1
|
Gómez-Chavarín M, Padilla P, Velázquez-Paniagua M. Rotenone Exposure During Development Conditions Parkinsonian Phenotype in Young Adult Rats. TOXICS 2025; 13:290. [PMID: 40278606 PMCID: PMC12030936 DOI: 10.3390/toxics13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Current studies suggest that environmental toxins may play a significant role in the fetal origins of Parkinson's disease (PD). Significant evidence from animal experiments has demonstrated that these toxins can disrupt fetal neurodevelopment. PD is a neurodegenerative disorder related to the loss of dopaminergic neurons in the substantia nigra pars compacta (S. nigra) and accumulation of α-synuclein (α-syn) in the brain. Parkinson's disease has long been associated with an idiopathic etiology, with environmental or ontogenetic factors as causes; however, the list of causal agents continues to expand as their effects are investigated at different stages of development. To explore the potential ontogenetic origins of PD, we exposed female rats subcutaneously (s.c.) to 1 mg/kg of the pesticide rotenone (ROT)-21 days during gestation, 21 days of breastfeeding, or 42 days in both periods-and assessed its long-term effects on their pups in adulthood. Our findings reveal that ROT exposure induces the degeneration of dopaminergic neurons in the S. nigra of adult rats. We administered ROT to dams during specific developmental stages and examined the nigrostriatal pathway and its functionality in offspring upon reaching young adulthood. Our results showed that perinatal ROT exposure led to (1) diminished motor skills, (2) greater concentrations of α-syn in the caudate nucleus (C. nucleus) and S. nigra, (3) reduced numbers of tyrosine hydroxylase immunoreactive neurons, and (4) hypomethylation of global 5-methylcytosine DNA compared to control rats at 60 days of age. The effects were more pronounced in rats exposed to ROT in utero and in both the in utero and breastfeeding periods, with fewer effects observed in those exposed only during breastfeeding. Thus, our findings suggest that exposure to ROT during the early developmental stages predisposes rats to Parkinsonian symptoms later in adulthood.
Collapse
Affiliation(s)
- Margarita Gómez-Chavarín
- Physiology Department, Medicine School, National University of Mexico, Ciudad de México 04500, Mexico;
| | - Patricia Padilla
- Liquid Chromatography Unit, Biomedical Research Institute, National University of Mexico, Ciudad de México 04500, Mexico;
| | - Mireya Velázquez-Paniagua
- Physiology Department, Medicine School, National University of Mexico, Ciudad de México 04500, Mexico;
| |
Collapse
|
2
|
Imomnazarov K, Lopez-Scarim J, Bagheri I, Joers V, Tansey MG, Martín-Peña A. Biochemical Fractionation of Human α-Synuclein in a Drosophila Model of Synucleinopathies. Int J Mol Sci 2024; 25:3643. [PMID: 38612454 PMCID: PMC11011978 DOI: 10.3390/ijms25073643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Synucleinopathies are a group of central nervous system pathologies that are characterized by the intracellular accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in post-mortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for the evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from the brains of aged flies. We also assessed the effect of sonication on the solubility of human α-synuclein and optimized a protocol to discriminate the relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the three-step protocol separates cytosolic soluble, detergent-soluble and insoluble proteins in three sequential fractions according to their chemical properties. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and thus enriching the detergent-soluble fraction of the protocol.
Collapse
Affiliation(s)
- Khondamir Imomnazarov
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Joshua Lopez-Scarim
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Ila Bagheri
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Valerie Joers
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Alfonso Martín-Peña
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| |
Collapse
|
3
|
Imomnazarov K, Lopez-Scarim J, Bagheri I, Joers V, Tansey MG, Martín-Peña A. Biochemical fractionation of human α-Synuclein in a Drosophila model of synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579034. [PMID: 38370694 PMCID: PMC10871193 DOI: 10.1101/2024.02.05.579034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Synucleinopathies are a group of central nervous system pathologies that are characterized by neuronal accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in postmortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from brains of aged flies. We also assessed the effect of sonication on solubility of human α-synuclein and optimized a protocol to discriminate relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the 3-step protocol distinguishes between cytosolic soluble proteins in fraction 1, detergent-soluble proteins in fraction 2 and insoluble proteins in fraction 3. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and enriching fraction 2 of the protocol.
Collapse
Affiliation(s)
- Khondamir Imomnazarov
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Joshua Lopez-Scarim
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Ila Bagheri
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
- Fixel Institute for Neurological Diseases, University of Florida
| | - Alfonso Martín-Peña
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| |
Collapse
|
4
|
Zhu C, Zhu J, Xiang Y, Bu XL, Jin WS, Wang YJ. A Conceptual Study on the Peripheral Clearance of Brain-Derived α-Synuclein in Humans. J Alzheimers Dis 2022; 90:1485-1492. [PMID: 36278352 DOI: 10.3233/jad-220742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abnormal intracellular expression and aggregation of α-synuclein (α-syn) is the histopathological hallmark of several neurodegenerative diseases especially Parkinson's disease. However, safe and efficient approaches to clear α-syn remain unavailable. OBJECTIVE This study aimed to investigate the process of peripheral catabolism of brain-derived α-syn. METHODS Thirty patients with atrioventricular reentrant tachycardia (AVRT) (left accessory pathways) who underwent radiofrequency catheter ablation (RFCA) were enrolled in this study. Blood was collected via catheters from superior vena cava (SVC), inferior vena cava (IVC) proximal to the hepatic vein (HV), the right femoral vein (FV), and femoral artery (FA) simultaneously during RFCA. Plasma α-syn levels of AVRT patients and soluble α-syn levels of the brain samples were measured using enzyme-linked immunosorbent assay kits. RESULTS The α-syn concentrations in different locations of veins were divided by time-matched arterial α-syn concentrations to generate the venous/arterial (V/A) ratio. The V/A ratio of α-syn from the SVC was 1.204 (1.069-1.339, 95% CI), while the V/A ratio of α-syn from IVC was 0.831 (0.734-0.928, 95% CI), suggesting that brain-derived α-syn in the arterial blood was physiologically cleared while going through the peripheral organs and tissues. And it was estimated that about half of brain soluble α-syn could efflux and be cleared in the periphery. Moreover, the glomerular filtration rate was found correlated with V-A difference (FA-ICV) (p = 0.0272). CONCLUSION Under physiological conditions, brain-derived α-syn could efflux into and be catabolized by the peripheral system. The kidney may play a potential role in the clearance of α-syn.
Collapse
Affiliation(s)
- Chi Zhu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Zhu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Nishioka K, Imai Y, Yoshino H, Li Y, Funayama M, Hattori N. Clinical Manifestations and Molecular Backgrounds of Parkinson's Disease Regarding Genes Identified From Familial and Population Studies. Front Neurol 2022; 13:764917. [PMID: 35720097 PMCID: PMC9201061 DOI: 10.3389/fneur.2022.764917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 20 years, numerous robust analyses have identified over 20 genes related to familial Parkinson's disease (PD), thereby uncovering its molecular underpinnings and giving rise to more sophisticated approaches to investigate its pathogenesis. α-Synuclein is a major component of Lewy bodies (LBs) and behaves in a prion-like manner. The discovery of α-Synuclein enables an in-depth understanding of the pathology behind the generation of LBs and dopaminergic neuronal loss. Understanding the pathophysiological roles of genes identified from PD families is uncovering the molecular mechanisms, such as defects in dopamine biosynthesis and metabolism, excessive oxidative stress, dysfunction of mitochondrial maintenance, and abnormalities in the autophagy–lysosome pathway, involved in PD pathogenesis. This review summarizes the current knowledge on familial PD genes detected by both single-gene analyses obeying the Mendelian inheritance and meta-analyses of genome-wide association studies (GWAS) from genome libraries of PD. Studying the functional role of these genes might potentially elucidate the pathological mechanisms underlying familial PD and sporadic PD and stimulate future investigations to decipher the common pathways between the diseases.
Collapse
Affiliation(s)
- Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- *Correspondence: Kenya Nishioka
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Yuzuru Imai
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
7
|
Mukherjee SK, Knop JM, Winter RHA. Modulation of the Conformational Space of SARS-CoV-2 RNA Quadruplex RG-1 by Cellular Components and the Amyloidogenic Peptides α-Synuclein and hIAPP. Chemistry 2021; 28:e202104182. [PMID: 34882862 PMCID: PMC9015630 DOI: 10.1002/chem.202104182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Indexed: 11/10/2022]
Abstract
Given the emergence of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), which particularly threatens older people with comorbidities such as diabetes mellitus and dementia, understanding the relationship between Covid-19 and other diseases is an important factor for treatment. Possible targets for medical intervention include G-quadruplexes (G4Qs) and their protein interaction partners. We investigated the stability and conformational space of the RG-1 RNA-G-quadruplex of the SARS-CoV-2 N-gene in the presence of salts, cosolutes, crowders and intrinsically disordered peptides, focusing on α-Synuclein and the human islet amyloid polypeptide, which are involved in Parkinson's disease (PD) and type-II diabetes mellitus (T2DM), respectively. We found that the conformational dynamics of the RG-1 G4Q is strongly affected by the various solution conditions. Further, the amyloidogenic peptides were found to strongly modulate the conformational equilibrium of the RG-1. Considerable changes are observed with respect to their interaction with human telomeric G4Qs, which adopt different topologies. These results may therefore shed more light on the relationship between PD as well as T2DM and the SARS-CoV-2 disease and their molecular underpinnings. Since dysregulation of G4Q formation by rationally designed targeting compounds affects the control of cellular processes, this study should contribute to the development of specific ligands for intervention.
Collapse
Affiliation(s)
- Sanjib K Mukherjee
- TU Dortmund University: Technische Universitat Dortmund, Chemistry and Chemical Biology, GERMANY
| | - Jim-Marcel Knop
- TU Dortmund University: Technische Universitat Dortmund, Chemistry and Chemical Biology, GERMANY
| | - Roland Hermann Alfons Winter
- TU Dortmund University, Chemistry and Chemical Biology, Otto-Hahn Str. 4a, Physical Chemistry I, 44227, Dortmund, GERMANY
| |
Collapse
|
8
|
Simon C, Soga T, Okano HJ, Parhar I. α-Synuclein-mediated neurodegeneration in Dementia with Lewy bodies: the pathobiology of a paradox. Cell Biosci 2021; 11:196. [PMID: 34798911 PMCID: PMC8605528 DOI: 10.1186/s13578-021-00709-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.
Collapse
Affiliation(s)
- Christopher Simon
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
9
|
Cukierman DS, Lázaro DF, Sacco P, Ferreira PR, Diniz R, Fernández CO, Outeiro TF, Rey NA. X1INH, an improved next-generation affinity-optimized hydrazonic ligand, attenuates abnormal copper(I)/copper(II)-α-Syn interactions and affects protein aggregation in a cellular model of synucleinopathy. Dalton Trans 2021; 49:16252-16267. [PMID: 32391542 DOI: 10.1039/d0dt01138j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although normal aging presents an accumulation of copper and iron in the brain, this becomes more relevant in neurodegeneration. α-Synuclein (α-Syn) misfolding has long been linked with the development of Parkinson's disease (PD). Copper binding promotes aggregation of α-Syn, as well as generalized oxidative stress. In this sense, the use of therapies that target metal dyshomeostasis has been in focus in the past years. Metal-Protein Attenuating Compounds (MPACs) are moderate chelators that aim at disrupting specific, abnormal metal-protein interactions. Our research group has now established that N-acylhydrazones compose a set of truly encouraging MPACs for the bioinorganic management of metal-enhanced aggregopathies. In the present work, a novel ligand, namely 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone (X1INH), is reported. We describe solution studies on the interaction and affinity of this compound for copper(ii) ions showing that a fine tuning of metal-affinity was achieved. A series of in vitro biophysical NMR experiments were performed in order to assess the X1INH ability to compete with α-Syn monomers for the binding of both copper(i) and copper(ii) ions, which are central in PD pathology. A preference for copper(i) has been observed. X1INH is less toxic to human neuroglioma (H4) cells in comparison to structure-related compounds. Finally, we show that treatment with X1INH results in a higher number of smaller, less compact inclusions in a well-established model of α-Syn aggregation. Thus, X1INH constitutes a promising MPAC for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Daphne S Cukierman
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, 22451-045, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gentzel RC, Toolan D, Jinn S, Schachter JB, Ma L, Kahle PJ, Smith SM, Marcus JN. Intracranial administration of alpha-synuclein fibrils in A30P-synuclein transgenic mice causes robust synucleinopathy and microglial induction. Neurobiol Aging 2021; 106:12-25. [PMID: 34225000 DOI: 10.1016/j.neurobiolaging.2021.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.
Collapse
Affiliation(s)
- Renee C Gentzel
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dawn Toolan
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Sarah Jinn
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Joel B Schachter
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA; Currently at Takeda Pharmaceutics, Inc., San Diego, CA, USA
| | - Lei Ma
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and, German Center for Neurodegenerative Diseases, University of Tübingen, Germany
| | - Sean M Smith
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jacob N Marcus
- Neuroscience Discovery, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
11
|
Shim KH, Kim SC, Youn YC, Sung YH, An SSA. Decreased plasma α-synuclein in idiopathic Parkinson’s disease patients after adjusting hemolysis factor. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00104-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Sanderson JB, De S, Jiang H, Rovere M, Jin M, Zaccagnini L, Hays Watson A, De Boni L, Lagomarsino VN, Young-Pearse TL, Liu X, Pochapsky TC, Hyman BT, Dickson DW, Klenerman D, Selkoe DJ, Bartels T. Analysis of α-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies. Brain Commun 2020; 2:fcaa010. [PMID: 32280944 PMCID: PMC7130446 DOI: 10.1093/braincomms/fcaa010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Since researchers identified α-synuclein as the principal component of Lewy bodies and Lewy neurites, studies have suggested that it plays a causative role in the pathogenesis of dementia with Lewy bodies and other 'synucleinopathies'. While α-synuclein dyshomeostasis likely contributes to the neurodegeneration associated with the synucleinopathies, few direct biochemical analyses of α-synuclein from diseased human brain tissue currently exist. In this study, we analysed sequential protein extracts from a substantial number of patients with neuropathological diagnoses of dementia with Lewy bodies and corresponding controls, detecting a shift of cytosolic and membrane-bound physiological α-synuclein to highly aggregated forms. We then fractionated aqueous extracts (cytosol) from cerebral cortex using non-denaturing methods to search for soluble, disease-associated high molecular weight species potentially associated with toxicity. We applied these fractions and corresponding insoluble fractions containing Lewy-type aggregates to several reporter assays to determine their bioactivity and cytotoxicity. Ultimately, high molecular weight cytosolic fractions enhances phospholipid membrane permeability, while insoluble, Lewy-associated fractions induced morphological changes in the neurites of human stem cell-derived neurons. While the concentrations of soluble, high molecular weight α-synuclein were only slightly elevated in brains of dementia with Lewy bodies patients compared to healthy, age-matched controls, these observations suggest that a small subset of soluble α-synuclein aggregates in the brain may drive early pathogenic effects, while Lewy body-associated α-synuclein can drive neurotoxicity.
Collapse
Affiliation(s)
- John B Sanderson
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, Department of Chemistry, University of Cambridge, Cambridge CB2 0AH, UK
| | - Haiyang Jiang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Jin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ludovica Zaccagnini
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Aurelia Hays Watson
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Laura De Boni
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| | - Valentina N Lagomarsino
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Chemistry, Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Thomas C Pochapsky
- Department of Chemistry, Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Massachusetts Institute for Neurodegenerative Disease, Boston, MA 02129, USA
| | - Dennis W Dickson
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, Department of Chemistry, University of Cambridge, Cambridge CB2 0AH, UK
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- UK Dementia Research Institute, Department of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
13
|
Biagioni F, Ferese R, Limanaqi F, Madonna M, Lenzi P, Gambardella S, Fornai F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res 2019; 1719:157-175. [DOI: 10.1016/j.brainres.2019.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
|
14
|
Ho YJ, Shen MS, Tai CH, Li HH, Chen JH, Liao WC, Chiu PY, Lee IY, Lin CL, Hung CS. Use of Ceftriaxone in Treating Cognitive and Neuronal Deficits Associated With Dementia With Lewy Bodies. Front Neurosci 2019; 13:507. [PMID: 31178684 PMCID: PMC6543807 DOI: 10.3389/fnins.2019.00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is caused by accumulation of Lewy bodies, destruction of mitochondria, and excess of glutamate in synapses, which eventually leads to excitotoxicity, neurodegeneration, and cognitive impairments. Ceftriaxone (CEF) reduces excitotoxicity by increasing glutamate transporter 1 expression and glutamate reuptake. We investigated whether CEF can prevent cognitive decline and neurological deficits and increase neurogenesis in DLB rats. Male Wistar rats infused with viral vector containing human alpha-synuclein (α-syn) gene, SNCA, in the lateral ventricle were used as a rat model of DLB. CEF (100 mg/kg/day, i.p.) was injected in these rats for 27 days. The active avoidance test and object recognition test was performed. Finally, the brains of all the rats were immunohistochemically stained to measure α-syn, neuronal density, and newborn cells in the hippocampus and substantia nigra. The results revealed that DLB rats had learning and object recognition impairments and exhibited cell loss in the nigrostriatal dopaminergic system, and hippocampal CA1, and dentate gyrus (DG). Additionally, DLB rats had fewer newborn cells in the DG and substantia nigra pars reticulata and more α-syn immune-positive cells in the DG. Treatment with CEF improved cognitive function, reduced cell loss, and increased the number of newborn cells in the brain. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of DLB rats. CEF may therefore has clinical potential for treating DLB.
Collapse
Affiliation(s)
- Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, College of Medicine, National Taiwan University Hospital - National Taiwan University, Taipei, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy - Department of Pediatrics, Faculty of Medicine, Chung Shan Medical University Hospital - Chung Shan Medical University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - I-Yen Lee
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Tai CH, Bellesi M, Chen AC, Lin CL, Li HH, Lin PJ, Liao WC, Hung CS, Schwarting RK, Ho YJ. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav Brain Res 2019; 364:149-156. [DOI: 10.1016/j.bbr.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
16
|
Perez-Pardo P, Dodiya H, Engen P, Naqib A, Forsyth C, Green S, Garssen J, Keshavarzian A, Kraneveld A. Gut bacterial composition in a mouse model of Parkinson’s disease. Benef Microbes 2018; 9:799-814. [DOI: 10.3920/bm2017.0202] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanism of neurodegeneration in Parkinson’s disease (PD) remains unknown but it has been hypothesised that the intestinal tract could be an initiating and contributing factor to the neurodegenerative processes. In PD patients as well as in animal models for PD, alpha-synuclein-positive enteric neurons in the colon and evidence of colonic inflammation have been demonstrated. Moreover, several studies reported pro-inflammatory bacterial dysbiosis in PD patients. Here, we report for the first time significant changes in the composition of caecum mucosal associated and luminal microbiota and the associated metabolic pathways in a rotenone-induced mouse model for PD. The mouse model for PD, induced by the pesticide rotenone, is associated with an imbalance in the gut microbiota, characterised by a significant decrease in the relative abundance of the beneficial commensal bacteria genus Bifidobacterium. Overall, intestinal bacterial dysbiosis might play an important role in both the disruption of intestinal epithelial integrity and intestinal inflammation, which could lead or contribute to the observed alpha-synuclein aggregation and PD pathology in the intestine and central nervous system in the oral rotenone mouse model of PD.
Collapse
Affiliation(s)
- P. Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - H.B. Dodiya
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - P.A. Engen
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - A. Naqib
- DNA Services Facility, University of Illinois, 835 S Wolcott, Chicago, IL 60612, USA
| | - C.B. Forsyth
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - S.J. Green
- DNA Services Facility, University of Illinois, 835 S Wolcott, Chicago, IL 60612, USA
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| | - A. Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, 1725 West Harrison Street, Chicago, IL 60612, USA
| | - A.D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
17
|
Adams JW, Alvarez VE, Mez J, Huber BR, Tripodis Y, Xia W, Meng G, Kubilus CA, Cormier K, Kiernan PT, Daneshvar DH, Chua AS, Svirsky S, Nicks R, Abdolmohammadi B, Evers L, Solomon TM, Cherry JD, Aytan N, Mahar I, Devine S, Auerbach S, Alosco ML, Nowinski CJ, Kowall NW, Goldstein LE, Dwyer B, Katz DI, Cantu RC, Stern RA, Au R, McKee AC, Stein TD. Lewy Body Pathology and Chronic Traumatic Encephalopathy Associated With Contact Sports. J Neuropathol Exp Neurol 2018; 77:757-768. [PMID: 30053297 PMCID: PMC6097837 DOI: 10.1093/jnen/nly065] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury has been associated with increased risk of Parkinson disease and parkinsonism, and parkinsonism and Lewy body disease (LBD) can occur with chronic traumatic encephalopathy (CTE). To test whether contact sports and CTE are associated with LBD, we compared deceased contact sports athletes (n = 269) to cohorts from the community (n = 164) and the Boston University Alzheimer disease (AD) Center (n = 261). Participants with CTE and LBD were more likely to have β-amyloid deposition, dementia, and parkinsonism than CTE alone (p < 0.05). Traditional and hierarchical clustering showed a similar pattern of LBD distribution in CTE compared to LBD alone that was most frequently neocortical, limbic, or brainstem. In the community-based cohort, years of contact sports play were associated with neocortical LBD (OR = 1.30 per year, p = 0.012), and in a pooled analysis a threshold of >8 years of play best predicted neocortical LBD (ROC analysis, OR = 6.24, 95% CI = 1.5-25, p = 0.011), adjusting for age, sex, and APOE ɛ4 allele status. Clinically, dementia was significantly associated with neocortical LBD, CTE stage, and AD; parkinsonism was associated with LBD pathology but not CTE stage. Contact sports participation may increase risk of developing neocortical LBD, and increased LBD frequency may partially explain extrapyramidal motor symptoms sometimes observed in CTE.
Collapse
Affiliation(s)
- Jason W Adams
- Boston University Alzheimer’s Disease and CTE Center
| | - Victor E Alvarez
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jesse Mez
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | | | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center
- Department of Veterans Affairs Medical Center, Bedford, MA
| | - Gaoyuan Meng
- Boston University Alzheimer’s Disease and CTE Center
- VA Boston Healthcare System, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
| | | | - Kerry Cormier
- Boston University Alzheimer’s Disease and CTE Center
| | | | | | - Alicia S Chua
- Boston University Alzheimer’s Disease and CTE Center
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sarah Svirsky
- Boston University Alzheimer’s Disease and CTE Center
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center
| | | | - Laney Evers
- Boston University Alzheimer’s Disease and CTE Center
| | | | | | | | | | - Sherral Devine
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | - Sanford Auerbach
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | - Michael L Alosco
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
| | | | - Neil W Kowall
- Department of Neurology
- VA Boston Healthcare System, Boston, MA
| | - Lee E Goldstein
- Boston University Alzheimer’s Disease and CTE Center
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Brigid Dwyer
- Department of Neurology
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, MA
| | - Douglas I Katz
- Department of Neurology
- Brain Injury Program, Braintree Rehabilitation Hospital, Braintree, MA
| | - Robert C Cantu
- Boston University Alzheimer’s Disease and CTE Center
- Concussion Legacy Foundation
- Department of Anatomy and Neurobiology
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
- Department of Neurosurgery, Emerson Hospital, Concord, MA
| | - Robert A Stern
- Department of Neurology
- Department of Anatomy and Neurobiology
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA
| | - Rhoda Au
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Ann C McKee
- Department of Neurology
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Thor D Stein
- Boston University Alzheimer’s Disease and CTE Center
- Framingham Heart Study, Boston University School of Medicine, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Veterans Affairs Medical Center, Bedford, MA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
18
|
Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol 2018; 2018:4618716. [PMID: 30154934 PMCID: PMC6092970 DOI: 10.1155/2018/4618716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by neuronal deficits and α-synuclein inclusions in the brain. Ceftriaxone (CEF), a β-lactam antibiotic, has been suggested as a therapeutic agent in several neurodegenerative disorders for its abilities to counteract glutamate-mediated toxicity and to block α-synuclein polymerization. By using manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemistry, we measured the effects of CEF on neuronal activity and α-synuclein accumulation in the brain in a DLB rat model. The data showed that CEF corrected neuronal density and activity in the hippocampal CA1 area, suppressed hyperactivity in the subthalamic nucleus, and reduced α-synuclein accumulation, indicating that CEF is a potential agent in the treatment of DLB.
Collapse
|
19
|
Colom-Cadena M, Pegueroles J, Herrmann AG, Henstridge CM, Muñoz L, Querol-Vilaseca M, Martín-Paniello CS, Luque-Cabecerans J, Clarimon J, Belbin O, Núñez-Llaves R, Blesa R, Smith C, McKenzie CA, Frosch MP, Roe A, Fortea J, Andilla J, Loza-Alvarez P, Gelpi E, Hyman BT, Spires-Jones TL, Lleó A. Synaptic phosphorylated α-synuclein in dementia with Lewy bodies. Brain 2017; 140:3204-3214. [PMID: 29177427 PMCID: PMC5841145 DOI: 10.1093/brain/awx275] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 08/24/2017] [Indexed: 11/14/2022] Open
Abstract
Dementia with Lewy bodies is characterized by the accumulation of Lewy bodies and Lewy neurites in the CNS, both of which are composed mainly of aggregated α-synuclein phosphorylated at Ser129. Although phosphorylated α-synuclein is believed to exert toxic effects at the synapse in dementia with Lewy bodies and other α-synucleinopathies, direct evidence for the precise synaptic localization has been difficult to achieve due to the lack of adequate optical microscopic resolution to study human synapses. In the present study we applied array tomography, a microscopy technique that combines ultrathin sectioning of tissue with immunofluorescence allowing precise identification of small structures, to quantitatively investigate the synaptic phosphorylated α-synuclein pathology in dementia with Lewy bodies. We performed array tomography on human brain samples from five patients with dementia with Lewy bodies, five patients with Alzheimer's disease and five healthy control subjects to analyse the presence of phosphorylated α-synuclein immunoreactivity at the synapse and their relationship with synapse size. Main analyses were performed in blocks from cingulate cortex and confirmed in blocks from the striatum of cases with dementia with Lewy bodies. A total of 1 318 700 single pre- or postsynaptic terminals were analysed. We found that phosphorylated α-synuclein is present exclusively in dementia with Lewy bodies cases, where it can be identified in the form of Lewy bodies, Lewy neurites and small aggregates (<0.16 µm3). Between 19% and 25% of phosphorylated α-synuclein deposits were found in presynaptic terminals mainly in the form of small aggregates. Synaptic terminals that co-localized with small aggregates of phosphorylated α-synuclein were significantly larger than those that did not. Finally, a gradient of phosphorylated α-synuclein aggregation in synapses (pre > pre + post > postsynaptic) was observed. These results indicate that phosphorylated α-synuclein is found at the presynaptic terminals of dementia with Lewy bodies cases mainly in the form of small phosphorylated α-synuclein aggregates that are associated with changes in synaptic morphology. Overall, our data support the notion that pathological phosphorylated α-synuclein may disrupt the structure and function of the synapse in dementia with Lewy bodies.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Abigail G Herrmann
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Euan MacDonald Centre, and Centre for Dementia Prevention, Edinburgh, EH8 9JZ, UK
| | - Christopher M Henstridge
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Euan MacDonald Centre, and Centre for Dementia Prevention, Edinburgh, EH8 9JZ, UK
| | - Laia Muñoz
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carla San Martín-Paniello
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Joan Luque-Cabecerans
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Clarimon
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Núñez-Llaves
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Colin Smith
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
| | | | - Matthew P Frosch
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Allyson Roe
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona Spain
| | - Bradley T Hyman
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- The University of Edinburgh, UK Dementia Research Institute, Centre for Discovery Brain Sciences, Edinburgh Neuroscience, Euan MacDonald Centre, and Centre for Dementia Prevention, Edinburgh, EH8 9JZ, UK
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
Miners JS, Love S. Endothelin-converting enzymes degrade α-synuclein and are reduced in dementia with Lewy bodies. J Neurochem 2017; 141:275-286. [PMID: 28171705 DOI: 10.1111/jnc.13974] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 01/12/2023]
Abstract
We have examined the roles of the endothelin-converting enzyme-1 and -2 (ECE-1 and ECE-2) in the homeostasis of α-synuclein (α-syn) and pathogenesis of Lewy body disease. The ECEs are named for their ability to convert inactive big endothelin to the vasoactive peptide endothelin-1 (EDN1). We have found that ECE-1 and ECE-2 cleave and degrade α-syn in vitro and siRNA-mediated knockdown of ECE-1 and ECE-2 in SH-SY5Y neuroblastoma cells significantly increased α-syn both intracellularly (within the cell lysate) (p < 0.05 for both ECE-1 and -2) and extracellularly (in the surrounding medium) (p < 0.05 for ECE-1 and p = 0.07 for ECE-2). Double immunofluorescent labelling showed co-localization of ECE-1 and ECE-2 with α-syn within the endolysosomal system (confirmed by a proximity ligation assay). To assess the possible relevance of these findings to human Lewy body disease, we measured ECE-1 and ECE-2 levels by sandwich ELISA in post-mortem samples of cingulate cortex (a region with a predilection for Lewy body pathology) in dementia with Lewy bodies (DLB) and age-matched controls. ECE-1 (p < 0.001) and ECE-2 (p < 0.01) levels were significantly reduced in DLB and both enzymes correlated inversely with the severity of Lewy body pathology as indicated by the level of α-syn phosphorylated at Ser129 (r = -0.54, p < 0.01 for ECE-1 and r = -0.49, p < 0.05 for ECE-2). Our novel findings suggest a role for ECEs in the metabolism of α-syn that could contribute to the development and progression of DLB.
Collapse
Affiliation(s)
| | - Seth Love
- Dementia Research Group, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Ong LK, Zhao Z, Kluge M, TeBay C, Zalewska K, Dickson PW, Johnson SJ, Nilsson M, Walker FR. Reconsidering the role of glial cells in chronic stress-induced dopaminergic neurons loss within the substantia nigra? Friend or foe? Brain Behav Immun 2017; 60:117-125. [PMID: 27717686 DOI: 10.1016/j.bbi.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
Exposure to psychological stress is known to seriously disrupt the operation of the substantia nigra (SN) and may in fact initiate the loss of dopaminergic neurons within the SN. In this study, we aimed to investigate how chronic stress modified the SN in adult male mice. Using a paradigm of repeated restraint stress (an average of 20h per week for 6weeks), we examined changes within the SN using western blotting and immunohistochemistry. We demonstrated that chronic stress was associated with a clear loss of dopaminergic neurons within the SN. The loss of dopaminergic neurons was accompanied by higher levels of oxidative stress damage, indexed by levels of protein carbonylation and strong suppression of both microglial and astrocytic responses. In addition, we demonstrated for the first time, that chronic stress alone enhanced the aggregation of α-synuclein into the insoluble protein fraction. These results indicate that chronic stress triggered loss of dopaminergic neurons by increasing oxidative stress, suppressing glial neuroprotective functions and enhancing the aggregation of the neurotoxic protein, α-synuclein. Collectively, these results reinforce the negative effects of chronic stress on the viability of dopaminergic cells within the SN.
Collapse
Affiliation(s)
- Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Phillip W Dickson
- Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.
| |
Collapse
|
22
|
Nrf2 mitigates LRRK2- and α-synuclein-induced neurodegeneration by modulating proteostasis. Proc Natl Acad Sci U S A 2016; 114:1165-1170. [PMID: 28028237 DOI: 10.1073/pnas.1522872114] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) and α-synuclein lead to Parkinson's disease (PD). Disruption of protein homeostasis is an emerging theme in PD pathogenesis, making mechanisms to reduce the accumulation of misfolded proteins an attractive therapeutic strategy. We determined if activating nuclear factor erythroid 2-related factor (Nrf2), a potential therapeutic target for neurodegeneration, could reduce PD-associated neuron toxicity by modulating the protein homeostasis network. Using a longitudinal imaging platform, we visualized the metabolism and location of mutant LRRK2 and α-synuclein in living neurons at the single-cell level. Nrf2 reduced PD-associated protein toxicity by a cell-autonomous mechanism that was time-dependent. Furthermore, Nrf2 activated distinct mechanisms to handle different misfolded proteins. Nrf2 decreased steady-state levels of α-synuclein in part by increasing α-synuclein degradation. In contrast, Nrf2 sequestered misfolded diffuse LRRK2 into more insoluble and homogeneous inclusion bodies. By identifying the stress response strategies activated by Nrf2, we also highlight endogenous coping responses that might be therapeutically bolstered to treat PD.
Collapse
|
23
|
Abstract
Alpha-synuclein (α-syn) protein is abundantly expressed mainly within neurons, and exists in a number of different forms - monomers, tetramers, oligomers and fibrils. During disease, α-syn undergoes conformational changes to form oligomers and high molecular weight aggregates that tend to make the protein more insoluble. Abnormally aggregated α-syn is a neuropathological feature of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Biochemical characterization and analysis of insoluble α-syn using buffers with increasing detergent strength and high-speed ultracentrifugation provides a powerful tool to determine the development of α-syn pathology associated with disease progression. This protocol describes the isolation of increasingly insoluble/aggregated α-syn from post-mortem human brain tissue. This methodology can be adapted with modifications to studies of normal and abnormal α-syn biology in transgenic animal models harbouring different α-syn mutations as well as in other neurodegenerative diseases that feature aberrant fibrillar deposits of proteins related to their respective pathologies.
Collapse
Affiliation(s)
- Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology;
| |
Collapse
|
24
|
Miners JS, Renfrew R, Swirski M, Love S. Accumulation of α-synuclein in dementia with Lewy bodies is associated with decline in the α-synuclein-degrading enzymes kallikrein-6 and calpain-1. Acta Neuropathol Commun 2014; 2:164. [PMID: 25476568 PMCID: PMC4271448 DOI: 10.1186/s40478-014-0164-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022] Open
Abstract
Kallikrein-6 and calpain-1 are amongst a small group of proteases that degrade α-synuclein. We have explored the possibility that reduction in the level or activity of these enzymes contributes to the accumulation of α-synuclein in Lewy body diseases. We measured calpain-1 activity by fluorogenic activity assay, kallikrein-6 level by sandwich ELISA, and levels of α-synuclein and α-synuclein phosphorylated at serine 129 (α-synuclein-P129), in post-mortem brain tissue in pure dementia with Lewy bodies (DLB, n = 12), Alzheimer’s disease (AD, n = 20) and age-matched controls (n = 19). Calpain-1 activity was significantly reduced in DLB within the cingulate and parahippocampal cortex, regions with highest α-synuclein and α-synuclein-P129 load, and correlated inversely with the levels of α-synuclein and α-synuclein-P129. Calpain-1 was unaltered in the thalamus and frontal cortex, regions with less α-synuclein pathology. Kallikrein-6 level was reduced in the cingulate cortex in the DLB cohort, and correlated inversely with α-synuclein and α-synuclein-P129. Kallikrein-6 was also reduced in DLB in the thalamus but not in relation to α-synuclein or α-synuclein-P129 load and was unaltered in the frontal and parahippocampal cortex. In SH-SY5Y cells overexpressing wild-type α-synuclein there was partial co-localisation of kallikrein-6 and calpain-1 with α-synuclein, and siRNA-mediated knock-down of kallikrein-6 and calpain-1 increased the amount of α-synuclein in cell lysates. Our results indicate that reductions in kallikrein-6 and calpain-1 may contribute to the accumulation of α-synuclein in DLB.
Collapse
|
25
|
Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity. Neural Plast 2014; 2014:454696. [PMID: 25110593 PMCID: PMC4106176 DOI: 10.1155/2014/454696] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022] Open
Abstract
In Parkinson's disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.
Collapse
|
26
|
Xuan AG, Pan XB, Wei P, Ji WD, Zhang WJ, Liu JH, Hong LP, Chen WL, Long DH. Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer's disease. Mol Neurobiol 2014; 51:300-12. [PMID: 24854198 DOI: 10.1007/s12035-014-8751-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
In the brains of patients with Alzheimer's disease (AD) and transgenic AD mouse models, astrocytes and microglia activated by amyloid-β (Aβ) contribute to the inflammatory process that develops around injury in the brain. Valproic acid (VPA) has been shown to have anti-inflammatory function. The present study intended to explore the therapeutic effect of VPA on the neuropathology and memory deficits in APPswe/PS1ΔE9 (APP/PS1) transgenic mice. Here, we report that VPA-treated APP/PS1 mice markedly improved memory deficits and decreased Aβ deposition compared with the vehicle-treated APP/PS1 mice. Moreover, the extensive astrogliosis and microgliosis as well as the increased expression in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the hippocampus and cortex of APP/PS1 transgenic mice were significantly reduced following administration of VPA, which attenuated neuronal degeneration. Concomitantly, VPA alleviated the levels of p65 NF-κB phosphorylation and enhanced the levels of acetyl-H3, Bcl-2, and phospho-glycogen synthase kinase (GSK)-3β that occurred in the hippocampus of APP/PS1 transgenic mice. These results demonstrate that VPA could significantly ameliorate spatial memory impairment and Aβ deposition at least in part via the inhibition of inflammation, suggesting that administration of VPA could provide a therapeutic approach for AD.
Collapse
Affiliation(s)
- Ai-Guo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, 510182, Guangdong, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Divergent α-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiol Dis 2013; 58:183-90. [PMID: 23747310 PMCID: PMC3752970 DOI: 10.1016/j.nbd.2013.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/23/2022] Open
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). The most prevalent LRRK2 mutation is the G2019S coding change, located in the kinase domain of this complex multi-domain protein. The majority of G2019S autopsy cases feature typical Lewy Body pathology with a clinical phenotype almost indistinguishable from idiopathic PD (iPD). Here we have investigated the biochemical characteristics of α-synuclein in G2019S LRRK2 PD post-mortem material, in comparison to pathology-matched iPD. Immunohistochemistry with pS129 α-synuclein antibody showed that the medulla is heavily affected with pathology in G2019S PD whilst the basal ganglia (BG), limbic and frontal cortical regions demonstrated comparable pathology scores between G2019S PD and iPD. Significantly lower levels of the highly aggregated α-synuclein species in urea–SDS fractions were observed in G2019S cases compared to iPD in the BG and limbic cortex. Our data, albeit from a small number of cases, highlight a difference in the biochemical properties of aggregated α-synuclein in G2019S linked PD compared to iPD, despite a similar histopathological presentation. This divergence in solubility is most notable in the basal ganglia, a region that is affected preclinically and is damaged before overt dopaminergic cell death. We compared α-synuclein biochemistry from LRRK2 G2019S and idiopathic PD brains. We used four G2019S PD post-mortem brains and pathology matched idiopathic PD cases. G2019S PD and idiopathic PD cases show comparable Limbic stage Lewy Body pathology. Minimal SDS-insoluble α-synuclein seen in G2019S PD in contrast to idiopathic PD We propose a divergent nature of α-synuclein pathogenic species in G2019S PD.
Collapse
|
28
|
Fagerqvist T, Lindström V, Nordström E, Lord A, Tucker SME, Su X, Sahlin C, Kasrayan A, Andersson J, Welander H, Näsström T, Holmquist M, Schell H, Kahle PJ, Kalimo H, Möller C, Gellerfors P, Lannfelt L, Bergström J, Ingelsson M. Monoclonal antibodies selective for α-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and α-synuclein transgenic mice with the disease-causing A30P mutation. J Neurochem 2013; 126:131-44. [PMID: 23363402 DOI: 10.1111/jnc.12175] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/10/2023]
Abstract
Inclusions of intraneuronal alpha-synuclein (α-synuclein) can be detected in brains of patients with Parkinson's disease and dementia with Lewy bodies. The aggregation of α-synuclein is a central feature of the disease pathogenesis. Among the different α-synuclein species, large oligomers/protofibrils have particular neurotoxic properties and should therefore be suitable as both therapeutic and diagnostic targets. Two monoclonal antibodies, mAb38F and mAb38E2, with high affinity and strong selectivity for large α-synuclein oligomers were generated. These antibodies, which do not bind amyloid-beta or tau, recognize Lewy body pathology in brains from patients with Parkinson's disease and dementia with Lewy bodies and detect pathology earlier in α-synuclein transgenic mice than linear epitope antibodies. An oligomer-selective sandwich ELISA, based on mAb38F, was set up to analyze brain extracts of the transgenic mice. The overall levels of α-synuclein oligomers/protofibrils were found to increase with age in these mice, although the levels displayed a large interindividual variation. Upon subcellular fractionation, higher levels of α-synuclein oligomers/protofibrils could be detected in the endoplasmic reticulum around the age when behavioral disturbances develop. In summary, our novel oligomer-selective α-synuclein antibodies recognize relevant pathology and should be important tools to further explore the pathogenic mechanisms in Lewy body disorders. Moreover, they could be potential candidates both for immunotherapy and as reagents in an assay to assess a potential disease biomarker.
Collapse
Affiliation(s)
- Therese Fagerqvist
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Synaptic Proteins and Choline Acetyltransferase Loss in Visual Cortex in Dementia With Lewy Bodies. J Neuropathol Exp Neurol 2013; 72:53-60. [DOI: 10.1097/nen.0b013e31827c5710] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Kovacs GG, Wagner U, Dumont B, Pikkarainen M, Osman AA, Streichenberger N, Leisser I, Verchère J, Baron T, Alafuzoff I, Budka H, Perret-Liaudet A, Lachmann I. An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathol 2012; 124:37-50. [PMID: 22370907 DOI: 10.1007/s00401-012-0964-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/12/2012] [Accepted: 02/15/2012] [Indexed: 01/22/2023]
Abstract
α-Synuclein is the major protein associated with Lewy body dementia, Parkinson's disease and multiple system atrophy. Since α-synuclein is present in the brain in physiological conditions as a presynaptic protein, it is crucial to characterize disease-associated modifications to develop an in vivo biomarker. With the aim to develop antibodies showing high specificity and sensitivity for disease-associated α-synuclein, synthetic peptides containing different amino acid sequences were used for immunization of mice. After generation of α-synuclein aggregates, ELISA and immunoblotting were used to test the specificity of antibodies. Tissue microarray sections originating from different human α-synucleinopathies were used to compare immunostaining with other, commercially available antibodies. Immunization of mice with the peptide TKEGVVHGVATVAE (amino acid 44-57 of α-synuclein) resulted in the generation of a monoclonal antibody (5G4), which was able to bind aggregated α-synuclein preparation in sandwich ELISA or coated on magnetic beads. 5G4 proved to be superior to other antibodies in comparative immunohistochemical studies by revealing more widespread and distinct α-synuclein pathology. Immunoblotting of human brain tissue revealed an additional band seen in dementia with Lewy bodies, whereas the band representing monomeric α-synuclein was very weak or lacking. In summary, the 5G4 antibody is most promising for re-evaluation of archival material and may offer new perspective for the development of in vivo diagnostic assays for detecting disease-associated α-synuclein in body fluids.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4 J, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Identification of novel α-synuclein isoforms in human brain tissue by using an online nanoLC-ESI-FTICR-MS method. Neurochem Res 2011; 36:2029-42. [PMID: 21674238 PMCID: PMC3183298 DOI: 10.1007/s11064-011-0527-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2011] [Indexed: 11/19/2022]
Abstract
Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn1–140) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn1–139 and Ac-α-syn1–103) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).
Collapse
|
32
|
Suárez I, Bodega G, Fernández B. Upregulation of alpha-synuclein expression in the rat cerebellum in experimental hepatic encephalopathy. Neuropathol Appl Neurobiol 2010; 36:422-35. [PMID: 20345648 DOI: 10.1111/j.1365-2990.2010.01083.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The overexpression of alpha-synuclein has been associated with neurodegenerative diseases, especially when the protein aggregates to form insoluble structures. The present study examined the effect of chronic hyperammonaemia on alpha-synuclein expression in the rat cerebellum following portacaval anastomosis (PCA). METHODS Immunohistochemical and western blot determinations were performed 1 month and 6 months after the PCA procedure. RESULTS A time-dependent increase in alpha-synuclein expression was seen in the cerebellar grey matter compared with the controls. At 1 month post PCA, alpha-synuclein-immunopositive material was observed in the molecular layer, while the Purkinje cells showed weak alpha-synuclein expression, and alpha-synuclein aggregates were observed throughout the granular layer. At 6 months post PCA, alpha-synuclein expression was significantly increased compared with the controls. alpha-synuclein-immunostained astroglial cells were also found; the Bergmann glial cells showed alpha-synuclein-positive processes in the molecular layer of PCA-exposed rats, and in the granular layer, perivascular astrocytes showed intense alpha-synuclein immunoreactivity, as indicated by colocalization of alpha-synuclein with glial fibrillary acidic protein (GFAP). In addition, ubiquitin-immunoreactive inclusions were present in PCA-exposed rats, although they did not colocalize with alpha-synuclein. Western blotting performed at 6 months post PCA showed a reduction in the level of soluble alpha-synuclein compared with 1 month post PCA and the controls; this reduction was concomitant with an increase in the insoluble form of alpha-synuclein. CONCLUSIONS Although the precise mechanism by which alpha-synuclein aggregates in PCA-treated rats remains unknown, the present data suggest an important role for this protein in the onset and progression of hepatic encephalopathy, probably via its expression in astroglial cells.
Collapse
Affiliation(s)
- I Suárez
- Departamento de Biología Celular y Genética, Universidad de Alcalá, 28871 Madrid, Spain.
| | | | | |
Collapse
|
33
|
Kthiri F, Le HT, Gautier V, Caldas T, Malki A, Landoulsi A, Bohn C, Bouloc P, Richarme G. Protein aggregation in a mutant deficient in yajL, the bacterial homolog of the Parkinsonism-associated protein DJ-1. J Biol Chem 2010; 285:10328-36. [PMID: 20124404 DOI: 10.1074/jbc.m109.077529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
YajL is the closest prokaryotic homolog of the parkinsonism-associated protein DJ-1 (40% sequence identity and similar three-dimensional structure), a protein of unknown function involved in the cellular response to oxidative stress. We report here that a yajL mutant of Escherichia coli displays an increased sensitivity to oxidative stress. It also exhibits a protein aggregation phenotype in aerobiosis, but not in anaerobiosis or in aerobic cells overexpressing superoxide dismutase, suggesting that protein aggregation depends on the presence of reactive oxygen species produced by respiratory chains. The protein aggregation phenotype of the yajL mutant, which can be rescued by the wild-type yajL gene, but not by the corresponding cysteine 106 mutant allele, is similar to that of multiple mutants deficient in superoxide dismutases and catalases, although intracellular hydrogen peroxide levels were not increased in the yajL mutant, suggesting that protein aggregation in this strain does not result from a hydrogen peroxide detoxification defect. Aggregation-prone proteins included 17 ribosomal proteins, the ATP synthase beta subunit, flagellin, and the outer membrane proteins OmpA and PAL; all of them are part of multiprotein complexes, suggesting that YajL might be involved in optimal expression of these complexes, especially during oxidative stress. YajL stimulated the renaturation of urea-unfolded citrate synthase and the solubilization of the urea-unfolded ribosomal proteins S1 and L3 and was more efficient as a chaperone in its oxidized form than in its reduced form. The mRNA levels of several aggregated proteins of the yajL mutant were severely affected, suggesting that YajL also acts at the level of gene expression. These two functions of YajL might explain the protein aggregation phenotype of the yajL mutant.
Collapse
Affiliation(s)
- Fatoum Kthiri
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 15 rue Hélène Brion, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD, Kish SJ, Hornykiewicz O, Furukawa Y. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson's disease and progressive supranuclear palsy: a comparative investigation. ACTA ACUST UNITED AC 2009; 133:172-88. [PMID: 19903734 DOI: 10.1093/brain/awp282] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alpha-synuclein is a major component of Lewy bodies and glial cytoplasmic inclusions, pathological hallmarks of idiopathic Parkinson's disease and multiple system atrophy, and it is assumed to be aetiologically involved in these conditions. However, the quantitative status of brain alpha-synuclein in different Parkinsonian disorders is still unresolved and it is uncertain whether alpha-synuclein accumulation is restricted to regions of pathology. We compared membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein, both the full-length 17 kDa and high molecular weight species, by western blotting in autopsied brain of patients with Parkinson's disease (brainstem-predominant Lewy body disease: n = 9), multiple system atrophy (n = 11), progressive supranuclear palsy (n = 16), and of normal controls (n = 13). Brain of a patient with familial Parkinsonism-dementia due to alpha-synuclein locus triplication (as positive control) showed increased membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein levels with abundant high molecular weight immunoreactivity. In multiple system atrophy, a massive increase in 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein was observed in highly pathologically affected regions, including putamen (+1760%, range +625-2900%), substantia nigra [+1000% (+356-1850%)], and white matter of internal capsule [+2210% (+430-6830%)] together with numerous high molecular weight species. Levels of 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein were only modestly increased in less affected areas (cerebellar cortex, +95%; caudate, +30%; with both also showing numerous high molecular weight species) and were generally normal in cerebral cortices. In both Parkinson's disease and progressive supranuclear palsy, membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein levels were normal in putamen and frontal cortex whereas a trend was observed for variably increased 17 kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein concentrations [+184% (-60% to +618%)] with additional high molecular weight species in Parkinson's disease substantia nigra. No obvious correlation was observed between nigral membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation and Lewy body density in Parkinson's disease. Two progressive supranuclear palsy cases had membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation in substantia nigra similar to multiple system atrophy. Several Parkinson's disease patients had very modest high molecular weight membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulation in putamen. Levels of 17-kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein were generally positively correlated with those of high molecular weight membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein and there was a trend for a positive correlation between striatal dopamine loss and 17-kDa membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein concentrations in multiple system atrophy. Brain membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein accumulations in Parkinson's disease and multiple system atrophy are regionally specific, suggesting that these sporadic alpha-synucleinopathies, unlike familial Parkinsonism-dementia, are not associated with a simple global over-expression of the protein. Despite a similar extent of dopamine depletion, the magnitude of brain membrane-associated, sodium dodecyl sulfate-soluble alpha-synuclein changes is disease specific, with multiple system atrophy clearly having the most severe accumulation. Literature discrepancies on alpha-synuclein status in 'Parkinson's disease' might be explained by inclusion of cases not having classic brainstem-predominant Lewy body disease and by variable alpha-synuclein accumulation within this diagnostic classification.
Collapse
Affiliation(s)
- Junchao Tong
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto, Tokyo 136-0075, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kumaran R, Vandrovcova J, Luk C, Sharma S, Renton A, Wood NW, Hardy JA, Lees AJ, Bandopadhyay R. Differential DJ-1 gene expression in Parkinson's disease. Neurobiol Dis 2009; 36:393-400. [PMID: 19716892 DOI: 10.1016/j.nbd.2009.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 11/29/2022] Open
Abstract
Mutations in the DJ-1 gene have been linked with rare cases of early onset, autosomal recessive Parkinson's disease (PD). To determine whether DJ-1 is also involved in the pathogenesis of common forms of PD we have compared DJ-1 mRNA levels in a number of post-mortem PD and control brain regions using quantitative real-time PCR. Region-specific decreases were observed in DJ-1 mRNA levels in putamen, frontal cortex, parietal cortex and cerebellum in PD ( approximately 30-60%) compared to controls whilst an up-regulation was observed in the amygdala ( approximately 90%) and entorhinal cortex ( approximately 39%). Using quantitative western blot analysis, parallel decreases in DJ-1 protein levels were seen in frontal cortex, putamen and cerebellum of PD cases. By using 2-dimensional gel electrophoresis, we show preponderance of acidic pI isoforms of DJ-1 monomer in PD vulnerable regions, namely frontal cortex and medulla suggestive of differential post-translational modifications. Our findings point to a putative role of DJ-1 in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ravindran Kumaran
- Reta Lila Weston Institute of Neurological Disease, Institute of Neurology, University College London, 1, Wakefield Street, WC1N 1PJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Peters TW, Huang M. Protein aggregation and polyasparagine-mediated cellular toxicity in Saccharomyces cerevisiae. Prion 2007; 1:144-53. [PMID: 19164913 DOI: 10.4161/pri.1.2.4630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well established that protein aggregation is associated with many neurodegenerative disorders including polyglutamine diseases, but a mechanistic understanding of the role of protein aggregates in the disease pathogenesis remains elusive. Previously thought to be the cause of cellular toxicity such as cellular dysfunction and cell death, protein aggregation is now proposed to serve a protective role by sequestering toxic oligomers from interfering with essential physiological processes. To investigate the relationship between protein aggregation and cellular toxicity, we have characterized and compared the effects of two GFP-fusion proteins that form aggregates in Saccharomyces cerevisiae, one with a polyasparagine repeat (GFP(N104)) and one without (GFP(C)). Although both proteins can form microscopically visible GFP-positive aggregates, only the GFP(N104)-containing aggregates exhibit morphological and biochemical characteristics that resemble the aggregates formed by mutant huntingtin in yeast cells. Formation of both the GFP(C) and GFP(N104) aggregates depends on microtubules, while only the GFP(N104) aggregate requires the chaperone Hsp104 and the prion Rnq1 and is resistant to SDS. Although no microscopically visible GFP(N104) aggregates were observed in the hsp104Delta and rnq1Delta mutant cells, SDS-insoluble aggregates can still be detected by the filter trap assay. These observations argue that the GFP(N104)-containing aggregates can exist in at least two distinct states in vivo. We also show that a nucleus-targeted GFP(N104) interferes with transcription from two SAGA-dependant promoters and results in a decrease in cell viability. Overall, the results imply that the GFP(N104) protein behaves similarly to the mutant huntingtin in yeast cells and provides a new model for investigating the interplay between protein aggregates and the associated phenotypes.
Collapse
Affiliation(s)
- Theodore W Peters
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | |
Collapse
|
37
|
Emadi S, Barkhordarian H, Wang MS, Schulz P, Sierks MR. Isolation of a human single chain antibody fragment against oligomeric alpha-synuclein that inhibits aggregation and prevents alpha-synuclein-induced toxicity. J Mol Biol 2007; 368:1132-44. [PMID: 17391701 PMCID: PMC2235820 DOI: 10.1016/j.jmb.2007.02.089] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/19/2007] [Accepted: 02/26/2007] [Indexed: 12/25/2022]
Abstract
Protein misfolding and aggregation are pathological aspects of numerous neurodegenerative diseases. Aggregates of alpha-synuclein are major components of the Lewy bodies and Lewy neurites associated with Parkinson's Disease (PD). A natively unfolded protein, alpha-synuclein can adopt different aggregated morphologies, including oligomers, protofibrils and fibrils. The small oligomeric aggregates have been shown to be particularly toxic. Antibodies that neutralize the neurotoxic aggregates without interfering with beneficial functions of monomeric alpha-synuclein can be useful therapeutics. We were able to isolate single chain antibody fragments (scFvs) from a phage displayed antibody library against the target antigen morphology using a novel biopanning technique that utilizes atomic force microscopy (AFM) to image and immobilize specific morphologies of alpha-synuclein. The scFv described here binds only to an oligomeric form of alpha-synuclein and inhibits both aggregation and toxicity of alpha-synuclein in vitro. This scFv can have potential therapeutic value in controlling misfolding and aggregation of alpha-synuclein in vivo when expressed intracellularly in dopaminergic neurons as an intrabody.
Collapse
Affiliation(s)
- Sharareh Emadi
- Department of Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287-6006, USA
| | | | | | | | | |
Collapse
|
38
|
Li QX, Mok SS, Laughton KM, McLean CA, Cappai R, Masters CL, Culvenor JG, Horne MK. Plasma alpha-synuclein is decreased in subjects with Parkinson's disease. Exp Neurol 2006; 204:583-8. [PMID: 17258710 DOI: 10.1016/j.expneurol.2006.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/10/2006] [Accepted: 12/07/2006] [Indexed: 01/03/2023]
Abstract
Alpha-synuclein (alphaSN) is implicated in Parkinson's disease (PD) and is the major component of Lewy bodies (LBs). Although alphaSN is mainly expressed in neuronal cells and exists as a cytoplasmic protein, it has been found in body fluids including cerebrospinal fluid and blood. This study explored plasma alphaSN as a diagnostic marker for PD. Western blot analysis was used to characterize plasma alphaSN compared to brain alphaSN. Plasma alphaSN of 16 kDa migrates with the same mobility as its brain counterpart and recombinant alphaSN on denatured polyacrylamide gels and reacted with three different antibodies against the C-terminal and NAC regions of the alphaSN protein. The alphaSN levels in plasma from PD subjects are significantly lower than that in age-matched controls (p=0.001), and the alphaSN levels in patients with early-onset PD are lower than that in both late-onset PD and controls. This initial study indicates that measurement of alphaSN in plasma can provide support for a clinical diagnosis of Parkinson's disease and warrants further study in a larger population.
Collapse
Affiliation(s)
- Qiao-Xin Li
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tofaris GK, Garcia Reitböck P, Humby T, Lambourne SL, O’Connell M, Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M, Grazia Spillantini M. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci 2006; 26:3942-50. [PMID: 16611810 PMCID: PMC6673887 DOI: 10.1523/jneurosci.4965-05.2006] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 02/28/2006] [Accepted: 03/03/2006] [Indexed: 11/21/2022] Open
Abstract
Dysfunction of the 140 aa protein alpha-synuclein plays a central role in Lewy body disorders, including Parkinson's disease, as well as in multiple system atrophy. Here, we show that the expression of truncated human alpha-synuclein(1-120), driven by the rat tyrosine hydroxylase promoter on a mouse alpha-synuclein null background, leads to the formation of pathological inclusions in the substantia nigra and olfactory bulb and to a reduction in striatal dopamine levels. At the behavioral level, the transgenic mice showed a progressive reduction in spontaneous locomotion and an increased response to amphetamine. These findings suggest that the C-terminal of alpha-synuclein is an important regulator of aggregation in vivo and will help to understand the mechanisms underlying the pathogenesis of Lewy body disorders and multiple system atrophy.
Collapse
|
40
|
Griffin WST, Liu L, Li Y, Mrak RE, Barger SW. Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 2006; 3:5. [PMID: 16542445 PMCID: PMC1435743 DOI: 10.1186/1742-2094-3-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/16/2006] [Indexed: 12/04/2022] Open
Abstract
Background Clinical and neuropathological overlap between Alzheimer's (AD) and Parkinson's disease (PD) is now well recognized. Such cases of concurrent AD and Lewy body disease (AD/LBD) show neuropathological changes that include Lewy bodies (α-synuclein aggregates), neuritic amyloid plaques, and neurofibrillary tangles (hyperphosphorylated tau aggregates). The co-occurrence of these clinical and neuropathological changes suggests shared pathogenic mechanisms in these diseases, previously assumed to be distinct. Glial activation, with overexpression of interleukin-1 (IL-1) and other proinflammatory cytokines, has been increasingly implicated in the pathogenesis of both AD and PD. Methods Rat primary cultures of microglia and cortical neurons were cultured either separately or as mixed cultures. Microglia or cocultures were treated with a secreted fragment (sAPPα) of the β-amyloid precursor protein (βAPP). Neurons were treated with IL-1β or conditioned medium from sAPPα-activated microglia, with or without IL-1 receptor antagonist. Slow-release pellets containing either IL-1β or bovine serum albumin (control) were implanted in cortex of rats, and mRNA for various neuropathological markers was analyzed by RT-PCR. Many of the same markers were assessed in tissue sections from human cases of AD/LBD. Results Activation of microglia with sAPPα resulted in a dose-dependent increase in secreted IL-1β. Cortical neurons treated with IL-1β showed a dose-dependent increase in sAPPα release, an effect that was enhanced in the presence of microglia. IL-1β also elevated the levels of α-synuclein, activated MAPK-p38, and phosphorylated tau; a concomitant decrease in levels of synaptophysin occurred. Delivery of IL-1β by slow-release pellets elevated mRNAs encoding α-synuclein, βAPP, tau, and MAPK-p38 compared to controls. Finally, human cases of AD/LBD showed colocalization of IL-1-expressing microglia with neurons that simultaneously overexpressed βAPP and contained both Lewy bodies and neurofibrillary tangles. Conclusion Our findings suggest that IL-1 drives production of substrates necessary for formation of the major neuropathological changes characteristic of AD/LBD.
Collapse
Affiliation(s)
- W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas 72205, USA
- Mental Illness Research Education Center, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas 72205, USA
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yuekui Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Robert E Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas 72205, USA
| |
Collapse
|
41
|
Mukaetova-Ladinska EB, McKeith IG. Pathophysiology of synuclein aggregation in Lewy body disease. Mech Ageing Dev 2006; 127:188-202. [PMID: 16297436 DOI: 10.1016/j.mad.2005.09.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/15/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
We provide an overview of synaptic pathology in dementia with Lewy bodies (DLB) and related neurodegenerative disorders that are characterised by intraneuronal accumulation of alpha-synuclein aggregates. The review addresses the clinico-neuropathological correlates of synaptic pathology in Lewy body disease, and concentrates on: altered alpha-synuclein metabolism, mechanisms leading to alpha-synuclein fibril formation (self-polymerisation, alpha-synuclein mutations and post-translational modifications) and how these influence the axonal transport and synaptic network in ageing and disease process. Understanding the mechanisms leading to intraneuronal alpha-synuclein accumulation are crucial for the development of novel therapies for treatment of Lewy body disease.
Collapse
Affiliation(s)
- Elizabeta B Mukaetova-Ladinska
- Institute for Ageing and Health, University of Newcastle, Newcastle General Hospital, Westgate Road, Newcastle upon Tyne NE4 6BE, UK.
| | | |
Collapse
|
42
|
Klucken J, Ingelsson M, Shin Y, Irizarry MC, Hedley-Whyte ET, Frosch M, Growdon J, McLean P, Hyman BT. Clinical and biochemical correlates of insoluble alpha-synuclein in dementia with Lewy bodies. Acta Neuropathol 2006; 111:101-8. [PMID: 16482476 DOI: 10.1007/s00401-005-0027-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 11/25/2022]
Abstract
Alpha-synuclein is a major constituent of Lewy bodies, the fibrillar aggregates that form within neurons in Parkinson's disease and dementia with Lewy bodies (DLB). Recent biochemical data show that alpha-synuclein accumulates in Parkinson's disease in a detergent insoluble form. We now examine the relationship between detergent insoluble alpha-synuclein and the presence of Lewy bodies, clinical measures of dementia and biochemical parameters in a series of individuals with DLB. We found that Triton X-100 insoluble alpha-synuclein enriched nearly twofold in the temporal cortex of patients with DLB compared to age-matched controls. By contrast the total amount of alpha-synuclein protein was unchanged. Surprisingly, the degree of Triton X-100 insoluble alpha-synuclein did not correlate with either the duration of illness or the number of Lewy bodies counted using stereological methods from an adjacent block of tissue. However, the Triton X-100 soluble fraction of alpha-synuclein did correlate strongly with the expression of several heat shock proteins (HSPs) in DLB but not control cases, suggesting a coordinated HSP response in DLB neocortex.
Collapse
Affiliation(s)
- J Klucken
- Department of Neurology, MassGeneral Institute for Neurodegenerative disease, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cantuti-Castelvetri I, Klucken J, Ingelsson M, Ramasamy K, McLean PJ, Frosch MP, Hyman BT, Standaert DG. Alpha-synuclein and chaperones in dementia with Lewy bodies. J Neuropathol Exp Neurol 2006; 64:1058-66. [PMID: 16319716 DOI: 10.1097/01.jnen.0000190063.90440.69] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The protein alpha-synuclein (ASYN) is thought to be involved in the development of dementia with Lewy bodies (DLB). Overexpression of ASYN has been linked to cellular toxicity and human disease, and in experimental models, chaperones such as heat shock proteins (HSPs) are protective against ASYN toxicity. We have assessed the abundance of mRNA for ASYN and chaperones and the abundance and solubility of the encoded proteins in temporal cortex from sporadic human DLB. We found a reduction of ASYN mRNA in DLB (44.9% of control). The abundance of the Triton-soluble fraction (bioavailable protein) was not altered, but there was an increase of the Triton-insoluble component (likely representing aggregates). We evaluated 3 chaperones: HSP70, HSP90, and HDJ1. HSP70 mRNA was increased in DLB, whereas the mRNAs for HSP90 and HDJ1 were unchanged. HSP70 accumulated in the Triton-soluble fraction, whereas HSP90 and HDJ1 proteins accumulated in the Triton-insoluble fraction. These observations suggest that sporadic DLB is not associated with overexpression of ASYN. Rather, the persistence of normal soluble ASYN protein levels, despite the reduction of its mRNA, suggests a primary defect in clearance of the protein. However, this reduced clearance cannot be attributed to a failure of chaperone expression, because their mRNA is unchanged or increased in the DLB brain.
Collapse
Affiliation(s)
- Ippolita Cantuti-Castelvetri
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Albasanz JL, Dalfó E, Ferrer I, Martín M. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer's disease and dementia with Lewy bodies correlates with stage of Alzheimer's-disease-related changes. Neurobiol Dis 2005; 20:685-93. [PMID: 15949941 DOI: 10.1016/j.nbd.2005.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 04/27/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022] Open
Abstract
The aim of the present work was to analyze the status of metabotropic glutamate receptors (mGluRs) in the frontal cortex (area 8) from ten cases with common form DLB (cDLB) and eleven cases with pure AD in comparison with five age-matched controls. mGluRs, determined by radioligand binding assays, were significantly decreased in cerebral cortex in cDLB. This decrease was already present in cases with early AD changes not involving the frontal cortex, but dramatically correlated with AD neuropathological changes, at its greatest in isocortical stages, which was associated with a decrease in the expression levels of mGluR1 detected by Western blotting. Moreover, mGluRs analyzed in pure AD were lower than those obtained in cDLB and also correlated with progression of illness. On the other hand, the expression levels of phospholipase Cbeta1 (PLCbeta1) isoform, which is the effector of group I mGluRs, was decreased in parallel in cDLB cases. Finally, the PLCbeta1 decrease was associated with reduced GTP- and l-glutamate-stimulated PLC activity in both cDLB and AD cases. These results show that group I mGluRs/PLC signaling are down-regulated and desensitized in the frontal cortex in cDLB and AD cases and that these modifications worsen with progression of AD changes in the cerebral neocortex. Therefore, group I mGluR dysfunction may be implicated in the pathogenesis of cognitive impairment and dementia in common form of DLB and pure AD.
Collapse
Affiliation(s)
- José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias Químicas, Area de Bioquímica, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
45
|
Zhou C, Emadi S, Sierks MR, Messer A. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol Ther 2005; 10:1023-31. [PMID: 15564134 DOI: 10.1016/j.ymthe.2004.08.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 08/26/2004] [Indexed: 11/16/2022] Open
Abstract
alpha-Synuclein (alpha-syn) has been identified as the major component of Lewy bodies that characterize neurodegenerative synucleinopathies, including Parkinson's disease. Overexpression of alpha-syn, and prefibrillar alpha-syn oligomers, has been implicated in these pathologies; therefore, prevention of prefibril accumulation, and inhibition of other aberrant effects of overexpressed alpha-syn, could provide novel treatments. Here, we have selected a human single-chan Fv (scFv) antibody, D10, that binds human monomeric wild-type alpha-syn. We demonstrate, by retargeting assays and coimmunoprecipitation, that the D10 scFv is a specific and efficient intracellular antibody (intrabody). By transfecting the D10 scFv gene into an HEK 293 cell line that overexpresses wild-type alpha-syn, we show that the D10 intrabody stabilizes detergent-soluble monomeric alpha-syn and inhibits the formation of detergent-insoluble high-molecular-weight alpha-syn species. In addition, the D10 intrabody ameliorates the decreased cell adhesion that characterizes the alpha-syn-overexpressing cells. Given the important role of alpha-syn pathology, and the facility with which intrabodies can be further engineered in vitro, anti-alpha-syn intrabodies may represent novel molecular therapeutics for synucleinopathies, with implications for other neurodegenerative disorders caused by misfolded accumulated proteins.
Collapse
Affiliation(s)
- Chun Zhou
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | |
Collapse
|
46
|
Auluck PK, Meulener MC, Bonini NM. Mechanisms of Suppression of α-Synuclein Neurotoxicity by Geldanamycin in Drosophila. J Biol Chem 2005; 280:2873-8. [PMID: 15556931 DOI: 10.1074/jbc.m412106200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of the protein alpha-synuclein into aggregates called Lewy bodies and Lewy neurites. Parkinson's disease can be modeled in Drosophila where directed expression of alpha-synuclein induces compromise of dopaminergic neurons and the formation of Lewy body-like aggregates. The molecular chaperone Hsp70 protects cells from the deleterious effects of alpha-synuclein, indicating a potential therapeutic approach to enhance neuron survival in Parkinson's disease. We have now investigated the molecular mechanisms by which the drug geldanamycin protects neurons against alpha-synuclein toxicity. Our studies show that geldanamycin sensitizes the stress response within normal physiological parameters to enhance chaperone activation, offering protection against alpha-synuclein neurotoxicity. Further, geldanamycin uncouples neuronal toxicity from Lewy body and Lewy neurite formation such that dopaminergic neurons are protected from the effects of alpha-synuclein expression despite the continued presence of (and even increase in) inclusion pathology. These studies indicate that compounds that modulate the stress response are a promising approach to treat Parkinson's disease.
Collapse
Affiliation(s)
- Pavan K Auluck
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
47
|
Broe M, Shepherd CE, Mann DMA, Milward EA, Gai WP, Thiel E, Halliday GM. Insoluble alpha-synuclein in Alzheimer's disease without Lewy body formation. Neurotox Res 2005; 7:69-76. [PMID: 15639799 DOI: 10.1007/bf03033777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insoluble alpha-synuclein plays a central role in Lewy body diseases, with considerable controversy as to whether it plays a similar role in Alzheimer's disease (AD). We assessed the tissue location and solubility of cortical alpha-synuclein in AD (without Lewy body formation) compared with controls, using sequential extraction procedures and Western immunoblotting to quantify different alpha-synuclein species in their different solubility states. Controls had no insoluble cortical alpha-synuclein and a ratio of soluble:lipid-associated alpha-synuclein of 1.2-/+0.1. Total alpha-synuclein protein was significantly increased in AD and concentrated within the lipid-associated fraction (soluble:lipid ratio 0.9-/+0.05, soluble:insoluble 1.5-/+0.1, lipid:insoluble 1.7-/+0.1) which proved difficult to localize in paraffin-embedded tissue. Tissues prepared without lipid extraction revealed alpha-synuclein-immunoreactivity in the amorphous components of mature cored AD plaques. This lipid-association of alpha-synuclein in mature AD plaques links this protein with other lipid changes thought to be important in disease pathogenesis.
Collapse
Affiliation(s)
- Melissa Broe
- Prince of Wales Medical Research Institute, Sydney, 2031 Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Cole NB, Murphy DD, Lebowitz J, Di Noto L, Levine RL, Nussbaum RL. Metal-catalyzed oxidation of alpha-synuclein: helping to define the relationship between oligomers, protofibrils, and filaments. J Biol Chem 2004; 280:9678-90. [PMID: 15615715 DOI: 10.1074/jbc.m409946200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is implicated in a number of neuro-degenerative diseases and is associated with the selective loss of dopaminergic neurons of the substantia nigra in Parkinson's disease. The role of alpha-synuclein as a potential target of intracellular oxidants has been demonstrated by the identification of posttranslational modifications of synuclein within intracellular aggregates that accumulate in Parkinson's disease brains, as well as the ability of a number of oxidative insults to induce synuclein oligomerization. The relationship between these relatively small soluble oligomers, potentially neurotoxic synuclein protofibrils, and synuclein filaments remains unclear. We have found that metal-catalyzed oxidation of alpha-synuclein inhibited formation of synuclein filaments with a concomitant accumulation of beta sheet-rich oligomers that may represent synuclein protofibrils. Similar results with a number of oxidative and enzymatic treatments suggest that the covalent association of synuclein into higher molecular mass oligomers/protofibrils represents an alternate pathway from filament formation and renders synuclein less prone to proteasomal degradation.
Collapse
Affiliation(s)
- Nelson B Cole
- Genetic Diseases Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Dalfó E, Albasanz JL, Martín M, Ferrer I. Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Brain Pathol 2004; 14:388-98. [PMID: 15605986 PMCID: PMC8095885 DOI: 10.1111/j.1750-3639.2004.tb00082.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffuse Lewy body disease (DLBD) is a degenerative disease of the nervous system, involving the brain stem, diencephalic nuclei and cerebral cortex, associated with abnormal a-synuclein aggregation and widespread formation of Lewy bodies and Lewy neurites. DLBD presents as pure forms (DLBDp) or in association with Alzheimer disease (AD) in the common forms (DLBDc). Several neurotransmitter abnormalities have been reported including those of the nigrostriatal and mesocorticolimbic dopaminergic system, and central noradrenergic, serotoninergic and cholinergic pathways. The present work examines metabotropic glutamate receptor (mGluR) expression and signaling in the frontal cortex of DLBDp and DLBDc cases in comparison with age-matched controls. Abnormal L-[3H]glutamate specific binding to group I and II mGluRs, and abnormal mGluR1 levels have been found in DLBD. This is associated with reduced expression levels of phospholipase C beta1 (PLCbeta1), the effector of group I mGluRs following protein G activation upon glutamate binding. Additional modification in the solubility of PLCbeta1 and reduced PLCbeta1 activity in pure and common DLBD further demonstrates for the first time abnormal mGluR signaling in the cerebral cortex in DLBD. In order to look for a possible link between abnormal mGluR signaling and a-synuclein accumulation in DLBD, immunoprecipitation studies have shown alpha-synuclein/PLCbeta1 binding in controls and decreased alpha-synuclein/PLCbeta1 binding in DLBD. This is accompanied by a shift in the distribution of a-synuclein, but not of PLCbeta1, in DLBD when compared with controls. Together, these results support the concept that abnormal a-synuclein in DLBD produces functional effects on cortical glutamatergic synapses, which are associated with reduced alpha-synuclein/PLCbeta1 interactions, and, therefore, that mGluRs are putative pharmacological targets in DLBD. Finally, these results emphasize the emergence of a functional neuropathology that has to be explored for a better understanding of the effects of abnormal protein interactions in degenerative diseases of the nervous system.
Collapse
Affiliation(s)
- E. Dalfó
- Instituto de Neuropatología, Servicio de Anatomía Patológica, IDIBELL‐Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain
| | - J. L. Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla‐La Mancha, Ciudad Real, Spain
| | - M. Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla‐La Mancha, Ciudad Real, Spain
| | - I. Ferrer
- Instituto de Neuropatología, Servicio de Anatomía Patológica, IDIBELL‐Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain
- Departamento de Biología Celular y Anatomía Patológica, Facultad de Medicina, Universidad de Barcelona, campus de Bellvitge, Hospitalet de Llobregat, Spain
| |
Collapse
|
50
|
Takao M, Ghetti B, Yoshida H, Piccardo P, Narain Y, Murrell JR, Vidal R, Glazier BS, Jakes R, Tsutsui M, Spillantini MG, Crowther RA, Goedert M, Koto A. Early-onset dementia with Lewy bodies. Brain Pathol 2004; 14:137-47. [PMID: 15193026 PMCID: PMC8095855 DOI: 10.1111/j.1750-3639.2004.tb00046.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The clinical and neuropathological characteristics of an atypical form of dementia with Lewy bodies (DLB) are described. The proband experienced difficulties in her school performance at 13 years of age. Neurological examination revealed cognitive dysfunction, dysarthria, parkinsonism and myoclonus. By age 14 years, the symptoms had worsened markedly and the proband died at age 15 years. On neuropathological examination, the brain was severely atrophic. Numerous intracytoplasmic and intraneuritic Lewy bodies, as well as Lewy neurites, were present throughout the cerebral cortex and subcortical nuclel; vacuolar changes were seen in the upper layers of the neocortex and severe neuronal loss and gliosis were evident in the cerebral cortex and substantia nigra. Lewy bodies and Lewy neurites were strongly immunoreactive for alpha-synuclein and ubiquitin. Lewy bodies were composed of filamentous and granular material and isolated filaments were decorated by alpha-synuclein antibodies. Immunohistochemistry for tau or beta-amyloid yielded negative results. The etiology of this atypical form of DLB is unknown, since there was no family history and since sequencing of the exonic regions of alpha-Synuclein, beta-Synuclein, Synphilin-1, Parkin, Ubiquitin C-terminal hydrolase L1 and Neurofilament-M failed to reveal a pathogenic mutation. This study provides further evidence of the clinical and pathological heterogeneity of DLB.
Collapse
Affiliation(s)
- Masaki Takao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Ind
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Ind
| | | | - Pedro Piccardo
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Ind
| | - Yolanda Narain
- Centre for Brain Repair and Department of Neurology, Cambridge University, United Kingdom
| | - Jill R. Murrell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Ind
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Ind
| | - Bradley S. Glazier
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Ind
| | - Ross Jakes
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Miho Tsutsui
- Centre for Brain Repair and Department of Neurology, Cambridge University, United Kingdom
| | | | | | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Atsuo Koto
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Faculty of Nursing and Medical Care, Keio University, Tokyo, Japan
| |
Collapse
|