1
|
Healy M, Aldridge A, Glasgow A, Mahon BP, English K, O'Neill SM. Helminth antigens modulate human PBMCs, attenuating disease progression in a humanised mouse model of graft versus host disease. Exp Parasitol 2022; 235:108231. [DOI: 10.1016/j.exppara.2022.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
|
2
|
Smita S, Ghosh A, Biswas VK, Ahad A, Podder S, Jha A, Sen K, Acha-Orbea H, Raghav SK. Zbtb10 transcription factor is crucial for murine cDC1 activation and cytokine secretion. Eur J Immunol 2021; 51:1126-1142. [PMID: 33527393 DOI: 10.1002/eji.202048933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/14/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cell (DC) activation and cytokine production is tightly regulated. In this study, we found that Zbtb10 expression is activation dependent and it is essential for the immunogenic function of cDC1. Zbtb10 knockdown (KD) significantly reduced the expression of co-stimulatory genes CD80 and CD86 along with cytokines including IL-12, IL-6, and IL-10, in activated cDC1 Mutu-DC line. Consequently, the clonal expansion of CD44+ effector T cells in co-cultured CD4+ T cells was drastically reduced owing to significantly reduced IL-2. At the same time, these CD44+ effector T cells were unable to differentiate toward Tbet+ IFNγ+ Th1 subtype. Instead, an increased frequency of Th2 cells expressing GATA3+ and IL-13+ was observed. Interestingly, in Zbtb10 KD condition the co-cultured T cells depicted increased expression of PD1 and LAG3, the T-cell anergic markers. Moreover, the global transcriptome analysis identified that Zbtb10 is pertinent for DC activation and its depletion in cDC1 completely shuts down their immune responses. Mechanistic analysis revealed that Zbtb10 KD enhanced the expression of NKRF (NF-κB repressing factor) leading to drastic suppression of NF-κB related genes. Zbtb10 KD abrogated p65 and RelB nuclear translocation, thereby controlling the activation and maturation of cDC1 and the ensuing adaptive T cell responses.
Collapse
Affiliation(s)
- Shuchi Smita
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Atimukta Jha
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil K Raghav
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
3
|
Hassan M, Karkhur S, Bae JH, Halim MS, Ormaechea MS, Onghanseng N, Nguyen NV, Afridi R, Sepah YJ, Do DV, Nguyen QD. New therapies in development for the management of non-infectious uveitis: A review. Clin Exp Ophthalmol 2020; 47:396-417. [PMID: 30938012 DOI: 10.1111/ceo.13511] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/16/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023]
Abstract
Uveitis is a spectrum of inflammatory disorders characterized by ocular inflammation and is one of the leading causes of preventable visual loss. The main aim of the treatment of uveitis is to control the inflammation, prevent recurrences of the disease and preserve vision while minimizing the adverse effects associated with the therapeutic agents. Initial management of uveitis relies heavily on the use of corticosteroids. However, monotherapy with high-dose corticosteroids is associated with side effects and cannot be maintained long term. Therefore, steroid-sparing agents are needed to decrease the burden of steroid therapy. Currently, the therapeutic approach for non-infectious uveitis (NIU) consists of a step-ladder strategy with the first-line option being corticosteroids in various formulations followed by the use of first-, second- and third-line agents in cases with suboptimal steroid response. Unfortunately, the agents currently at our disposal have limitations such as having a narrow therapeutic window along with their own individual potential side-effect profiles. Therefore, research has been targeted to identify newer drugs as well as new uses for older drugs that target specific pathways in the inflammatory response. Such efforts are made in order to provide targeted and safer therapy with reduced side effects and greater efficacy. Several specially designed molecular antibodies are currently in various phases of investigations that can potentially halt the inflammation in patients with NIU. In the review, we have provided a comprehensive overview of the current and upcoming therapeutic options for patients with NIU.
Collapse
Affiliation(s)
- Muhammad Hassan
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Samendra Karkhur
- Byers Eye Institute, Stanford University, Palo Alto, California.,Department of Ophthalmology, Sadguru Netra Chikitsalaya, Chitrakoot, India
| | - Jeong H Bae
- Byers Eye Institute, Stanford University, Palo Alto, California.,Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Maria S Ormaechea
- Byers Eye Institute, Stanford University, Palo Alto, California.,Department of Ophthalmology, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Neil Onghanseng
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Nam V Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Rubbia Afridi
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Yasir J Sepah
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Diana V Do
- Byers Eye Institute, Stanford University, Palo Alto, California
| | - Quan D Nguyen
- Byers Eye Institute, Stanford University, Palo Alto, California
| |
Collapse
|
4
|
Schmidt T, Willenborg S, Hünig T, Deeg CA, Sonderstrup G, Hertl M, Eming R. Induction of T regulatory cells by the superagonistic anti-CD28 antibody D665 leads to decreased pathogenic IgG autoantibodies against desmoglein 3 in a HLA-transgenic mouse model of pemphigus vulgaris. Exp Dermatol 2016; 25:293-8. [PMID: 26661498 DOI: 10.1111/exd.12919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/22/2023]
Abstract
Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune disease of the skin and mucous membranes. Its pathogenesis is based on IgG autoantibodies that target the desmosomal cadherins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1) and induce intra-epidermal loss of adhesion. Although the PV pathogenesis is well-understood, therapeutic options are still limited to immunosuppressive drugs, particularly corticosteroids, which are associated with significant side effects. Dsg3-reactive T regulatory cells (Treg) have been previously identified in PV and healthy carriers of PV-associated HLA class II alleles. Ex vivo, Dsg3-specific Treg cells down-regulated the activation of pathogenic Dsg3-specific T-helper (Th) 2 cells. In this study, in a HLA-DRB1*04:02 transgenic mouse model of PV, peripheral Treg cells were modulated by the use of Treg-depleting or expanding monoclonal antibodies, respectively. Our findings show that, in vivo, although not statistically significant, Treg cells exert a clear down-regulatory effect on the Dsg3-driven T-cell response and, accordingly, the formation of Dsg3-specific IgG antibodies. These observations confirm the powerful immune regulatory functions of Treg cells and identify Treg cells as potential therapeutic modulators in PV.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Willenborg
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, Department of Immunology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Cornelia A Deeg
- Department of Ophthalmology, Philipps-University Marburg, Marburg, Germany
| | - Grete Sonderstrup
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
|
6
|
Different requirements for the adoptive transfer of oral tolerance and its indirect effects assessed by DTH and antibody responses in mice. Cell Immunol 2009; 258:152-60. [DOI: 10.1016/j.cellimm.2009.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/04/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
|
7
|
Inaba H, Steeves M, Nguyen P, Geiger TL. In vivo suppression of naive CD4 T cell responses by IL-2- and antigen-stimulated T lymphocytes in the absence of APC competition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3323-35. [PMID: 18714004 PMCID: PMC2559971 DOI: 10.4049/jimmunol.181.5.3323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After stimulation, T cells enter a transient refractory period, promoted by IL-2, during which they are resistant to re-stimulation. We previously demonstrated that these IL-2- and Ag-stimulated refractory T cells are able to suppress the Ag-induced proliferation of naive T cells in vitro. We show here that, after adoptive transfer, these T cells are also able to suppress naive T cell proliferation in vivo. More interestingly, potently suppressive T cells can be generated directly in vivo by stimulation with Ag and supplemental IL-2. The activity of the suppressive cells is dose dependent, and the suppressor and suppressed T cells need not be restricted to the same MHC or Ag. Similar to its role in promoting T cell-mediated suppression in vitro, IL-2 is critical for the induction of suppressive activity in activated T cells in vivo. Supplemental IL-2, however, cannot overcome the suppressive activity in target T cells, indicating that suppression is not mediated by competition for this cytokine. Although the activated T cells block naive T cell proliferation, the naive cells do engage Ag and up-regulate the CD25 and CD69 activation markers after stimulation. Therefore, activated T cells stimulated in the presence of IL-2 develop MHC- and Ag-unrestricted suppressive activity. These results provide a new mechanism for competition among CD4(+) T lymphocytes, in which initial waves of responding T cells may inhibit subsequently recruited naive T cells. They further suggest a novel negative feedback loop limiting the expansion of T cell responses that may be present during vigorous immune responses or after IL-2 immunotherapy.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| | - Meredith Steeves
- Department of Pathology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| | - Terrence L. Geiger
- Department of Pathology, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| |
Collapse
|
8
|
Brusko TM, Hulme MA, Myhr CB, Haller MJ, Atkinson MA. Assessing the in vitro suppressive capacity of regulatory T cells. Immunol Invest 2008; 36:607-28. [PMID: 18161521 DOI: 10.1080/08820130701790368] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (Treg) play a vital role in controlling peripheral immune responses in order to prevent autoimmunity and control inflammation. Altered Treg activities have been associated with the pathogenesis of multiple disorders including autoimmunity, allergy, cancer, and infection with persistent pathogens. As such, a great deal of interest has recently been directed towards developing additional tools and methods to better understand the mechanisms of suppression employed by Treg. The in vitro suppression assay has emerged as a valuable means by which to assess the functional capacity and activity of Treg. In this review, we summarize the merits and limitations of the various in vitro assays that have been utilized to assess Treg activity and present a novel two color proliferation assay that allows simultaneous monitoring of both regulatory and effector T cell activity. As further immunomodulatory therapies are explored, the need for additional methodologies to understand the cellular and molecular mechanisms of immune regulation conferred by Treg will play an increasingly important role.
Collapse
Affiliation(s)
- Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
9
|
Zhang XL, Peng J, Sun JZ, Guo CS, Yu Y, Wang ZG, Chu XX, Hou M. Modulation of immune response with cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin-induced anergic T cells in chronic idiopathic thrombocytopenic purpura. J Thromb Haemost 2008; 6:158-65. [PMID: 17944988 DOI: 10.1111/j.1538-7836.2007.02804.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelet glycoprotein (GP)-reactive CD4+ T cells are essential for the stimulation and maintenance of antiplatelet autoantibody production in chronic idiopathic thrombocytopenic purpura (ITP). Blocking costimulatory signals could result in platelet-specific T-cell anergy. METHODS GP-specific CD4+ T cells from patients with ITP were made anergic using cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin (CTLA4-Ig). The CTLA4-Ig-induced GP-specific anergic T cells were investigated for their inhibitory function on GP-reactive T-cell proliferation and antibody production with in vitro culture systems. To further analyze their tolerizing mechanisms, we cocultured GP-anergic T cells with dendritic cells (DCs) from patients with ITP. RESULTS Our studies demonstrated that the anergized GP-specific T cells have profound effects on both GP-specific T-cell proliferation and antibody production. These anergic T cells exerted their suppressive effects mainly in a cell contact-dependent manner, and they were not constitutively suppressive but required specific antigen stimulation to make DCs tolerogenic. The anergic T-cell-modulated DCs could induce the autoreactive T cells to be tolerant, and this effect was not restricted to T cells of the same specificity. CONCLUSION Our studies demonstrate the efficacy of CTLA4-Ig in suppressing the pathologic autoimmune responses in ITP. These findings provide new insights into the underlying mechanisms of anergy induction in chronic ITP.
Collapse
Affiliation(s)
- X-L Zhang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li L, Wang H, Wang B. Anergic cells generated by blocking CD28 and CD40 costimulatory pathways in vitro ameliorate collagen induced arthritis. Cell Immunol 2008; 254:39-45. [DOI: 10.1016/j.cellimm.2008.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 06/19/2008] [Accepted: 06/21/2008] [Indexed: 11/29/2022]
|
11
|
Leon K, Garcia K, Carneiro J, Lage A. How regulatory CD25+CD4+T cells impinge on tumor immunobiology? On the existence of two alternative dynamical classes of tumors. J Theor Biol 2007; 247:122-37. [PMID: 17412365 DOI: 10.1016/j.jtbi.2007.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/31/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Aiming to get a better insight on the impact of regulatory CD25(+)CD4(+) T cells in tumor immunobiology, a simple mathematical model was formulated and studied. This model is an extension of a previous model for the dynamics of autoreactive regulatory cells and effector cells that interact upon their co-localized activation at the antigen presenting cells (APCs). It assumes that tumor growth stimulates the activation and migration to the adjacent lymph node of fresh APCs loaded with tumor antigens. These APCs stimulate the growth of both effector and regulatory T cells, which may then migrate to the tumor site and induce tumor cell destruction. Our results predict the existence of two alternative dynamic modes of unbounded tumor growth. In the first mode, the tumor induces the expansion of effector T cells that outcompete regulatory T cells, but nevertheless fail to control the tumor. In the second mode, the tumor induces a balanced expansion of both effector and regulatory T cells, which prevents the tumor from being destroyed by the immune cells. Tumors characterized by a high specific growth rate, low immunogenicity, and that are relatively resistant to T cell destructive functions, will grow in the first mode; conversely, tumors that have a slow specific growth rate, that are immunogenic, and/or that are more sensitive to destruction by T cells will grow in the second mode. Overall, this result provides a simple explanation to the fact that the development of some tumors expands regulatory T cells while others do not, predicting how some key dynamical properties of the tumor determine either one or the other type of behavior.
Collapse
Affiliation(s)
- Kalet Leon
- Centro de Inmunología Molecular, Habana, Cuba.
| | | | | | | |
Collapse
|
12
|
Taams LS, Akbar AN. Peripheral generation and function of CD4+CD25+ regulatory T cells. Curr Top Microbiol Immunol 2005; 293:115-31. [PMID: 15981478 DOI: 10.1007/3-540-27702-1_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The balance between immunity and tolerance is important to maintain immune homeostasis. Several mechanisms are in place to ensure that the immune response is controlled, such as T cell anergy, apoptosis and immune ignorance. A fourth mechanism of peripheral tolerance is the active suppression by regulatory or suppressor T cells. The existence of suppressor T cells was first described in the early 1970s, but these cells became discredited in the 1980s. The work of Shimon Sakaguchi and others, however, has brought these cells back into the limelight and nowadays research into regulatory/suppressor T cells is a very active field of immunology. Different types of regulatory T cells have been described, including CD4+CD25+ T cells that constitutively express CTLA-4, GITR and Foxp3, TGF-beta producing Th3 cells, IL-10 producing Tr1 cells, and CD8+CD28- T cells. This review will focus on the generation and function of CD4+CD25+ regulatory T cells. CD4+CD25+ regulatory cells were originally described as thymus-derived anergic/suppressive T cells. Recent papers, however, indicate that these cells might also be generated in the periphery. CD4+CD25+ regulatory T cells can be activated by self-antigens and non-self-antigens, and once activated can suppress T cells in an antigen nonspecific manner. Interestingly, the suppressive effects of these cells are not restricted to the adaptive immune system (T and B cells) but can also affect the activation and function of innate immune cells (monocytes, macrophages, dendritic cells). These features make the CD4+CD25+ regulatory T cell subset an interesting target for immunotherapy of chronic inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- L S Taams
- Infection and Immunity Research Group, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NN, UK.
| | | |
Collapse
|
13
|
Abstract
Recognition of a peptide-MHC complex by the T cell receptor (TCR) is a key interaction that initiates T lymphocyte activation or silencing during an immune response. Fluorochrome-labeled recombinant MHC class II-peptide reagents function as soluble mimetics of this interaction, bind to their specific TCR, and allow for detection of antigen-specific CD4+ T cells. These reagents are now under scrutiny for "immune staging" of patients at risk of type 1 diabetes, in an effort to diagnose islet autoimmunity early enough to block immune-mediated beta cell destruction. Several issues are currently being addressed to improve the performance of these T cell assays: enrichment steps for better sensitivity, multiplexing of several islet epitopes, simultaneous monitoring of CD4+ and CD8+ responses, detection of low avidity T cells, combination of quantitative (number of positive cells) and qualitative (cytokine secretion, naive/memory phenotype) readouts. CD4+ T cells are key effectors of autoimmunity, and these MHC class II peptide reagents, through their signaling properties, might also provide therapeutics to block the autoimmune process at its onset, analogous to the use of OKT3gammao1(AlaAla) anti-CD3 antibody but in an antigen-specific fashion. The aim of such therapeutics is to potentiate different physiological control mechanisms to restore immune tolerance. Mechanisms initiated by this pathway may be capable of triggering elimination of pathogenic T cells through antigen-specific apoptosis and anergy, combined with the induction of regulatory T cells with broad suppressive function.
Collapse
Affiliation(s)
- Roberto Mallone
- Benaroya Research Institute at Virginia Mason and Department of Immunology
University of Washington School of MedicineUS
| | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason and Department of Immunology
University of Washington School of MedicineUS
| |
Collapse
|
14
|
Taams LS, van Amelsfort JMR, Tiemessen MM, Jacobs KMG, de Jong EC, Akbar AN, Bijlsma JWJ, Lafeber FPJG. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 2005; 66:222-30. [PMID: 15784460 PMCID: PMC3904343 DOI: 10.1016/j.humimm.2004.12.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/25/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
The suppressive effects of CD4+CD25+ regulatory T cells (Tregs) on T cells have been well documented. Here we investigated whether human CD4+CD25+ Tregs can inhibit the proinflammatory properties of monocytes/macrophages. Monocytes and T cells were isolated from peripheral blood of healthy volunteers by magnetic cell separation and cocultured for 40 h. Monocytes were analyzed directly for cytokine production and phenotypic changes or repurified and used in T-cell stimulation and lipopolysaccharide challenge assays. Coculture with CD4+CD25+ Tregs induced minimal cytokine production in monocytes, whereas coculture with CD4+CD25- T cells resulted in large amounts of proinflammatory (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and regulatory (interleukin-10) cytokines. Importantly, when these CD4+CD25+ Treg-treated monocytes were repurified after coculture and challenged with lipopolysaccharide, they were severely inhibited in their capacity to produce tumor necrosis factor-alpha and interleukin-6 compared with control-treated monocytes. In addition, monocytes that were precultured with CD4+CD25+ Tregs displayed limited upregulation of human leukocyte antigen class II, CD40 and CD80, and downregulation of CD86 compared with control-treated monocytes. This altered phenotype had functional consequences, as shown by the reduction in T cell-stimulatory capacity of Treg-treated monocytes. Together, these data demonstrate that CD4+CD25+ Tregs can exert direct suppressive effects on monocytes/macrophages, thereby affecting subsequent innate and adaptive immune responses.
Collapse
Affiliation(s)
- Leonie S Taams
- Infection & Immunity Research Group, Franklin-Wilkins Building, King's College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mallone R, Kochik SA, Reijonen H, Carson B, Ziegler SF, Kwok WW, Nepom GT. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 2005; 106:2798-805. [PMID: 16030184 PMCID: PMC1895305 DOI: 10.1182/blood-2004-12-4848] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Major histocompatibility complex class II tetramer staining and activation analysis identified 2 distinct types of antigen-specific CD4+ T cells in the peripheral blood of humans with type 1 (autoimmune) diabetes. T cells with low-avidity recognition of peptide-MHC ligands had low sensitivity to activation and inefficient activation-induced apoptosis. In contrast, high-avidity T cells were highly sensitive to antigen-induced cell death through apoptotic mechanisms, and both apoptosis-resistant high- and low-avidity T cells that survived prolonged tetramer treatment were rendered anergic to restimulation by antigen. In addition, however, apoptosis-resistant high-avidity T cells acquired regulatory features, being able to suppress both antigen-specific and nonspecific CD4+ T-cell responses. This suppression was contact-dependent and correlated with the down-regulation of HLA class II and costimulatory molecules on antigen-presenting cells, including B cells and dendritic cells. T cells face a variety of fates following antigen exposure, including the paradoxic maintenance of high-avidity autoreactive T cells in the peripheral circulation, perhaps due to this capability of acquiring anergic and suppressive properties. Regulation via down-modulation of antigen-presenting cell function, a form of cell-to-cell licensing for suppression, also offers possibilities for the application of peptide-MHC therapeutics.
Collapse
Affiliation(s)
- Roberto Mallone
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Ave, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
León K, Faro J, Lage A, Carneiro J. Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance. J Autoimmun 2004; 22:31-42. [PMID: 14709411 DOI: 10.1016/j.jaut.2003.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contribution of pathogenic infections to the etiology of autoimmune diseases remains one of the outstanding problems in immunology. According to the classical concept of antigen mimicry, a direct correlation between the incidence of autoimmunity and infections would be expected. This view is supported by a few examples of autoimmune disorders, which are documented as being caused by infection with particular pathogens. In contrast, there are several experimental animal models where infection appears to prevent the onset of autoimmunity. Moreover, some epidemiological studies suggest an inverse correlation between the incidence of autoimmunity and infections in human populations. Here we propose a solution to this puzzle based on a theoretical model of tolerance driven by regulatory T cells. The concepts here developed delineate the conditions predicting an inverse correlation between the incidence of autoimmunity and exposition to common infections, and those in which antigen mimicry and inflammation of target organs have a role in the etiology of specific autoimmune disorders.
Collapse
Affiliation(s)
- Kalet León
- Estudos Avancados, Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
17
|
Nolte-'t Hoen ENM, Wagenaar-Hilbers JPA, Peters PJ, Gadella BM, van Eden W, Wauben MHM. Uptake of membrane molecules from T cells endows antigen-presenting cells with novel functional properties. Eur J Immunol 2004; 34:3115-25. [PMID: 15459903 DOI: 10.1002/eji.200324711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although intercellular transfer of cell surface molecules has been observed between several cells of the immune system, the physiological relevance of this phenomenon remained obscure. Until now the transfer of molecules between antigen-presenting cells (APC) and T cells has been described as a unidirectional process from APC to T cells. However, here we show that T cells in turn donate molecules to APC, and that T cell-derived vesicles can mediate this transfer. The transferred proteins are incorporated into the APC as active molecules. Our data provide evidence that T cells use intercellular molecule transfer to mediate cell contact-dependent regulation of T cell responses via modulation of the APC.
Collapse
Affiliation(s)
- Esther N M Nolte-'t Hoen
- Department of Infectious Diseases and Immunology, Division of Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Sutmuller RPM, Offringa R, Melief CJM. Revival of the regulatory T cell: new targets for drug development. Drug Discov Today 2004; 9:310-6. [PMID: 15037230 DOI: 10.1016/s1359-6446(03)03021-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Compelling new evidence supports the idea that regulatory T cells play a major role in our immune system. Several subsets of these regulators have been identified recently. Differences in the phenotypical and functional characteristics of these subsets have immunological implications. From our growing knowledge of the field of immunology, we could potentially generate a new class of therapeutic agents that target immune-related diseases.
Collapse
Affiliation(s)
- Roger P M Sutmuller
- Department of Tumor Immunology, NCMLS University Medical Center, Post Box 9101 6500HB, Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
Duthoit CT, Nguyen P, Geiger TL. Antigen Nonspecific Suppression of T Cell Responses by Activated Stimulation-Refractory CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:2238-46. [PMID: 14764692 DOI: 10.4049/jimmunol.172.4.2238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Several classes of anergic T cells are capable of suppressing naive T cell proliferation and thereby limiting immune responses. Activated T cells, although not anergic, are transiently refractory to restimulation with Ag. We examine in this study whether activated refractory murine T cells can also suppress naive T cell responses. We find that they can, and that they exhibit many of the suppressive properties of anergic T cells. The activated cells strongly diminish Ag-mediated T cell proliferation, an activity that correlates with their refractory period. Suppression is independent of APC numbers and requires cell contact or proximity. Naive T cells stimulated in the presence of activated refractory cells up-regulate CD25 and CD69, but fail to produce IL-2. The addition of IL-2 to culture medium, however, does not prevent the suppression, which is therefore not solely due to the absence of this growth factor. Persistence of the suppressor cells is also not essential. T cells stimulated in their presence and then isolated from them and cultured do not divide. The suppressive cells, however, do not confer a refractory or anergic state on the target T lymphocytes, which can fully respond to antigenic stimulation if removed from the suppressors. Our results therefore provide evidence that activated T cells act as transient suppressor cells, severely constraining bystander T cell stimulation and thereby restricting their response. These results have potentially broad implications for the development and regulation of immune responses.
Collapse
Affiliation(s)
- Christine T Duthoit
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
20
|
León K, Lage A, Carneiro J. Tolerance and immunity in a mathematical model of T-cell mediated suppression. J Theor Biol 2004; 225:107-26. [PMID: 14559064 DOI: 10.1016/s0022-5193(03)00226-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulatory CD4+CD25+ T cells play a major role in natural tolerance to body components and therefore are relevant to understand the self-non-self discrimination by the immune system. The most pressing theoretical question, regarding the fact that these regulatory cells perform their function through linked recognition of the APCs, is how this "non-specific" mechanism permits a proper balance between tolerance and immunity that is compatible with an effective self-non-self discrimination. To tackle this issue, we develop a numerical simulation, which extends a previous mathematical model of T-cell-mediated suppression to include the thymic generation and the peripheral dynamics of many T cell clones. This simulation can mimic the capacity of the immune system to establish natural tolerance to self-antigens and reliably mount immune responses to foreign antigens. Natural tolerance is based on ubiquitous and constitutive self-antigens, which select and sustain clones of specific regulatory cells. Immune responses to foreign antigens are only achieved if they displace the self-antigens from the APCs, leading to a loss of the regulatory cells, and/or if the foreign antigen introduction entails a sharp increase in the total number of APCs. Meaningful behavior is obtained even if differentiation of regulatory cells in the thymus is antigen non-specific, but requires that a minimum number of new T cells enter the periphery per unit of time, and that the repertoire is selected so that anti-self-affinities are within a proper interval. We conclude that positive selection is required to generate a sufficiently high frequency of self-antigen specific regulatory cells that reliably mediate natural tolerance. Negative selection is required to avoid the emergence at the periphery of very high affinity anti-self-regulatory cells that will make the tolerant state so robust that it could no be broken by the introduction of a foreign antigen. This result highlights the importance of repertoire selection in dominant tolerance proposing a novel role for the processes of positive and negative selection within this framework.
Collapse
Affiliation(s)
- Kalet León
- Centro de Inmunología Molecular, PO Box 16040, Habana, Cuba.
| | | | | |
Collapse
|
21
|
Janssens W, Carlier V, Wu B, VanderElst L, Jacquemin MG, Saint-Remy JMR. CD4+CD25+ T Cells Lyse Antigen-Presenting B Cells by Fas-Fas Ligand Interaction in an Epitope-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2003; 171:4604-12. [PMID: 14568934 DOI: 10.4049/jimmunol.171.9.4604] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Suppression by regulatory T cells is now acknowledged to play a key role in the down-regulation of T cell responses to foreign and self Ags. In addition to the naturally occurring CD4(+)CD25(+) population, several subtypes of induced regulatory cells have been reported, but their mechanisms of action remain unclear. Conversely, cytotoxic CD4(+) cells that lyse cells presenting their cognate peptide have been described, but their potential role in immunoregulation remains to be delineated. A CD4(+) T cell line derived from BALB/c mice immunized with peptide 21-35, containing a major T cell epitope of a common allergen, Dermatophagoides pteronyssinus group 2 allergen, was found to lyse the Ag-presenting WEHI cell line via Fas-Fas ligand and only in the presence of the cognate peptide. Cytolytic activity was likewise shown for other T cell lines and occurred even after a single cycle of in vitro stimulation. Moreover, T cells that efficiently lysed WEHI cells were unresponsive to stimulation with their cognate Ag and were dependent on IL-2 for growth and survival, which was reflected in a constitutive expression of CD25 independently of activation status. Proliferating B cells were also killed by the CTLs. By lysing Ag-presenting B cells in an epitope-specific manner, the nonproliferating CTLs were shown to down-regulate the proliferation of bystander T cells. These data demonstrate that cytotoxic CD4(+)CD25(+) T cells that lack proliferation capacities have the potential to down-regulate an immune response by killing Ag-presenting B cells. This could represent an important and specific down-regulatory mechanism of secondary immune responses in vivo.
Collapse
Affiliation(s)
- Wim Janssens
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
T cell anergy is a tolerance mechanism in which the lymphocyte is intrinsically functionally inactivated following an antigen encounter, but remains alive for an extended period of time in a hyporesponsive state. Models of T cell anergy affecting both CD4(+) and CD8(+) cells fall into two broad categories. One, clonal anergy, is principally a growth arrest state, whereas the other, adaptive tolerance or in vivo anergy, represents a more generalized inhibition of proliferation and effector functions. The former arises from incomplete T cell activation, is mostly observed in previously activated T cells, is maintained by a block in the Ras/MAP kinase pathway, can be reversed by IL-2 or anti-OX40 signaling, and usually does not result in the inhibition of effector functions. The latter is most often initiated in naïve T cells in vivo by stimulation in an environment deficient in costimulation or high in coinhibition. Adaptive tolerance can be induced in the thymus or in the periphery. The cells proliferate and differentiate to varying degrees and then downregulate both functions in the face of persistent antigen. The state involves an early block in tyrosine kinase activation, which predominantly inhibits calcium mobilization, and an independent mechanism that blocks signaling through the IL-2 receptor. Adaptive tolerance reverses in the absence of antigen. Aspects of both of the anergic states are found in regulatory T cells, possibly preventing them from dominating initial immune responses to foreign antigens and shutting down such responses prematurely.
Collapse
Affiliation(s)
- Ronald H Schwartz
- Laboratory of Cellular and Molecular Immunology, National Institutes of Health, Bethesda, Maryland 20892-0420, USA.
| |
Collapse
|
23
|
Taams L, Vukmanovic-Stejic M, Salmon M, Akbar A. Immune regulation by CD4+CD25+ regulatory T cells: implications for transplantation tolerance. Transpl Immunol 2003; 11:277-85. [PMID: 12967781 DOI: 10.1016/s0966-3274(03)00047-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In transplantation research, the achievement of life-long tolerance for the graft without the need for immunosuppressive drugs, is a major goal. In the immune system various mechanisms are in place that help to prevent unwanted immunity. These mechanisms of peripheral tolerance include deletion, anergy, ignorance and suppression. In the last decade it has been demonstrated convincingly that a naturally occurring subset of CD4+ T cells, the so-called CD4+CD25+ regulatory T cells, play a key role in the suppression/regulation of immune responses. These cells have been shown to exist in mice, rats and humans, and can be found in thymus, peripheral blood, lymphoid organs and at sites of inflammation. CD4+CD25+ regulatory T cells can down-regulate the immune response by affecting T cell responses, antibody production, cytokine secretion and antigen-presenting cells. CD4+CD25+ regulatory T cells are generated in the thymus, but importantly recent evidence suggests that they can also be generated in the periphery. This latter finding is of particular importance for transplantation immunology, since it suggests that specific manipulation or induction of these cells is achievable in vivo. Here we review the recent developments on the CD4+CD25+ regulatory T cells and we discuss the potential use of these cells in transplantation immunology.
Collapse
Affiliation(s)
- Leonie Taams
- Infection and Immunity Research Group, Franklin-Wilkins Building, 150 Stamford Street, King's College London, London SE1 9NN, UK
| | | | | | | |
Collapse
|
24
|
Abstract
Activation of self-reactive T cells that specifically destroy the pancreatic beta-cells is one of the hallmarks in the development of type 1 diabetes. Thus, for prevention and treatment of this autoimmune disease, approaches to induce and maintain T cell tolerance toward the beta-cells, especially in islet transplantation, have been actively pursued. Noticeably, many of the recent protocols for inducing transplant tolerance involve blockade of positive T cell costimulation extrinsically. Though highly effective in prolonging graft survival, these strategies alone might not be universally sufficient to achieve true tolerance. As the mystery of the suppressive and regulatory T cells unfolds, it is becoming appreciated that exploiting the intrinsic molecular and cellular mechanisms that turn off an immune response would perhaps facilitate the current protocols in establishing T cell tolerance. In this perspective, here we summarize the recent findings on the negative costimulation pathways, in particular, the newly identified PD-1 : PD-L interactions. On the basis of these observations, we propose a new principle of curtailing pathogenic T cell response in which blockade of positive T cell costimulation is reinforced by concurrent engagement of the negative costimulation machinery. Such a strategy may hold greater hope for therapeutic intervention of transplant rejection and autoimmune diseases.
Collapse
Affiliation(s)
- Wenda Gao
- Department of Medicine, Harvard Medical School, Division of Immunology, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Boston, MA 02215, USA.
| | | | | |
Collapse
|
25
|
Garin MI, Lechler RI. Regulatory T cells. Curr Opin Organ Transplant 2003. [DOI: 10.1097/00075200-200303000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Abstract
The identification and characterization of regulatory T (T(Reg)) cells that can control immune responsiveness to alloantigens have opened up exciting opportunities for new therapies in transplantation. After exposure to alloantigens in vivo, alloantigen-specific immunoregulatory activity is enriched in a population of CD4+ T cells that express high levels of CD25. In vivo, common mechanisms seem to underpin the activity of CD4+CD25+ T(Reg) cells in both naive and manipulated hosts. However, the origin, allorecognition properties and molecular basis for the suppressive activity of CD4+CD25+ T(Reg) cells, as well as their relationship to other populations of regulatory cells that exist after transplantation, remain a matter of debate..
Collapse
Affiliation(s)
- Kathryn J Wood
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| | | |
Collapse
|
27
|
Thompson AG, Thomas R. Induction of immune tolerance by dendritic cells: implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol Cell Biol 2002; 80:509-19. [PMID: 12406384 DOI: 10.1046/j.1440-1711.2002.01114.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DC) have a key role in controlling the immune response, by determining the outcome of antigen presentation to T cells. Through costimulatory molecules and other factors, DC are involved in the maintenance of peripheral tolerance through modulation of the immune response. This modulation occurs both constitutively, and in inflammation, in order to prevent autoimmunity and to control established immune responses. Dendritic cell control of immune responses may be mediated through cytokine or cell-contact dependent mechanisms. The molecular and cellular basis of these controls is being understood at an increasingly more complex level. This understanding is reaching a level at which DC-based therapies for the induction of immune regulation in autoimmunity can be tested in vivo. This review outlines the current state of knowledge of DC in immune tolerance, and proposes how DC might control both T cell responses, and themselves, to prevent autoimmunity and maintain peripheral tolerance.
Collapse
Affiliation(s)
- Angus G Thompson
- Centre for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
28
|
Abstract
Regulatory T cells have been reported to enhance survival of transplanted allografts. We have recently identified and cloned a novel CD3(+)CD4(-)CD8(-) (double negative, DN) regulatory T cell from mice that were given a single class I mismatched donor lymphocyte infusion and permanently accepted donor-specific skin allografts. When infused into naïve syngeneic mice, these DN T cells prolonged the survival of class I mismatched donor skin allografts. Here we further characterize the nature and mechanism of DN T-cell mediated suppression. This present study reveals that DN T cells are able to specifically eliminate activated syngeneic CD8(+) T cells that share the same T cell receptor (TCR) specificity as DN T cells in vitro. Similarly, we found that, along with an increase of recipient DN T cells in the peripheral blood, anti-donor CD8(+) T cells were also eliminated in vivo following a donor lymphocyte infusion. We further demonstrate that DN T regulatory cells do not mediate suppression by competition for growth factors or antigen presenting cells (APC) nor by modulation of APC, but require cell contact with the activated target CD8(+) T cells. This contact can be mediated either by the TCR on CD8(+) T cells that recognize constitutively expressed or acquired MHC molecules on DN T cells, or by the TCR on DN T cells that recognize constitutively expressed MHC molecules on CD8(+) T cells. Together, these data extend our previous findings, and expand the conditions in which DN T cells can potentially be used to specifically suppress allogeneic immune responses.
Collapse
Affiliation(s)
- Kevin J Young
- Departments of Laboratory Medicine and Pathobiology, CCRW 2-809, Toronto General Research Institute, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
29
|
Abstract
Several mechanisms control discrimination between self and non-self, including the thymic deletion of autoreactive T cells and the induction of anergy in the periphery. In addition to these passive mechanisms, evidence has accumulated for the active suppression of autoreactivity by a population of regulatory or suppressor T cells that co-express CD4 and CD25 (the interleukin-2 receptor alpha-chain). CD4+ CD25+ T cells are powerful inhibitors of T-cell activation both in vivo and in vitro. The enhancement of suppressor-cell function might prove useful for the treatment of immune-mediated diseases, whereas the downregulation of these cells might be beneficial for the enhancement of the immunogenicity of vaccines that are specific for tumour antigens.
Collapse
Affiliation(s)
- Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
30
|
Borghans JAM, De Boer RJ. Memorizing innate instructions requires a sufficiently specific adaptive immune system. Int Immunol 2002; 14:525-32. [PMID: 11978782 DOI: 10.1093/intimm/14.5.525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During its primary encounter with a pathogen, the immune system has to decide which type of immune response is most appropriate. Based on signals from the innate immune system and the immunological context in which the pathogen is presented, responding lymphocytes will adopt a particular phenotype, e.g. secrete a particular profile of cytokines. Once stimulated, lymphocytes store the appropriate type of response by differentiating from a naive to a memory phenotype. This allows the appropriate type of immune reaction to be regenerated upon re-stimulation of those memory clones. We developed a computer simulation model in which cross-reacting effector/memory clones contribute to the immunological context of pathogens. If a pathogen is recognized by both naive clones and pre-existing effector/memory clones, the naive lymphocytes adopt the effector mechanism of the memory clone. The adaptive immune system thereby stores immunological decisions and somatically learns to induce the right type of immune response to pathogens sharing epitopes. The influence of effector/memory lymphocytes may be detrimental when they cross-react to new pathogens that require a different kind of immune response. Here, we show that the immune system needs to be sufficiently specific to avoid such mistakes and to profit from the information that is stored in effector/memory lymphocytes. Repertoire diversity is required to reconcile this specificity with reactivity against many pathogens.
Collapse
Affiliation(s)
- José A M Borghans
- Lymphocyte Population Biology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
31
|
Abstract
The immune system adjusts its response to the context in which antigens, including self-antigens, are recognized. Recent observations support a conceptual framework for understanding how this may be achieved at the cellular and cell-population levels. At both levels, 'perturbations' elicit competition between excitation and de-excitation, resulting either in adaptation or in various responses. The responsiveness of individual cells is dynamically tuned, reflecting their recent experience. The tuning of T-cell activation thresholds by self-ligands facilitates positive selection and continuously regulates the level of autoreactivity in the periphery. Autoreactivity appears to be involved in regulation of the immune response, homeostasis, maintaining of the functional integrity of naïve and memory cells, and in other physiological functions.
Collapse
Affiliation(s)
- Z Grossman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | | |
Collapse
|
32
|
Abstract
There is now compelling evidence that CD4(+) T cells that specialize in the suppression of immune responses play a key role in the control of immune pathology. Recently, there have been a number of reports that have provided information on the generation of CD4(+) regulatory T cells in the thymus and in the periphery. These cells have also been identified in humans, paving the way for analysis of the function of CD4(+) regulatory T cells in immune-mediated disease.
Collapse
Affiliation(s)
- S Read
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK.
| | | |
Collapse
|
33
|
McHugh RS, Shevach EM, Thornton AM. Control of organ-specific autoimmunity by immunoregulatory CD4(+)CD25(+) T cells. Microbes Infect 2001; 3:919-27. [PMID: 11564440 DOI: 10.1016/s1286-4579(01)01453-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD4(+)CD25(+) T cells regulate the activity of autoreactive T cells. Depletion of these cells results in the development of a wide-spectrum of organ-specific autoimmune diseases. In vitro model systems have been developed to study the function of these potent suppressor cells. Following their activation via their T-cell receptor, they downregulate the responses of CD25(-) effectors by a T-T interaction.
Collapse
Affiliation(s)
- R S McHugh
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
León K, Peréz R, Lage A, Carneiro J. Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5356-65. [PMID: 11313371 DOI: 10.4049/jimmunol.166.9.5356] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aiming to further our understanding of T cell-mediated suppression, we investigate the plausibility of the hypothesis that regulatory T cells suppress other T cells (target cells), while both cells are conjugated with one APC. We use a mathematical model to analyze the proliferation inhibition scored during in vitro suppression assays. This model is a radical simplification of cell culture reality, assuming that thymidine incorporation is proportional to the number of target cells that would instantaneously form conjugates with APCs that are free of regulatory cells. According to this model the inhibition index should be mainly determined by the number of regulatory cells per APC and should be insensitive to the number of target cells. We reanalyzed several published data sets, confirming this expectation. Furthermore, we demonstrate that the instantaneous inhibition index has an absolute limit as a function of the number of regulatory cells per APC. By calculating this limit we find that the model can explain the data under two non-mutually exclusive conditions. First, only approximately 15% of APCs used in the suppression assays form conjugates with T cells. Second, the growth of the regulatory cell population depends on the target cells, such that the number of regulatory cells per APC increases when they are cocultured with target cells and overcomes its limit. However, if neither of these testable conditions is fulfilled, then one could conclude that suppression in vitro does not require the formation of multicellular conjugates.
Collapse
Affiliation(s)
- K León
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. Centro de Inmunología Molecular, Habana, Cuba
| | | | | | | |
Collapse
|
35
|
Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001; 31:1122-31. [PMID: 11298337 DOI: 10.1002/1521-4141(200104)31:4<1122::aid-immu1122>3.0.co;2-p] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anergic/suppressive CD4(+)CD25(+) T cells exist in animal models but their presence has not yet been demonstrated in humans. We have identified and characterized a human CD4(+)CD25(+) T cell subset, which constitutes 7-10 % of CD4(+) T cells in peripheral blood and tonsil. These cells are a CD45RO(+)CD45RB(low) highly differentiated primed T cell population that is anergic to stimulation. Depletion of this small subset from CD4(+) T cells significantly enhances proliferation by threefold in the remaining CD4(+)CD25(-) T cells, while the addition of isolated CD4(+)CD25(+) T cells to CD4(+)CD25(-) T cells significantly inhibits proliferative activity. Blocking experiments suggest that suppression is not mediated via IL-4, IL-10 or TGF-beta and is cell-contact dependent. Isolated CD4(+)CD25(+) T cells are susceptible to apoptosis that is associated with low Bcl-2 expression, but this death can be prevented by IL-2 or fibroblast-secreted IFN-beta. However, the anergic/suppressive state of these cells is maintained after cytokine rescue. These human regulatory cells are therefore a naturally occurring, highly suppressive, apoptosis-prone population which are at a late stage of differentiation. Further studies into their role in normal and pathological situations in humans are clearly essential.
Collapse
Affiliation(s)
- L S Taams
- Department of Clinical Immunology, Royal Free and University College Medical School, London, GB
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
T cell anergy is one of the mechanisms leading to the establishment and maintenance of peripheral tolerance. Recent data from our and other laboratories indicate that anergic T cells are not functionally inert but in fact are capable of regulating the immune response in an active manner. In this review, we describe our viewpoint on how anergic self-reactive T cells could contribute to regulation of the immune response.
Collapse
Affiliation(s)
- L S Taams
- Institute of Infectious Diseases and Immunology, Department of Immunology, Utrecht University, The Netherlands
| | | |
Collapse
|