1
|
Padalino B, Pellegrini F, Felici M, Zappaterra M, Catella C, Cordisco M, Lorusso E, Cirone F, Pratelli A. Transport-related respiratory pathogens in horses travelling long distances: A prospective study on arrival at the slaughterhouse. Res Vet Sci 2025; 183:105498. [PMID: 39667086 DOI: 10.1016/j.rvsc.2024.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Respiratory disorders (RDs) are a common transport-related welfare consequence in horses. This prospective study described the journeys of horses transported to two slaughterhouses in Italy, documented the prevalence of potentially RD-related pathogens, and identified possible predisposing factors. Data were recorded from arrival until 48 h after arrival and included the collection of Deep Nasopharyngeal Swabs (DNS), journey details and welfare assessment of horses (n = 155). PCR was used to quantify the presence of influenza A virus, reovirus, equine herpesvirus type 1 and 4, adenovirus, rhinovirus, astrovirus, equine coronavirus, Pasteurellaceae, Streptococcus equi sub. equi and sub. zooepidemicus. One horse each tested positive for reovirus, and rhinovirus and two horses tested positive for adenovirus. The prevalence of Streptococcus equi and zooepidemicus and Pasteurellaceae was 4 %, 19 % and 63 % respectively. Streptococcaceae and Pasteurellaceae were associated with sweating (P < 0.001). In addition, Streptococcaceae was associated with abnormal demeanour (P = 0.003), nasal or ocular discharge (P < 0.001) and higher compromised welfare after transport (P < 0.001). The multivariable regression analysis showed that broken horses departing from Eastern Europe or France were more likely to test positive for Streptococcaceae than unbroken horses coming from Poland (model P < 0.001), while broken horses subjected to short stops en route were more likely to test positive for Pasteurellaceae than unbroken horses on journeys without stops (model P < 0.001). Our findings increase the understanding of predisposing factors for RDs and may be useful in the implementation of regulations to protect the welfare of horse during transport.
Collapse
Affiliation(s)
- Barbara Padalino
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Martina Felici
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Marco Cordisco
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Eleonora Lorusso
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Francesco Cirone
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy
| |
Collapse
|
2
|
Soliman R, Yousef M, Gelil SA, Aboul-Ella H. Development of novel Streptococcus equi vaccines with an assessment of their immunizing potentials and protective efficacies. BMC Vet Res 2024; 20:173. [PMID: 38702665 PMCID: PMC11067117 DOI: 10.1186/s12917-024-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
Strangles is a highly contagious disease of the equine upper respiratory tract caused by Streptococcus equi subspecies. Streptococcus equi subsp. equi (S. equi) and Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) was isolated, as local, hot, and field strains, from horses clinically suffering from respiratory distress. The isolated Streptococci were identified using bacteriological and molecular techniques. Four formulations of inactivated S. equi vaccines were developed and evaluated. The first formulation was prepared using the S. equi isolates, adjuvanted with MONTANIDE GEL adjuvant, while the second formulation was adjuvanted with MONTANIDE ISA-70 adjuvant. The other 2 formulations were inactivated combined vaccines prepared from both S. equi and S. zooepidemicus isolates. The 3rd formulation was the combined isolates adjuvanted with MONTANIDE GEL while the 4th formulation was the combined isolates adjuvanted with MONTANIDE ISA-70. The developed vaccines' physical properties, purity, sterility, safety, and potency were ensured. The immunizing efficacy was determined in isogenic BALB/c mice and white New Zealand rabbits using the passive hemagglutination test. Also, the antibodies' titer of the combined S. equi and S. zooepidemicus vaccine adjuvanted with MONTANIDE ISA-70 in foals was tracked using an indirect enzyme-linked immunosorbent assay. The protective efficacy of the developed vaccines was determined using a challenge test in both laboratory and field animal models, where a 75% protection rate was achieved. The combined vaccine proved to be more efficacious than the monovalent vaccine. Also, the MONTANIDE ISA-70 adjuvant provided significant protective efficacy than the MONTANIDE GEL. The current work is introducing a very promising mitigative and strategic controlling solution for strangles.
Collapse
Affiliation(s)
- Rafik Soliman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Yousef
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara Abdel Gelil
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Su Y, Zhang Z, Wang L, Zhang B, Su L. Whole-Genome Sequencing and Phenotypic Analysis of Streptococcus equi subsp. zooepidemicus Sequence Type 147 Isolated from China. Microorganisms 2024; 12:824. [PMID: 38674768 PMCID: PMC11051846 DOI: 10.3390/microorganisms12040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is one of the important zoonotic and opportunistic pathogens. In recent years, there has been growing evidence that supports the potential role of S. zooepidemicus in severe diseases in horses and other animals, including humans. Furthermore, the clinical isolation and drug resistance rates of S. zooepidemicus have been increasing yearly, leading to interest in its in-depth genomic analysis. In order to deepen the understanding of the S. zooepidemicus characteristics and genomic features, we investigated the genomic islands, mobile genetic elements, virulence and resistance genes, and phenotype of S. zooepidemicus strain ZHZ 211 (ST147), isolated from an equine farm in China. We obtained a 2.18 Mb, high-quality chromosome and found eight genomic islands. According to a comparative genomic investigation with other reference strains, ZHZ 211 has more virulence factors, like an iron uptake system, adherence, exoenzymes, and antiphagocytosis. More interestingly, ZHZ 211 has acquired a mobile genetic element (MGE), prophage Ph01, which was found to be in the chromosome of this strain and included two hyaluronidase (hyl) genes, important virulence factors of the strain. Moreover, two transposons and two virulence (virD4) genes were found to be located in the same genome island of ZHZ 211. In vitro phenotypic results showed that ZHZ 211 grows faster and is resistant to clarithromycin, enrofloxacin, and sulfonamides. The higher biofilm-forming capabilities of ZHZ 211 may provide a competitive advantage for survival in its niche. The results expand our understanding of the genomic, pathogenicity, and resistance characterization of Streptococcus zooepidemicus and facilitate further exploration of its molecular pathogenic mechanism.
Collapse
Affiliation(s)
- Yan Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zehua Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Li Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Baojiang Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Lingling Su
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| |
Collapse
|
4
|
Frosth S, Morris ERA, Wilson H, Frykberg L, Jacobsson K, Parkhill J, Flock JI, Wood T, Guss B, Aanensen DM, Boyle AG, Riihimäki M, Cohen ND, Waller AS. Conservation of vaccine antigen sequences encoded by sequenced strains of Streptococcus equi subsp. equi. Equine Vet J 2023; 55:92-101. [PMID: 35000217 PMCID: PMC10078666 DOI: 10.1111/evj.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Streptococcus equi subspecies equi (S equi) is the cause of Strangles, one of the most prevalent diseases of horses worldwide. Variation within the immunodominant SeM protein has been documented, but a new eight-component fusion protein vaccine, Strangvac, does not contain live S equi or SeM and conservation of the antigens it contains have not been reported. OBJECTIVE To define the diversity of the eight Strangvac antigens across a diverse S equi population. STUDY DESIGN Genomic description. METHODS Antigen sequences from the genomes of 759 S equi isolates from 19 countries, recovered between 1955 and 2018, were analysed. Predicted amino acid sequences in the antigen fragments of SEQ0256(Eq5), SEQ0402(Eq8), SEQ0721(EAG), SEQ0855(SclF), SEQ0935(CNE), SEQ0999(IdeE), SEQ1817(SclI) and SEQ2101(SclC) in Strangvac and SeM were extracted from the 759 assembled genomes and compared. RESULTS The predicted amino acid sequences of SclC, SclI and IdeE were identical across all 759 genomes. CNE was truncated in the genome of five (0.7%) isolates. SclF was absent from one genome and another encoded a single amino acid substitution. EAG was truncated in two genomes. Eq5 was truncated in four genomes and 123 genomes encoded a single amino acid substitution. Eq8 was truncated in three genomes, one genome encoded four amino acid substitutions and 398 genomes encoded a single amino acid substitution at the final amino acid of the Eq8 antigen fragment. Therefore, at least 1579 (99.9%) of 1580 amino acids in Strangvac were identical in 743 (97.9%) genomes, and all genomes encoded identical amino acid sequences for at least six of the eight Strangvac antigens. MAIN LIMITATIONS Three hundred and seven (40.4%) isolates in this study were recovered from horses in the UK. CONCLUSIONS The predicted amino acid sequences of antigens in Strangvac were highly conserved across this collection of S equi.
Collapse
Affiliation(s)
- Sara Frosth
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ellen Ruth A Morris
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Texas, USA
| | | | - Lars Frykberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Jacobsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jan-Ingmar Flock
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Intervacc AB, Stockholm, Sweden
| | | | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David M Aanensen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ashley G Boyle
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Texas, USA
| | - Andrew S Waller
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Intervacc AB, Stockholm, Sweden
| |
Collapse
|
5
|
McCullough J, Wasim S, Zachary K, Nizza P. Toxic Shock Syndrome From Group C Streptococcus. Cureus 2022; 14:e28190. [PMID: 36158369 PMCID: PMC9482823 DOI: 10.7759/cureus.28190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
Abstract
We present a patient who was admitted with lower extremity cellulitis and was found to have Group C Streptococcus bacteremia causing toxic shock syndrome. Our patient was started on appropriate antibiotics, which included piperacillin/tazobactam, vancomycin, and clindamycin for presumed cellulitis, and was later transitioned to meropenem on day two when she was found to have gram-positive group C bacteremia and was treated for 14 days. Additionally, she was initiated on a three-day regimen of intravenous immunoglobulin (IVIG) as an adjunctive treatment for worsening clinical status from toxic shock syndrome. Our patient survived up to 46 days post admission but ultimately succumbed to her illness. It is worthwhile to state that the addition of IVIG could have prolonged her survival. We emphasize the importance of timely diagnosis and treatment with antibiotics and IVIG to help prevent mortality from this condition.
Collapse
|
6
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
7
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
8
|
El-Deeb WM, Elmoslemany AM, Salem MA. Cardiac Troponin I and Immune-Inflammatory Response in Horses With Strangles. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Velineni S, Sheoran AS, Breathnach CC, Rash NL, Paillot R, Timoney JF. Mitogenic Equine Isolates of Streptococcus zooepidemicus From North America Host Superantigen Genes Similar to Those Hosted in Europe. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
McLean R, Rash NL, Robinson C, Waller AS, Paillot R. Localised mitogenic activity in horses following infection with Streptococcus equi. Res Vet Sci 2015; 100:100-4. [PMID: 25841794 DOI: 10.1016/j.rvsc.2015.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/09/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022]
Abstract
Streptococcus equi subspecies equi (S. equi) is the causative agent of strangles, a highly contagious upper respiratory disease of equids. Streptococcus equi produces superantigens (sAgs), which are thought to contribute to strangles pathogenicity through non-specific T-cell activation and pro-inflammatory response. Streptococcus equi infection induces abscesses in the lymph nodes of the head and neck. In some individuals, some abscess material remains into the guttural pouch and inspissates over time to form chondroids which can harbour live S. equi. The aim of this study was to determine the sites of sAg production during infection and therefore improve our understanding of their role. Abscess material, chondroids and serum collected from Equidae with signs of strangles were tested in mitogenic assays. Mitogenic sAg activity was only detected in abscess material and chondroids. Our data support the localised in vivo activity of sAg during both acute and carrier phases of S. equi infection.
Collapse
Affiliation(s)
- R McLean
- Animal Health Trust, Centre of Preventative Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK
| | - N L Rash
- Animal Health Trust, Centre of Preventative Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK
| | - C Robinson
- Animal Health Trust, Centre of Preventative Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK
| | - A S Waller
- Animal Health Trust, Centre of Preventative Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK
| | - R Paillot
- Animal Health Trust, Centre of Preventative Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
11
|
Robinson C, Heather Z, Slater J, Potts N, Steward KF, Maskell DJ, Fontaine MC, Lee JJ, Smith K, Waller AS. Vaccination with a live multi-gene deletion strain protects horses against virulent challenge with Streptococcus equi. Vaccine 2015; 33:1160-7. [PMID: 25597942 DOI: 10.1016/j.vaccine.2015.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
Strangles, caused by Streptococcus equi subspecies equi (S. equi) is one of the most frequently diagnosed infectious diseases of horses and there remains a significant need to develop new preventative vaccines. We generated a live vaccine strain of S. equi containing deletions in six genes: sagA, hasA, aroB, pyrC, seM and recA, which was administered to nine Welsh mountain ponies via the intramuscular route. Four vaccinated ponies developed adverse reactions following the first vaccination from which the live vaccine strain was isolated. Two of these ponies were withdrawn from the study and seven ponies received a second vaccination, one of which then developed an adverse reaction. Nine control ponies injected with culture media alone developed no adverse reactions. Following challenge with a virulent strain of S. equi, none of the seven vaccinated ponies had developed clinical signs of strangles eleven days post-challenge, compared to six of nine control ponies over the same period (P=0.0114). A lymph node abscess was identified in one of the seven vaccinated ponies at post-mortem examination, whilst all nine control ponies had at least one lymph node abscess (P=0.0009). Three of the six vaccinated ponies that were protected from strangles had not developed an adverse reaction following vaccination, suggesting that a better understanding of the pro-inflammatory responses to S. equi could lead to the development of a live attenuated vaccine against strangles that is safe for administration via intramuscular injection.
Collapse
Affiliation(s)
- Carl Robinson
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Zoe Heather
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Josh Slater
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, United Kingdom
| | - Nicola Potts
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Karen F Steward
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, United Kingdom
| | - Michael C Fontaine
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jeong-Jin Lee
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ken Smith
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, United Kingdom
| | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom.
| |
Collapse
|
12
|
Waller AS. New perspectives for the diagnosis, control, treatment, and prevention of strangles in horses. Vet Clin North Am Equine Pract 2014; 30:591-607. [PMID: 25300634 DOI: 10.1016/j.cveq.2014.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Strangles, characterized by abscessation of the lymph nodes of the head and neck, is the most frequently diagnosed infectious disease of horses worldwide. The persistence of the causative agent, Streptococcus equi, in a proportion of convalescent horses plays a critical role in the recurrence and spread of disease. Recent research has led to the development of effective diagnostic tests that assist the eradication of S equi from local horse populations. This article describes how these advances have been made and provides advice to assist the resolution and prevention of outbreaks. New perspectives on preventative vaccines and therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
13
|
Streptococcus zooepidemicus and Streptococcus equi evolution: the role of CRISPRs. Biochem Soc Trans 2014; 41:1437-43. [PMID: 24256234 DOI: 10.1042/bst20130165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The host-restricted bacterium Streptococcus equi is the causative agent of equine strangles, the most frequently diagnosed infectious disease of horses worldwide. The disease is characterized by abscessation of the lymph nodes of the head and neck, leading to significant welfare and economic cost. S. equi is believed to have evolved from an ancestral strain of Streptococcus zooepidemicus, an opportunistic pathogen of horses and other animals. Comparison of the genome of S. equi strain 4047 with those of S. zooepidemicus identified examples of gene loss due to mutation and deletion, and gene gain through the acquisition of mobile genetic elements that have probably shaped the pathogenic specialization of S. equi. In particular, deletion of the CRISPR (clustered regularly interspaced short palindromic repeats) locus in the ancestor of S. equi may have predisposed the bacterium to acquire and incorporate new genetic material into its genome. These include four prophages and a novel integrative conjugative element. The virulence cargo carried by these mobile genetic elements is believed to have shaped the ability of S. equi to cause strangles. Further sequencing of S. zooepidemicus has highlighted the diversity of this opportunistic pathogen. Again, CRISPRs are postulated to influence evolution, balancing the need for gene gain over genome stability. Analysis of spacer sequences suggest that these pathogens may be susceptible to a limited range of phages and provide further evidence of cross-species exchange of genetic material among Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus dysgalactiae.
Collapse
|
14
|
Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 2013; 20:48-62. [PMID: 24210845 DOI: 10.1016/j.molmed.2013.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 01/01/2023]
Abstract
Superantigens are key virulence factors in the immunopathogenesis of invasive disease caused by group A streptococcus. These protein exotoxins have also been associated with severe group C and group G streptococcal infections. A number of novel streptococcal superantigens have recently been described with some resulting confusion in their classification. In addition to clarifying the nomenclature of streptococcal superantigens and proposing guidelines for their categorization, this review summarizes the evidence supporting their involvement in various clinical diseases including acute rheumatic fever.
Collapse
|
15
|
Waller AS. Strangles: taking steps towards eradication. Vet Microbiol 2013; 167:50-60. [PMID: 23642414 DOI: 10.1016/j.vetmic.2013.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
Strangles, caused by the host adapted Lancefield group C bacterium Streptococcus equi sub-species equi (S. equi), is one of the oldest recognised infectious diseases of horses and continues to cause significant welfare and economic cost throughout the world. The ability of S. equi to establish sub-clinical persistent infections primarily in the guttural pouches of convalescent horses has been instrumental to its success. However, the implementation of simple control measures that permit the identification and treatment of persistently infected carriers can prevent further outbreaks of disease at a local level. This review summarises some of the molecular mechanisms exploited by S. equi to cause disease. New qPCR and iELISA diagnostic tests replace culture methodologies as the gold standard for the detection of infected animals. A strategy to maximise the effective application of these tests to direct management methods for the eradication of S. equi infection is presented and the role of preventative vaccines is discussed. In contrast to current understanding, emerging data illustrates the dynamism of the global S. equi population and potential consequences for the effectiveness of currently available vaccines. The ability to use modern vaccines alongside conventional biosecurity and screening procedures will be critical to the large-scale prevention and even eradication of strangles, providing an opportunity to finally break the stranglehold that this disease has on the world's equine industry.
Collapse
Affiliation(s)
- Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom.
| |
Collapse
|
16
|
Waller AS, Paillot R, Timoney JF. Streptococcus equi: a pathogen restricted to one host. J Med Microbiol 2011; 60:1231-1240. [DOI: 10.1099/jmm.0.028233-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - John F. Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
17
|
Quist EM, Dougherty JJ, Chaffin MK, Porter BF. Diagnostic Exercise: Equine Rhabdomyolysis. Vet Pathol 2011; 48:E52-8. [DOI: 10.1177/0300985811414034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 1.5-year-old Quarter Horse gelding with a history of chronic nasal discharge and leukocytosis presented with signs of increased lethargy and muscular pain. The horse quickly became recumbent and unable to rise and was euthanized due to a poor prognosis. At necropsy, severe bilateral guttural pouch empyema was observed, as well as numerous well-demarcated areas of pallor within the skeletal muscles of all major muscle groups. Polymerase chain reaction testing of the guttural pouch exudate confirmed an infection with Streptococcus equi subsp. equi, and an S. equi–associated immune-mediated rhabdomyolysis was initially considered to be the most likely diagnosis. This report briefly discusses the various etiologies that should be considered in cases of equine myopathy, and it demonstrates the complexity of these poorly understood muscular disorders.
Collapse
Affiliation(s)
- E. M. Quist
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | | | - M. K. Chaffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - B. F. Porter
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| |
Collapse
|
18
|
Identification of three novel superantigen-encoding genes in Streptococcus equi subsp. zooepidemicus, szeF, szeN, and szeP. Infect Immun 2010; 78:4817-27. [PMID: 20713629 DOI: 10.1128/iai.00751-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acquisition of superantigen-encoding genes by Streptococcus pyogenes has been associated with increased morbidity and mortality in humans, and the gain of four superantigens by Streptococcus equi is linked to the evolution of this host-restricted pathogen from an ancestral strain of the opportunistic pathogen Streptococcus equi subsp. zooepidemicus. A recent study determined that the culture supernatants of several S. equi subsp. zooepidemicus strains possessed mitogenic activity but lacked known superantigen-encoding genes. Here, we report the identification and activities of three novel superantigen-encoding genes. The products of szeF, szeN, and szeP share 59%, 49%, and 34% amino acid sequence identity with SPEH, SPEM, and SPEL, respectively. Recombinant SzeF, SzeN, and SzeP stimulated the proliferation of equine peripheral blood mononuclear cells, and tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) production, in vitro. Although none of these superantigen genes were encoded within functional prophage elements, szeN and szeP were located next to a prophage remnant, suggesting that they were acquired by horizontal transfer. Eighty-one of 165 diverse S. equi subsp. zooepidemicus strains screened, including 7 out of 15 isolates from cases of disease in humans, contained at least one of these new superantigen-encoding genes. The presence of szeN or szeP, but not szeF, was significantly associated with mitogenic activity in the S. equi subsp. zooepidemicus population (P < 0.000001, P < 0.000001, and P = 0.104, respectively). We conclude that horizontal transfer of these novel superantigens from and within the diverse S. equi subsp. zooepidemicus population is likely to have implications for veterinary and human disease.
Collapse
|
19
|
Contribution of each of four Superantigens to Streptococcus equi-induced mitogenicity, gamma interferon synthesis, and immunity. Infect Immun 2010; 78:1728-39. [PMID: 20123710 DOI: 10.1128/iai.01079-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi is the causative agent of strangles, the most frequently diagnosed infectious disease of horses worldwide. The disease is characterized by abscessation and swelling of the lymph nodes of the head and neck, which can literally strangle the horse to death. S. equi produces four recently acquired phage-associated bacterial superantigens (sAgs; SeeH, SeeI, SeeL, and SeeM) that share homology with the mitogenic toxins of Streptococcus pyogenes. The aim of this study was to characterize the contribution of each of these S. equi sAgs to mitogenic activity in vitro and quantify the sAg-neutralizing capacity of sera from naturally infected horses in order to better understand their role in pathogenicity. Each of the sAgs was successfully cloned, and soluble proteins were produced in Escherichia coli. SeeI, SeeL, and SeeM induced a dose-dependent proliferative response in equine CD4 T lymphocytes and synthesis of gamma interferon (IFN-gamma). SeeH did not stimulate equine peripheral blood mononuclear cells (PBMC) but induced proliferation of asinine PBMC. Allelic replacement mutants of S. equi strain 4047 with sequential deletion of the superantigen genes were generated. Deletion of seeI, seeL, and seeM completely abrogated the mitogenic activity and synthesis of IFN-gamma, in equine PBMC, of the strain 4047 culture supernatant. Sera from naturally infected convalescent horses had only limited sAg-neutralizing activities. We propose that S. equi sAgs play an important role in S. equi pathogenicity by stimulating an overzealous and inappropriate Th1 response that may interfere with the development of an effective immune response.
Collapse
|
20
|
Gargis AS, O'Rourke ALD, Sloan GL, Simmonds RS. Prevalence and acquisition of the genes for zoocin A and zoocin A resistance in Streptococcus equi subsp. zooepidemicus. J Mol Evol 2009; 68:498-505. [PMID: 19357799 DOI: 10.1007/s00239-009-9221-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/19/2008] [Accepted: 02/27/2009] [Indexed: 11/28/2022]
Abstract
Zoocin A is a streptococcolytic enzyme produced by Streptococcus equi subsp. zooepidemicus strain 4881. The zoocin A gene (zooA) and the gene specifying resistance to zoocin A (zif) are adjacent on the chromosome and are divergently transcribed. Twenty-four S. equi subsp. zooepidemicus strains were analyzed to determine the genetic difference among three previously characterized as zoocin A producers (strains 4881, 9g, and 9h) and the 21 nonproducers. LT-PCR and Southern hybridization studies revealed that none of the nonproducer strains possessed zooA or zif. RAPD and PFGE showed that the 24 strains were a genetically diverse population with eight RAPD profiles. S. equi subsp. zooepidemicus strains 9g and 9h appeared to be genetically identical to each other but quite different from strain 4881. Sequences derived from 4881 and 9g showed that zooA and zif were integrated into the chromosome adjacent to the gene flaR. A comparison of these sequences with the genome sequences of S. equi subsp. zooepidemicus strains H70 and MGCS10565 and S. equi subsp. equi strain 4047 suggests that flaR flanks a region of genome plasticity in this species.
Collapse
Affiliation(s)
- Amy S Gargis
- Department of Biological Sciences, The University of Alabama, Box 870334, Tuscaloosa, AL 35487-0334, USA
| | | | | | | |
Collapse
|
21
|
Holden MTG, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, Jourdan T, Bason NC, Holroyd NE, Mungall K, Quail MA, Sanders M, Simmonds M, Willey D, Brooks K, Aanensen DM, Spratt BG, Jolley KA, Maiden MCJ, Kehoe M, Chanter N, Bentley SD, Robinson C, Maskell DJ, Parkhill J, Waller AS. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 2009; 5:e1000346. [PMID: 19325880 PMCID: PMC2654543 DOI: 10.1371/journal.ppat.1000346] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/24/2009] [Indexed: 11/19/2022] Open
Abstract
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. Streptococci colonize a diverse range of animals and tissues, and this association is normally harmless. Occasionally some strains of streptococci have an increased ability to cause disease that is often associated with a reduction in the ability to colonize and the acquisition of new genes, which enable the strain to inhabit a new niche. S. equi is the causative agent of strangles, one of the most frequently diagnosed and feared infectious diseases of horses, which is believed to have evolved from the closely related and usually harmless S. zooepidemicus. We aim to understand the mechanisms by which S. equi causes disease by studying and comparing the genomes of these different strains. Here we identify specific genes that have been lost and gained by S. equi, which may have directed its transition from colonizer to invader. Several of the novel genes acquired by S. equi have also been identified in strains of the closely related bacterium S. pyogenes that are associated with increased morbidity and mortality in humans. Our research highlights the role of genetic exchange in cross-species bacterial evolution and argues that the evolution of human pathogens cannot be considered in isolation.
Collapse
Affiliation(s)
- Matthew T. G. Holden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Zoe Heather
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Romain Paillot
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Karen F. Steward
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Katy Webb
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Fern Ainslie
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Thibaud Jourdan
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Nathalie C. Bason
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nancy E. Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Mungall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mark Simmonds
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Willey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Brooks
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Hospital Campus, London, United Kingdom
| | - Keith A. Jolley
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C. J. Maiden
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael Kehoe
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Neil Chanter
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Stephen D. Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Andrew S. Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Lindsay AM, Zhang M, Mitchell Z, Holden MTG, Waller AS, Sutcliffe IC, Black GW. The Streptococcus equi prophage-encoded protein SEQ2045 is a hyaluronan-specific hyaluronate lyase that is produced during equine infection. MICROBIOLOGY-SGM 2009; 155:443-449. [PMID: 19202092 DOI: 10.1099/mic.0.020826-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus equi causes equine 'strangles'. Hyaluronate lyases, which degrade connective tissue hyaluronan and chondroitins, are thought to facilitate streptococcal invasion of the host. However, prophage-encoded hyaluronate lyases are hyaluronan-specific and are thought to be primarily involved in the degradation of the hyaluronan capsule of streptococci during bacteriophage infection. To understand the role of prophage-encoded hyaluronate lyases further, we have biochemically characterized such a hyaluronate lyase, SEQ2045 from S. equi, and have shown that it is produced during equine infection. Prophage-encoded hyaluronan-specific hyaluronate lyases may therefore play a more direct role in disease pathogenesis than previously thought.
Collapse
Affiliation(s)
- Anna-Marie Lindsay
- School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Meng Zhang
- School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Zoe Mitchell
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | | | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Iain C Sutcliffe
- School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gary W Black
- School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
23
|
Heather Z, Holden MTG, Steward KF, Parkhill J, Song L, Challis GL, Robinson C, Davis-Poynter N, Waller AS. A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol 2009; 70:1274-92. [PMID: 18990191 PMCID: PMC3672683 DOI: 10.1111/j.1365-2958.2008.06481.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we determined the function of a novel non-ribosomal peptide synthetase (NRPS) system carried by a streptococcal integrative conjugative element (ICE), ICESe2. The NRPS shares similarity with the yersiniabactin system found in the high-pathogenicity island of Yersinia sp. and is the first of its kind to be identified in streptococci. We named the NRPS product 'equibactin' and genes of this locus eqbA-N. ICESe2, although absolutely conserved in Streptococcus equi, the causative agent of equine strangles, was absent from all strains of the closely related opportunistic pathogen Streptococcus zooepidemicus. Binding of EqbA, a DtxR-like regulator, to the eqbB promoter was increased in the presence of cations. Deletion of eqbA resulted in a small-colony phenotype. Further deletion of the irp2 homologue eqbE, or the genes eqbH, eqbI and eqbJ encoding a putative ABC transporter, or addition of the iron chelator nitrilotriacetate, reversed this phenotype, implicating iron toxicity. Quantification of (55)Fe accumulation and sensitivity to streptonigrin suggested that equibactin is secreted by S. equi and that the eqbH, eqbI and eqbJ genes are required for its associated iron import. In agreement with a structure-based model of equibactin synthesis, supplementation of chemically defined media with salicylate was required for equibactin production.
Collapse
Affiliation(s)
- Zoe Heather
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Streptococcus equi bacteriophage SeP9 binds to group C carbohydrate but is not infective for the closely related S. zooepidemicus. Vet Microbiol 2008; 135:304-7. [PMID: 18986779 DOI: 10.1016/j.vetmic.2008.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/22/2008] [Accepted: 09/15/2008] [Indexed: 11/24/2022]
Abstract
Streptococcus equi (S. equi subsp. equi) is widely believed to have evolved from an ancestral strain of S. zooepidemicus (S. equi subsp. zooepidemicus) based on high sequence homology. A striking difference is the absence of phage sequences from S. zooepidemicus. In this study we show that the receptor for SeP9, a temperate bacteriophage of S. equi, is the Lancefield group C carbohydrate. However, although SeP9 binds to group C carbohydrate from S. zooepidemicus, it appears not to replicate and produce plaques.
Collapse
|
25
|
Beres SB, Sesso R, Pinto SWL, Hoe NP, Porcella SF, DeLeo FR, Musser JM. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS One 2008; 3:e3026. [PMID: 18716664 PMCID: PMC2516327 DOI: 10.1371/journal.pone.0003026] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/29/2008] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of disease attributable to human error or natural causes can provide unique opportunities to gain new information about host-pathogen interactions and new leads for pathogenesis research. Poststreptococcal glomerulonephritis (PSGN), a sequela of infection with pathogenic streptococci, is a common cause of preventable kidney disease worldwide. Although PSGN usually occurs after infection with group A streptococci, organisms of Lancefield group C and G also can be responsible. Despite decades of study, the molecular pathogenesis of PSGN is poorly understood. As a first step toward gaining new information about PSGN pathogenesis, we sequenced the genome of Streptococcus equi subsp. zooepidemicus strain MGCS10565, a group C organism that caused a very large and unusually severe epidemic of nephritis in Brazil. The genome is a circular chromosome of 2,024,171 bp. The genome shares extensive gene content, including many virulence factors, with genetically related group A streptococci, but unexpectedly lacks prophages. The genome contains many apparently foreign genes interspersed around the chromosome, consistent with the presence of a full array of genes required for natural competence. An inordinately large family of genes encodes secreted extracellular collagen-like proteins with multiple integrin-binding motifs. The absence of a gene related to speB rules out the long-held belief that streptococcal pyrogenic exotoxin B or antibodies reacting with it singularly cause PSGN. Many proteins previously implicated in GAS PSGN, such as streptokinase, are either highly divergent in strain MGCS10565 or are not more closely related between these species than to orthologs present in other streptococci that do not commonly cause PSGN. Our analysis provides a comparative genomics framework for renewed appraisal of molecular events underlying APSGN pathogenesis.
Collapse
Affiliation(s)
- Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute and Department of Pathology, Houston, Texas, United States of America
| | - Ricardo Sesso
- Division of Nephrology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Nancy P. Hoe
- Division of Occupational Health and Safety, Office of Research Services, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stephen F. Porcella
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute and Department of Pathology, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Waller A, Flock M, Smith K, Robinson C, Mitchell Z, Karlström A, Lannergård J, Bergman R, Guss B, Flock JI. Vaccination of horses against strangles using recombinant antigens from Streptococcus equi. Vaccine 2007; 25:3629-35. [PMID: 17321016 DOI: 10.1016/j.vaccine.2007.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 12/01/2006] [Accepted: 01/11/2007] [Indexed: 12/31/2022]
Abstract
Strangles is an upper respiratory tract infection in horses, which is highly contagious and one of the more costly diseases of the horse. Three recombinant antigens were used to vaccinate horses, which were then experimentally challenged with Streptococcus equi, the causative agent for strangles. The vaccinated horses showed significantly reduced bacterial growth (p=0.02) and nasal discharge (p=0.0004), a typical symptom of strangles. Other clinical signs of strangles were also reduced and at post mortem examination, lower rate of empyaema or scarring of the guttural pouches was found in the vaccinated group (p=0.01). The antigens used were EAG (alpha2-macroglobulin, albumin, and IgG-binding protein), CNE (a collagen-binding protein), and SclC (a collagen-like protein). The adjuvant used was Abisco, a saponin derived matrix. No adverse effects were observed following vaccination with the antigens and adjuvant.
Collapse
|
27
|
Waller AS, Jolley KA. Getting a grip on strangles: Recent progress towards improved diagnostics and vaccines. Vet J 2007; 173:492-501. [PMID: 16820310 DOI: 10.1016/j.tvjl.2006.05.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/03/2006] [Accepted: 05/07/2006] [Indexed: 11/29/2022]
Abstract
'Strangles', caused by infection with the bacterium Streptococcus equi, remains one of the most commonly diagnosed and important infectious diseases of horses world-wide. This review discusses the diagnosis and pathogenesis of strangles with particular attention to the significance of persistent infections in disease transmission and the rapid progress now being made towards the development of effective preventative vaccines. It is now possible combine recent sequence data from the N-terminal region of the SeM protein and reassign the SeM alleles using the on-line database http://pubmlst.org/szooepidemicus/seM/. Hypotheses concerning the origin of this variation and the potential for its exploitation for the epidemiological analysis of outbreaks are proposed. Advances in understanding of the molecular evolution of S. equi highlight the role played by phage-mediated acquisition of virulence factors and suggest new avenues for prophylactic intervention.
Collapse
Affiliation(s)
- Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | | |
Collapse
|
28
|
Båverud V, Johansson SK, Aspan A. Real-time PCR for detection and differentiation of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. Vet Microbiol 2007; 124:219-29. [PMID: 17531409 DOI: 10.1016/j.vetmic.2007.04.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/27/2007] [Accepted: 04/05/2007] [Indexed: 11/17/2022]
Abstract
Strangles is a contagious equine disease caused by Streptococcus equi subsp. equi. In this study, clinical strains of S. equi (n=24) and Streptococcus equi subsp. zooepidemicus (n=24) were genetically characterized by sequencing of the 16S rRNA and sodA genes in order to devise a real-time PCR system that can detect S. equi and S. zooepidemicus and distinguish between them. Sequencing demonstrated that all S. equi strains had the same 16S rRNA sequence, whereas S. zooepidemicus strains could be divided into subgroups. One of these (n=12 strains) had 16S rRNA sequences almost identical with the S. equi strains. Interestingly, four of the strains biochemically identified as S. zooepidemicus were found by sequencing of the 16S rRNA gene to have a sequence homologous with Streptococcus equi subsp. ruminatorum. However, they did not have the colony appearance or the biochemical characteristics of the type strain of S. ruminatorum. Classification of S. ruminatorum may thus not be determined solely by 16S rRNA sequencing. Sequencing of the sodA gene demonstrated that all S. equi strains had an identical sequence. For the S. zooepidemicus strains minor differences were found between the sodA sequences. The developed real-time PCR, based on the sodA and seeI genes was compared with conventional culturing on 103 cultured samples from horses with suspected strangles or other upper respiratory disease. The real-time PCR system was found to be more sensitive than conventional cultivation as two additional field isolates of S. equi and four of S. zooepidemicus were detected.
Collapse
Affiliation(s)
- V Båverud
- Department of Bacteriology, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | | | | |
Collapse
|
29
|
Timoney JF, Qin A, Muthupalani S, Artiushin S. Vaccine potential of novel surface exposed and secreted proteins of Streptococcus equi. Vaccine 2007; 25:5583-90. [PMID: 17360081 DOI: 10.1016/j.vaccine.2007.02.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/09/2007] [Accepted: 02/07/2007] [Indexed: 11/18/2022]
Abstract
Streptococcus equi, a clonal descendent of an ancestral S. zooepidemicus, causes equine strangles, a highly contagious purulent lymphadenitis of the head and neck. The aim of this study was to evaluate as vaccine components novel surface exposed or secreted S. equi proteins identified in an expression gene library with sera from resistant horses. Six proteins expressed by S. equi CF32 but not by S. zooepidemicus 631 were used to vaccinate one group of eight ponies. A second pony group was immunized with five adhesin and other proteins encoded by genes of Linkage Gr 1. All ponies made strong serum antibody responses to each protein as measured by ELISA but none were resistant to subsequent comingling challenge with S. equi CF32. These results in combination with evidence that recovered horses rapidly clear intranasally inoculated S. equi and do not make detectable serum antibody responses to its surface proteins suggest that acquired immune-mediated tonsillar clearance and not serum antibody must be stimulated by an effective strangles vaccine.
Collapse
Affiliation(s)
- John F Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, United States.
| | | | | | | |
Collapse
|
30
|
Zhao J, Hayashi T, Saarinen S, Papageorgiou AC, Kato H, Imanishi K, Kirikae T, Abe R, Uchiyama T, Miyoshi-Akiyama T. Cloning, expression, and characterization of the superantigen streptococcal pyrogenic exotoxin G from Streptococcus dysgalactiae. Infect Immun 2007; 75:1721-9. [PMID: 17283088 PMCID: PMC1865666 DOI: 10.1128/iai.01183-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified seven novel variants of streptococcal pyrogenic exotoxin G (SPEGG), a superantigen, in Streptococcus dysgalactiae subsp. dysgalactiae or equisimilis isolates from clinical cases of infection in humans and animals. Phylogenetic analysis of the SPEGG variants indicated two clades in the dendrogram: one composed of variants derived from the bacteria isolated from the humans and the other composed of variants from the bacteria isolated from the animals. Bovine peripheral blood mononuclear cells (PBMCs) were stimulated effectively by recombinant SPEGGs (rSPEGGs) expressed in Escherichia coli, while human PBMCs were not stimulated well by any of the rSPEGGs tested. SPEGGs selectively stimulated bovine T cells bearing Vbeta1,10 and Vbeta4. Bovine serum showed reactivity to the rSPEGG proteins. These results indicated that SPEGGs have properties as superantigens, and it is likely that SPEGGs play a pathogenic role in animals.
Collapse
Affiliation(s)
- Jizi Zhao
- Department of Infectious Diseases, Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brouillard JNP, Günther S, Varma AK, Gryski I, Herfst CA, Rahman AKMNU, Leung DYM, Schlievert PM, Madrenas J, Sundberg EJ, McCormick JK. Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. J Mol Biol 2007; 367:925-34. [PMID: 17303163 DOI: 10.1016/j.jmb.2007.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 01/03/2007] [Accepted: 01/06/2007] [Indexed: 11/15/2022]
Abstract
Superantigens (SAgs) are potent microbial toxins that bind simultaneously to T cell receptors (TCRs) and class II major histocompatibility complex molecules, resulting in the activation and expansion of large T cell subsets and the onset of numerous human diseases. Within the bacterial SAg family, streptococcal pyrogenic exotoxin I (SpeI) has been classified as belonging to the group V SAg subclass, which are characterized by a unique, relatively conserved approximately 15 amino acid extension (amino acid residues 154 to 170 in SpeI; herein referred to as the alpha3-beta8 loop), absent in SAg groups I through IV. Here, we report the crystal structure of SpeI at 1.56 A resolution. Although the alpha3-beta8 loop in SpeI is several residues shorter than that of another group V SAg, staphylococcal enterotoxin serotype I, the C-terminal portions of these loops, which are located adjacent to the putative TCR binding site, are structurally similar. Mutagenesis and subsequent functional analysis of SpeI indicates that TCR beta-chains are likely engaged in a similar general orientation as other characterized SAgs. We show, however, that the alpha3-beta8 loop length, and the presence of key glycine residues, are necessary for optimal activation of T cells. Based on Vbeta-skewing analysis of human T cells activated with SpeI and structural models, we propose that the alpha3-beta8 loop is positioned to form productive intermolecular contacts with the TCR beta-chain, likely in framework region 3, and that these contacts are required for optimal TCR recognition by SpeI, and likely all other group V SAgs.
Collapse
Affiliation(s)
- Jean-Nicholas P Brouillard
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada N6A 5B8
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ladlow J, Scase T, Waller A. Canine strangles case reveals a new host susceptible to infection with Streptococcus equi. J Clin Microbiol 2006; 44:2664-5. [PMID: 16825410 PMCID: PMC1489480 DOI: 10.1128/jcm.00571-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first documented case of canine strangles due to infection with Streptococcus equi in a dog with enlarged lymph nodes. Genetic typing, via sequencing of 12 housekeeping genes and the SeM gene, demonstrated the isolate to be a member of a common equine strain type circulating in the United Kingdom.
Collapse
Affiliation(s)
- Jane Ladlow
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom
| | | | | |
Collapse
|
33
|
Hamilton A, Robinson C, Sutcliffe IC, Slater J, Maskell DJ, Davis-Poynter N, Smith K, Waller A, Harrington DJ. Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun 2006; 74:6907-19. [PMID: 17015455 PMCID: PMC1698103 DOI: 10.1128/iai.01116-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (DeltaprtM(138-213), with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Deltalgt(190-685)). Moreover, mucus production was significantly greater in both wild-type-infected and Deltalgt(190-685)-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Deltalgt(190-685) mutant did still exhibit signs of disease. In contrast, only the DeltaprtM(138-213) mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Deltalgt(190-685) mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted.
Collapse
Affiliation(s)
- Andrea Hamilton
- University of Sunderland, Tyne and Wear SR1 3SD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tiwari R, Artiushin S, Timoney JF. P9, a temperate bacteriophage of Streptococcus equi. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ics.2005.11.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Sponseller BT, Valberg SJ, Tennent-Brown BS, Foreman JH, Kumar P, Timoney JF. Severe acute rhabdomyolysis associated with Streptococcus equi infection in four horses. J Am Vet Med Assoc 2006; 227:1800-7, 1753-4. [PMID: 16342530 DOI: 10.2460/javma.2005.227.1800] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four Quarter Horses (9 months to 7 years of age) with submandibular lymphadenopathy and firm muscles (palpation of which elicited signs of pain) were evaluated; in general, the horses had a stiff gait, and 3 horses became recumbent. Streptococcus equi was cultured from aspirates of lymph nodes or samples of purulent material collected from the auditory tube diverticula. Once the horses were recumbent, their condition deteriorated rapidly despite aggressive antimicrobial and antiinflammatory treatment, necessitating euthanasia within 24 to 48 hours. One horse did not become recumbent and recovered completely. Among the 4 horses, common clinicopathologic findings included neutrophilia, hyperfibrinogenemia, and high serum activities of creatine kinase and aspartate aminotransferase. Necropsies of the 3 euthanatized horses revealed large, pale areas most prominent in the semimembranosus, semitendinosus, sublumbar, and gluteal muscles that were characterized histologically by severe acute myonecrosis and macrophage infiltration of necrotic myofibers. Streptococcus equi was identified in sections of affected muscle by use of immunofluorescent stains for Lancefield group C carbohydrate and S. equi M protein. In the 4 horses of this report, acute severe rhabdomyolysis without clinical evidence of muscle atrophy or infarction was associated with S. equi infection; rhabdomyolysis was attributed to either an inflammatory cascade resembling streptococcal toxic shock or potentially direct toxic effects of S. equi within muscle tissue.
Collapse
Affiliation(s)
- Beatrice T Sponseller
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lannergård J, Flock M, Johansson S, Flock JI, Guss B. Studies of fibronectin-binding proteins of Streptococcus equi. Infect Immun 2005; 73:7243-51. [PMID: 16239519 PMCID: PMC1273847 DOI: 10.1128/iai.73.11.7243-7251.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/20/2005] [Accepted: 07/20/2005] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi subsp. equi is the causative agent of strangles, a disease of the upper respiratory tract in horses. The initiation of S. equi subsp. equi infection is likely to involve cell surface-anchored molecules mediating bacterial adhesion to the epithelium of the host. The present study describes the cloning and characterization of FNEB, a fibronectin-binding protein with cell wall-anchoring motifs. FNEB can thus be predicted as cell surface located, contrary to the two previously characterized fibronectin-binding proteins in S. equi subsp. equi, FNE and SFS. Assays of antibody titers in horses and in experimentally infected mice indicate that the protein is immunogenic and expressed in vivo during S. equi subsp. equi infection. Using Western ligand blotting, it was shown that FNEB binds to the N-terminal 29-kDa fragment of fibronectin, while SFS and FNE both bind to the adjacent 40-kDa fragment. S. equi subsp. equi is known to bind fibronectin to a much lower degree than the closely related S. equi subsp. zooepidemicus, but the binding is primarily directed to the 29-kDa fragment. Inhibition studies using S. equi subsp. equi cells indicate that FNEB mediates cellular binding to fibronectin in this species.
Collapse
Affiliation(s)
- Jonas Lannergård
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE 750 07, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Alber J, El-Sayed A, Estoepangestie S, Lämmler C, Zschöck M. Dissemination of the superantigen encoding genes seeL, seeM, szeL and szeM in Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. Vet Microbiol 2005; 109:135-41. [PMID: 15953700 DOI: 10.1016/j.vetmic.2005.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
Bacterial superantigens are one of the major virulence factors produced by Streptococcus pyogenes and Staphylococcus aureus. The two novel superantigen encoding genes seeM and seeL were described for S. equi subsp. equi which is known as the causative agent of strangles in equids. In the present study previously characterized S. equi subsp. equi strains and strains of various other animal pathogenic streptococcal species and subspecies were investigated for the presence of the superantigen encoding genes seeM and seeL by polymerase chain reaction. According to these studies seeL and seeM appeared to be a constant characteristic of all investigated S. equi subsp. equi strains. Surprisingly, one S. equi subsp. zooepidemicus strain (S.z. 122) was also positive for both genes. The species identity of this S. equi subsp. zooepidemicus strain could additionally be confirmed by sequencing the 16S rRNA gene and the 16S-23S rDNA intergenic spacer region. The superantigen encoding genes could not be found among additionally investigated S. equi subsp. zooepidemicus strains or among strains of seven other streptococcal species. The seeL and seeM genes of the S. equi subsp. equi strain S.e. CF32 and the genes szeL and szeM of the S. equi subsp. zooepidemicus strain S.z. 122 were cloned and sequenced. A sequence comparison revealed a high degree of sequence homology between seeL, szeL, speL and seeM, szeM and speM, respectively. The superantigenic toxins L and M seemed to be widely distributed virulence factors of S. equi subsp. equi, rare among S. equi subsp. zooepidemicus but did not occur among a number of other animal pathogenic streptococcal species.
Collapse
Affiliation(s)
- J Alber
- Institut für Pharmakologie und Toxikologie, Justus Liebig-Universität Giessen, Frankfurter Str. 107, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Alber J, El-Sayed A, Lämmler C, Hassan AA, Weiss R, Zschöck M. Multiplex polymerase chain reaction for identification and differentiation of Streptococcus equi subsp. zooepidemicus and Streptococcus equi subsp. equi. ACTA ACUST UNITED AC 2005; 51:455-8. [PMID: 15606870 DOI: 10.1111/j.1439-0450.2004.00799.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The closely related streptococcal species Streptococcus equi subsp. zooepidemicus and S. equi subsp. equi were identified by polymerase chain reaction using oligonucleotide primers designed according to species-specific parts of the superoxide dismutase A encoding gene sodA. A further differentiation of both subspecies could be performed by amplification of the genes seeH and seeI encoding the exotoxins SeeH and SeeI, respectively, which could be detected for S. equi subsp. equi but not for S. equi subsp. zooepidemicus. A further simplification of the identification and differentiation of both subspecies was conducted by sodA-seeI multiplex polymerase chain reaction.
Collapse
Affiliation(s)
- J Alber
- Institut für Pharmakologie und Toxikologie, Justus-Liebig-Universität Giessen, Frankfurterstr. 107, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Korman TM, Boers A, Gooding TM, Curtis N, Visvanathan K. Fatal case of toxic shock-like syndrome due to group C streptococcus associated with superantigen exotoxin. J Clin Microbiol 2004; 42:2866-9. [PMID: 15184494 PMCID: PMC427866 DOI: 10.1128/jcm.42.6.2866-2869.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group C streptococci have been reported to cause invasive disease similar to that classically associated with group A streptococcus (GAS). We describe a fatal case of toxic shock-like syndrome due to Streptococcus equi subsp. zooepidemicus. The causative organism did not possess any known GAS superantigen exotoxin genes but did show evidence of superantigen production.
Collapse
Affiliation(s)
- Tony M Korman
- Department of Infectious Diseases, Monash Medical Centre 246 Clayton Rd., Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
40
|
Igwe EI, Shewmaker PL, Facklam RR, Farley MM, van Beneden C, Beall B. Identification of superantigen genesspeM,ssa, andsmeZin invasive strains of beta-hemolytic group C and G streptococci recovered from humans. FEMS Microbiol Lett 2003; 229:259-64. [PMID: 14680708 DOI: 10.1016/s0378-1097(03)00842-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Group C and G Streptococcus dysgalactiae subspecies equisimilis (GCSE and GGSE) cause a substantial percentage of invasive disease caused by beta-hemolytic streptococci. To determine whether Streptococcus pyogenes superantigen (SAg) genes commonly exist within these organisms, 20 recent invasive GCSE and GGSE human isolates and one group G Streptococcus canis human isolate were tested for the presence of SAg genes speH, speJ, speL, speM, ssa and smeZ by polymerase chain reaction (PCR). Prior to this work, sequence-based evidence of the speM, ssa, and smeZ genes in GCSE, GGSE, and S. canis had not been documented. Eleven of the 21 isolates were PCR-positive for the presence of one to two of the SAgs speM, ssa, or smeZ, with four of these isolates carrying ssa+speM or ssa+smeZ. No isolate was positive for speH, speJ and speL. All six ssa-positive GGSE strains harbored the ssa3 allele, previously only found among S. pyogenes strains. All three smeZ-positive GGSE isolates carried one of two smeZ alleles previously only found within S. pyogenes, however the single S. canis isolate carried a new smeZ allele. All five GCSE and GGSE speM-positive isolates harbored a newly discovered speM allele. The identification of these SAgs within S. dysgalactiae subsp. equisimilis and S. canis with identical or near-identical sequences to their counterparts in S. pyogenes suggests frequent interspecies gene exchange between the three beta-hemolytic streptococcal species.
Collapse
Affiliation(s)
- Emeka I Igwe
- Centers for Disease Control and Prevention, Respiratory Diseases Branch, 1600 Clifton Rd, Mailstop CO2, 30333, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Harel J, Martinez G, Nassar A, Dezfulian H, Labrie SJ, Brousseau R, Moineau S, Gottschalk M. Identification of an inducible bacteriophage in a virulent strain of Streptococcus suis serotype 2. Infect Immun 2003; 71:6104-8. [PMID: 14500539 PMCID: PMC201037 DOI: 10.1128/iai.71.10.6104-6108.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis infection is considered to be a major problem in the swine industry worldwide. Most virulent Canadian isolates of S. suis serotype 2 do not produce the known virulence markers for this pathogen. PCR-based subtraction hybridization was adapted to isolate unique DNA sequences which were specific to virulent strains of S. suis isolated in Canada. Analysis of some subtracted DNA clones revealed significant homology with bacteriophages of gram-positive bacteria. An inducible phage (named Ss1) was observed in S. suis following the incubation of the virulent strain 89-999 with mitomycin C. Phage Ss1 has a long noncontractile tail and a small isometric nucleocapsid and is a member of the Siphoviridae family. Ss1 phage DNA appears to be present in most Canadian S. suis strains tested in this study, which were isolated from diseased pigs or had proven virulence in mouse or pig models. To our knowledge, this is the first report of the isolation of a phage in S. suis.
Collapse
Affiliation(s)
- J Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal C.P. 5000, St-Hyacinthe, Quebec J2S 7C6, Canada .
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- T Proft
- School of Medical Sciences, University of Auckland, Auckland New Zealand
| | | |
Collapse
|
43
|
Ingrey KT, Ren J, Prescott JF. A fluoroquinolone induces a novel mitogen-encoding bacteriophage in Streptococcus canis. Infect Immun 2003; 71:3028-33. [PMID: 12761079 PMCID: PMC155711 DOI: 10.1128/iai.71.6.3028-3033.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 12/02/2002] [Accepted: 02/25/2003] [Indexed: 11/20/2022] Open
Abstract
This study investigated whether the recently recognized emergence of canine streptococcal toxic shock syndrome (STSS) and necrotizing fasciitis (NF) might be partly attributed to the use of fluoroquinolones to treat Streptococcus canis infections in dogs. Both mitomycin and the fluoroquinolone enrofloxacin caused bacteriophage-induced lysis of S. canis strain 34, an isolate from a case of canine STSS and NF. Fluoroquinolone-evoked, bacteriophage-induced lysis occurred over a range of concentrations similar to those that would occur after treatment of dogs with these agents. To search for a possible bacteriophage-encoded streptococcal superantigen gene(s), a library of the 36.5 (+/-1.1)-kb bacteriophage, designated phisc1, was made by ligating 3- to 7-kb Tsp5091-digested phisc1 fragments into an EcoRI-digested lambdaZapII vector. Recombinants were screened for mitogenic activity by using canine peripheral blood lymphocytes. Of 800 recombinants screened, 11 recombinants with mitogenic effects were identified, and their inserts were sequenced. The highest homology of 11.6 kb of sequenced phisc1 DNA was to the completely sequenced Streptococcus pneumoniae bacteriophage MM1. Seven of the 11 phisc1 sequenced inserts contained a 552-bp open reading frame, scm, with 27% amino acid similarity to pokeweed (Phytolacca americana) mitogen. PCR showed this gene to be present in 22 of 23 S. canis isolates tested. Quantitative reverse transcription-PCR showed that bacteriophage induction was associated with a 58-fold enhancement of expression of this gene relative to that in a noninduced culture of a similar age. The presence of this gene on a fluoroquinolone-induced bacteriophage may explain the association observed between fluoroquinolone use in dogs and the development of canine STTS and NF.
Collapse
Affiliation(s)
- Keely T Ingrey
- Department of Pathobiology, University of Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
44
|
Abstract
Lower respiratory tract infection is common in weanling- and suckling-aged animals. Increased susceptibility to disease in this age group can result from a delay in the establishment of a competent immune system and environmental factors, such as overcrowding, shipping, and sales. S zooepidemicus and R equi are the two most common bacterial isolates. S equi is primarily a disease of the lymph nodes and upper respiratory tract. Viral agents can compromise the natural defense mechanisms of the respiratory tract, resulting in secondary bacterial infections. The acute respiratory distress syndrome is one of unknown etiology and high mortality.
Collapse
Affiliation(s)
- Bonnie S Barr
- Rood and Riddle Equine Hospital, PO Box 12070, Lexington, KY 40580, USA.
| |
Collapse
|
45
|
Miyoshi-Akiyama T, Zhao J, Kato H, Kikuchi K, Totsuka K, Kataoka Y, Katsumi M, Uchiyama T. Streptococcus dysgalactiae-derived mitogen (SDM), a novel bacterial superantigen: characterization of its biological activity and predicted tertiary structure. Mol Microbiol 2003; 47:1589-99. [PMID: 12622814 DOI: 10.1046/j.1365-2958.2003.03411.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mitogenic substance, designated Streptococcus dysgalactiae-derived mitogen (SDM), was purified from S. dysgalactiae culture supernatant, and the gene encoding the mitogen was cloned. Both native and recombinant SDM expressed in Escherichia coli significantly activated human V beta 1+ and V beta 23+ T cells in association with major histocompatibility complex (MHC) class II molecules on accessory cells, indicating that SDM possesses superantigenic properties. The sdm gene consists of two segments encoding a signal peptide and a mature 25 kDa protein composed of 212 amino acids. Three of 34 S. dysgalactiae strains but none of 28 Streptococcus pyogenes strains examined carried sdm. Phylogenetic analysis indicated that SDM belongs to a family distinct from established bacterial superantigens. SDM showed around 30% homology with other superantigens at the amino acid sequence level. The tertiary structure of SDM was predicted by modelling onto streptococcal pyrogenic exotoxin C and streptococcal mitogenic exotoxin Z-2, both of which share highly homologous structure-determining regions. SDM showed overall structural similarity to both these superantigens. This is the first study to characterize fully a bacterial superantigen from S. dysgalactiae.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/physiology
- Bacterial Proteins
- Bacterial Toxins/chemistry
- Base Sequence
- Escherichia coli/genetics
- Exotoxins/chemistry
- Histocompatibility Antigens Class II/drug effects
- Histocompatibility Antigens Class II/metabolism
- Humans
- Membrane Proteins
- Mitogens/chemistry
- Mitogens/isolation & purification
- Mitogens/physiology
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/drug effects
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Sequence Analysis
- Sequence Homology, Amino Acid
- Streptococcus/immunology
- Streptococcus/isolation & purification
- Streptococcus/pathogenicity
- Structural Homology, Protein
- Superantigens/chemistry
- Superantigens/isolation & purification
- Superantigens/physiology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Tohru Miyoshi-Akiyama
- Department of Microbiology and Immunology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Proft T, Webb PD, Handley V, Fraser JD. Two novel superantigens found in both group A and group C Streptococcus. Infect Immun 2003; 71:1361-9. [PMID: 12595453 PMCID: PMC148831 DOI: 10.1128/iai.71.3.1361-1369.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two novel streptococcal superantigen genes (speL(Se) and speM(Se)) were identified from the Streptococcus equi genome database at the Sanger Center. Genotyping of 8 S. equi isolates and 40 Streptococcus pyogenes isolates resulted in the detection of the orthologous genes speL and speM in a restricted number of S. pyogenes isolates (15 and 5%, respectively). Surprisingly, the novel superantigen genes could not be found in any of the analyzed S. equi isolates. The results suggest that both genes are located on a mobile element that enables gene transfer between individual isolates and between streptococci from different Lancefield groups. S. equi pyrogenic exotoxin L (SPE-L(Se))/streptococcal pyrogenic exotoxin L (SPE-L) and SPE-M(Se)/SPE-M are most closely related to SMEZ, SPE-C, SPE-G, and SPE-J, but build a separate branch within this group. Recombinant SPE-L (rSPE-L) and rSPE-M were highly mitogenic for human peripheral blood lymphocytes, with half-maximum responses at 1 and 10 pg/ml, respectively. The results from competitive binding experiments suggest that both proteins bind major histocompatibility complex class II at the beta-chain, but not at the alpha-chain. The most common targets for both toxins were human Vbeta1.1 expressing T cells. Seroconversion against SPE-L and SPE-M was observed in healthy blood donors, suggesting that the toxins are expressed in vivo. Interestingly, the speL gene is highly associated with S. pyogenes M89, a serotype that is linked to acute rheumatic fever in New Zealand.
Collapse
Affiliation(s)
- Thomas Proft
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
47
|
Alouf JE, Müller-Alouf H. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int J Med Microbiol 2003; 292:429-40. [PMID: 12635926 DOI: 10.1078/1438-4221-00232] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superantigens (SAgs) include a class of certain bacterial and viral proteins exhibiting highly potent lymphocyte-transforming (mitogenic) activity towards human and or other mammalian T lymphocytes. Unlike conventional antigens, SAgs bind to certain regions of major histocompatibility complex (MHC) class II molecules of antigen-presenting cells (APCs) outside the classical antigen-binding groove and concomitantly bind in their native form to T cells at specific motifs of the variable region of the beta chain (Vbeta) of the T cell receptor (TcR). This interaction triggers the activation (proliferation) of the targeted T lymphocytes and leads to the in vivo or in vitro release of high amounts of various cytokines and other effectors by immune cells. Each SAg interacts specifically with a characteristic set of Vbeta motifs. The review summarizes our current knowledge on S. aureus and S. pyogenes superantigen proteins. The repertoire of the staphylococcal and streptococcal SAgs comprises 24 and 8 proteins, respectively. The staphylococcal SAgs include (i) the classical enterotoxins A, B, C (and antigenic variants), D, E, and the recently discovered enterotoxins G to Q, (ii) toxic shock syndrome toxin-1, (iii) exfoliatins A and B. The streptococcal SAgs include the classical pyrogenic exotoxins A and C and the newly identified pyrogenic toxins, G, H, I, J, SMEZ, and SSA. The structural and genomic aspects of these toxins and their molecular relatedness are described as well as the available 3-D crystal structure of some of them and that of certain of their complexes with MHC class II molecules and the TcR, respectively. The pathophysiological properties and clinical disorders related to these SAgs are reviewed.
Collapse
|
48
|
Banks DJ, Beres SB, Musser JM. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 2002; 10:515-21. [PMID: 12419616 DOI: 10.1016/s0966-842x(02)02461-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human bacterial pathogen group A Streptococcus (GAS) causes many different diseases including pharyngitis, tonsillitis, impetigo, scarlet fever, streptococcal toxic shock syndrome, necrotizing fasciitis and myositis, and the post-infection sequelae glomerulonephritis and rheumatic fever. The frequency and severity of GAS infections increased in the 1980s and 1990s, but the cause of this increase is unknown. Recently, genome sequencing of serotype M1, M3 and M18 strains revealed many new proven or putative virulence factors that are encoded by phages or phage-like elements. Importantly, these genetic elements account for an unexpectedly large proportion of the difference in gene content between the three strains. These new genome-sequencing studies have provided evidence that temporally and geographically distinct epidemics, and the complex array of GAS clinical presentations, might be related in part to the acquisition or evolution of phage-encoded virulence factors. We anticipate that new phage-encoded virulence factors will be identified by sequencing the genomes of additional GAS strains, including organisms non-randomly associated with particular clinical syndromes.
Collapse
Affiliation(s)
- David J Banks
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
49
|
Sachse S, Seidel P, Gerlach D, Günther E, Rödel J, Straube E, Schmidt KH. Superantigen-like gene(s) in human pathogenic Streptococcus dysgalactiae, subsp equisimilis: genomic localisation of the gene encoding streptococcal pyrogenic exotoxin G (speG(dys)). FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:159-67. [PMID: 12381468 DOI: 10.1111/j.1574-695x.2002.tb00618.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pyogenes (GAS) causes about 90% of streptococcal human infections while group C (GCS) and G (GGS) streptococci can be pathogenic for different mammalians. Especially the human pathogenic GCS and GGS, Streptococcus dysgalactiae, subsp. equisimilis, account for 5-8% of the human streptococcal diseases like wound infections, otitis media, purulent pharyngitis and also streptococcal toxic shock syndrome. A defined superantigen so far was not identified in GCS and GGS strains. In the present investigation we screened DNA of GCS and GGS human isolates for the presence of genes for streptococcal pyrogenic exotoxins (spe) by hybridisation with probes that stand for the GAS genes speA, speC, speZ (smeZ), speH, speG, speI, speJ and ssa. In many GCS and GGS strains we found positive reactions with the probes speG, speJ and ssa, but not with the probes for the remaining genes under investigation. PCR amplification with subsequent sequence analysis of the PCR fragments revealed only the presence of the gene speG in GCS and GGS strains, while no DNA fragments specific for speJ and ssa could be amplified. Additionally, the upstream and downstream regions flanking speG in GGS strain 39072 were sequenced. Remarkable differences were found in the neighbourhood of speG between GAS and GGS sequences. Downstream of speG we identified in strain GGS 39072 two new open reading frames encoding proteins with no similarity to protein sequences accessible in the databases so far. In the compared GAS strains SF370 and MGAS8232, this segment, apart from some small fragments, had been deleted. Our analysis suggests that a gene transfer from GGS to GAS has preceded following deletion of the two genes orf1 and orf2 in GAS.
Collapse
Affiliation(s)
- Svea Sachse
- Institute of Medical Microbiology, University Hospital, Friedrich-Schiller-University, Semelweisstr 4, D-07743, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|