1
|
Ament SA, Poulopoulos A. The brain's dark transcriptome: Sequencing RNA in distal compartments of neurons and glia. Curr Opin Neurobiol 2023; 81:102725. [PMID: 37196598 PMCID: PMC10524153 DOI: 10.1016/j.conb.2023.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023]
Abstract
Transcriptomic approaches are powerful strategies to map the molecular diversity of cells in the brain. Single-cell genomic atlases have now been compiled for entire mammalian brains. However, complementary techniques are only just beginning to map the subcellular transcriptomes from distal cellular compartments. We review single-cell datasets alongside subtranscriptome data from the mammalian brain to explore the development of cellular and subcellular diversity. We discuss how single-cell RNA-seq misses transcripts localized away from cell bodies, which form the 'dark transcriptome' of the brain: a collection of subtranscriptomes in dendrites, axons, growth cones, synapses, and endfeet with important roles in brain development and function. Recent advances in subcellular transcriptome sequencing are beginning to reveal these elusive pools of RNA. We outline the success stories to date in uncovering the constituent subtranscriptomes of neurons and glia, as well as present the emerging toolkit that is accelerating the pace of subtranscriptome discovery.
Collapse
Affiliation(s)
- Seth A Ament
- Department of Psychiatry, UM-MIND, and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Shuster SA, Li J, Chon UR, Sinantha-Hu MC, Luginbuhl DJ, Udeshi ND, Carey DK, Takeo YH, Xie Q, Xu C, Mani DR, Han S, Ting AY, Carr SA, Luo L. In situ cell-type-specific cell-surface proteomic profiling in mice. Neuron 2022; 110:3882-3896.e9. [PMID: 36220098 PMCID: PMC9742329 DOI: 10.1016/j.neuron.2022.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Cell-surface proteins (CSPs) mediate intercellular communication throughout the lives of multicellular organisms. However, there are no generalizable methods for quantitative CSP profiling in specific cell types in vertebrate tissues. Here, we present in situ cell-surface proteome extraction by extracellular labeling (iPEEL), a proximity labeling method in mice that enables spatiotemporally precise labeling of cell-surface proteomes in a cell-type-specific environment in native tissues for discovery proteomics. Applying iPEEL to developing and mature cerebellar Purkinje cells revealed differential enrichment in CSPs with post-translational protein processing and synaptic functions in the developing and mature cell-surface proteomes, respectively. A proteome-instructed in vivo loss-of-function screen identified a critical, multifaceted role for Armh4 in Purkinje cell dendrite morphogenesis. Armh4 overexpression also disrupts dendrite morphogenesis; this effect requires its conserved cytoplasmic domain and is augmented by disrupting its endocytosis. Our results highlight the utility of CSP profiling in native mammalian tissues for identifying regulators of cell-surface signaling.
Collapse
Affiliation(s)
- S Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - URee Chon
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Miley C Sinantha-Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Yukari H Takeo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, CA 94305, USA
| | - Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Developmental upregulation of an alternative form of pcp2 with reduced GDI activity. THE CEREBELLUM 2014; 13:207-14. [PMID: 24092530 PMCID: PMC3939015 DOI: 10.1007/s12311-013-0529-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The pcp2/L7 gene is characterized by its very cell type-specific expression restricted to cerebellar Purkinje cells and retinal bipolar neurons. Although remarkable progress as to the biochemical properties of the encoded protein has been made, knowledge on its physiological functions remains sparse. While characterizing a pcp2-driven transgenic strain, we observed the presence of a longer, so far unknown, pcp2 transcript. Different from another recently discovered splice variant, ret-pcp2, expression of this novel transcript is observed in bipolar as well as cerebellar Purkinje cells of mid-postnatal mice. The protein encoded by our novel variant appears to be less efficient in binding to Gα subunits compared to the original L7/pcp2 protein and it is also less inhibitory with respect to GTPγ binding. Its expression in the eye appears to be independent from eye opening in postnatal mice.
Collapse
|
4
|
Walton JC, Schilling K, Nelson RJ, Oberdick J. Sex-dependent behavioral functions of the Purkinje cell-specific Gαi/o binding protein, Pcp2(L7). THE CEREBELLUM 2013; 11:982-1001. [PMID: 22528962 DOI: 10.1007/s12311-012-0368-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously reported motor and non-motor enhancements in a mouse mutant with an inactivated Purkinje cell-specific gene, Pcp2(L7), that encodes a GoLoco domain-containing modulator of Gi/o protein-coupled receptors. Effects included elevated learning asymptote with repeated rotarod training, increased acquisition rate in tone-cued fear conditioning (FC), and subtle male-specific changes in both acoustic startle habituation and pre-pulse inhibition. We have further analyzed this mutant strain this time with a focus on male-female differences, and here we report a sex-dependent anxiety-like phenotype: male mutants are less anxious, and female mutants are more anxious, than same-sex wild types. Similarly, the fear responses measured during the tone in FC acquisition are decreased in male mutants and increased in female mutants relative to same-sex wild types. Overall, the dynamics of both acquisition and extinction of FC is affected in mutants but memory was not affected. In the social realm, compositional analysis of sociability and preference for social novelty data supports that both L7 genotype and sex contribute to these behaviors. These results provide direct evidence of emotional functions of the cerebellum due to the unambiguous cerebellar specificity of Pcp2(L7) expression and the lack of any confounding motor defects in the mutant. We attempt to synthesize these new data with what is previously known both about Pcp2(L7) and about the effects of sex and sex hormones on anxiety and fear behaviors: specifically, L7 is a bidirectional and sex-dependent damper that regulates the amplitude and/or rate of sensorimotor responses, potentially acting as a mood stabilizer.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | | | | | | |
Collapse
|
5
|
Branco T, Häusser M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 2010; 20:494-502. [DOI: 10.1016/j.conb.2010.07.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 11/28/2022]
|
6
|
3'UTR-dependent localization of a Purkinje cell messenger RNA in dendrites. THE CEREBELLUM 2009; 7:482-93. [PMID: 18769992 DOI: 10.1007/s12311-008-0051-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pcp2(L7) is a Purkinje cell-specific GoLoco domain protein that modulates activation of Galphai/o proteins by G protein-coupled receptors. A likely downstream effector of this pathway is the P-type Ca(2+) channel, and thereby, the intrinsic electrophysiology of Purkinje cells could be modulated by Pcp2(L7). It has long been known that the Pcp2(L7) mRNA is abundantly localized in dendrites, suggesting the possibility of distal synthesis and local changes in levels of the protein. As a first step to uncover the trafficking and translational mechanisms for this mRNA, we have begun identifying the cis-acting sequences important for its localization in dendrites. Using expression of modified transgenes in vivo, we show that the 3'UTR, only 65 bases long, is necessary in this process.
Collapse
|
7
|
Iscru E, Serinagaoglu Y, Schilling K, Tian J, Bowers-Kidder SL, Zhang R, Morgan JI, DeVries AC, Nelson RJ, Zhu MX, Oberdick J. Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Mol Cell Neurosci 2008; 40:62-75. [PMID: 18930827 DOI: 10.1016/j.mcn.2008.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/10/2008] [Indexed: 11/15/2022] Open
Abstract
Pcp2(L7) is a GoLoco domain protein specifically and abundantly expressed in cerebellar Purkinje cells. It has been hypothesized to "tune" G(i/o)-coupled receptor modulation of physiological effectors, including the P-type Ca(2+) channel. We have analyzed a mouse mutant in which the Pcp2(L7) gene was inactivated and find significant anatomical, behavioral and electrophysiological changes. Anatomically, we observed mild cerebellar hypoplasia. Behaviorally, the mutants were altered in modalities atypical for a traditional cerebellar mutant, and oddly, all of these changes could be considered functional enhancements. This includes increased asymptotic performance in gross motor learning, increased rate of acquisition in tone-conditioned fear, and enhanced pre-pulse inhibition of the acoustic startle response. Electrophysiological analysis of Purkinje cells in the mutants reveals depression of the complex spike waveform that may underlie the behavioral changes. Based on these observations we suggest that the Pcp2(L7) protein acts as a sensorimotor damper that modulates time- and sense-dependent changes in motor responses.
Collapse
Affiliation(s)
- Emilia Iscru
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schindler J, Lewandrowski U, Sickmann A, Friauf E. Aqueous Polymer Two-Phase Systems for the Proteomic Analysis of Plasma Membranes from Minute Brain Samples. J Proteome Res 2008; 7:432-42. [DOI: 10.1021/pr0704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Schindler J, Lewandrowski U, Sickmann A, Friauf E, Nothwang HG. Proteomic Analysis of Brain Plasma Membranes Isolated by Affinity Two-phase Partitioning. Mol Cell Proteomics 2006; 5:390-400. [PMID: 16249173 DOI: 10.1074/mcp.t500017-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A comprehensive analysis of plasma membrane proteins is essential to in-depth understanding of brain development, function, and diseases. Proteomics offers the potential to perform such a comprehensive analysis, yet it requires efficient protocols for the purification of the plasma membrane compartment. Here, we present a novel and efficient protocol for the separation and enrichment of brain plasma membrane proteins. It lasts only 4 h and is easy to perform. It highly enriches plasma membrane proteins and can be applied to small amounts of brain tissue, such as the cerebellum of a single rat, which was used in the present study. The protocol is based on affinity partitioning of microsomes in an aqueous two-phase system. Marker enzyme assays demonstrated a more than 12-fold enrichment of plasma membranes and a strong reduction of other compartments, such as mitochondria and the endoplasmic reticulum. 506 different proteins were identified when the enriched proteins underwent LC-MS/MS analysis subsequent to protein separation by SDS-PAGE. Using gene ontology, 146 proteins were assigned to a subcellular compartment. Ninety-three of those (64%) were membrane proteins, and 49 (34%) were plasma membrane proteins. A combined literature and database search for all 506 identified proteins revealed subcellular information on 472 proteins, of which 197 (42%) were plasma membrane proteins. These comprised numerous transporters, channels, and neurotransmitter receptors, e.g. the inward rectifying potassium channel Kir7.1 and the cerebellum-specific gamma-aminobutyric acid receptor GABRA6. Surface proteins involved in cell-cell contact and disease-related proteins were also identified. Six of the 146 assigned proteins were derived from mitochondrial membranes and 5 from membranes of the endoplasmic reticulum. Taken together, our protocol represents a simple, rapid, and reproducible tool for the proteomic characterization of brain plasma membranes. Because it conserves membrane structure and protein interactions, it is also suitable to enrich multimeric protein complexes from the plasma membrane for subsequent analysis.
Collapse
Affiliation(s)
- Jens Schindler
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
10
|
Iijima T, Imai T, Kimura Y, Bernstein A, Okano HJ, Yuzaki M, Okano H. Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5-trisphosphate receptor mRNA. Proc Natl Acad Sci U S A 2005; 102:17190-5. [PMID: 16286649 PMCID: PMC1287977 DOI: 10.1073/pnas.0504684102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 10/10/2005] [Indexed: 11/18/2022] Open
Abstract
The localization of certain mRNAs to dendrites and their local translation in synaptic regions are proposed to be involved in certain aspects of synaptic plasticity. A cis-acting element within the 3' untranslated region (3' UTR) of the targeted mRNAs, which is bound by a trans-acting RNA-binding protein, controls the dendritic mRNA localization. Here, we identified hematopoietic zinc finger (Hzf) as a trans-acting factor that regulates the dendritic mRNA localization of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)RI), a dendritically localized mRNA in cerebellar Purkinje cells, via binding to the 3' UTR. In Hzf-deficient mice, the dendritic localization of IP(3)RI mRNA and brain-derived neurotrophic factor-induced IP(3)RI protein synthesis in the cerebellum were impaired. These findings suggest that Hzf is an RNA-binding protein that controls the dendritic mRNA localization and activity-dependent translation of IP(3)RI, and may be involved in some aspects of synaptic plasticity.
Collapse
Affiliation(s)
- Takatoshi Iijima
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kinoshita-Kawada M, Oberdick J, Xi Zhu M. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. ACTA ACUST UNITED AC 2005; 132:73-86. [PMID: 15548431 DOI: 10.1016/j.molbrainres.2004.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
L7/Pcp-2 is a GoLoco domain protein encoded by a Purkinje cell dendritic mRNA. Although biochemical interactions of GoLoco proteins with Galpha(o) and Galpha(i) are well documented, little is known about effector function modulation resulting from these interactions. The P-type Ca2+ channels might be physiological effectors of L7 because (1) they are the major voltage-dependent Ca2+ channels (VDCC) that modulate Purkinje cell output and (2) they are regulated by G(i/o) proteins. As a first step towards validating this hypothesis and to further understand the possible physiological effect of L7 protein and its two isoforms, we have coexpressed Ca(v)2.1 channels and kappa-opioid receptors (KORs) with varying amounts of L7A or L7B in Xenopus oocytes and measured ionic currents by two-electrode voltage clamping. Without receptor activation L7 did not alter the Ca2+ channel activity. With tonic and weak activation of the receptors, however, the Ca2+ channels were inhibited by 40-50%. This inhibition was enhanced by low, but dampened by high, expression levels of L7A and L7B and differences were observed between the two isoforms. The enhancing effect of L7 was occluded by overexpression of Gbetagamma, whereas the disinhibition was antagonized by overexpression of Galpha(o). We propose that L7 differentially affects the Galpha and Gbetagamma arms of receptor-induced G(i/o) signaling in a concentration-dependent manner, through which it increases the dynamic range of regulation of P/Q-type Ca2+ channels by G(i/o) protein-coupled receptors. This provides a framework for designing further experiments to determine how dendritic local fluctuations in L7 protein levels might influence signal processing in Purkinje cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Channels, P-Type/genetics
- Calcium Channels, P-Type/metabolism
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Dendrites/metabolism
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein beta Subunits/genetics
- GTP-Binding Protein beta Subunits/metabolism
- GTP-Binding Protein gamma Subunits/genetics
- GTP-Binding Protein gamma Subunits/metabolism
- Gene Dosage
- Membrane Potentials/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Inhibition/genetics
- Oocytes
- Patch-Clamp Techniques
- Protein Structure, Tertiary/genetics
- Purkinje Cells/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Signal Transduction/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- Mariko Kinoshita-Kawada
- Department of Neuroscience and the Center for Molecular Neurobiology, The Ohio State University, 168 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
12
|
Suzuki T, Akimoto M, Mandai M, Takahashi M, Yoshimura N. A new PCR-based approach for the preparation of RNA probe. ACTA ACUST UNITED AC 2005; 62:251-8. [PMID: 15733585 DOI: 10.1016/j.jbbm.2004.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 12/06/2004] [Indexed: 10/26/2022]
Abstract
A number of PCR-based in situ hybridization (ISH) techniques have been reported to facilitate the procedure. However, those techniques require additional gene specific primers with RNA polymerase binding site. We developed a new PCR-based ISH technique without extra gene-specific primers. We amplified gene specific PCR products with regular gene-specific primer pairs. Special linker, including T7 RNA polymerase binding site, was adapted to amplified PCR products. Secondary PCR was performed with T7 primer, and forward or reverse primer, used for the first PCR to prepare template DNA for RNA transcription. We were able to generate sense and anti-sense probes for ISH in a day. Recently, real-time PCR and ISH are required to validate microarray results quantitatively and qualitatively. This technique can be expected to facilitate the high-throughput validation of transcripts detected by microarrays.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
13
|
Besco J, Popesco MC, Davuluri RV, Frostholm A, Rotter A. Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPkappa, mu, rho and PCP-2). BMC Genomics 2004; 5:14. [PMID: 15040814 PMCID: PMC373446 DOI: 10.1186/1471-2164-5-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 02/11/2004] [Indexed: 11/22/2022] Open
Abstract
Background Four genes designated as PTPRK (PTPκ), PTPRL/U (PCP-2), PTPRM (PTPμ) and PTPRT (PTPρ) code for a subfamily (type R2B) of receptor protein tyrosine phosphatases (RPTPs) uniquely characterized by the presence of an N-terminal MAM domain. These transmembrane molecules have been implicated in homophilic cell adhesion. In the human, the PTPRK gene is located on chromosome 6, PTPRL/U on 1, PTPRM on 18 and PTPRT on 20. In the mouse, the four genes ptprk, ptprl, ptprm and ptprt are located in syntenic regions of chromosomes 10, 4, 17 and 2, respectively. Results The genomic organization of murine R2B RPTP genes is described. The four genes varied greatly in size ranging from ~64 kb to ~1 Mb, primarily due to proportional differences in intron lengths. Although there were also minor variations in exon length, the number of exons and the phases of exon/intron junctions were highly conserved. In situ hybridization with digoxigenin-labeled cRNA probes was used to localize each of the four R2B transcripts to specific cell types within the murine central nervous system. Phylogenetic analysis of complete sequences indicated that PTPρ and PTPμ were most closely related, followed by PTPκ. The most distant family member was PCP-2. Alignment of RPTP polypeptide sequences predicted putative alternatively spliced exons. PCR experiments revealed that five of these exons were alternatively spliced, and that each of the four phosphatases incorporated them differently. The greatest variability in genomic organization and the majority of alternatively spliced exons were observed in the juxtamembrane domain, a region critical for the regulation of signal transduction. Conclusions Comparison of the four R2B RPTP genes revealed virtually identical principles of genomic organization, despite great disparities in gene size due to variations in intron length. Although subtle differences in exon length were also observed, it is likely that functional differences among these genes arise from the specific combinations of exons generated by alternative splicing.
Collapse
Affiliation(s)
- Julie Besco
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Magdalena C Popesco
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ramana V Davuluri
- Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrienne Frostholm
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Andrej Rotter
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Abstract
An important aspect of gene expression in neurons involves the delivery of mRNAs to particular subcellular domains, where translation of the mRNAs is locally controlled. Local synthesis of protein within dendrites plays a key role in activity-dependent synaptic modifications. In growing axons, local synthesis in the growth cone is important for extension and guidance. Recent evidence also documents the existence of mechanisms permitting local protein degradation, providing bidirectional control of protein composition in local domains. Here, we summarize what is known about local synthesis and degradation of protein in dendrites and axons, highlighting key unresolved questions.
Collapse
Affiliation(s)
- Oswald Steward
- Reeve-Irvine Research Center and Department of Anatomy/Neurobiology, College of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
15
|
Eberwine J, Belt B, Kacharmina JE, Miyashiro K. Analysis of subcellularly localized mRNAs using in situ hybridization, mRNA amplification, and expression profiling. Neurochem Res 2002; 27:1065-77. [PMID: 12462405 DOI: 10.1023/a:1020956805307] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Targeting of mRNAs to distinct subcellular regions occurs in all polarized cells. The mechanisms by which RNA transport occurs are poorly understood. With the advent of RNA amplification methodologies and expression profiling it is now possible to catalogue the RNAs that are targeted to particular subcellular regions. In particular, neurons are polarized cells in which dendrites receive signals from presynaptic neurons. Upon stimulation (information receipt) the dendrite processes the information such that an immediate dendritic response is generated as well as a longer-term somatic response. The integrated cellular response results in a signal that can be propagated through the axon to the next post-synaptic neuron. Much previous work has shown that mRNAs can be localized in dendrites and that local translation in dendrites can occur. In this chapter the methods for analysis of RNAs that are localized to dendrites are reviewed and a partial list of dendritically localized RNAs is presented. This information may be useful in identifying RNA regulatory regions that are responsible for specifying rate of RNA transport and the dendritic sites at which targeted RNAs dock so that they can be translated.
Collapse
Affiliation(s)
- James Eberwine
- Department of Pharmacology and Psychiatry, University of Pennsylvania Medical School, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
16
|
Zhang X, Zhang H, Oberdick J. Conservation of the developmentally regulated dendritic localization of a Purkinje cell-specific mRNA that encodes a G-protein modulator: comparison of rodent and human Pcp2(L7) gene structure and expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 105:1-10. [PMID: 12399102 DOI: 10.1016/s0169-328x(02)00379-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
L7/Pcp-2 is a GoLoco domain protein that modulates the activation of Galpha(i) and Galpha(o). We have previously described the Purkinje cell-specific expression of the Pcp-2(L7) gene and the abundant localization of its mRNA in mouse cerebellar Purkinje cell dendrites. Here we report on two alternative cerebellar forms of the L7/Pcp-2 mRNA and protein by examination of the gene structures and cDNA sequences of the mouse, rat, and human genes. The structures of the rodent and human genes are very similar with the most notable difference in the genomic configuration of the first exon. Despite this difference, the human and rodent genes both encode two alternative mRNAs due to the choice of two transcriptional start positions. The two mRNA forms, in turn, predict two forms of the L7/Pcp-2 protein, which are both highly conserved across species. These two protein forms differ with respect to the number of GoLoco domains. Lastly we examined the issue of mRNA localization in dendrites. In mouse both mRNA forms are detectable in dendrites but their relative proportions change during development. In addition we performed in situ hybridization on a developmental series of human cerebellar sections and demonstrate that the L7/Pcp-2 mRNA is also localized in dendrites of humans. As previously described in the mouse the dendritic localization in humans is developmentally regulated being most prominent during the peak phase of synaptogenesis and decreasing dramatically with age. The conservation of all of these properties of both the L7/Pcp-2 protein and mRNA highlights their likely importance in controlling the development and/or motor control function of Purkinje cells.
Collapse
Affiliation(s)
- Xulun Zhang
- Department of Neuroscience and the Neurobiotechnology Center, The Ohio State University, 190 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
17
|
Barski JJ, Lauth M, Meyer M. Genetic targeting of cerebellar Purkinje cells: history, current status and novel strategies. CEREBELLUM (LONDON, ENGLAND) 2002; 1:111-8. [PMID: 12882360 DOI: 10.1080/147342202753671240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review is an account of developments in the field of transgenic and gene targeting approaches with special emphasis on the cerebellar Purkinje cell. A critical discussion of the available genetic tools is provided. As genetic engineering of the mouse is still a rapidly moving field, we felt it appropriate to include some ideas on novel strategies for refined genetic manipulations.
Collapse
Affiliation(s)
- Jaroslaw J Barski
- Max-Planck-Institute of Neurobiology, Department of Neurobiochemistry, Martinsried, Germany.
| | | | | |
Collapse
|
18
|
Abstract
Studies over the past 20 years have revealed that gene expression in neurons is carried out by a distributed network of translational machinery. One component of this network is localized in dendrites, where polyribosomes and associated membranous elements are positioned beneath synapses and translate a particular population of dendritic mRNAs. The localization of translation machinery and mRNAs at synapses endows individual synapses with the capability to independently control synaptic strength through the local synthesis of proteins. The present review discusses recent studies linking synaptic plasticity to dendritic protein synthesis and mRNA trafficking and considers how these processes are regulated. We summarize recent information about how synaptic signaling is coupled to local translation and to the delivery of newly transcribed mRNAs to activated synaptic sites and how local translation may play a role in activity-dependent synaptic modification.
Collapse
Affiliation(s)
- O Steward
- Reeve-Irvine Research Center and Departments of Anatomy/Neurobiology and Neurobiology and Behavior, College of Medicine, University of California at Irvine, Irvine, California 92697, USA.
| | | |
Collapse
|
19
|
Affiliation(s)
- O Steward
- Reeve-Irvine Research Center, Departments of Anatomy/Neurobiology and Neurobiology and Behavior, College of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
20
|
Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, Gruss P. Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol 2001; 233:319-28. [PMID: 11336498 DOI: 10.1006/dbio.2001.0169] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spermatid perinuclear RNA-binding protein (SPNR) is a microtubule-associated RNA-binding protein that localizes to the manchette in developing spermatids. The Spnr mRNA is expressed at high levels in testis, ovary, and brain and is present in these tissues in multiple forms. We have generated a gene trap allele of the murine Spnr, named Spnr(+/GT). Spnr(GT/GT) mutants show a high rate of mortality, reduced weight, and an abnormal clutching reflex. In addition to minor anatomical abnormalities in the brain, males exhibit defects in spermatogenesis that include a thin seminiferous epithelium and disorganization of spermatogenesis. Most of the sperm from mutant males display defects in the flagellum and consequently show decreased motility and transport within the oviducts. Furthermore, sperm from mutant males achieve in vitro fertilization less frequently. Our findings suggest that SPNR plays an important role in normal spermatogenesis and sperm function. Thus, the Spnr(GT/GT) mutant male mouse provides a unique model for some human male infertility cases.
Collapse
Affiliation(s)
- A Pires-daSilva
- Department of Molecular Cell Biology, Max-Planck for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Steward O, Wallace CS, Worley PF. Synaptic plasticity in epileptogenesis: cellular mechanisms underlying long-lasting synaptic modifications that require new gene expression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:269-92. [PMID: 11130903 DOI: 10.1016/s0074-7742(01)45015-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- O Steward
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California, USA
| | | | | |
Collapse
|
22
|
Schilling K. Lineage, development and morphogenesis of cerebellar interneurons. PROGRESS IN BRAIN RESEARCH 2000; 124:51-68. [PMID: 10943116 DOI: 10.1016/s0079-6123(00)24007-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- K Schilling
- Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| |
Collapse
|
23
|
Basyuk E, Bertrand E, Journot L. Alkaline fixation drastically improves the signal of in situ hybridization. Nucleic Acids Res 2000; 28:E46. [PMID: 10773094 PMCID: PMC105385 DOI: 10.1093/nar/28.10.e46] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In situ hybridization (ISH) is widely used to detect DNA and RNA sequences within the cell and tissue sections. The important step in performing this technique is tissue fixation. We investigated the influence of the pH of the fixative on the outcome of ISH. Our studies indicate that alkaline formaldehyde dramatically increases the ISH signal with RNA probes. The increase in signal was observed for detection of low as well as for high abundance messages. The sensitivity of the method was increased 5- to 6-fold.
Collapse
Affiliation(s)
- E Basyuk
- UPR 9023 CNRS, Mecanismes Moleculaires des Communications Cellulaires, CCIPE, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France.
| | | | | |
Collapse
|
24
|
Abstract
We have examined the gene expression of two radial glia intermediate filament proteins, transitin and vimentin, in the developing chick CNS. Despite global similarities in their mRNA distributions, marked regional differences are observed. Most notably, we show that transitin mRNA is localized along radial glial processes and is localized to radial glia endfeet, whereas vimentin mRNA is not localized in radial glia. Localization of transitin mRNA is best shown in the diencephalic radial glia, as well as cerebellar Bergmann glia. In addition, in the early embryonic optic tectum, telencephalon, and retina, transitin mRNA is highly localized to radial glia endfeet, which is suggestive of its transport in these cells. These in vivo demonstrations of transitin mRNA localization are confirmed by in situ hybridization analysis of cultured chick brain radial glia, which demonstrates the presence of granular staining for transitin mRNA in glial processes. Transitin mRNA distribution in developing muscle also shows a highly regulated expression pattern, especially along the Z-lines of myofibrils. As further support for the transport and localization of transitin mRNA in radial glia and muscle, we have identified a consensus RNA transport signal in transitin mRNA that is absent from vimentin. These data suggest that the local regulation of transitin protein synthesis may contribute to its function as an intermediate filament protein in radial glia.
Collapse
Affiliation(s)
- J A Lee
- Neurobiotechnology Center and Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
25
|
Wanner I, Baader SL, Oberdick J, Schilling K. Changing subcellular distribution and activity-dependent utilization of a dendritically localized mRNA in developing Purkinje cells. Mol Cell Neurosci 2000; 15:275-87. [PMID: 10736204 DOI: 10.1006/mcne.1999.0824] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In cerebellar Purkinje neurons, the degree of dendritic segregation of the Purkinje cell-specific mRNA L7/pcp-2 is correlated with their development and synaptic investment. This developmental pattern is also observed in Purkinje cells in primary dissociated culture. Short-term (12-48 h) stimulation of cultured Purkinje cells by potassium-induced depolarization or blockade of their inhibitory GABAergic input results in an increased incidence of Purkinje cells with L7/pcp-2 mRNA-positive dendrites and increased levels of L7 protein expression, the latter by a posttranscriptional mechanism. None of these treatments affected the localization of the mRNA encoding calbindin D28k nor the level of this protein in Purkinje neurons. Protracted exposure to depolarizing levels of potassium or elimination of GABAergic transmission resulted in conspicuous changes of Purkinje cell dendritic morphology. These data suggest a scenario in which activity-driven translation of subcellularly segregated mRNAs may contribute to the developmental and functional plasticity of nerve cells.
Collapse
Affiliation(s)
- I Wanner
- Abteilung Anatomie und Zellbiologie, Universität Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
26
|
Severt WL, Biber TU, Wu X, Hecht NB, DeLorenzo RJ, Jakoi ER. The suppression of testis-brain RNA binding protein and kinesin heavy chain disrupts mRNA sorting in dendrites. J Cell Sci 1999; 112 ( Pt 21):3691-702. [PMID: 10523505 DOI: 10.1242/jcs.112.21.3691] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleoprotein particles (RNPs) are thought to be key players in somato-dendritic sorting of mRNAs in CNS neurons and are implicated in activity-directed neuronal remodeling. Here, we use reporter constructs and gel mobility shift assays to show that the testis brain RNA-binding protein (TB-RBP) associates with mRNPs in a sequence (Y element) dependent manner. Using antisense oligonucleotides (anti-ODN), we demonstrate that blocking the TB-RBP Y element binding site disrupts and mis-localizes mRNPs containing (alpha)-calmodulin dependent kinase II (alpha)-CAMKII) and ligatin mRNAs. In addition, we show that suppression of kinesin heavy chain motor protein alters only the localization of (alpha)-CAMKII mRNA. Thus, differential sorting of mRNAs involves multiple mRNPs and selective motor proteins permitting localized mRNAs to utilize common mechanisms for shared steps.
Collapse
Affiliation(s)
- W L Severt
- Department of Physiology, Medical College of Virginia/Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
27
|
Tian QB, Nakayama K, Okano A, Suzuki T. Identification of mRNAs localizing in the postsynaptic region. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:147-57. [PMID: 10529473 DOI: 10.1016/s0169-328x(99)00214-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Local protein synthesis using mRNAs readily distributed in the dendrites is believed to play an important role in maintaining the already expressed synaptic plasticity. To find proteins translated in the postsynaptic region, such as neuronal dendrites, we tried to identify the mRNAs associated with the postsynaptic density (PSD) fraction prepared from a rat's forebrain. The PSD-associated mRNAs were amplified by reverse transcriptase-based polymerase chain reaction (RT-PCR), separated by polyacrylamide gel electrophoresis, and sequenced. The database search revealed, among 130 mRNAs sequenced, 17 known and 108 unknown sequences, while five mRNAs were too short for the search. Of the mRNAs with unknown sequences, we selected 33 genes with a length longer than 150 bases, performed in situ hybridization, and found that at least 12 mRNA types were localized in the dendrites. These results suggest that a large number of mRNAs localize around the postsynaptic area of the neuronal cells in the central nervous system. In addition, our method proved efficient in identifying collectively the mRNAs localizing in the dendrites.
Collapse
Affiliation(s)
- Q B Tian
- Department of Neuroplasticity, Research Center on Aging and Adaptation, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | | | | | | |
Collapse
|
28
|
Selective disruption of "late onset" sagittal banding patterns by ectopic expression of engrailed-2 in cerebellar Purkinje cells. J Neurosci 1999. [PMID: 10377347 DOI: 10.1523/jneurosci.19-13-05370.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To explore the role of Engrailed proteins in development of the cerebellum, Engrailed-2 (En-2) was ectopically expressed in cerebellar Purkinje cells from the late embryonic stage into adulthood. The fundamental organization of Purkinje cell sagittal zones as revealed by the "early onset" markers L7-beta-gal and cadherin-8 was found to be virtually identical to that in wild type. In contrast, "late onset" sagittal banding patterns revealed by Purkinje cell markers zebrin I, zebrin II, and 9-O-acetyl GD3 Ganglioside (P-Path), and the granule cell marker NADPH-diaphorase, were disrupted. In general, although some evidence of banding was still detectable, boundaries defined by the latter markers were poorly defined, and the patterns overall took on a diffuse appearance. In parallel with the changes in late onset markers, anterograde tracing of spinocerebellar axons revealed a general diffusion of the mossy fiber projection pattern in lobule VIII and the anterior lobe. These observations suggest that at least two separate mediolateral boundary systems exist in the cerebellum, and these are differentially affected by ectopic En-2 expression. Alternatively, one boundary system exists that remains primarily intact in the mutant, but recognition of this system by a set of late developmental events is perturbed.
Collapse
|
29
|
Li JY, Volknandt W, Dahlstrom A, Herrmann C, Blasi J, Das B, Zimmermann H. Axonal transport of ribonucleoprotein particles (vaults). Neuroscience 1999; 91:1055-65. [PMID: 10391483 DOI: 10.1016/s0306-4522(98)00622-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon of synaptic vesicles and vault protein. Our data show that ribonucleoprotein-immunoreactive particles can be actively transported within axons in situ from the soma to the nerve terminal and back. The results suggest that the transport of vaults is driven by fast axonal transport motors like the SV2-containing vesicles and mitochondria. Vaults exhibit an anterograde and a retrograde transport component, similar to that observed for the vesicular organelles carrying SV2 and for mitochondria. Although the function of vaults is still unknown studies of the axonal transport of this organelle may reveal insights into the mechanisms of cellular transport of ribonucleoprotein particles in general.
Collapse
Affiliation(s)
- J Y Li
- Department of Anatomy and Cell Biology, Goteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The phenomenon of mRNA sorting to defined subcellular domains is observed in diverse organisms such as yeast and man. It is now becoming increasingly clear that specific transport of mRNAs to extrasomal locations in nerve cells of the central and peripheral nervous system may play an important role in nerve cell development and synaptic plasticity. Although the majority of mRNAs that are expressed in a given neuron are confined to the cell somata, some transcript species are specifically delivered to dendrites and/or, albeit less frequently, to the axonal domain. The physiological role and the molecular mechanisms of mRNA compartmentalization is now being investigated extensively. Even though most of the fundamental aspects await to be fully characterized, a few interesting data are emerging. In particular, there are a number of different subcellular distribution patterns of different RNA species in a given neuronal cell type and RNA compartmentalization may differ depending on the electrical activity of nerve cells. Furthermore, RNA transport is different in neurons of different developmental stages. Considerable evidence is now accumulating that mRNA sorting, at least to dendrites and the initial axonal segment, enables local synthesis of key proteins that are detrimental for synaptic function, nerve cell development and the establishment and maintenance of nerve cell polarity. The molecular determinants specifying mRNA compartmentalization to defined microdomains of nerve cells are just beginning to be unravelled. Targeting appears to be determined by sequence elements residing in the mRNA molecule to which proteins bind in a manner to direct these transcripts along cytoskeletal components to their site of function where they may be anchored to await transcriptional activation upon demand.
Collapse
Affiliation(s)
- E Mohr
- University of Hamburg, Institut für Zellbiochemie und klinische Neurobiologie, Germany.
| |
Collapse
|
31
|
Tongiorgi E, Righi M, Cattaneo A. A non-radioactive in situ hybridization method that does not require RNAse-free conditions. J Neurosci Methods 1998; 85:129-39. [PMID: 9874149 DOI: 10.1016/s0165-0270(98)00123-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This report describes a quick and versatile method to perform non-radioactive in situ hybridization in which none of the hybridization steps are performed under RNAse-free conditions. This study demonstrates that in situ hybridization can be performed without an RNAse-free environment provided that the concentration of RNAse introduced during the experiment does not reach 0.1 microg/ml, a concentration that is unlikely to be achieved through an accidental contamination. Moreover, evidence is provided that the only step sensitive to RNAse degradation is the pretreatment since degradation during the hybridization step can not occur due to a very efficient protective effect exerted by formamide. Finally, our data suggest that endogenous RNAse activity might be readily neutralized through paraformaldehyde fixation. A feature of this method is the strong fixation that ensures a perfect tissue preservation, even at level of the fine structure of the cell processes. The method allows a uniform tissue penetration by sodium periodate and sodium borohydride treatment and can be easily used in combination with diaminobenzidine immunohistochemistry for double labeling experiments.
Collapse
Affiliation(s)
- E Tongiorgi
- International School for Advanced Studies (SISSA), Neuroscience Program, Trieste, Italy.
| | | | | |
Collapse
|
32
|
Abstract
The dendritic localization of mRNAs has been proposed to underlie the structural and functional polarity of neurons, as well as certain aspects of synaptic plasticity. Even though there is no conclusive evidence that such a localization is a physiological requirement, studies of mRNA localization in relation to function in other cell types and recent experiments on synaptic plasticity suggest that this proposal may be correct.
Collapse
Affiliation(s)
- D Kuhl
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, Germany.
| | | |
Collapse
|
33
|
Hannan AJ, Gunning P, Jeffrey PL, Weinberger RP. Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol Cell Neurosci 1998; 11:289-304. [PMID: 9698395 DOI: 10.1006/mcne.1998.0693] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The microfilament system is thought to be a crucial cytoskeletal component regulating development and mature function of neurons. The intracellular distribution of the microfilament isoform components, actin and tropomyosin (Tm), in neurons primarily in vivo, has been investigated at both the mRNA and the protein level using isoform specific riboprobes and antibodies. Our in vivo and in vitro studies have identified at least six neuronal compartments based on microfilament isoform mRNA localization: the developing soma, the mature soma, growth cone, developing axon hillock/proximal axon, mature somatodendritic and mature axonal pole soma. Protein localization patterns revealed that the isoforms were frequently distributed over a wider area than their respective mRNAs, suggesting that isoform specific patterns of mRNA targeting may influence, but do not absolutely determine, microfilament isoform location. Tm4 and Tm5 showed identical mRNA targeting in the developing neuron but distinct protein localization patterns. We suggest that in this instance mRNA location may best be viewed as a regulated site of synthesis and assembly, rather than a regulator of protein localization per se. In addition, Tm5 and beta-actin mRNA and protein locations were developmentally regulated, suggesting the possibility that environmental signals modulate targeting of specific mRNAs and their proteins. Thus, developmentally regulated mRNA localization and positional translation may act in concert with protein transport to regulate neuronal microfilament composition and consequently neuronal structure.
Collapse
Affiliation(s)
- A J Hannan
- Developmental Neurobiology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | |
Collapse
|
34
|
Landry M, Hökfelt T. Subcellular localization of preprogalanin messenger RNA in perikarya and axons of hypothalamo-posthypophyseal magnocellular neurons: an in situ hybridization study. Neuroscience 1998; 84:897-912. [PMID: 9579792 DOI: 10.1016/s0306-4522(97)00567-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subcellular compartmentalization and axonal transport of oxytocin and vasopressin messenger RNAs have recently been reported in the rat hypothalamo-posthypophyseal system using in situ hybridization. So far, no data are available concerning the intracellular distribution of co-localized peptide transcripts, for example of galanin, which is synthesized in the vasopressinergic magnocellular neurons of the rat and which is up-regulated in these neurons under different conditions, including salt loading and colchicine injection. In the present study, using non-radioactive in situ hybridization and immunohistochemistry at the light and electron microscope levels, preprogalanin messenger RNA and galanin-like immunoreactivity were localized in the hypothalamo-posthypophyseal system. After salt loading, preprogalanin transcripts were found throughout the perikaryal cytoplasm, especially in the peripheral cytoplasm and in the perinuclear area. Since immunohistochemistry also showed galanin-like immunoreactivity preferentially in the perinuclear area of control rats, galanin synthesis may occur mainly in this cytoplasmic domain. Preprogalanin messenger RNA was also clustered in dendrites containing rough endoplasmic reticulum. The use of a new in situ hybridization method involving tyramide signal amplification, based on catalysed reporter deposition, allowed visualization of preprogalanin messenger RNA in axonal projections running through the internal layer of the median eminence after salt loading, but not in control or in colchicine-injected animals. The negative results obtained after colchicine injection indicate that the mechanism of messenger RNA transport may require an intact cytoskeleton. The labelling was found in non-dilated axon segments as well as in a subset of axonal swellings in the rostral aspect of the median eminence, but was restricted to a few swellings in its caudal part, with no labelling in the posterior pituitary. Thus, preprogalanin messenger RNA was segregated in the axons. The functional significance of messenger RNAs' exportation into axons is not known, but our results suggest that this phenomenon may not be limited to the two principal magnocellular hormone messenger RNAs, but may also involve co-existing peptide messenger RNAs.
Collapse
Affiliation(s)
- M Landry
- Department of Neuroscience/Histology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
35
|
Ectopic overexpression of engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. J Neurosci 1998. [PMID: 9465001 DOI: 10.1523/jneurosci.18-05-01763.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the En and Wnt gene families seem to play a key role in the early specification of the brain territory that gives rise to the cerebellum, the midhindbrain junction. To analyze the possible continuous role of the En and Wnt signaling pathway in later cerebellar patterning and function, we expressed En-2 ectopically in Purkinje cells during late embryonic and postnatal cerebellar development. As a result of this expression, the cerebellum is greatly reduced in size, and Purkinje cell numbers throughout the cerebellum are reduced by more than one-third relative to normal animals. Detailed analysis of both adult and developing cerebella reveals a pattern of selectivity to the loss of Purkinje cells and other cerebellar neurons. This is observed as a general loss of prominence of cerebellar fissures that is highlighted by a total loss of sublobular fissures. In contrast, mediolateral patterning is generally only subtly affected. That En-2 overexpression selectively affects Purkinje cells in the transition zone between lobules is evidenced by direct observation of selective Purkinje cell loss in certain fissures and by the observation that growth and migration of the external germinal layer (EGL) is selectively retarded in the deep fissures during early postnatal development. Thus, in addition to demonstrating the critical role of Purkinje cells in the generation and migration of granule cells, the heterogeneous distribution of cellular effects induced by ectopic En expression suggests a relatively late morphogenetic role for this and other segment polarity proteins, mainly oriented at lobule junctions.
Collapse
|
36
|
De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van Alphen AM, Linden DJ, Oberdick J. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 1998; 20:495-508. [PMID: 9539124 DOI: 10.1016/s0896-6273(00)80990-3] [Citation(s) in RCA: 311] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebellar long-term depression (LTD) is a model system for neuronal information storage that has an absolute requirement for activation of protein kinase C (PKC). It has been claimed to underlie several forms of cerebellar motor learning. Previous studies using various knockout mice (mGluR1, GluRdelta2, glial fibrillary acidic protein) have supported this claim; however, this work has suffered from the limitations that the knockout technique lacks anatomical specificity and that functional compensation can occur via similar gene family members. To overcome these limitations, a transgenic mouse (called L7-PKCI) has been produced in which the pseudosubstrate PKC inhibitor, PKC[19-31], was selectively expressed in Purkinje cells under the control of the pcp-2(L7) gene promoter. Cultured Purkinje cells prepared from heterozygous or homozygous L7-PKCI embryos showed a complete blockade of LTD induction. In addition, the compensatory eye movements of L7-PKCI mice were recorded during vestibular and visual stimulation. Whereas the absolute gain, phase, and latency values of the vestibulo-ocular reflex and optokinetic reflex of the L7-PKCI mice were normal, their ability to adapt their vestibulo-ocular reflex gain during visuo-vestibular training was absent. These data strongly support the hypothesis that activation of PKC in the Purkinje cell is necessary for cerebellar LTD induction, and that cerebellar LTD is required for a particular form of motor learning, adaptation of the vestibulo-ocular reflex.
Collapse
Affiliation(s)
- C I De Zeeuw
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J Neurosci 1998. [PMID: 9412483 DOI: 10.1523/jneurosci.18-01-00026.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study characterizes the differential targeting of recently synthesized immediate early gene (IEG) mRNAs to neuronal cell bodies versus dendrites and tests the hypothesis that this targeting is based on signals in the encoded proteins. A single electroconvulsive seizure induces the expression of a number of IEG mRNAs in granule cells of the dentate gyrus. Most of these IEG mRNAs remain in the cell body, including two that are characterized in the present study (the mRNAs for NGFI-A and COX-2). In contrast, the mRNA for Arc moved rapidly into dendrites at an apparent rate of approximately 300 micron/hr. Inhibiting protein synthesis with cycloheximide did not disrupt the differential mRNA sorting, demonstrating that the differential targeting of mRNAs is not dependent on translation.
Collapse
|
38
|
Abstract
The mechanisms underlying the subcellular localization of neurotrophins and their receptors are poorly understood. We show that in cultured hippocampal neurons, the mRNAs for BDNF and TrkB have a somatodendritic localization, and we quantify the extent of their dendritic mRNA localization. In the dendrites the labeling covers on average the proximal 30% of the total dendritic length. On high potassium depolarization, the labeling of BDNF and TrkB mRNA extends on average to 68% of the dendritic length. This increase does not depend on new RNA synthesis, is inhibited by the Na+ channel blocker tetrodotoxin, and involves the activation of glutamate receptors. Extracellular Ca2+, partly flowing through L-type Ca2+ channels, is absolutely required for this process to occur. At the protein level, a brief stimulation of hippocampal neurons with 10 mM KCl leads to a marked increase of BDNF and TrkB immunofluorescence density in the distal portion of dendrites, which also occurs, even if at lower levels, when transport is inhibited by nocodazole. The protein synthesis inhibitor cycloheximide abolishes this increase. The activity-dependent modulation of mRNA targeting and protein accumulation in the dendrites may provide a mechanism for achieving a selective local regulation of the activity of neurotrophins and their receptors, close to their sites of action.
Collapse
|
39
|
Abstract
In the mammalian central nervous system (CNS), each neuron receives signals from other neurons through numerous synapses located on its cell body and dendrites. Molecules involved in the postsynaptic signaling pathways need to be targeted to the appropriate subcellular domains at the right time during both synaptogenesis and the maintenance of synaptic functions. The presence of messenger RNAs (mRNAs) in dendrites offers a mechanism for synthesizing the appropriate molecules at the right place in response to local extracellular stimuli. Several dendritic mRNAs have been identified, and the mechanisms controlling their localization are beginning to be understood. In many cell types, controls on mRNA stability play an important role in the regulation of gene expression, but it is unclear to what extent this type of control operates in dendrites. The regulation of protein synthesis and the control of mRNA stability in dendrites could have important implications for neuronal function.
Collapse
Affiliation(s)
- F B Gao
- Medical Research Council Developmental Neurobiology Programme, University College London, United Kingdom
| |
Collapse
|
40
|
Paradies MA, Steward O. Multiple subcellular mRNA distribution patterns in neurons: a nonisotopic in situ hybridization analysis. JOURNAL OF NEUROBIOLOGY 1997; 33:473-93. [PMID: 9322162 DOI: 10.1002/(sici)1097-4695(199710)33:4<473::aid-neu10>3.0.co;2-d] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have established that most of the mRNAs that neurons express are localized in the cell body and very proximal dendrites, whereas a small subset of mRNAs is present at relatively high levels in dendrites. It is not clear, however, whether particular mRNAs have the same subcellular distribution in different types of neurons or whether different types of neurons sort mRNAs in different ways. The present study was undertaken to address these questions. Nonisotopic in situ hybridization techniques were used to define the subcellular localization of representative mRNAs including beta-tubulin, low-molecular-weight neurofilament protein (NF-68), high-molecular-weight microtubule-associated protein (MAP2), growth-associated protein 43 (F1/GAP43), the alpha subunit of calcium/calmodulin-dependent protein kinase II (alpha CaMII kinase), and poly (A+) mRNA. The mRNAs for beta-tubulin, neurofilament 68, and F1/GAP43 were restricted to the region of the cell body and very proximal dendrites in most neurons. In some neuron types, however, labeling for NF-68 extended for considerable distances into dendrites. In some neurons that express MAP2, the mRNA was present at the highest levels in the proximal third to half of the dendritic arbor, whereas in other neurons the highest levels of labeling were in the cell body. In most neurons that express alpha CaMII kinase, the highest levels of the mRNA were in the cell body, but labeling was also present throughout dendrites. However, in a few types of neurons, alpha CaMII kinase mRNA was largely restricted to the cell body. The fact that there are no general rules for mRNA localization that apply to all neuron types implies the existence of neuron type-specific mechanisms that regulate mRNA distribution.
Collapse
Affiliation(s)
- M A Paradies
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|
41
|
Vassileva G, Smeyne RJ, Morgan JI. Absence of neuroanatomical and behavioral deficits in L7/pcp-2-null mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:333-7. [PMID: 9191112 DOI: 10.1016/s0169-328x(97)00081-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L7/pcp-2 is expressed exclusively in cerebellar Purkinje and retinal bipolar neurons. While the function of L7/pcp-2 is unknown, its mRNA is trafficked into dendrites, suggesting a role in dendritic physiology. To elucidate its function, L7/pcp-2-null mice were generated. These mice are neurologically normal with no signs of cerebellar or retinal dysfunction. The mice are indistinguishable from wild-type littermates with regards to gross neuroanatomy and fine structure of Purkinje cell dendrites.
Collapse
Affiliation(s)
- G Vassileva
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
42
|
Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A 1997; 94:5395-400. [PMID: 9144248 PMCID: PMC24689 DOI: 10.1073/pnas.94.10.5395] [Citation(s) in RCA: 483] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/1997] [Indexed: 02/04/2023] Open
Abstract
Local translation of proteins in distal dendrites is thought to support synaptic structural plasticity. We have previously shown that metabotropic glutamate receptor (mGluR1) stimulation initiates a phosphorylation cascade, triggering rapid association of some mRNAs with translation machinery near synapses, and leading to protein synthesis. To determine the identity of these mRNAs, a cDNA library produced from distal nerve processes was used to screen synaptic polyribosome-associated mRNA. We identified mRNA for the fragile X mental retardation protein (FMRP) in these processes by use of synaptic subcellular fractions, termed synaptoneurosomes. We found that this mRNA associates with translational complexes in synaptoneurosomes within 1-2 min after mGluR1 stimulation of this preparation, and we observed increased expression of FMRP after mGluR1 stimulation. In addition, we found that FMRP is associated with polyribosomal complexes in these fractions. In vivo, we observed FMRP immunoreactivity in spines, dendrites, and somata of the developing rat brain, but not in nuclei or axons. We suggest that rapid production of FMRP near synapses in response to activation may be important for normal maturation of synaptic connections.
Collapse
Affiliation(s)
- I J Weiler
- Department of Psychology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mohn AR, Feddersen RM, Nguyen MS, Koller BH. Phenotypic analysis of mice lacking the highly abundant Purkinje cell- and bipolar neuron-specific PCP2 protein. Mol Cell Neurosci 1997; 9:63-76. [PMID: 9204480 DOI: 10.1006/mcne.1997.0606] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Purkinje cell protein-2 (Pcp2, also known as L7) gene is abundantly expressed only in Purkinje cells of the cerebellum and bipolar neurons of the retina. The spatio-temporal expression pattern of this gene suggests a role for PCP2 in Purkinje cell development or normal cell physiology. A PCP2-deficient mouse was created by gene targeting to test the hypothesis that it is required for Purkinje cell development or function. Although normally present in abundance, the absence of PCP2 in null animals caused no observable cerebellar abnormalities. Behavioral analysis reveals normal abilities for balance and coordination. Null cerebellum has normal Purkinje cell numbers, morphology, and ultrastructure. Retinal bipolar neurons appear similarly unaffected. Aged null animals (22 months) were also examined and no deficits were detected using the same behavioral and histologic analyses. Although the null animal does not reveal the function of PCP2, it does rule out an essential role for PCP2 in Purkinje cell development, in Purkinje cell survival, and in at least some aspects of cerebellar function.
Collapse
Affiliation(s)
- A R Mohn
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
44
|
Sanlioglu-Crisman S, Oberdick J. Functional cloning of candidate genes that regulate Purkinje cell-specific gene expression. PROGRESS IN BRAIN RESEARCH 1997; 114:3-19. [PMID: 9193135 DOI: 10.1016/s0079-6123(08)63355-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Herb A, Wisden W, Catania MV, Maréchal D, Dresse A, Seeburg PH. Prominent dendritic localization in forebrain neurons of a novel mRNA and its product, dendrin. Mol Cell Neurosci 1997; 8:367-74. [PMID: 9073398 DOI: 10.1006/mcne.1996.0594] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A recently cloned rat brain cDNA derives from a novel gene, termed dendrin (DEN), expressed exclusively in forebrain structures, particularly in neocortex, olfactory bulb, hippocampus, caudate-putamen, and limbic system. In these structures, the cognate mRNA is present in neuronal cell bodies and their dendrites, whereas near exclusive dendritic localization is observed for the polypeptide product. In the hippocamus, DEN mRNA is highly expressed in the cell laminae and dendritic layers of the dentate gyrus and CA1 field, but expression is markedly reduced in the CA3 and CA4 areas. The predicted primary structure of the hydrophilic, highly basic 653-amino-acid polypeptide does not suggest a function. The restricted expression and dendritic location are compatible with a role for DEN in synaptic plasticity of central neocortical forebrain neurons.
Collapse
Affiliation(s)
- A Herb
- Department of Molecular Neurobiology, Max-Planck Institute for Medical Research and Laboratory for Molecular Neuroendocrinology, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Steward O, Falk PM, Torre ER. Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. JOURNAL OF NEUROCYTOLOGY 1996; 25:717-34. [PMID: 9023720 DOI: 10.1007/bf02284837] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review summarizes what is known about the protein synthetic machinery that is selectively localized beneath postsynaptic sites on the dendrites of CNS neurons. This machinery, made up of polyribosomes and associated membranous cisterns, allows a local synthesis of key proteins at individual postsynaptic sites.
Collapse
Affiliation(s)
- O Steward
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
47
|
Mayford M, Baranes D, Podsypanina K, Kandel ER. The 3'-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci U S A 1996; 93:13250-5. [PMID: 8917577 PMCID: PMC24079 DOI: 10.1073/pnas.93.23.13250] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neuronal signaling requires that synaptic proteins be appropriately localized within the cell and regulated there. In mammalian neurons, polyribosomes are found not just in the cell body, but also in dendrites where they are concentrated within or beneath the dendritic spine. The alpha subunit of Ca(2+)-calmodulin-dependent protein kinase II (CaMKII alpha) is one of only five mRNAs known to be present within the dendrites, as well as in the soma of neurons. This targeted subcellular localization of the mRNA for CaMKII alpha provides a possible cell biological mechanism both for controlling the distribution of the cognate protein and for regulating independently the level of protein expression in individual dendritic spines. To characterize the cis-acting elements involved in the localization of dendritic mRNA we have produced two lines of transgenic mice in which the CaMKII alpha promoter is used to drive the expression of a lacZ transcript, which either contains or lacks the 3'-untranslated region of the CaMKII alpha gene. Although both lines of mice show expression in forebrain neurons that parallels the expression of the endogenous CaMKII alpha gene, only the lacZ transcripts bearing the 3'-untranslated region are localized to dendrites. The beta-galactosidase protein shows a variable level of expression along the dendritic shaft and within dendritic spines, which suggests that neurons can control the local biochemistry of the dendrite either through differential localization of the mRNA or variations in the translational efficiency at different sites along the dendrite.
Collapse
Affiliation(s)
- M Mayford
- Center for Neurobiology and Behavior College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|