermatogenesis.
Collapse
Affiliation(s)
- M Claire H Holland
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Suite 236, Columbus Center, 701 East Pratt Street, Baltimore 21202, USA
| | | | | |
Collapse
|
36
|
Mateos J, Mañanos E, Carrillo M, Zanuy S. Regulation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gene expression by gonadotropin-releasing hormone (GnRH) and sexual steroids in the Mediterranean Sea bass. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:75-86. [PMID: 11997211 DOI: 10.1016/s1096-4959(01)00535-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secretion of gonadotropins, the key reproductive hormones in vertebrates, is controlled from the brain by the gonadotropin-releasing hormone (GnRH), but also by complex steroid feedback mechanisms. In this study, after the recent cloning of the three gonadotropin subunits of sea bass (Dicentrarchus labrax), we aimed at investigating the effects of GnRH and sexual steroids on pituitary gonadotropin mRNA levels, in this valuable aquaculture fish species. Implantation of sea bass, in the period of sexual resting, for 12 days with estradiol (E2), testosterone (T) or the non-aromatizable androgen dihydrotestosterone (DHT), almost suppressed basal expression of FSHbeta (four to 15-fold inhibition from control levels), while slightly increasing that of alpha (1.5-fold) and LHbeta (approx. twofold) subunits. Further injection with a GnRH analogue (15 microg/kg BW; [D-Ala6, Pro9-Net]-mGnRH), had no effect on FSHbeta mRNA levels, but stimulated (twofold) pituitary alpha and LHbeta mRNA levels in sham- and T-implanted fish, and slightly in E2- and DHT-implanted fish (approx. 1.5-fold). The GnRHa injection, as expected, elevated plasma LH levels with a parallel decrease on LH pituitary content, with no differences between implanted fish. In conclusion, high circulating steroid levels seems to exert different action on gonadotropin secretion, inhibiting FSH while stimulating LH synthesis. In these experimental conditions, the GnRHa stimulate LH synthesis and release, but have no effect on FSH synthesis.
Collapse
Affiliation(s)
- Jorge Mateos
- Instituto de Acuicultura de Torre la Sal (C.S.I.C.), Ribera de Cabanes s/n, 12595-Torre la Sal, Castellón, Spain
| | | | | | | |
Collapse
|
37
|
Shimizu A, Yamashita M. Purification of mummichog (Fundulus heteroclitus) gonadotropins and their subunits, using an immunochemical assay with antisera raised against synthetic peptides. Gen Comp Endocrinol 2002; 125:79-91. [PMID: 11825037 DOI: 10.1006/gcen.2001.7741] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To detect mummichog gonadotropins (GtHs) and their subunits immunochemically, fragment peptides with amino acid sequences corresponding to cDNA data were synthesized, and antisera were raised against them. In the case of GtH-IIbeta, large loops such as the second loop and the "seat belt" structure (deduced from the hCG 3D structural data) were considered to be favorable regions for antigen, although further examination is needed to determine if this is the case of GtH-Ibeta and GtH-alpha. In the purification process, glycoprotein was extracted from acetone-dried mummichog pituitary and separated by various liquid chromatography procedures. Each fraction was assayed by immunoblotting with the appropriate antisera against synthetic peptides. Subunits (GtH-alpha, GtH-Ibeta, and GtH-IIbeta) were obtained through gel filtration, anion-exchange chromatography, and reverse-phase HPLC. Intact bioactive GtH-I and GtH-II were obtained through gel filtration, anion-exchange chromatography, and hydrophobic chromatography. Both GtH-I and GtH-II dissociated into subunits under acidic conditions. Nominal MW of each subunit was estimated from SDS-PAGE as 23,000 for GtH-alpha from GtH-I, 22,000 for GtH-alpha from GtH-II, 18,000 for GtH-Ibeta, and 21,000 for GtH-IIbeta.
Collapse
Affiliation(s)
- Akio Shimizu
- National Research Institute of Fisheries Science, Fukuura 2-12-4, Kanazawa, Yokohama 236-8648, Japan
| | | |
Collapse
|
38
|
Peyon P, Zanuy S, Carrillo M. Action of leptin on in vitro luteinizing hormone release in the European sea bass (Dicentrarchus labrax). Biol Reprod 2001; 65:1573-8. [PMID: 11673277 DOI: 10.1095/biolreprod65.5.1573] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The discovery of leptin has sparked a rapidly growing number of publications concerning the role of leptin in the regulation of body adiposity, feeding, and reproductive system in mammals. To date, there have been no reports on the presence of leptin-related peptide, and functional studies on the role of leptin remain limited in fishes. We investigated the effect of mouse recombinant leptin on basal and sea bream (sb) GnRH-induced LH release from dispersed pituitary cells obtained from male European sea bass (Dicentrarchus labrax) at different stages of sexual development. The potential interaction of leptin with the porcine neuropeptide Y (pNPY), known to play a dual role in feeding and reproduction in vertebrates, was also investigated. High doses of leptin (10(-8)-10(-6) M) and/or pNPY (0.1 and 1 nM) had different effects on LH release at various stages of sexual development. Porcine NPY alone was weakly effective on basal LH release, but it enhanced LH release induced by leptin (10(-6) M) in late prepuberty but not in early postpuberty. Additive or inhibitory effects of leptin were observed on sbGnRH-induced LH release depending on sbGnRH dose and stage of sexual development. The direct action of leptin on LH release at the pituitary level in sea bass suggests that leptin is a regulator of the reproductive system in fishes.
Collapse
Affiliation(s)
- P Peyon
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Cientificas, 12595 Torre de la Sal, Castellon, Spain
| | | | | |
Collapse
|
39
|
Santos EM, Rand-Weaver M, Tyler CR. Follicle-stimulating hormone and its alpha and beta subunits in rainbow trout (Oncorhynchus mykiss): purification, characterization, development of specific radioimmunoassays, and their seasonal plasma and pituitary concentrations in females. Biol Reprod 2001; 65:288-94. [PMID: 11420251 DOI: 10.1095/biolreprod65.1.288] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gonad development in fish, as in mammals, is regulated by two gonadotropins (GTHs), FSH and LH. The function of LH in fish has been clearly established; however, the function(s) of FSH is less certain. The lack of specific and sensitive assays to quantify FSH and its alpha and beta subunits has hindered studies to assess physiological function. In this study, gel filtration chromatography, ion exchange chromatography, and HPLC were employed to purify FSH and its subunits from pituitary glands of rainbow trout (Oncorhynchus mykiss), and the identities of the isolates were confirmed by amino acid analysis. Polyclonal antibodies were raised against the free GTHalpha2 and free FSHbeta subunits to develop specific RIAs. The sensitivities of the intact FSH, GTHalpha2, and FSHbeta assays were 1 ng/ml, 0.2 ng/ml, and 0.1 ng/ml, respectively, and the cross-reaction of these molecules with each other and with intact LH in the heterologous assays was <10.4% throughout. Pituitary and plasma samples diluted in parallel with the standards in all three assays and spiked sample recoveries were >90% throughout. Measurement of plasma and pituitary concentrations of intact FSH in female rainbow trout confirmed the established seasonal profiles. Concentrations of free GTHalpha2 subunit were elevated both in the plasma and in the pituitary in females at ovulation (maximum concentrations: 34.93 +/- 6.3 ng/ml in plasma; 37.63 +/- 5.79 microg/pituitary). In both the plasma and the pituitary, free FSHbeta subunit was present throughout the reproductive cycle but at very low concentrations when compared with both free GTHalpha2 and intact FSH. The presence of free GTHalpha2 subunit in the plasma similarly occurs in mammals, but its functional significance in fish has yet to be established.
Collapse
Affiliation(s)
- E M Santos
- School of Biological Sciences, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, United Kingdom.
| | | | | |
Collapse
|
40
|
Rodríguez L, Carrillo M, Sorbera LA, Soubrier MA, Mañanós E, Holland MC, Zohar Y, Zanuy S. Pituitary levels of three forms of GnRH in the male European sea bass (Dicentrarchus labrax, L.) during sex differentiation and first spawning season. Gen Comp Endocrinol 2000; 120:67-74. [PMID: 11042012 DOI: 10.1006/gcen.2000.7533] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, levels of three GnRH forms [seabream GnRH (sbGnRH), chicken GnRH-II (cGnRH-II), and salmon GnRH (sGnRH)] were analyzed in the pituitary of male sea bass during sex differentiation and the first spawning season. Plasma levels of gonadotropin (GTH-2), testosterone (T), and 11-ketotestosterone (11-KT) were determined during the same periods. All GnRH forms were present in the pituitary. sbGnRH levels were 9-fold higher than cGnRH-II and 17-fold higher than sGnRH levels. The highest GnRHs levels were detected in November 1995, when fish were 9 months old and when the gonads started to differentiate. Levels of the three forms decreased and remained low during the first spawning season, with the exception of sbGnRH, which showed a significant increase in November 1996. Plasma GTH-2 levels were lowest in November 1995, later increasing 2.5 times during the next months. During the first spawning season, plasma GTH-2 levels peaked in December 1996, 1 month after the peak of sbGnRH. During sex differentiation, plasma T levels were high in November 1995 but decreased over the next months, while levels of 11-KT remained low and unchanged. During the first spawning season, both steroids peaked in January 1997. These results suggest a possible role for all three GnRH forms in achieving gonadal differentiation, while sbGnRH may be the most relevant form in the regulation of the first spawning season in male sea bass. Moreover, GTH-2 and 11-KT may play important roles in gonadal maturation, since plasma GTH-2 and 11-KT levels were high throughout the period of spermiation.
Collapse
Affiliation(s)
- L Rodríguez
- Instituto de Acuicultura de Torre la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jackson LF, Swanson P, Duan C, Fruchtman S, Sullivan CV. Purification, characterization, and bioassay of prolactin and growth hormone from temperate basses, genus Morone. Gen Comp Endocrinol 2000; 117:138-50. [PMID: 10620430 DOI: 10.1006/gcen.1999.7399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin (PRL) and two variants of growth hormone (GH), purified from pituitaries of striped bass (Morone saxatilis) and its hybrid with white bass (M. saxatilis x M. chrysops) by gel filtration chromatography under alkaline conditions followed by reversed-phase high pressure liquid chromatography, appear similar between species. Both the minor (GH I) and the major (GH II) forms of purified GH appeared as single bands (M(r) approximately 23,000) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as did the purified PRL (M(r) approximately 24,000). The molecular weights of GH II and PRL determined by MALDI TOF mass spectroscopy were 21.2 and 21.3 kDa, respectively. In Western blotting experiments, an antiserum against tilapia (Oreochromis mossambicus) 24K PRL specifically recognized Morone PRL, while an antiserum against tilapia GH specifically recognized Morone GH I and II. Chemical identities of the putative PRL and GH I were further confirmed by N-terminal peptide sequencing, while internal sequence analysis was performed on GH II because it was blocked at its N-terminus. Over a stretch of 29 amino acids, Morone PRL was found to be 76% identical to tilapia 24K PRL, 72% identical to tilapia 20K PRL, 72% identical to chum salmon (Oncorhynchus keta) PRL I, and 69% identical to eel (Anguilla japonica) PRL I. Alignment of the hybrid striped bass GH sequences with those of several other advanced marine teleosts indicated 75-85% sequence identity for GH I (40 amino acids) and 95-98% identity for GH II (45 amino acids). Biological activity of striped bass GH II was confirmed using a heterologous in vitro assay of insulin-like growth factor I mRNA production by coho salmon (On. kisutch) hepatocytes. An in vivo bioassay, involving hypophysectomy of hybrid striped bass and treatment of the fish maintained in fresh water with homologous PRL, confirmed that the purified striped bass PRL was also bioactive.
Collapse
Affiliation(s)
- L F Jackson
- Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
42
|
Cerdá-Reverter JM, Sorbera LA, Carrillo M, Zanuy S. Energetic dependence of NPY-induced LH secretion in a teleost fish (Dicentrarchus labrax). THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1627-34. [PMID: 10600908 DOI: 10.1152/ajpregu.1999.277.6.r1627] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this work was to examine the role of energetic status in neuropeptide Y (NPY)-induced luteinizing hormone (LH) secretion and glucose metabolism in fish. Fasted juvenile sea bass (Dicentrarchus labrax) were injected intraperitoneally with pig (p) NPY or pNPY + glucose, whereas fed animals were injected with pNPY alone and plasma glucose, insulin, and LH levels were examined. pNPY alone or in combination with glucose was found to induce a dose-dependent increase in LH secretion in fasted animals. Similar LH responses to pNPY were observed in vitro in dispersed pituitary cells isolated from fed and fasted animals incubated in L-15 and restricted media. Injection of pNPY + glucose in fasted animals resulted in depletion of glucose. Insulin plasma levels decreased in fasted animals coinjected with pNPY + glucose but remained stable when NPY was administrated alone to fed and fasted animals. Results suggest that 1) NPY-induced LH secretion in fish is dependent on energetic status and 2) NPY is capable of modifying glucose metabolism.
Collapse
Affiliation(s)
- J M Cerdá-Reverter
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior De Investigaciones Cientificas, 12595 Torre de la Sal, Castellón, Spain
| | | | | | | |
Collapse
|
43
|
Hassin S, Claire M, Holland H, Zohar Y. Ontogeny of follicle-stimulating hormone and luteinizing hormone gene expression during pubertal development in the female striped bass, Morone saxatilis (Teleostei). Biol Reprod 1999; 61:1608-15. [PMID: 10570010 DOI: 10.1095/biolreprod61.6.1608] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pubertal development in teleost fish is characterized by gonadal growth that is directly stimulated by the pituitary gonadotropins, FSH and LH. We used a quantitative ribonuclease protection assay to provide, for the first time, the developmental profiles of the alpha-, betaFSH-, and betaLH-subunit gene expression in a seasonal breeding fish, the female striped bass (3-yr study, n = 207). Two-year-old females were sexually immature, although a transient rise in all gonadotropin subunit mRNAs was measured in the pituitary. Pubertal ovarian development occurred in 65% of 3-yr-old females, characterized by the appearance of lipid droplets within the oocytes. This reproductive phase, termed pubertal development, was associated with a 34-fold increase in the mRNA levels of betaFSH and a rise in the pituitary concentration of LH. The first sexual maturation took place in 4-yr-old females and coincided with a 218-fold increase in the mRNA levels of betaFSH. During this time period, the mRNA levels of the alpha and betaLH subunits increased by 11- and 8-fold, respectively. At the final stages of vitellogenic growth, mRNA levels of betaFSH declined to basal levels, whereas the mRNA levels of the alpha and betaLH subunits remained elevated. Throughout the study, pituitary LH concentration was positively correlated to the mRNA levels of betaLH, but plasma levels of LH remained low and unchanged (0.4-0.8 ng/ml) despite increasing levels of pituitary LH concentration, suggesting a regulated secretion pathway. Taken together, the data show that the profiles of betaFSH and betaLH mRNAs appear to follow an annual rhythm that is associated with developmental events in the growing oocytes. In particular, increasing levels of betaFSH mRNA appear to underlie the first sexual maturity in the female striped bass.
Collapse
Affiliation(s)
- S Hassin
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | |
Collapse
|
44
|
Holland MC, Gothilf Y, Meiri I, King JA, Okuzawa K, Elizur A, Zohar Y. Levels of the native forms of GnRH in the pituitary of the gilthead seabream, Sparus aurata, at several characteristic stages of the gonadal cycle. Gen Comp Endocrinol 1998; 112:394-405. [PMID: 9843645 DOI: 10.1006/gcen.1998.7138] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brains of the gilthead seabream, Sparus aurata, contain three different forms of gonadotropin-releasing hormone (GnRH): seabream (sb) GnRH, chicken (c) GnRH-II, and salmon (s) GnRH. In the present study, we developed three specific enzyme-linked-immunosorbent assays (ELISA) for sbGnRH, cGnRH-II, and sGnRH and used them to measure the levels of each GnRH form in the pituitary of male and female seabream at different stages of gametogenesis. The sensitivity was 6 pg/well for the sbGnRH assay, 7 pg/well for the cGnRH-II assay, and 2 pg/well for the sGnRH assay. Levels of each of the three GnRH forms were measured in pituitaries from fish sampled at the beginning of gonadal recrudescence and during the spawning season. Of the three forms, only sbGnRH and cGnRH-II were detected in the pituitary, irrespective of reproductive state or sex. Recrudescent fish had similar levels of sbGnRH and cGnRH-II in the pituitary. In sexually mature fish, the levels of sbGnRH were higher than those in recrudescent fish while pituitary cGnRH-II content remained unchanged. Consequently, sbGnRH levels were 3- to 17-fold higher than cGnRH-II levels in mature fish. Positive correlations also existed between pituitary sbGnRH content and pituitary and plasma gonadotropin (GtH) II levels. Surprisingly, mature 1-year-old males had significantly higher levels of sbGnRH in the pituitary than mature 3-year-old males, while pituitary and plasma GtH II levels were similar between these two groups. Although the reason for this difference in sbGnRH levels is unclear, a possible role of sbGnRH in the processes of puberty or sex-inversion is implied. Based on the present results, it can be suggested that in the gilthead seabream, sbGnRH is the most relevant form of GnRH in the control of reproduction.
Collapse
Affiliation(s)
- M C Holland
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, 21202, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Holland MC, Hassin S, Zohar Y. Effects of long-term testosterone, gonadotropin-releasing hormone agonist, and pimozide treatments on gonadotropin II levels and ovarian development in juvenile female striped bass (Morone saxatilis). Biol Reprod 1998; 59:1153-62. [PMID: 9780322 DOI: 10.1095/biolreprod59.5.1153] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ability of the juvenile female reproductive axis to respond to hormonal stimulation was investigated in a Perciform fish, the striped bass (Morone saxatilis) using various combinations of testosterone (T), GnRH agonist (GnRHa), and pimozide. A long-term treatment with T alone, or T in combination with GnRHa, increased pituitary gonadotropin II (GtH II) levels 2- and 3-fold, respectively, suggesting that T and GnRHa each stimulate GtH II accumulation. Release of the accumulated GtH II could be induced only by high doses of GnRHa in combination with T, indicating that GtH II synthesis and release require different levels of GnRH stimulation. The addition of the dopamine antagonist pimozide did not affect pituitary and plasma GtH II levels but, in response to an additional acute GnRHa challenge, inhibited the release of GtH II. Although ovarian development was slightly stimulated by a combined T and GnRHa treatment, vitellogenesis was generally not initiated. The present study demonstrated that the juvenile striped bass pituitary is responsive to hormonal stimulation, resulting in elevated levels of GtH II in the pituitary and plasma. However, increased plasma levels of GtH II did not result in precocious puberty, suggesting that additional factors are required for the initiation of ovarian development in this teleost.
Collapse
Affiliation(s)
- M C Holland
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
46
|
Mylonas CC, Woods LC, Thomas P, Zohar Y. Endocrine profiles of female striped bass (Morone saxatilis) in captivity, during postvitellogenesis and induction of final oocyte maturation via controlled-release GnRHa-delivery systems. Gen Comp Endocrinol 1998; 110:276-89. [PMID: 9593648 DOI: 10.1006/gcen.1998.7073] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma levels of reproductive and thyroid hormones were measured in captive striped bass females during postvitellogenesis and the spawning period (March-June). Circulating gonadotropin II (GtH II), 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P), and 17,20beta, 21-trihydroxy-4-pregnen-3-one (17,20beta,21-P) remained low and unchanged in nonmaturing females, while 17beta-estradiol (E2) and testosterone (T) declined throughout postvitellogenesis. Plasma thyroxine (T4) declined significantly in mid-April, while triiodothyronine (T3) increased in mid-May. The only female that ovulated spontaneously had markedly different E2, T, and T3 profiles during postvitellogenesis, and had a surge in plasma GtH II during final oocyte maturation (FOM). The lack of a GtH II surge is presumably responsible for the absence of FOM, but earlier, and as of yet unknown, endocrine disruptions during postvitellogenesis may determine the female's ability to undergo FOM. Treatment of females with a gonadotropin-releasing hormone agonist (GnRHa)-delivery system induced FOM and ovulation within 3 and 10 days, respectively, and resulted in the production of fertile eggs. Plasma GtH II increased continually after GnRHa implantation, even in the presence of declining GnRHa plasma levels. Plasma E2 increased first and peaked prior to FOM, whereas T peaked at the peripheral germinal vesicle (GV) stage. Plasma 17,20beta-P and 17,20beta,21-P increased dramatically at the GV breakdown (GVBD) stage. Plasma T4 was unaffected by the GnRHa treatment, whereas T3 decreased after GnRHa implantation and remained low throughout FOM. Based on the observed hormonal profiles, FOM can be separated into an early phase (lipid-droplet coalescence, GV migration) associated with E2 and T elevations, and a late phase (yolk-globule coalescence, GVBD) associated with 17,20beta-P and 17,20beta,21-P elevation.
Collapse
Affiliation(s)
- C C Mylonas
- Columbus Center, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, Maryland 21202, USA.
| | | | | | | |
Collapse
|
47
|
BLAISE ODILE, MANANOS EVARISTOL, ZOHAR YONATHAN. Development and Validation of a Radioimmunoassay for Studying Plasma Levels of Gonadotropin II (GtH-II) in Striped Bass (Morone saxatilis)a. Ann N Y Acad Sci 1998. [DOI: 10.1111/j.1749-6632.1998.tb10821.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Mylonas CC, Scott AP, Zohar Y. Plasma gonadotropin II, sex steroids, and thyroid hormones in wild striped bass (Morone saxatilis) during spermiation and final oocyte maturation. Gen Comp Endocrinol 1997; 108:223-36. [PMID: 9356218 DOI: 10.1006/gcen.1997.6967] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The blood levels of gonadotropin II (GtH II), sex-steroid hormones, and thyroid hormones were determined in wild spermiating male striped bass (Morone saxatilis) in males and in females at various stages of final oocyte maturation (FOM), captured on their spawning grounds. The progression of spermiation was associated with increases in plasma GtH II and decreases in plasma testosterone (T), 11-ketotestosterone, and thyroxine (T4). Plasma triiodothyronine (T3) remained at high and relatively unchanged levels. Plasma levels of 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) and 17,20beta, 21-trihydroxy-4-pregnen-3-one (17,20beta,21-P), the proposed maturation-inducing steroids (MIS) in striped bass, were low and unchanged during the same period. It was concluded that low progestogen levels are adequate to induce spermiation in striped bass, and that higher levels may be associated with spawning behavior. In the females, based on the profiles of the studied hormones, FOM was separated into two phases. Early FOM, which included germinal vesicle (GV) migration and lipid-droplet coalescence, was associated with elevations in plasma GtH II, T, and estradiol 17beta. Late FOM, which included GV breakdown and yolk-globule coalescence, was associated with a further surge in plasma GtH II, increases in the levels of the two MIS, mainly 17, 20beta-P, and a drop in T4. Plasma T3 levels did not change during FOM. Examination of conjugated steroids demonstrated, in the males, a reduction in conjugated androgens at the peak of the spawning season and, in the females, a small increase in conjugated 17, 20beta-dihydroxylated and 5beta-reduced,3alpha-hydroxylated steroids after spawning. This is the most comprehensive report, to date, on the endocrine regulation of gonadal maturation in wild striped bass, demonstrating that a two-stage process of FOM is regulated by different endocrine signals, providing further evidence for the involvement of 17,20beta-P as a MIS in the females, and indicating that both males and females are in an euthyroid state during the spawning season.
Collapse
Affiliation(s)
- C C Mylonas
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, 21202, USA
| | | | | |
Collapse
|