1
|
Rackaityte E, Proekt I, Miller HS, Ramesh A, Brooks JF, Kung AF, Mandel-Brehm C, Yu D, Zamecnik CR, Bair R, Vazquez SE, Sunshine S, Abram CL, Lowell CA, Rizzuto G, Wilson MR, Zikherman J, Anderson MS, DeRisi JL. Validation of a murine proteome-wide phage display library for identification of autoantibody specificities. JCI Insight 2023; 8:e174976. [PMID: 37934865 PMCID: PMC10795829 DOI: 10.1172/jci.insight.174976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and μMT) were used to model nonspecific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate 3 distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities. Second, serum from nonobese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, was enriched in peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous autoantigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 carrying recessive mutations in AIRE. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity profiling.
Collapse
Affiliation(s)
| | | | - Haleigh S. Miller
- Department of Biochemistry and Biophysics
- Biological and Medical Informatics Program
| | - Akshaya Ramesh
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Jeremy F. Brooks
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, and
| | - Andrew F. Kung
- Department of Biochemistry and Biophysics
- Biological and Medical Informatics Program
| | | | - David Yu
- Diabetes Center, School of Medicine
| | - Colin R. Zamecnik
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Rebecca Bair
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Sara E. Vazquez
- Department of Biochemistry and Biophysics
- Diabetes Center, School of Medicine
| | | | - Clare L. Abram
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Gabrielle Rizzuto
- Human Oncology & Pathogenesis Program and Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, and
| | | | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
2
|
Rackaityte E, Proekt I, Miller HS, Ramesh A, Brooks JF, Kung AF, Mandel-Brehm C, Yu D, Zamecnik C, Bair R, Vazquez SE, Sunshine S, Abram CL, Lowell CA, Rizzuto G, Wilson MR, Zikherman J, Anderson MS, DeRisi JL. Validation of a murine proteome-wide phage display library for the identification of autoantibody specificities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.535899. [PMID: 37066405 PMCID: PMC10104109 DOI: 10.1101/2023.04.07.535899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq), to profile mouse autoantibodies. This system and library were validated using seven genetic mouse models across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and μMT) were used to model non-specific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor (BCR)-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate three distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities, lending support to the hypothesis that apoptosis is a shared origin of these antigens. Second, serum from non-obese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, enriched peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous auto-antigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 (APS1) carrying recessive mutations in AIRE. Among these were peptides derived from Perilipin-1, a validated autoimmune biomarker of generalized acquired lipodystrophy in humans. Autoreactivity to Perilipin-1 correlated with lymphocyte infiltration in adipose tissue and underscores the approach in revealing previously unknown specificities. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity.
Collapse
Affiliation(s)
- Elze Rackaityte
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
| | - Irina Proekt
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Haleigh S. Miller
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA USA
| | - Akshaya Ramesh
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Jeremy F. Brooks
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Andrew F. Kung
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
- Biological and Medical Informatics Program, University of California San Francisco, San Francisco, CA USA
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
| | - David Yu
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Colin Zamecnik
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Rebecca Bair
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Sara E. Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gabrielle Rizzuto
- Human Oncology & Pathogenesis Program and Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, NY, NY
| | - Michael R. Wilson
- Weill Institute for Neurosciences, Department of Neurology, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Mark S. Anderson
- Diabetes Center, School of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Lechner MG, Cheng MI, Patel AY, Hoang AT, Yakobian N, Astourian M, Pioso MS, Rodriguez ED, McCarthy EC, Hugo W, Angell TE, Drakaki A, Ribas A, Su MA. Inhibition of IL-17A Protects against Thyroid Immune-Related Adverse Events while Preserving Checkpoint Inhibitor Antitumor Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:696-709. [PMID: 35817515 PMCID: PMC9378719 DOI: 10.4049/jimmunol.2200244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
Abstract
Immune checkpoint inhibitor (ICI) immunotherapy leverages the body's own immune system to attack cancer cells but leads to unwanted autoimmune side effects in up to 60% of patients. Such immune-related adverse events (IrAEs) may lead to treatment interruption, permanent organ dysfunction, hospitalization, and premature death. Thyroiditis is one of the most common IrAEs, but the cause of thyroid IrAEs remains unknown. In this study, we use a new, physiologically relevant mouse model of ICI-associated autoimmunity to identify a key role for type 3 immune cells in the development of thyroid IrAEs. Multiple lineages of IL-17A-producing T cells expand in thyroid tissue with ICI treatment. Intrathyroidal IL-17A-producing innate-like γδT17 cells were increased in tumor-free mice, whereas adaptive Th17 cells were also prominent in tumor-bearing mice, following ICI treatment. Furthermore, Ab-based inhibition of IL-17A, a clinically available therapy, significantly reduced thyroid IrAE development in ICI-treated mice with and without tumor challenge. Finally, combination of IL-17A neutralization with ICI treatment in multiple tumor models did not reduce ICI antitumor efficacy. These studies suggest that targeting Th17 and γδT17 cell function via the IL-17A axis may reduce IrAEs without impairing ICI antitumor efficacy and may be a generalizable strategy to address type 3 immune-mediated IrAEs.
Collapse
Affiliation(s)
- Melissa G Lechner
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA;
| | - Mandy I Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Anushi Y Patel
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Aline T Hoang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | | | - Michael Astourian
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Marissa S Pioso
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Eduardo D Rodriguez
- Department of Pathology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ethan C McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Trevor E Angell
- Division of Endocrinology and Diabetes, USC Keck School of Medicine, Los Angeles, CA
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA; and
| | - Antoni Ribas
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA; and
| | - Maureen A Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
4
|
Huang G, Xu J, Guo TL. Isoflavone daidzein regulates immune responses in the B6C3F1 and non-obese diabetic (NOD) mice. Int Immunopharmacol 2019; 71:277-284. [PMID: 30927738 PMCID: PMC6529284 DOI: 10.1016/j.intimp.2019.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Daidzein (DAZ), a dominant isoflavone in various natural products such as soybeans, has been gaining attention due to the beneficial health effects (e.g., protection against cancer and diabetes) of its metabolites. Our major hypothesis was that dietary exposure to the soy phytoestrogen DAZ could modulate the immune responses toward a protective effect and lead to improved metabolic functions (such as glucose metabolism). In this study, we applied complementary mouse models, the hybrid B6C3F1 and inbred type 1 diabetes prone non-obese diabetic (NOD) mice, to investigate if DAZ exposure modulated the immune responses. The animals were orally administered DAZ at various physiological doses (2-20 mg/kg body weight) during adulthood. DAZ significantly altered the relative organ weights in female B6C3F1 mice and decreased the B cell population (represented by CD3-IgM+), while the T cell populations (represented by CD3+IgM-, CD4+CD8- and CD4-CD8+) were increased. In addition, DAZ dosing produced a decrease in the percentage of late apoptotic thymocytes. However, the activities cytotoxic T cells and natural killer cells were not altered in the B6C3F1 mice. In NOD mice, the blood glucose level and glucose tolerance were not affected by DAZ exposure, but DAZ modulated the antibody production, as shown by increased levels of IgG2b in NOD females and IgG1 in NOD males. Further, DAZ increased CD8+CD25+ splenocytes in NOD females. Taken together, DAZ induced an immunomodulatory effect in both NOD and B6C3F1 mouse strains; however, minimal effects on glucose homeostasis were observed.
Collapse
Affiliation(s)
- Guannan Huang
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA 30602, United States of America.
| | - Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America.
| | - Tai L Guo
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA 30602, United States of America; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States of America.
| |
Collapse
|
5
|
Chen Y, Nagy T, Guo TL. Glycated Whey Proteins Protect NOD Mice against Type 1 Diabetes by Increasing Anti-Inflammatory Responses and Decreasing Autoreactivity to Self-Antigens. J Funct Foods 2019; 56:171-181. [PMID: 31832103 DOI: 10.1016/j.jff.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our previous studies suggested that early glycation products (EGPs) generated in the first step of Maillard reaction/glycation were anti-inflammatory. The objectives of the present study were to determine the effects of EGPs derived from the whey protein isolate-glucose system on type 1 diabetes (T1D), and the underlying immunological mechanisms. In non-obese diabetic (NOD) mice, EGPs at the physiological dose of 600 mg/kg/day increased glucose metabolism, decreased non-fasting blood glucose levels and T1D incidence, decreased insulin resistance, and decreased the pancreatic immune infiltration. The protective effects were accompanied with decreases in CD4-CD8+ thymocytes, CD8+ T cells and serum insulin autoantibody levels, and increases in splenic CD4+CD25+ T cells, macrophage M2/M1 ratio and serum IL-10 level. However, similar treatment with EGPs produced minimal effect on the multiple low-dose streptozotocin-induced hyperglycemia. In conclusion, EGPs protected NOD mice against T1D via increasing anti-inflammatory immune responses and decreasing autoreactivity to self-antigens.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Banday VS, Thyagarajan R, Lejon K. Contribution of both B-cell intrinsic alterations as well as non-hematopoietic-derived factors in the enhanced immune response of the NOD mouse. Autoimmunity 2017; 50:363-369. [PMID: 28686488 DOI: 10.1080/08916934.2017.1344977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The underlying cellular and molecular mechanism for the development of Type 1 diabetes is still to be fully revealed. We have previously demonstrated that the NOD mouse, a model for Type 1 diabetes, display a prolonged and enhanced immune response to both self and non-self-antigens. The molecular explanation for this defect however, has not been determined. In this study we immunized NOD and C57BL/6 (B6) with the conventional antigen i.e. hen egg lysozyme (HEL) and analyzed B cell activation, germinal center reaction and antibody clearance. Corroborating our previous observations NOD mice responded robustly to a single immunization of HEL. Immunofluorescence analysis of the spleen revealed an increased number of germinal centers in unimmunized NOD compared to B6. However, post immunization germinal center numbers were similar in NOD and B6. NOD mice showed lower response to BCR stimulation with anti-IgM, in particular at lower concentrations of anti-IgM. Antibody clearance in vivo did not differ between the strains. To determine the cell type that is responsible for the prolonged and enhance immune response, we reconstituted NOD-RAGs with cells from primed donors in different combinations. NOD B cells were required to reproduce the phenotype; however the non-lymphoid compartment of NOD origin also played a role. Based on our results we propose that preexisting GCs in the NOD promote the robust response and alteration in the BCR signaling could promote survival of stimulated cells. Overall, this mechanism could in turn also contribute to the activation and maintenance of autoreactive B cells in the NOD mouse.
Collapse
Affiliation(s)
- Viqar Showkat Banday
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| | - Radha Thyagarajan
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| | - Kristina Lejon
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| |
Collapse
|
7
|
Banday VS, Thyagarajan R, Sundström M, Lejon K. Increased expression of TACI on NOD B cells results in germinal centre reaction anomalies, enhanced plasma cell differentiation and immunoglobulin production. Immunology 2016; 149:297-305. [PMID: 27444337 DOI: 10.1111/imm.12651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
B cells have an important pathogenic role in the development of type 1 diabetes in the non-obese diabetic (NOD) mouse. We have previously reported that NOD mice display an increased percentage of TACIhigh -expressing B cells compared with C57BL/6 mice and this trait is linked to chromosomes 1 and 8. In this paper the genetic association of the transmembrane activator, calcium modulator and cyclophilin ligand interactor (TACI) trait was confirmed using double congenic NOD.B6C1/Idd22 mice. TACI ligation by a proliferation-inducing ligand (APRIL) has been shown to influence plasma cell differentiation, immunoglobulin production and isotype switch. Hence, the functional consequence of the up-regulation of TACI on NOD B cells was analysed both in vitro and in vivo. NOD B cells stimulated with APRIL showed an enhanced plasma cell differentiation and class switch to IgG and IgA compared with B cells from C57BL/6 mice. Moreover, flow cytometry analyses revealed that germinal centre B cells in NOD failed to down-regulate TACI. Availability of the TACI ligand B-cell activating factor (BAFF) has been shown to be a limiting factor in the germinal centre reaction. In line with this, upon immunization with 4-hydroxy-3-nitrophenylacetyl hapten-conjugated hen egg lysozyme, NOD mice produced higher titres of low-affinity antibodies compared with C57BL/6 mice. This observation was supported by the detection of increased levels of BAFF in NOD germinal centres after immunization compared with C57BL/6 by immunofluorescence. Our results support the hypothesis that increased TACI expression on NOD B cells contributes to the pathogenesis of type 1 diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Viqar S Banday
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Radha Thyagarajan
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Mia Sundström
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Hanes WM, Olofsson PS, Kwan K, Hudson LK, Chavan SS, Pavlov VA, Tracey KJ. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice. Mol Med 2015; 21:702-708. [PMID: 26322849 DOI: 10.2119/molmed.2015.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach.
Collapse
Affiliation(s)
- William M Hanes
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin Kwan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - LaQueta K Hudson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
9
|
Suzuki T, Nishii N, Takashima S, Matsubara T, Iwasawa A, Takeuchi H, Tahara K, Hachisu T, Kitagawa H. Ligand-binding characteristics of feline insulin-binding immunoglobulin G. J Vet Med Sci 2015; 77:1379-83. [PMID: 26062435 PMCID: PMC4667653 DOI: 10.1292/jvms.15-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyclonal immunoglobulin (Ig) G autoantibodies against insulin have been
identified in sera of healthy cats. We purified and fractionated insulin-binding IgGs from
cat sera by affinity chromatography and analyzed affinity of insulin-binding IgGs for
insulin and their epitopes. Following the passing of fraction A, which did not bind to
insulin, insulin-binding IgGs were eluted into two fractions, B and C, by affinity
chromatography using a column fixed with bovine insulin. Dissociation constant (KD) values
between insulin-binding IgGs and insulin, determined by surface plasmon resonance analysis
(Biacore™system), were 1.64e−4 M for fraction B (low affinity IgGs) and
2e−5 M for fraction C (high affinity IgGs). Epitope analysis was conducted
using 16 peptide fragments synthesized in concord with the amino acid sequence of feline
insulin by an enzyme-linked immunosorbent assay. Fractions B and C showed higher
absorbance (affinity) of the peptide fragment of 10 amino acid residues at the
carboxyl-terminal of the B chain (peptide No. 19), followed by peptide fragments of 6 to
15 amino acid residues of the B chain (peptide No. 8). Fraction C showed a higher
absorbance to 7 to 16 amino acid residues of the B chain (peptide No. 5) compared with the
absorbance of fraction B. Polyclonal insulin-binding IgGs may form a macromolecule complex
with insulin through the multiple affinity sites of IgG molecules. Feline insulin-binding
IgGs are multifocal and may be composed of multiple IgG components and insulin.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Veterinary Medicine, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Collin R, Dugas V, Chabot-Roy G, Salem D, Zahn A, Di Noia JM, Rauch J, Lesage S. Autoimmunity and antibody affinity maturation are modulated by genetic variants on mouse chromosome 12. J Autoimmun 2015; 58:90-9. [PMID: 25623266 DOI: 10.1016/j.jaut.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Autoimmune diseases result from a break in immune tolerance leading to an attack on self-antigens. Autoantibody levels serve as a predictive tool for the early diagnosis of many autoimmune diseases, including type 1 diabetes. We find that a genetic locus on mouse chromosome 12 influences the affinity maturation of antibodies as well as autoantibody production. Thus, we generated a NOD.H2(k) congenic strain bearing B10 alleles at the locus comprised within the D12Mit184 and D12Mit12 markers, which we named NOD.H2(k)-Chr12. We determined the biological relevance of the Chr12 locus on the autoimmune process using an antigen-specific TCR transgenic autoimmune mouse model. Specifically, the 3A9 TCR transgene, which recognizes a peptide from hen egg lysozyme (HEL) in the context of I-A(k), and the HEL transgene, which is expressed under the rat-insulin promoter (iHEL), were bred into the NOD.H2(k)-Chr12 congenic strain. In the resulting 3A9 TCR:iHEL NOD.H2(k)-Chr12 mice, we observed a significant decrease in diabetes incidence as well as a decrease in both the quantity and affinity of HEL-specific IgG autoantibodies relative to 3A9 TCR:iHEL NOD.H2(k) mice. Notably, the decrease in autoantibodies due to the Chr12 locus was not restricted to the TCR transgenic model, as it was also observed in the non-transgenic NOD.H2(k) setting. Of importance, antibody affinity maturation upon immunization and re-challenge was also impeded in NOD.H2(k)-Chr12 congenic mice relative to NOD.H2(k) mice. Together, these results demonstrate that a genetic variant(s) present within the Chr12 locus plays a global role in modulating antibody affinity maturation.
Collapse
Affiliation(s)
- Roxanne Collin
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| | - Véronique Dugas
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Mitacs, Computer Research Institute of Montreal, Montréal, Québec, H3N 1M3, Canada.
| | - Geneviève Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada.
| | - David Salem
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada.
| | - Astrid Zahn
- Division of Immunology and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.
| | - Javier M Di Noia
- Division of Immunology and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada.
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
11
|
Abstract
Abstract
Collapse
|
12
|
Stojkovic A, Kosanovic D, Maslovaric I, Jovanova-Nesic K. Role of inactivated influenza vaccine in regulation of autoimmune processes in experimental autoimmune encephalomyelitis. Int J Neurosci 2013; 124:139-47. [PMID: 23865440 DOI: 10.3109/00207454.2013.826658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is characterized by appearance of anti-myelin autoantibodies in the blood and with the increased expression of MHC (major histocompatibility complex) class I and II antigens in the brain tissue. Although there is an evidence of possible linkage between influenza vaccination and development of autoimmune processes, the precise mechanisms of action of this vaccine on EAE-induction is still unclear. In this study, effects of influenza vaccine on clinical sign, antimyelin antibody titer in the blood by ELISA test and expression of MHC class I and II molecules immunohistochemistry were examined in the brain of C57BL mice with EAE. EAE was induced by MOG 35-55 protein in 16 of 32 mice. Influenza split vaccine was administered to eight MOG-induced EAE mice and to eight previously nontreated mice. A significant increase of anti-influenza antibody was detected in vaccinated mice compared to nontreated mice. Also, significant increase of antimyelin antibodies was detected in mice with EAE compared to vaccinated group without EAE and control group, respectively. In EAE-influenza vaccinated mice, a mild but not significant increase of antimyelin antibodies was detected, compared to EAE mice. High expression of MHC-II and mild expression of MHC-I were detected in the brain of mice with EAE. No expressions were detected in vaccinated and normal intact brains. Similar staining was found between EAE-vaccinated and EAE group in both MHC-I and MHC-II expression. The results obtained show that influenza vaccine has no significant influence on EAE induction and severity of autoimmune processes.
Collapse
|
13
|
Abstract
BACKGROUND The immune response involves the activation of heterogeneous populations of T cells and B cells that show different degrees of affinity and specificity for target antigens. Although several techniques have been developed to study the molecular pathways that control immunity, there is a need for high-throughput assays to monitor the specificity of the immune response. CONTENT Antigen microarrays provide a new tool to study the immune response. We reviewed the literature on antigen microarrays and their advantages and limitations, and we evaluated their use for the study of autoimmune diseases. Antigen arrays have been successfully used for several purposes in the investigation of autoimmune disorders: for disease diagnosis, to monitor disease progression and response to therapy, to discover mechanisms of pathogenesis, and to tailor antigen-specific therapies to the autoimmune response of individual patients. In this review we discuss the use of antigen microarrays for the study of 4 common autoimmune diseases and their animal models: type 1 diabetes, systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. CONCLUSIONS Antigen microarrays constitute a new tool for the investigation of the immune response in autoimmune disorders and also in other conditions such as tumors and allergies. Once current limitations are overcome, antigen microarrays have the potential to revolutionize the investigation and management of autoimmune diseases.
Collapse
Affiliation(s)
- Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Quintana FJ, Yeste A, Weiner HL, Covacu R. Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. J Neuroimmunol 2012; 248:53-7. [PMID: 22579051 PMCID: PMC3667705 DOI: 10.1016/j.jneuroim.2012.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that targets the central nervous system (CNS). MS initially follows a relapsing-remitting course (RRMS) in which acute attacks are followed by a complete recovery. Eventually, 65% of the RRMS patients go on to develop secondary progressive MS (SPMS), characterized by the progressive and irreversible accumulation of neurological disability. It has been proposed that the transition from RRMS to SPMS results from changes in the nature of the inflammatory response and the progressive accumulation of neurodegeneration. To date, however, there is no reliable method to monitor the activity of the different immune and neurodegenerative processes that contribute to MS pathology. Thus, there is a need for biomarkers useful for the diagnosis, treatment and monitoring of MS patients. In this review, we discuss the potential use of lipids and the immune response against them as biomarkers of inflammation and neurodegeneration for MS.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
15
|
Quintana FJ, Farez MF, Izquierdo G, Lucas M, Cohen IR, Weiner HL. Antigen microarrays identify CNS-produced autoantibodies in RRMS. Neurology 2012; 78:532-9. [PMID: 22262743 DOI: 10.1212/wnl.0b013e318247f9f3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is characterized by the local production of antibodies in the CNS and the presence of oligoclonal bands in the CSF. Antigen arrays allow the study of antibody reactivity against a large number of antigens using small volumes of fluid with greater sensitivity than ELISA. We investigated whether there were unique autoantibodies in the CSF of patients with MS as measured by antigen arrays and whether these antibodies differed from those in serum. METHODS We used antigen arrays to analyze the reactivity of antibodies in matched serum and CSF samples of 20 patients with untreated relapsing-remitting MS (RRMS), 26 methylprednisolone-treated patients with RRMS, and 20 control patients with other noninflammatory neurologic conditions (ONDs) against 334 different antigens including heat shock proteins, lipids, and myelin antigens. RESULTS We found different antibody signatures in matched CSF and serum samples The targets of these antibodies included epitopes of the myelin antigens CNP, MBP, MOBP, MOG, and PLP (59%), HSP60 and HSP70 (38%), and the 68-kD neurofilament (3%). The antibody response in patients with MS was heterogeneous; CSF antibodies in individual patients reacted with different autoantigens. These autoantibodies were locally synthesized in the CNS and were of the immunoglobulin G class. Finally, we found that treatment with steroids decreased autoantibody reactivity, epitope spreading, and intrathecal autoantibody synthesis. CONCLUSIONS These studies provide a new avenue to investigate the local antibody response in the CNS, which may serve as a biomarker to monitor both disease progression and response to therapy in MS.
Collapse
Affiliation(s)
- F J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zimmerman MA, Haskins K, Bradley B, Gilman J, Gamboni-Robertson F, Flores SC. Autoimmune-mediated vascular injury occurs prior to sustained hyperglycemia in a murine model of type I diabetes mellitus. J Surg Res 2011; 168:e195-202. [PMID: 21470634 DOI: 10.1016/j.jss.2011.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/20/2010] [Accepted: 01/11/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Accelerated cardiovascular disease in patients with type I diabetes (TID) is a well-described condition and serious clinical obstacle. At present, the notion that early atherogenesis is largely dependent on sustained hyperglycemia remains in question. We hypothesize that an alteration in T lymphocyte homeostasis may result in early vascular inflammation, which might amplify subsequent blood vessel injury in euglycemia. METHODS A murine model of carotid arterial ligation was employed to induce neointimal hyperplasia (NIH) in C57/Bl6 (non-autoimmune) and non-obese diabetic (NOD) mice. Additionally, adoptive transfer of NOD splenocytes into immunodeficient NOD mice (NOD.scid) was undertaken to evaluate the influence of restored autoimmunity on NIH development. RESULTS Interestingly, compared with C57/Bl6 mice, the NOD demonstrate a significant increase in neointimal area. Conversely, the NOD.scid mice (immunodeficient control) reveal almost no evidence of vascular injury. While evidence of early vascular inflammation can be detected in the injured NOD vasculature, uninjured contralateral vessels and those of the NOD.scid have minimal T cell infiltration. Following reconstitution of autoimmune responses via NOD splenocyte adoptive transfer, accelerated vascular pathology is restored. CONCLUSIONS These observations suggest that autoimmunity, in the setting of impending hyperglycemia, may contribute to accelerated vascular inflammation and subsequent pathology.
Collapse
Affiliation(s)
- Michael A Zimmerman
- Division of Pulmonary Sciences and Critical Care Medicine, Colorado Center for Transplantation Care, Research and Education, Denver, Colorado, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Nishii N, Takasu M, Kojima M, Hachisu T, Wakabayashi K, Iwasawa A, Maeda S, Ohba Y, Kitagawa H. Presence of anti-insulin natural autoantibodies in healthy cats and its interference with immunoassay for serum insulin concentrations. Domest Anim Endocrinol 2010; 38:138-45. [PMID: 19850439 DOI: 10.1016/j.domaniend.2009.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 11/25/2022]
Abstract
A substance interfering with the enzyme-linked immunosorbent assay (ELISA) for feline insulin concentration was investigated in healthy cats. An insulin-binding substance isolated from feline serum showed 2 bands at 25 and 50 kDa in SDS-PAGE, suggesting the presence of immunoglobulin G (IgG). Insulin-binding IgG from healthy cats indeed reduced insulin immunoreactivity in the ELISA for determining insulin concentration. The insulin-binding IgG was polyclonal/polyreactive and showed certain specificity, high affinity, and high binding capacity, which was evaluated by liquid-phase radioimmunoassay with Scatchard plot analysis. Epitope analysis revealed that the insulin-binding IgG showed significant binding at residues A1-5 and B20-30 of the insulin molecule. Removal of the antibodies from serum enabled the determination of serum insulin concentrations by ELISA. Our data indicated that serum from healthy cats contained substantial amounts of natural autoantibodies combined with insulin, and that the antibodies interfered with the heterologous immunoassay for serum insulin concentration.
Collapse
Affiliation(s)
- N Nishii
- Laboratory of Veterinary Pharmacotherapeutics, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marengo EB, Commodaro AG, Peron JPS, de Moraes LV, Portaro FCV, Belfort R, Rizzo LV, Sant'Anna OA. Administration of Mycobacterium leprae rHsp65 aggravates experimental autoimmune uveitis in mice. PLoS One 2009; 4:e7912. [PMID: 19936251 PMCID: PMC2775913 DOI: 10.1371/journal.pone.0007912] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/23/2009] [Indexed: 11/18/2022] Open
Abstract
The 60 kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10.RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+)IL-17(+), CD4(+)IFN-gamma(+) and CD4(+)Foxp3(+) cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+)IFN-gamma(+) and CD4(+)IL-17(+) T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.
Collapse
Affiliation(s)
- Eliana B. Marengo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Immunochemistry Laboratory, Instituto Butantan, São Paulo, Brazil
| | | | - Jean Pierre S. Peron
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciana V. de Moraes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rubens Belfort
- Vision Institute, Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Vicente Rizzo
- Albert Einstein Jewish Institute for Education and Research, São Paulo, Brazil
| | | |
Collapse
|
19
|
Oral administration of OKT3 monoclonal antibody to human subjects induces a dose-dependent immunologic effect in T cells and dendritic cells. J Clin Immunol 2009; 30:167-77. [PMID: 19756989 DOI: 10.1007/s10875-009-9323-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 08/06/2009] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Parenteral OKT3 is used to treat transplant rejection and a humanized anti-CD3 Mab has shown positive clinical effects in new onset diabetes. Oral administration of anti-CD3 has not been tested in humans, but suppresses autoimmunity in animal models. Beta-glucosylceramide enhances NKT cell and regulatory T cell activity and enhances the effects of oral anti-CD3 in animals. MATERIALS AND METHODS Fifteen healthy volunteers (three per group) received orally administered OKT3 over a dose range of 0.2 to 5.0 mg daily with or without beta-glucosylceramide 7.5 mg for 5 days. Safety and immune parameters were measured on days 5, 10, and 30. RESULTS AND DISCUSSION Oral OKT3 enhanced T cell proliferation, suppressed Th1 and Th17 responses by 43% and 41%, respectively, increased TGF-beta/IL-10 expression and decreased IL-23/IL-6 expression by dendritic cells, and affected the IgG repertoire as measured by antigen arrays. Co-administration of oral beta-glucosylceramide induced similar effects. No side effects were observed and no subjects developed human anti-mouse antibodies. CONCLUSION These findings demonstrate that oral anti-CD3 monoclonal antibody is safe and biologically active in humans and presents a new avenue for the treatment of autoimmune diseases.
Collapse
|
20
|
Campanella C, Marino Gammazza A, Mularoni L, Cappello F, Zummo G, Di Felice V. A comparative analysis of the products of GROEL-1 gene from Chlamydia trachomatis serovar D and the HSP60 var1 transcript from Homo sapiens suggests a possible autoimmune response. Int J Immunogenet 2009; 36:73-8. [PMID: 19207939 DOI: 10.1111/j.1744-313x.2008.00819.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis serovar D produces large quantities of HSP60-1 during infections, which accumulate inside the host cell inducing autoimmunity. We compare the aminoacid sequences of the human HSP60 with the bacterial counterpart to better elucidate how CTHSP60 may simulate HSP60 from human origin during infection and may induce an autoimmune response. As a result of the comparison we suggest several possible epitopes of the CTHSP60, which may induce autoimmunity.
Collapse
Affiliation(s)
- C Campanella
- Sezione di Anatomia Umana 'E. Luna', Dipartimento di Medicina Sperimentale, Università di Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A 2008; 105:18889-94. [PMID: 19028871 DOI: 10.1073/pnas.0806310105] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic relapsing disease of the central nervous system (CNS) in which immune processes are believed to play a major role. To date, there is no reliable method by which to characterize the immune processes and their changes associated with different forms of MS and disease progression. We performed antigen microarray analysis to characterize patterns of antibody reactivity in MS serum against a panel of CNS protein and lipid autoantigens and heat shock proteins. Informatic analysis consisted of a training set that was validated on a blinded test set. The results were further validated on an independent cohort of relapsing-remitting (RRMS) samples. We found unique autoantibody patterns that distinguished RRMS, secondary progressive (SPMS), and primary progressive (PPMS) MS from both healthy controls and other neurologic or autoimmune driven diseases including Alzheimer's disease, adrenoleukodystropy, and lupus erythematosus. RRMS was characterized by autoantibodies to heat shock proteins that were not observed in PPMS or SPMS. In addition, RRMS, SPMS, and PPMS were characterized by unique patterns of reactivity to CNS antigens. Furthermore, we examined sera from patients with different immunopathologic patterns of MS as determined by brain biopsy, and we identified unique antibody patterns to lipids and CNS-derived peptides that were linked to each type of pathology. The demonstration of unique serum immune signatures linked to different stages and pathologic processes in MS provides an avenue to monitor MS and to characterize immunopathogenic mechanisms and therapeutic targets in the disease.
Collapse
|
22
|
Quintana FJ, Solomon A, Cohen IR, Nussbaum G. Induction of IgG3 to LPS via Toll-like receptor 4 co-stimulation. PLoS One 2008; 3:e3509. [PMID: 18946502 PMCID: PMC2566810 DOI: 10.1371/journal.pone.0003509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/30/2008] [Indexed: 12/12/2022] Open
Abstract
B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR) and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs) also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise.
Collapse
|
23
|
Sialoadenitis progression in nonobese diabetic mice and its correlation with expression of apoptosis-associated proteins in salivary glands and serum IgG levels. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200708020-00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Nicolls MR, Haskins K, Flores SC. Oxidant stress, immune dysregulation, and vascular function in type I diabetes. Antioxid Redox Signal 2007; 9:879-89. [PMID: 17508913 DOI: 10.1089/ars.2007.1631] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although high glucose is an important contributor to diabetic vasculopathies, complications still occur in spite of tight glycemic control, suggesting that some critical event prior to or concurrent with hyperglycemia may contribute to early vascular changes. Utilizing previously published and new experimental evidence, this review will discuss how prior to the hyperglycemic state, an imbalance between oxidants and antioxidants may contribute to early vascular dysfunction and set in motion proinflammatory insults that are further amplified as the diabetes develops. This imbalance results from the resetting of the equilibrium between vessel superoxide/H(2)O(2) production and/or decreased antioxidant defenses. Such an imbalance may cause endothelial dysfunction, characterized by abnormal endothelium-dependent vasoreactivity, as the first sign of blood vessel damage, followed by morphological changes of the vessel wall and inflammation. As such, increased oxidant stress in preglycemic states may be a critically central initiating event that underlies the pathogenesis of life-threatening vascular diseases in autoimmune diabetes. This review focuses on the relationship between oxidative stress, immune dysregulation, and vascular injury in type 1 diabetes, and how the discovery of novel pathways of vascular disease in nonobese diabetic mice may direct future studies in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Mark R Nicolls
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
25
|
Buzás EI, György B, Pásztói M, Jelinek I, Falus A, Gabius HJ. Carbohydrate recognition systems in autoimmunity. Autoimmunity 2007; 39:691-704. [PMID: 17178566 DOI: 10.1080/08916930601061470] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The immune system is a complex functional network of diverse cells and soluble molecules orchestrating innate and adaptive immunity. Biological information, to run these intricate interactions, is not only stored in protein sequences but also in the structure of the glycan part of the glycoconjugates. The spatially accessible carbohydrate structures that contribute to the cell's glycome are decoded by versatile recognition systems in order to maintain the immune homeostasis of an organism. Microbial carbohydrate structures are recognized by pathogen associated molecular pattern (PAMP) receptors of innate immunity including C-type lectins such as MBL, the tandem-repeat-type macrophage mannose receptor, DC-SIGN or dectin-1 of dendritic cells, certain TLRS or the TCR of NKT cells. Natural autoantibodies, a long known effector branch of this network-based operation, are effective to home in on non-self and self-glycosylation also. The recirculating pool of mammalian immune cells is recruited to inflammatory sites by a reaction pathway involving the self-carbohydrate-binding selectins as initial recognition step. Galectins, further key sensors reading the high-density sugar code, exert regulatory functions on activated T cells, among other activities. Autoimmune diseases are being associated with defined changes of glycosylation. This correlation deserves to be thoroughly studied on the levels of structural mimicry and dysregulation as well as effector molecules to devise innovative anti-inflammatory strategies. This review briefly summarizes data on sensor systems for carbohydrate epitopes and implications for autoimmunity.
Collapse
Affiliation(s)
- Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
26
|
Quintana FJ, Merbl Y, Sahar E, Domany E, Cohen IR. Antigen-chip technology for accessing global information about the state of the body. Lupus 2007; 15:428-30. [PMID: 16898177 DOI: 10.1191/0961203306lu2328oa] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traditionally, immunologic diagnosis has been based on an attempt to correlate each disease with a specific immune reactivity, such as an antibody or a T-cell response to a single antigen specific for the disease entity. The state of the body, however, appears to be encoded by the immune system in collectives of reactivities and not by single reactivities. Here we describe our use of microarray technology and informatics to develop an antigen chip capable of detecting global patterns of antibodies binding to hundreds of antigens simultaneously. The patterns fashion diagnostic signatures.
Collapse
Affiliation(s)
- F J Quintana
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
27
|
Ling X, Cota-Gomez A, Flores NC, Hernandez-Saavedra D, McCord JM, Marecki JC, Haskins K, McDuffie M, Powers K, Kench J, Oka M, McMurtry I, Flores SC. Alterations in redox homeostasis and prostaglandins impair endothelial-dependent vasodilation in euglycemic autoimmune nonobese diabetic mice. Free Radic Biol Med 2005; 39:1089-98. [PMID: 16198235 DOI: 10.1016/j.freeradbiomed.2005.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/24/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
We report herein the novel observation that alterations in oxidant/antioxidant balance are evident and cause vascular dysfunction in aortae of prediabetic nonobese-diabetic mice (NOD). We found that nitrotyrosine, a biochemical marker of oxidant stress, was higher in the NOD aortae when compared to age-matched non-autoimmune BALB/c controls or the diabetes-resistant NOD congenic strain, NOD.Lc7. The oxidant stress was localized to the intimal and medial layers, and endothelium-dependent relaxation to acetylcholine was decreased in isolated aortic rings from NOD mice. Inhibition of nitric oxide synthesis caused an endothelium-dependent contraction, and treatment with either a selective thromboxane A2/prostaglandin H2 receptor antagonist or a non-isozyme-specific cyclooxygenase inhibitor reversed this effect. Aortic rings from NOD.Lc7 did not display the paradoxical vasoconstriction. Furthermore, the vascular dysfunction was caused by oxidative stress, as treatment with a superoxide dismutase mimetic in vivo or with native antioxidant enzymes ex vivo inhibited the tissue oxidant stress and restored endothelium-dependent relaxation. Endothelial function was also restored by the inhibitors of NAD(P)H oxidase, diphenylene iodonium or apocynin. Our studies indicate that an oxidant stress that occurs prior to the onset of diabetes in this mouse model contributes to endothelial dysfunction independently of overt diabetes.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Acetylcholine/pharmacology
- Animals
- Aorta/chemistry
- Aorta/drug effects
- Aorta/physiopathology
- Cyclooxygenase Inhibitors/pharmacology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Homeostasis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/metabolism
- Nitric Oxide/metabolism
- Onium Compounds/pharmacology
- Oxidation-Reduction
- Oxidative Stress
- Prediabetic State/metabolism
- Prediabetic State/physiopathology
- Prostaglandin-Endoperoxide Synthases/metabolism
- Prostaglandins/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Tyrosine/analogs & derivatives
- Tyrosine/analysis
- Tyrosine/metabolism
- Vasodilation
Collapse
Affiliation(s)
- Xiaofeng Ling
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C-321, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baiu DC, Barger B, Sandor M, Fabry Z, Hart MN. Autoantibodies to vascular smooth muscle are pathogenic for vasculitis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1851-60. [PMID: 15920169 PMCID: PMC1602413 DOI: 10.1016/s0002-9440(10)62494-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that microvascular smooth muscle activates CD4+ T lymphocytes in sterile co-culture, presents antigen, and produces inflammatory cytokines. Adoptive transfer of lymphocytes co-cultured with syngeneic smooth muscle cells to healthy recipient mice results in vasculitic lesions predominantly in postcapillary venules. The present study assessed the pathogenic role of immunoglobulin and B cells in a murine model of vasculitis. Here, we show that transferred B cells, including plasmablast cells, accumulated, persisted, and proliferated in lung and secondary lymphoid organs of recipient mice. The induction of vasculitis was accompanied by production of IgM and IgG2a autoantibodies specific for vascular smooth muscle intracellular antigens. Circulating immunoglobulin had a pathogenic role in this vasculitis model, because the disease could be induced by transfer of serum from vasculitic mice to untreated animals but not by transfer of serum depleted of anti-smooth muscle autoantibodies. Additionally, the pathogenic mechanisms triggered by the transfer of vasculitogenic serum were dependent on T lymphocytes because both wild-type and B cell-deficient mice developed the disease after serum transfer, whereas RAG2-deficient mice did not. Thus, immunoglobulin and cell-mediated pathways work in concert to produce vasculitis in this model.
Collapse
Affiliation(s)
- Dana Carina Baiu
- Department of Pathology and Laboratory Medicine, 6152 MSC, University of Wisconsin, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Montero E, Nussbaum G, Kaye JF, Perez R, Lage A, Ben-Nun A, Cohen IR. Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. J Autoimmun 2005; 23:1-7. [PMID: 15236747 DOI: 10.1016/j.jaut.2004.05.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/13/2004] [Accepted: 05/12/2004] [Indexed: 12/20/2022]
Abstract
Experimental Autoimmune Encephalomyelitis (EAE) can be induced in mice of the C57BL/6 strain by subcutaneous immunization with myelin/oligodendrocyte glycoprotein (MOG) peptide p35-55 in CFA, administered twice at an interval of one week and supplemented with Bordetella pertussis toxin given IV. Here, we studied the effect on the induction of EAE of depleting antibodies to CD4, CD8, or CD25 administered before either the first or the second dose of MOG p35-55. We found that anti-CD4 abolished EAE when given before the first immunization; anti-CD4 did not affect the disease when it was given before the second immunization. Anti-CD8 enhanced EAE induction when given before either of the two immunizations. Anti-CD25 enhanced EAE to the same degree as anti-CD8 when given before the first immunization, but anti-CD25 was even more effective in enhancing EAE when given before the second immunization. The anti-CD25 treatment led to significantly enhanced IFNgamma production by T cells responding to MOG p35-55 and persisting anti-MOG antibodies detectable 56 days after the first immunization. Administration of anti-CD8 or anti-CD25 abolished the need for pertussis toxin to induce EAE. These findings are compatible with the idea that CD4 T cells are required for the initial induction of EAE and that the disease is down-regulated by T cells expressing CD8 or CD25. These regulatory T cells exist prior to MOG immunization, but the CD25+ regulators appear to be further amplified by immunization.
Collapse
|
30
|
Quintana FJ, Cohen IR. The natural autoantibody repertoire and autoimmune disease. Biomed Pharmacother 2004; 58:276-81. [PMID: 15194162 DOI: 10.1016/j.biopha.2004.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 11/26/2022] Open
Abstract
The incidence of autoimmune diseases has shown a significant increase in developed countries during the last 40 years. The cause of this increase is still unknown, and reliable methods for the detection of individuals at risk of developing autoimmune disease are not available yet. To explore new methods for the diagnosis and monitoring of autoimmune disease, we have studied the repertoire of natural autoantibodies (NA) and its relationship with autoimmune disease using large arrays of defined antigens. NA are found in healthy humans and mice, apparently in the absence of immunization with their target antigens. We used knock-out mice to demonstrate that the repertoire of NA is influenced by factors not directly related to antigenic stimulation such as endogenous levels of histamine. By studying strains of mice known to differ in their susceptibility to autoimmune disease, we could conclude that the repertoire of NA reflects the susceptibility to develop autoimmune disease. The study of the human repertoire of NA required the development of bio-informatic tools to overcome the variation introduced by individual differences in the genetic background and immune history. We found that human NA are organized in clusters that can differentiate healthy subjects from patients with type 1 diabetes mellitus, type 2 diabetes mellitus or Behçet's disease patients. The development of new tools to undertake large-scale NA analysis could also enhance our understanding of the immune system, and leave us in a better position to face the up-coming epidemics of autoimmune disorders.
Collapse
Affiliation(s)
- Francisco J Quintana
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
31
|
Quintana FJ, Buzas E, Prohászka Z, Bíró A, Kocsis J, Füst G, Falus A, Cohen IR. Knock-out of the histidine decarboxylase gene modifies the repertoire of natural autoantibodies. J Autoimmun 2004; 22:297-305. [PMID: 15120753 DOI: 10.1016/j.jaut.2004.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 02/25/2004] [Accepted: 03/01/2004] [Indexed: 01/22/2023]
Abstract
Natural antibodies (NA) are antibodies produced in the absence of known immunization with specific antigens. NA are found in the blood of healthy humans and mice. Histamine influences many aspects of the immune response, including antibody production. However, the role of histamine in the generation of NA has not yet been studied. In this work, we used an ELISA assay to characterize the self-antigen binding repertoires of NA in wild type (WT) mice and in histidine decarboxylase knock-out (HDC-KO) mice, unable to synthesize histamine. We now report that HDC-KO and WT mice differed in the patterns of autoreactivity of their IgM and IgG NA. The NA in HDC-KO sera manifested a larger repertoire of IgM autoantibodies than did the WT sera. The self-antigens bound by IgM from HDC-KO mice included structural proteins, enzymes associated with cellular metabolism, double-stranded and single-stranded DNA, and tissue-specific antigens like insulin. There were relatively fewer differences in the NA repertoire of IgG autoantibodies of the mice: notably, the HDC-KO sera reacted with glutamic acid decarboxylase (GAD), an antigen associated with autoimmune diabetes. These results demonstrate that endogenous histamine can influence the self-reactivity of the NA repertoire.
Collapse
Affiliation(s)
- Francisco J Quintana
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Amir-Kroll H, Nussbaum G, Cohen IR. Proteins and their derived peptides as carriers in a conjugate vaccine for Streptococcus pneumoniae: self-heat shock protein 60 and tetanus toxoid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6165-71. [PMID: 12794147 DOI: 10.4049/jimmunol.170.12.6165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We induced T cell help for vaccination against Streptococcus pneumoniae (Pn) using self and foreign peptides and their source proteins conjugated to the capsular polysaccharide (CPS) of type 4 Pn; the carriers were self-heat shock protein 60 (HSP60) and tetanus toxoid (TT). We measured the production of IgG Abs to the CPS and the carriers, and tested resistance to challenge with highly lethal amounts of Pn injected i.p. (LD(50) x 10(3)-10(6)). We now report that vaccination protects old and young mice from bacterial challenge; however, there were significant differences in vaccine efficacy based on the carrier. Self-HSP60 peptide p458m was more effective than the whole HSP60 molecule and was equally effective compared with TT. Both p458m and TT were more protective than the TT-derived peptide p30 after a single vaccination. However, peptide p30 was effective in more MHC genotypes than was p458m. Unlike other vaccines, protection conferred by p458m was not related to the amount of anti-CPS Ab: mice that produced very little Ab were still protected from highly lethal doses of bacteria (LD(50) x 10(5)-10(6)). Furthermore, unlike the other carriers, there was no Ab response to the p458m carrier. Thus, peptides, self as well as foreign, can provide T cell help that differs functionally from that provided by the whole parent protein.
Collapse
MESH Headings
- Age Factors
- Amino Acid Sequence
- Animals
- Autoantibodies/biosynthesis
- Autoantigens/administration & dosage
- Autoantigens/immunology
- Autoantigens/therapeutic use
- Carrier Proteins/administration & dosage
- Carrier Proteins/immunology
- Carrier Proteins/therapeutic use
- Chaperonin 60/administration & dosage
- Chaperonin 60/immunology
- Chaperonin 60/therapeutic use
- Dose-Response Relationship, Immunologic
- Female
- Immunization Schedule
- Immunoglobulin G/biosynthesis
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Pneumococcal Infections/immunology
- Pneumococcal Infections/prevention & control
- Pneumococcal Vaccines/administration & dosage
- Pneumococcal Vaccines/immunology
- Pneumococcal Vaccines/therapeutic use
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/immunology
- Polysaccharides, Bacterial/therapeutic use
- Species Specificity
- Tetanus Toxoid/administration & dosage
- Tetanus Toxoid/immunology
- Tetanus Toxoid/therapeutic use
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
Collapse
Affiliation(s)
- Hila Amir-Kroll
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
33
|
Quintana FJ, Carmi P, Mor F, Cohen IR. Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3422-8. [PMID: 12218165 DOI: 10.4049/jimmunol.169.6.3422] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adjuvant arthritis (AA) is an autoimmune disease inducible in rats involving T cell reactivity to the mycobacterial 65-kDa heat shock protein (HSP65). HSP65-specific T cells cross-reactive with the mammalian 60-kDa heat shock protein (HSP60) are thought to participate in the modulation of AA. In this work we studied the effects on AA of DNA vaccination using constructs coding for HSP65 (pHSP65) or human HSP60 (pHSP60). We found that both constructs could inhibit AA, but that pHSP60 was more effective than pHSP65. The immune effects associated with specific DNA-induced suppression of AA were complex and included enhanced T cell proliferation to a variety of disease-associated Ags. Effective vaccination with HSP60 or HSP65 DNA led paradoxically to up-regulation of IFN-gamma secretion to HSP60 and, concomitantly, to down-regulation of IFN-gamma secretion to the P180-188 epitope of HSP65. There were also variable changes in the profiles of IL-10 secretion to different Ags. However, vaccination with pHSP60 or pHSP65 enhanced the production of TGFbeta1 to both HSP60 and HSP65 epitopes. Our results support a regulatory role for HSP60 autoreactivity in AA and demonstrate that this control mechanism can be activated by DNA vaccination with both HSP60 or HSP65.
Collapse
|
34
|
Gonzalez G, Montero E, Leon K, Cohen IR, Lage A. Autoimmunization to epidermal growth factor, a component of the immunological homunculus. Autoimmun Rev 2002; 1:89-95. [PMID: 12849064 DOI: 10.1016/s1568-9972(01)00015-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epidermal growth factor (EGF) is being tried as a vaccine in cancer immunotherapy with the aim of inducing neutralizing antibodies that might affect EGF-dependent tumors. Here we summarize our experience using the EGF self-molecule as an autoimmunigen. We report here that IgG anti-EGF antibodies are prevalent in healthy people and that augmentation of the response to EGF requires conjugation to an effective carrier and an adjuvant. Paradoxically, the response to EGF immunization could be enhanced by an 'immunosuppressive' treatment with cyclophosphamide, most probably by suppressing active control mechanisms. EGF is expressed in the thymus. Thus, EGF may be added to the immunological homunculus, the class of self-antigens to which there is both natural autoimmunity and natural regulation of the autoimmunity. The results using EGF as a vaccine can teach us about the homunculus and how to activate it.
Collapse
Affiliation(s)
- G Gonzalez
- Center of Molecular Immunology, P.O.Box: 16040, Havana 11600, Cuba
| | | | | | | | | |
Collapse
|