1
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
3
|
Mendes AKB, Sulis PM, Cavalari FC, Padilla DPR, Aragón M, Gaspar JM, Silva FRMB. 1α,25-(OH) 2 vitamin D 3 prevents insulin resistance and regulates coordinated exocytosis and insulin secretion. J Nutr Biochem 2021; 99:108864. [PMID: 34606907 DOI: 10.1016/j.jnutbio.2021.108864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Vitamin D3 is associated with improvements in insulin resistance and glycemia. In this study, we investigated the short-term effect of 1α,25(OH)2 Vitamin D3 (1,25-D3) and cholecalciferol (vitamin D3) on the glycemia and insulin sensitivity of control and dexamethasone-induced insulin-resistance rats. 45Ca2+ influx responses to 1,25-D3 and its role in insulin secretion were investigated in isolated pancreatic islets from control rats. In vivo, 5 d treatment with 1,25-D3 (i.p.) prevented insulin resistance in dexamethasone-treated rats. Treatment with 1,25-D3 improved the activities of hepatic enzymes, serum lipids and calcium concentrations in insulin-resistant rats. 25-D3 (o.g.) does not affect insulin resistance. In pancreatic islets, 1,25-D3 increased insulin secretion and stimulated rapid response 45Ca2+ influx. The stimulatory effect of 1,25-D3 on 45Ca2+ influx was decreased by diazoxide, apamine, thapsigargin, dantrolene, 2-APB, nifedipine, TEA, PKA, PKC, and cytoskeleton inhibitor, while it was increased by glibenclamide and N-ethylmaleimide. The stimulatory effect of 1,25-D3 on 45Ca2+ influx involves the activation of L-type VDCC, K+-ATP, K+-Ca2+, and Kv channels, which augment cytosolic calcium. These ionic changes mobilize calcium from stores and downstream activation of PKC, PKA tethering vesicle traffic and fusion at the plasma membrane for insulin secretion. This is the first study highlighting the unprecedented role of 1,25-D3 (short-term effect) in the regulation of glucose homeostasis and on prevention of insulin resistance. Furthermore, this study shows the intracellular β-cell signal transduction of 1,25-D3 through the modulation of pivotal ionic channels and proteins exhibiting a coordinated exocytosis of vesicles for insulin secretion.
Collapse
Affiliation(s)
- Ana Karla Bittencourt Mendes
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Paola Miranda Sulis
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Fernanda Carvalho Cavalari
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Diana Patricia Rey Padilla
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Bogotá, D. C., Colombia
| | - Marcela Aragón
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Bogotá, D. C., Colombia
| | - Joana Margarida Gaspar
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil; Núcleo de Bioeletricidade Celular (NUBIOCEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis- SC, Brazil.
| |
Collapse
|
4
|
Zhang L, Li J, Zhang P, Gao Z, Zhao Y, Qiao X, Chen C. PI4KIIα regulates insulin secretion and glucose homeostasis via a PKD-dependent pathway. BIOPHYSICS REPORTS 2018; 4:25-38. [PMID: 29577067 PMCID: PMC5860104 DOI: 10.1007/s41048-018-0049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin release by pancreatic β cells plays a key role in regulating blood glucose levels in humans, and to understand the mechanism for insulin secretion may reveal therapeutic strategies for diabetes. We found that PI4KIIα transgenic (TG) mice have abnormal glucose tolerance and higher serum glucose levels than wild-type mice. Glucose-stimulated insulin secretion was significantly reduced in both PI4KIIα TG mice and PI4KIIα-overexpressing pancreatic β cell lines. A proximity-based biotin labeling technique, BioID, was used to identify proteins that interact with PI4KIIα, and the results revealed that PI4KIIα interacts with PKD and negatively regulates its activity. The effect of PI4KIIα on insulin secretion was completely rescued by altering PKD activity. PI4KIIα overexpression also worsened glucose tolerance in streptozotocin/high-fat diet-induced diabetic mice by impairing insulin secretion. Our study has shed new light on PI4KIIα function and mechanism in diabetes and identified PI4KIIα as an important regulator of insulin secretion.
Collapse
Affiliation(s)
- Lunfeng Zhang
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiangmei Li
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210 China
| | - Panpan Zhang
- 3Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210 China
| | - Zhen Gao
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingying Zhao
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,3Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210 China
| | - Xinhua Qiao
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chang Chen
- 1National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China.,4Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
5
|
Vallejo D, Lee SH, Lee D, Zhang C, Rapier C, Chessler SD, Lee AP. Cell-sized lipid vesicles for cell-cell synaptic therapies. TECHNOLOGY 2017; 5:201-213. [PMID: 29744376 PMCID: PMC5937847 DOI: 10.1142/s233954781750011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell-sized lipid vesicles (CLVs) have shown great promise for therapeutic and artificial cell applications, but their fragility and short shelf life has hindered widespread adoption and commercial viability. We present a method to circumvent the storage limitations of CLVs such as giant unilamellar vesicles (GUVs) and single-compartment multisomes (SCMs) by storing them in a double emulsion precursor form. The double emulsions can be stored for at least 8 months and readily converted into either GUVs or SCMs at any time. In this study, we investigate the interfacial parameters responsible for this morphological change, and we also demonstrate the therapeutic potential of CLVs by utilizing them to present a transmembrane protein, neuroligin-2, to pancreatic β-cells, forming cell-cell synapses that stimulate insulin secretion and cellular growth.
Collapse
Affiliation(s)
- D Vallejo
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| | - S H Lee
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| | - D Lee
- School of Medicine, University of California at Irvine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - C Zhang
- School of Medicine, University of California at Irvine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - C Rapier
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| | - S D Chessler
- School of Medicine, University of California at Irvine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - A P Lee
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
- Department of Mechanical and Aerospace Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| |
Collapse
|
6
|
Müller A, Mziaut H, Neukam M, Knoch KP, Solimena M. A 4D view on insulin secretory granule turnover in the β-cell. Diabetes Obes Metab 2017; 19 Suppl 1:107-114. [PMID: 28880479 DOI: 10.1111/dom.13015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/31/2023]
Abstract
Insulin secretory granule (SG) turnover consists of several highly regulated processes allowing for proper β-cell function and insulin secretion. Besides the spatial distribution of insulin SGs, their age has great impact on the likelihood of their secretion and their behaviour within the β-cell. While quantitative measurements performed decades ago demonstrated the preferential secretion of young insulin, new experimental approaches aim to investigate insulin ageing at the granular level. Live-cell imaging, automated image analysis and correlative light and electron microscopy have fostered knowledge of age-defined insulin SG dynamics, their interaction with the cytoskeleton and ultrastructural features. Here, we review our recent work in regards to the connection between insulin SG age, SG dynamics, intracellular location and interaction with other proteins.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hassan Mziaut
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| |
Collapse
|
7
|
Munder A, Israel LL, Kahremany S, Ben-Shabat-Binyamini R, Zhang C, Kolitz-Domb M, Viskind O, Levine A, Senderowitz H, Chessler S, Lellouche JP, Gruzman A. Mimicking Neuroligin-2 Functions in β-Cells by Functionalized Nanoparticles as a Novel Approach for Antidiabetic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1189-1206. [PMID: 28045486 PMCID: PMC6035049 DOI: 10.1021/acsami.6b10568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Both pancreatic β-cell membranes and presynaptic active zones of neurons include in their structures similar protein complexes, which are responsible for mediating the secretion of bioactive molecules. In addition, these membrane-anchored proteins regulate interactions between neurons and guide the formation and maturation of synapses. These proteins include the neuroligins (e.g., NL-2) and their binding partners, the neurexins. The insulin secretion and maturation of β-cells is known to depend on their 3-dimensional (3D) arrangement. It was also reported that both insulin secretion and the proliferation rates of β-cells increase when cells are cocultured with clusters of NL-2. Use of full-length NL-2 or even its exocellular domain as potential β-cell functional enhancers is limited by the biostability and bioavailability issues common to all protein-based therapeutics. Thus, based on molecular modeling approaches, a short peptide with the potential ability to bind neurexins was derived from the NL-2 sequence. Here, we show that the NL-2-derived peptide conjugates onto innovative functional maghemite (γ-Fe2O3)-based nanoscale composite particles enhance β-cell functions in terms of glucose-stimulated insulin secretion and protect them under stress conditions. Recruiting the β-cells' "neuron-like" secretory machinery as a target for diabetes treatment use has never been reported before. Such nanoscale composites might therefore provide a unique starting point for designing a novel class of antidiabetic therapeutic agents that possess a unique mechanism of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Liron L. Israel
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rina Ben-Shabat-Binyamini
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Charles Zhang
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of California, Irvine, California, United States
| | - Michal Kolitz-Domb
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Olga Viskind
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Anna Levine
- The Scientific Equipment Center, Faculty of Biological Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanoch Senderowitz
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Steven Chessler
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of California, Irvine, California, United States
| | - Jean-Paul Lellouche
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
8
|
Sargsyan E, Artemenko K, Manukyan L, Bergquist J, Bergsten P. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1151-1160. [PMID: 27344025 DOI: 10.1016/j.bbalip.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids.
Collapse
Affiliation(s)
- Ernest Sargsyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden.
| | | | - Levon Manukyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
9
|
Choong FJ, Freeman C, Parish CR, Simeonovic CJ. Islet heparan sulfate but not heparan sulfate proteoglycan core protein is lost during islet isolation and undergoes recovery post-islet transplantation. Am J Transplant 2015; 15:2851-64. [PMID: 26104150 DOI: 10.1111/ajt.13366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 03/29/2015] [Accepted: 04/19/2015] [Indexed: 01/25/2023]
Abstract
Islet beta cells in situ express intracellular heparan sulfate (HS), a property previously shown in vitro to be important for their survival. We report that HS levels inside islet beta cells correlate with the novel intracellular localization of the HSPG core proteins for collagen type XVIII (Col18), a conventional extracellular matrix component. Syndecan-1 (Sdc1) and CD44 core proteins were similarly localized inside beta cells. During isolation, mouse islets selectively lose HS to 11-27% of normal levels but retain their HSPG core proteins. Intra-islet HS failed to recover substantially during culture for 4 days and was not reconstituted in vitro using HS mimetics. In contrast, significant recovery of intra-islet HS to ∼40-50% of normal levels occurred by 5-10 days after isotransplantation. Loss of islet HS during the isolation procedure is independent of heparanase (a HS-degrading endoglycosidase) and due, in part, to oxidative damage. Treatment with antioxidants reduced islet cell death by ∼60% and increased the HS content of isolated islets by ∼twofold compared to untreated islets, preserving intra-islet HS to ∼60% of the normal HS content of islets in situ. These findings suggest that the preservation of islet HS during the islet isolation process may optimize islet survival posttransplant.
Collapse
Affiliation(s)
- F J Choong
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C Freeman
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C R Parish
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - C J Simeonovic
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
10
|
Castro AJG, Cazarolli LH, de Carvalho FK, da Luz G, Altenhofen D, dos Santos ARS, Pizzolatti MG, Silva FRMB. Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis. J Steroid Biochem Mol Biol 2015; 150:112-22. [PMID: 25843210 DOI: 10.1016/j.jsbmb.2015.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022]
Abstract
The effect of 3β-hidroxihop-22(29)ene (3-BHO) on insulin and glucagon-like peptide 1 (GLP-1) secretion as well as the mechanism of action of the compound in pancreatic islet on glucose homeostasis was investigated. The data from in vivo treatment show that 3-BHO significantly reduces the hyperglycemia by increasing the insulin and GLP-1 secretion, as well as by accumulating hepatic glycogen in hyperglycemic rats. In rat pancreatic β-cell, 3-BHO stimulates the glucose uptake, insulin vesicles translocation to the plasma membrane and thus the insulin secretion through the involvement of potassium channels (ATP- and Ca(2+)-dependent K(+) channels) and calcium channels (L-type voltage-dependent calcium channels (L-VDCC)). Furthermore, this study also provides evidence for a crosstalk between intracellular high calcium concentration, PKA and PKC in the signal transduction of 3-BHO to stimulate insulin secretion. In conclusion, 3-BHO diminishes glycaemia, stimulates GLP-1 secretion and potentiates insulin secretion and increase hepatic glycogen content. Moreover, this triterpene modulates calcium influx characterizing ATP-K(+), Ca(2+)-K(+) and L-VDCC channels-dependent pathways as well as PKA and PKC activity in pancreatic islets underlying the signaling of 3-BHO for the secretory activity and contribution on glucose homeostasis.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras do Sul, Laranjeiras do Sul, PR, Brazil
| | - Francieli Kanumfre de Carvalho
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Gabrielle da Luz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil
| | - Delsi Altenhofen
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil
| | - Adair Roberto Soares dos Santos
- Universidade Federal de Santa Catarina, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
12
|
A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:280392. [PMID: 23662125 PMCID: PMC3639639 DOI: 10.1155/2013/280392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/15/2013] [Accepted: 02/03/2013] [Indexed: 11/21/2022]
Abstract
Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes.
Collapse
|
13
|
Kim B, Yoon BS, Moon JH, Kim J, Jun EK, Lee JH, Kim JS, Baik CS, Kim A, Whang KY, You S. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells. Exp Mol Med 2012; 44:26-35. [PMID: 22020533 DOI: 10.3858/emm.2012.44.1.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin- producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis- derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal- endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin- induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Bona Kim
- Laboratory of Cell Function Regulation College of Life Sciences and Biotechnology Korea University Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schvartz D, Brunner Y, Couté Y, Foti M, Wollheim CB, Sanchez JC. Improved characterization of the insulin secretory granule proteomes. J Proteomics 2012; 75:4620-31. [PMID: 22569486 DOI: 10.1016/j.jprot.2012.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/22/2012] [Accepted: 04/20/2012] [Indexed: 11/15/2022]
Abstract
Insulin secretory granules (ISGs) are pivotal organelles of pancreatic ß-cells and represent a key participant to glucose homeostasis. Indeed, insulin is packed and processed within these vesicles before its release by exocytosis. It is therefore crucial to acquire qualitative and quantitative data on the ISG proteome, in order to increase our knowledge on ISG biogenesis, maturation and exocytosis. Despites efforts made in the past years, the coverage of the ISG proteome is still incomplete and comprises many potential protein contaminants most likely coming from suboptimal sample preparations. We developed here a 3-step gradient purification procedure combined to Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to further characterize the ISG protein content. Our results allowed to build three complementary proteomes containing 1/ proteins which are enriched in mature ISGs, 2/ proteins sharing multiple localizations including ISGs, and finally 3/ proteins sorted out from immature ISGs and/or co-purifying contaminants. As a proof of concept, the ProSAAS, a neuronal protein found in ISGs was further characterized and its granular localization proved. ProSAAS might represent a novel potential target allowing to better understand the defaults in insulin processing and secretion observed during type 2 diabetes progression. This article is part of a special issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Domitille Schvartz
- Biomedical Proteomics Research Group, Department of Human Protein Sciences, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Suckow AT, Zhang C, Egodage S, Comoletti D, Taylor P, Miller MT, Sweet IR, Chessler SD. Transcellular neuroligin-2 interactions enhance insulin secretion and are integral to pancreatic β cell function. J Biol Chem 2012; 287:19816-26. [PMID: 22528485 DOI: 10.1074/jbc.m111.280537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Normal glucose-stimulated insulin secretion is dependent on interactions between neighboring β cells. Elucidation of the reasons why this cell-to-cell contact is essential will probably yield critical insights into β cell maturation and function. In the central nervous system, transcellular protein interactions (i.e. interactions between proteins on the surfaces of different cells) involving neuroligins are key mediators of synaptic functional development. We previously demonstrated that β cells express neuroligin-2 and that insulin secretion is affected by changes in neuroligin-2 expression. Here we show that the effect of neuroligin-2 on insulin secretion is mediated by transcellular interactions. Neuroligin-2 binds with nanomolar affinity to a partner on the β cell surface and contributes to the increased insulin secretion brought about by β cell-to-β cell contact. It does so in a manner seemingly independent of interactions with neurexin, a known binding partner. As in the synapse, transcellular neuroligin-2 interactions enhance the functioning of the submembrane exocytic machinery. Also, as in the synapse, neuroligin-2 clustering is important. Neuroligin-2 in soluble form, rather than presented on a cell surface, decreases insulin secretion by rat islets and MIN-6 cells, most likely by interfering with endogenous neuroligin interactions. Prolonged contact with neuroligin-2-expressing cells increases INS-1 β cell proliferation and insulin content. These results extend the known parallels between the synaptic and β cell secretory machineries to extracellular interactions. Neuroligin-2 interactions are one of the few transcellular protein interactions thus far identified that directly enhance insulin secretion. Together, these results indicate a significant role for transcellular neuroligin-2 interactions in the establishment of β cell function.
Collapse
Affiliation(s)
- Arthur T Suckow
- Department of Medicine and Pediatric Diabetes Research Center, UCSD School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shawl AI, Park KH, Kim BJ, Higashida C, Higashida H, Kim UH. Involvement of actin filament in the generation of Ca2+ mobilizing messengers in glucose-induced Ca2+ signaling in pancreatic β-cells. Islets 2012; 4:145-51. [PMID: 22627736 DOI: 10.4161/isl.19490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucose is a metabolic regulator of insulin secretion from pancreatic β-cells, which is regulated by intracellular Ca(2+) signaling. We and others previously demonstrated that glucose activates CD38/ADP-ribosyl cyclase (ADPR-cyclase) to produce two Ca(2+) second messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). Although F-actin remodeling is known to be an important step in glucose stimulated insulin secretion, the role of actin cytoskeleton in regulating Ca(2+) signaling in pancreatic β-cells remain to be solved. Here, we show that actin filaments are involved in the activation of CD38/ADPR-cyclase in pancreatic β-cells. Glucose induces a sequential formation of cADPR and NAADP. Pretreatment with jasplakinolide, an actin polymerizing agent, or a myosin heavy chain IIA (MHCIIA) blocker, blebbistatin, inhibited glucose-induced CD38 internalization, an essential step for cADPR formation. Blocking actin disassembly with jasplakinolide also abrogates glucose-induced cADPR and NAADP formation and sustained Ca(2+) signals. These results indicate that actin filaments along with MHCIIA play an important role in CD38 internalization for the generation of Ca(2+) mobilizing messengers for glucose-induced Ca(2+) signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Asif Iqbal Shawl
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Demozay D, Tsunekawa S, Briaud I, Shah R, Rhodes CJ. Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet β-cells. Diabetes 2011; 60:2892-902. [PMID: 21940781 PMCID: PMC3198104 DOI: 10.2337/db11-0341] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Insulin receptor substrate-2 (IRS-2) plays an essential role in pancreatic islet β-cells by promoting growth and survival. IRS-2 turnover is rapid in primary β-cells, but its expression is highly regulated at the transcriptional level, especially by glucose. The aim was to investigate the molecular mechanism on how glucose regulates IRS-2 gene expression in β-cells. RESEARCH DESIGN AND METHODS Rat islets were exposed to inhibitors or subjected to adenoviral vector-mediated gene manipulations and then to glucose-induced IRS-2 expression analyzed by real-time PCR and immunoblotting. Transcription factor nuclear factor of activated T cells (NFAT) interaction with IRS-2 promoter was analyzed by chromatin immunoprecipitation assay and glucose-induced NFAT translocation by immunohistochemistry. RESULTS Glucose-induced IRS-2 expression occurred in pancreatic islet β-cells in vivo but not in liver. Modulating rat islet β-cell Ca(2+) influx with nifedipine or depolarization demonstrated that glucose-induced IRS-2 gene expression was dependent on a rise in intracellular calcium concentration derived from extracellular sources. Calcineurin inhibitors (FK506, cyclosporin A, and a peptide calcineurin inhibitor [CAIN]) abolished glucose-induced IRS-2 mRNA and protein levels, whereas expression of a constitutively active calcineurin increased them. Specific inhibition of NFAT with the peptide inhibitor VIVIT prevented a glucose-induced IRS-2 transcription. NFATc1 translocation to the nucleus in response to glucose and association of NFATc1 to conserved NFAT binding sites in the IRS-2 promoter were demonstrated. CONCLUSIONS The mechanism behind glucose-induced transcriptional control of IRS-2 gene expression specific to the islet β-cell is mediated by the Ca(2+)/calcineurin/NFAT pathway. This insight into the IRS-2 regulation could provide novel therapeutic means in type 2 diabetes to maintain an adequate functional mass.
Collapse
Affiliation(s)
- Damien Demozay
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | - Shin Tsunekawa
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | | | - Ramila Shah
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois
- Corresponding author: Christopher J. Rhodes,
| |
Collapse
|
18
|
Dolenšek J, Skelin M, Rupnik MS. Calcium dependencies of regulated exocytosis in different endocrine cells. Physiol Res 2011; 60:S29-38. [PMID: 21777026 DOI: 10.33549/physiolres.932176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Exocytotic machinery in neuronal and endocrine tissues is sensitive to changes in intracellular Ca(2+) concentration. Endocrine cell models, that are most frequently used to study the mechanisms of regulated exocytosis, are pancreatic beta cells, adrenal chromaffin cells and pituitary cells. To reliably study the Ca(2+) sensitivity in endocrine cells, accurate and fast determination of Ca(2+) dependence in each tested cell is required. With slow photo-release it is possible to induce ramp-like increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) that leads to a robust exocytotic activity. Slow increases in the [Ca(2+)](i) revealed exocytotic phases with different Ca(2+) sensitivities that have been largely masked in step-like flash photo-release experiments. Strikingly, in the cells of the three described model endocrine tissues (beta, chromaffin and melanotroph cells), distinct Ca(2+) sensitivity 'classes' of secretory vesicles have been observed: a highly Ca(2+)-sensitive, a medium Ca(2+)-sensitive and a low Ca(2+)-sensitive kinetic phase of secretory vesicle exocytosis. We discuss that a physiological modulation of a cellular activity, e.g. by activating cAMP/PKA transduction pathway, can switch the secretory vesicles between Ca(2+) sensitivity classes. This significantly alters late steps in the secretory release of hormones even without utilization of an additional Ca(2+) sensor protein.
Collapse
Affiliation(s)
- J Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | | |
Collapse
|
19
|
Skelin M, Rupnik M. cAMP increases the sensitivity of exocytosis to Ca²+ primarily through protein kinase A in mouse pancreatic beta cells. Cell Calcium 2011; 49:89-99. [PMID: 21242000 DOI: 10.1016/j.ceca.2010.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
Cyclic AMP regulates the late step of Ca²+-dependent exocytosis in many secretory cells through two major mechanisms: a protein kinase A-dependent and a cAMP-GEF/Epac-dependent pathway. We designed a protocol to characterize the role of these two cAMP-dependent pathways on the Ca²+ sensitivity and kinetics of regulated exocytosis in mouse pancreatic beta cells, using a whole-cell patch-clamp based capacitance measurements. A train of depolarizing pulses or slow photo-release of caged Ca²+ were stimuli for the exocytotic activity. In controls, due to exocytosis after slow photo-release, the C(m) change had typically two phases. We observed that the Ca²+-dependency of the rate of the first C(m) change follows saturation kinetics with high cooperativity and half-maximal rate at 2.9±0.2 μM. The intracellular depletion of cAMP did not change amp1, while rate1 and amp2 were strongly reduced. This manipulation pushed the Ca²+-dependency of the exocytotic burst to significantly lower [Ca²+](i). To address the question of which of the cAMP-dependent mechanisms regulates the observed shifts in Ca²+ dependency we included regulators of PKA and Epac2 activity in the pipette solution. PKA activation with 100 μM 6-Phe-cAMP or inhibition with 500 μM Rp-cAMPs in beta cells significantly shifted the EC(50) in the opposite directions. Specific activation of Epac2 did not change Ca²+ sensitivity. Our findings suggest that cAMP modulates Ca²+-dependent exocytosis in mouse beta cells mainly through a PKA-dependent mechanism by sensitizing the insulin releasing machinery to [Ca²+](i); Epac2 may contribute to enhance the rates of secretory vesicle fusion.
Collapse
Affiliation(s)
- Maša Skelin
- Faculty of Medicine University of Maribor, Slomskov trg 15, 2000 Maribor, Slovenia
| | | |
Collapse
|
20
|
Cui J, Wang Z, Cheng Q, Lin R, Zhang XM, Leung PS, Copeland NG, Jenkins NA, Yao KM, Huang JD. Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency. Diabetes 2011; 60:320-30. [PMID: 20870970 PMCID: PMC3012189 DOI: 10.2337/db09-1078] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Suppression of Kinesin-1 by antisense oligonucleotides, or overexpression of dominant-negative acting kinesin heavy chain, has been reported to affect the sustained phase of glucose-stimulated insulin secretion in β-cells in vitro. In this study, we examined the in vivo physiological role of Kinesin-1 in β-cell development and function. RESEARCH DESIGN AND METHODS A Cre-LoxP strategy was used to generate conditional knockout mice in which the Kif5b gene is specifically inactivated in pancreatic β-cells. Physiological and histological analyses were carried out in Kif5b knockout mice as well as littermate controls. RESULTS Mice with β-cell specific deletion of Kif5b (Kif5b(fl/)⁻:RIP2-Cre) displayed significantly retarded growth as well as slight hyperglycemia in both nonfasting and 16-h fasting conditions compared with control littermates. In addition, Kif5b(fl/)⁻:RIP2-Cre mice displayed significant glucose intolerance, which was not due to insulin resistance but was related to an insulin secretory defect in response to glucose challenge. These defects of β-cell function in mutant mice were not coupled with observable changes in islet morphology, islet cell composition, or β-cell size. However, compared with controls, pancreas of Kif5b(fl/)⁻:RIP2-Cre mice exhibited both reduced islet size and increased islet number, concomitant with an increased insulin vesicle density in β-cells. CONCLUSIONS In addition to being essential for maintaining glucose homeostasis and regulating β-cell function, Kif5b may be involved in β-cell development by regulating β-cell proliferation and insulin vesicle synthesis.
Collapse
Affiliation(s)
- Ju Cui
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Zai Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qianni Cheng
- Department of Physiology, The Chinese University of Hong Kong, Hong Kong
| | - Raozhou Lin
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xin-Mei Zhang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Po Sing Leung
- Department of Physiology, The Chinese University of Hong Kong, Hong Kong
| | - Neal G. Copeland
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Nancy A. Jenkins
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Kwok-Ming Yao
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Corresponding author: Jian-Dong Huang, , or Kwok-Ming Yao,
| | - Jian-Dong Huang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Corresponding author: Jian-Dong Huang, , or Kwok-Ming Yao,
| |
Collapse
|
21
|
Kang N, Won JH, Park YM. Annexin I stimulates insulin secretion through regulation of cytoskeleton and PKC activity. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2009.9647190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Na‐na Kang
- a Department of Biological Sciences and Institute for Basic Sciences , Sungkyunkwan University , Suwon, 440–746, Korea
| | - Jong Hak Won
- b Department of Pharmacology and Physiology , University of Rochester , Rochester, New York, 14642, USA
| | - Young Min Park
- c Department of Biological Sciences and Institute for Basic Sciences , Sungkyunkwan University , Suwon, 440–746, Korea Phone: Fax: E-mail:
| |
Collapse
|
22
|
Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD. Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 2008; 149:6006-17. [PMID: 18755801 PMCID: PMC2613060 DOI: 10.1210/en.2008-0274] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The composition of the beta-cell exocytic machinery is very similar to that of neuronal synapses, and the developmental pathway of beta-cells and neurons substantially overlap. beta-Cells secrete gamma-aminobutyric acid and express proteins that, in the brain, are specific markers of inhibitory synapses. Recently, neuronal coculture experiments have identified three families of synaptic cell-surface molecules (neurexins, neuroligins, and SynCAM) that drive synapse formation in vitro and that control the differentiation of nascent synapses into either excitatory or inhibitory fully mature nerve terminals. The inhibitory synapse-like character of the beta-cells led us to hypothesize that members of these families of synapse-inducing adhesion molecules would be expressed in beta-cells and that the pattern of expression would resemble that associated with neuronal inhibitory synaptogenesis. Here, we describe beta-cell expression of the neuroligins, neurexins, and SynCAM, and show that neuroligin expression affects insulin secretion in INS-1 beta-cells and rat islet cells. Our findings demonstrate that neuroligins and neurexins are expressed outside the central nervous system and help confer an inhibitory synaptic-like phenotype onto the beta-cell surface. Analogous to their role in synaptic neurotransmission, neurexin-neuroligin interactions may play a role in the formation of the submembrane insulin secretory apparatus.
Collapse
Affiliation(s)
- Arthur T Suckow
- Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Idone V, Tam C, Andrews NW. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol 2008; 18:552-9. [PMID: 18848451 PMCID: PMC2593466 DOI: 10.1016/j.tcb.2008.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/31/2008] [Accepted: 09/01/2008] [Indexed: 12/21/2022]
Abstract
Ca(2+) influx through plasma membrane wounds triggers a rapid-repair response that is essential for cell survival. Earlier studies showed that repair requires the exocytosis of intracellular vesicles. Exocytosis was thought to promote resealing by 'patching' the plasma membrane lesion or by facilitating bilayer restoration through reduction in membrane tension. However, cells also rapidly repair lesions created by pore-forming proteins, a form of injury that cannot be resealed solely by exocytosis. Recent studies indicate that, in cells injured by pores or mechanical abrasions, exocytosis is followed by lesion removal through endocytosis. Describing the relationship between wound-induced exocytosis and endocytosis has implications for the understanding of muscular degenerative diseases that are associated with defects in plasma membrane repair.
Collapse
Affiliation(s)
- Vincent Idone
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Street, New Haven, CT 06511, USA
| | | | | |
Collapse
|
24
|
Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008; 57:2280-7. [PMID: 18519800 PMCID: PMC2518478 DOI: 10.2337/db08-0307] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The G-protein-coupled receptor Gpr40 is expressed in beta-cells where it contributes to free fatty acid (FFA) enhancement of glucose-stimulated insulin secretion. However, other sites of Gpr40 expression, including the intestine, have been suggested. The transcription factor IPF1/PDX1 was recently shown to bind to an enhancer element within the 5'-flanking region of Gpr40, implying that IPF1/PDX1 might regulate Gpr40 expression. Here, we addressed whether 1) Gpr40 is expressed in the intestine and 2) Ipf1/Pdx1 function is required for Gpr40 expression. RESEARCH DESIGN AND METHODS In the present study, Gpr40 expression was monitored by X-gal staining using Gpr40 reporter mice and by in situ hybridization. Ipf1/Pdx1-null and beta-cell specific mutants were used to investigate whether Ipf1/Pdx1 controls Gpr40 expression. Plasma insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucose levels in response to acute oral fat diet were determined in Gpr40 mutant and control mice. RESULTS Here, we show that Gpr40 is expressed in endocrine cells of the gastrointestinal tract, including cells expressing the incretin hormones GLP-1 and GIP, and that Gpr40 mediates FFA-stimulated incretin secretion. We also show that Ipf1/Pdx1 is required for expression of Gpr40 in beta-cells and endocrine cells of the anterior gastrointestinal tract. CONCLUSIONS Together, our data provide evidence that Gpr40 modulates FFA-stimulated insulin secretion from beta-cells not only directly but also indirectly via regulation of incretin secretion. Moreover, our data suggest a conserved role for Ipf1/Pdx1 and Gpr40 in FFA-mediated secretion of hormones that regulate glucose and overall energy homeostasis.
Collapse
Affiliation(s)
- Sara Edfalk
- Umeå Center for Molecular Medicine, University of Umeå, Umeå, Sweden
| | | | | |
Collapse
|
25
|
Hou Y, Huang Q, Liu T, Guo L. Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00459.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Baltrusch S, Lenzen S. Monitoring of glucose-regulated single insulin secretory granule movement by selective photoactivation. Diabetologia 2008; 51:989-96. [PMID: 18389213 DOI: 10.1007/s00125-008-0979-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Fluorescence microscopy opens new perspectives for the analysis of insulin secretory granule movement. In this study, we examined whether recently developed photoactivatable/photoconvertible proteins are a useful tool for studying this process at the single granule level in insulin-secreting cells after glucose stimulation. METHODS Plasmids were generated for expression of fusion proteins of the granule membrane phosphatase phogrin or the granule cargo protein neuropeptide Y (NPY) with the photoactivatable green fluorescent protein mutant A206K (PA-GFP-A206K), the photoconvertible protein Dendra2 and the fluorescent protein mCherry. Transfected insulin-secreting MIN6 cells were analysed by fluorescence microscopy. RESULTS Point-resolved 405 nm light exposure during image acquisition of MIN6 cells transiently transfected with Phogrin-PA-GFP-A206K or NPY-PA-GFP-A206K as well as of stable MIN6-Phogrin-Dendra2 cells resulted in selective visualisation of few granules by green or red fluorescence, respectively. Movement of these granules was analysed by an automated tracking method from confocal 3D image series. The high spatiotemporal resolution facilitated an elongated tracking of single granules. Interestingly, the track speed and track displacement of granules after 1 h starvation and subsequent glucose stimulation was lower in cells pre-cultured for 48 h at 3 mmol/l glucose than in cells pre-cultured at 25 mmol/l glucose. CONCLUSIONS/INTERPRETATION Targeting of the granule membrane or its cargo with a photoactivatable/photoconvertible protein allows in-depth visualisation and tracking of single insulin granules in dependence upon glucose. This technique may also open the way to elucidating the regulation of granule movement velocity within the pancreatic beta cell with respect to secretory defects in type 2 diabetes.
Collapse
Affiliation(s)
- S Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany.
| | | |
Collapse
|
27
|
Jaques F, Jousset H, Tomas A, Prost AL, Wollheim CB, Irminger JC, Demaurex N, Halban PA. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology 2008; 149:2494-505. [PMID: 18218692 DOI: 10.1210/en.2007-0974] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell interactions play an important role in insulin secretion. Compared with intact islets, dispersed pancreatic beta-cells show increased basal and decreased glucose-stimulated insulin secretion. In this study, we used mouse MIN6B1 cells to investigate the mechanisms that control insulin secretion when cells are in contact with each other or not. RNAi-mediated silencing of the adhesion molecule E-cadherin in confluent cells reduced glucose-stimulated secretion to the levels observed in isolated cells but had no impact on basal secretion. Dispersed cells presented high cytosolic Ca(2+) activity, depolymerized cytoskeleton and ERK1/2 activation in low glucose conditions. Both the increased basal secretion and the spontaneous Ca(2+) activity were corrected by transient removal of Ca(2+) or prolonged incubation of cells in low glucose, a procedure that restored the ability of dispersed cells to respond to glucose (11-fold stimulation). In conclusion, we show that dispersed pancreatic beta-cells can respond robustly to glucose once their elevated basal secretion has been corrected. The increased basal insulin secretion of dispersed cells is due to spontaneous Ca(2+) transients that activate downstream Ca(2+) effectors, whereas engagement of cell adhesion molecules including E-cadherin contributes to the greater secretory response to glucose seen in cells with normal intercellular contacts.
Collapse
Affiliation(s)
- Fabienne Jaques
- Department of Genetic Medicine and Development, University of Geneva Medical Center, 1211 Geneva-4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu H, Yang Y, Allister EM, Wijesekara N, Wheeler MB. The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol Cell Proteomics 2008; 7:1434-51. [PMID: 18448419 DOI: 10.1074/mcp.m700478-mcp200] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes (T2D) arises when pancreatic beta-cells fail to compensate for systemic insulin resistance with appropriate insulin secretion. However, the link between insulin resistance and beta-cell failure in T2D is not fully understood. To explore this association, we studied transgenic MKR mice that initially develop insulin resistance in skeletal muscle but by 8 weeks of age have T2D. In the present study, global islet protein and gene expression changes were characterized in diabetic MKR versus non-diabetic control mice at 10 weeks of age. Using a quantitative proteomics approach (isobaric tags for relative and absolute quantification (iTRAQ)), 159 proteins were differentially expressed in MKR compared with control islets. Marked up-regulation of protein biosynthesis and endoplasmic reticulum stress pathways and parallel down-regulation in insulin processing/secretion, energy utilization, and metabolism were observed. A fraction of the differentially expressed proteins identified (including GLUT2, DNAJC3, VAMP2, RAB3A, and PC1/3) were linked previously to insulin-secretory defects and T2D. However, many proteins for the first time were associated with islet dysfunction, including the unfolded protein response proteins (ERP72, ERP44, ERP29, PPIB, FKBP2, FKBP11, and DNAJB11), endoplasmic reticulum-associated degradation proteins (VCP and UFM1), and multiple proteins associated with mitochondrial energy metabolism (NDUFA9, UQCRH, COX2, COX4I1, COX5A, ATP6V1B2, ATP6V1H, ANT1, ANT2, ETFA, and ETFB). The mRNA expression level corresponding to these proteins was examined by microarray, and then a small subset was validated using quantitative real time PCR and Western blot analyses. Importantly approximately 54% of differentially expressed proteins in MKR islets (including proteins involved in proinsulin processing, protein biosynthesis, and mitochondrial oxidation) showed changes in the proteome but not transcriptome, suggesting post-transcriptional regulation. These results underscore the importance of integrated mRNA and protein expression measurements and validate the use of the iTRAQ method combined with microarray to assess global protein and gene changes involved in the development of T2D.
Collapse
Affiliation(s)
- Hongfang Lu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
29
|
Gene expression profiling of a mouse model of pancreatic islet dysmorphogenesis. PLoS One 2008; 3:e1611. [PMID: 18297134 PMCID: PMC2249940 DOI: 10.1371/journal.pone.0001611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/16/2008] [Indexed: 12/24/2022] Open
Abstract
Background In the past decade, several transcription factors critical for pancreas organogenesis have been identified. Despite this success, many of the factors necessary for proper islet morphogenesis and function remain uncharacterized. Previous studies have shown that transgenic over-expression of the transcription factor Hnf6 specifically in the pancreatic endocrine cell lineage resulted in disruptions in islet morphogenesis, including dysfunctional endocrine cell sorting, increased individual islet size, increased number of peripheral endocrine cell types, and failure of islets to migrate away from the ductal epithelium. The mechanisms whereby maintained Hnf6 causes defects in islet morphogenesis have yet to be elucidated. Methodology/Principal Findings We exploited the dysmorphic islets in Hnf6 transgenic animals as a tool to identify factors important for islet morphogenesis. Genome-wide microarray analysis was used to identify differences in the gene expression profiles of late gestation and early postnatal total pancreas tissue from wild type and Hnf6 transgenic animals. Here we report the identification of genes with an altered expression in Hnf6 transgenic animals and highlight factors with potential importance in islet morphogenesis. Importantly, gene products involved in cell adhesion, cell migration, ECM remodeling and proliferation were found to be altered in Hnf6 transgenic pancreata, revealing specific candidates that can now be analyzed directly for their role in these processes during islet development. Conclusions/Significance This study provides a unique dataset that can act as a starting point for other investigators to explore the role of the identified genes in pancreatogenesis, islet morphogenesis and mature β cell function.
Collapse
|
30
|
Hsueh WC, Silver KD, Pollin TI, Bell CJ, O'Connell JR, Mitchell BD, Shuldiner AR. A genome-wide linkage scan of insulin level derived traits: the Amish Family Diabetes Study. Diabetes 2007; 56:2643-8. [PMID: 17646211 DOI: 10.2337/db06-1023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Serum insulin levels are altered in insulin resistance and insulin deficiency, states that are associated with the development of type 2 diabetes. The goal of our study was to identify chromosomal regions that are likely to harbor genetic determinants of these traits. RESEARCH DESIGN AND METHODS We conducted a series of genetic analyses, including genome-wide and fine-mapping linkage studies, based on insulin levels measured during an oral glucose tolerance test (OGTT) in 552 nondiabetic participants in the Amish Family Diabetes Study. Indices of insulin secretion included the insulinogenic index and insulin at 30 min postglucose load (insulin 30), while indices of insulin resistance included homeostasis model assessment of insulin resistance (HOMA-IR) and fasting insulin. Insulin area under the curve, a measure of both insulin secretion and insulin resistance, was also examined. RESULTS All traits were modestly heritable, with heritability estimates ranging from 0.1 to 0.4 (all P < 0.05). There was significant genetic correlation between fasting insulin and HOMA-IR (rho(G) > 0.86, P < 0.05), as well as insulin 30 and insulinogenic index (rho(G) = 0.81, P < 0.0001), suggesting that common genes influence variation in these pairs of traits. Suggestive linkage signals in the genome scan were to insulin 30 on chromosome 15q23 (logarithm of odds [LOD] 2.53, P = 0.00032) and to insulinogenic index on chromosome 2p13 (LOD 2.51, P = 0.00034). Fine-mapping study further refined our signal for insulin 30 on chromosome 15 (LOD 2.38 at 68 cM). CONCLUSIONS These results suggest that there may be different genes influencing variation in OGTT measures of insulin secretion and insulin resistance.
Collapse
Affiliation(s)
- Wen-Chi Hsueh
- Department of Medicine, School of Medicine, University of California, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Brunner Y, Couté Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC. Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 2007; 6:1007-17. [PMID: 17317658 DOI: 10.1074/mcp.m600443-mcp200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin secretory granules (ISGs) are cytoplasmic organelles of pancreatic beta-cells. They are responsible for the storage and secretion of insulin. To date, only about 30 different proteins have been clearly described to be associated with these organelles. However, data from two-dimensional gel electrophoresis analyses suggested that almost 150 different polypeptides might be present within ISGs. The elucidation of the identity and function of the ISG proteins by proteomics strategies would be of considerable help to further understand some of the underlying mechanisms implicated in ISG biogenesis and trafficking. Furthermore it should give the bases to the comprehension of impaired insulin secretion observed during diabetes. A proteomics analysis of an enriched insulin granule fraction from the rat insulin-secreting cell line INS-1E was performed. The efficacy of the fractionation procedure was assessed by Western blot and electron microscopy. Proteins of the ISG fraction were separated by SDS-PAGE, excised from consecutive gel slices, and tryptically digested. Peptides were analyzed by nano-LC-ESI-MS/MS. This strategy identified 130 different proteins that were classified into four structural groups including intravesicular proteins, membrane proteins, novel proteins, and other proteins. Confocal microscopy analysis demonstrated the association of Rab37 and VAMP8 with ISGs in INS-1E cells. In conclusion, the present study identified 130 proteins from which 110 are new proteins associated with ISGs. The elucidation of their role will further help in the understanding of the mechanisms governing impaired insulin secretion during diabetes.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ren J, Jin P, Wang E, Liu E, Harlan DM, Li X, Stroncek DF. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. J Transl Med 2007; 5:1. [PMID: 17201925 PMCID: PMC1769476 DOI: 10.1186/1479-5876-5-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/03/2007] [Indexed: 01/28/2023] Open
Abstract
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Liu
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Harlan
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Li
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
33
|
Chistiakov DA, Tyurina I. Current strategies and perspectives in insulin gene therapy for diabetes. Expert Rev Endocrinol Metab 2007; 2:27-34. [PMID: 30743746 DOI: 10.1586/17446651.2.1.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin gene therapy is an approach that might overcome the weakness of islet cell therapy owing to its vulnerability to autoimmune attack. There are several mandatory conditions for successful insulin gene therapy. Efficient insulin gene therapy should have an effective insulin gene delivery mechanism, a system of regulation of the insulin biosynthesis that responds to glucose within extremely narrow physiological limits, a system of insulin processing into its active form and a choice of appropriate target cells, which possess biochemical characteristics similar to β cells, but are not targets for β-cell-specific self-reactivity. In this article, advantages and disadvantages of non-β-cell types that are most likely to be used for generating surrogate insulin-producing β cells are compared. Current achievements in insulin gene therapy are critically evaluated and future challenges are discussed.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Assistant Professor, University of Pittsburgh Medical Center, Department of Pathology, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Inna Tyurina
- b Executive Manager and Consultant, Public Relations and Consulting Group 'Imya', 8th Tekstilschikov Street 11, 109129, Moscow, Russia.
| |
Collapse
|
34
|
Abstract
The secretagogue, the incretin-like, and the suppressive activities of long-chain fatty acids (LCFAs) in modulating insulin secretion in vivo and in cultured islets were simulated here by beta,beta'-tetramethyl-hexadecanedioic acid (M16) and alpha,alpha'-tetrachloro-tetradecanedioic acid (Cl-DICA). M16, but not Cl-DICA, serves as a substrate for ATP-dependent CoA thioesterification but is not further metabolized. M16, but not Cl-DICA, acted as a potent insulin secretagogue in islets cultured in basal but not high glucose. Short-term exposure to M16 or Cl-DICA resulted in activation of glucose- but not arginine-stimulated insulin secretion. Long-term exposure to M16, but not to Cl-DICA, resulted in suppression of glucose-, arginine-, and K(+)-stimulated insulin secretion; inhibition of glucose-induced proinsulin biosynthesis; and depletion of islets insulin. beta-Cell mass and islet ATP content remained unaffected. Hence, nonmetabolizable LCFA analogs may highlight discrete LCFA metabolites and pathways involved in modulating insulin secretion, which could be overlooked due to the rapid turnover of natural LCFA.
Collapse
Affiliation(s)
- Guy Las
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, P.O. box 12272, Israel 91120
| | | | | | | |
Collapse
|
35
|
Vagn Korsgaard T, Colding-Jørgensen M. Time-dependent mechanisms in beta-cell glucose sensing. J Biol Phys 2006; 32:289-306. [PMID: 19669468 DOI: 10.1007/s10867-006-9017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/21/2006] [Accepted: 04/28/2006] [Indexed: 12/22/2022] Open
Abstract
The relation between plasma glucose and insulin release from pancreatic beta-cells is not stationary in the sense that a given glucose concentration leads to a specific rate of insulin secretion. A number of time-dependent mechanisms appear to exist that modify insulin release both on a short and a longer time scale. Typically, two phases are described. The first phase, lasting up to 10 min, is a pulse of insulin release in response to fast changes in glucose concentration. The second phase is a more steady increase of insulin release over minutes to hours, if the elevated glucose concentration is sustained. The paper describes the glucose sensing mechanism via the complex dynamics of the key enzyme glucokinase, which controls the first step in glucose metabolism: phosphorylation of glucose to glucose-6-phosphate. Three time-dependent phenomena (mechanisms) are described. The fastest, corresponding to the first phase, is a delayed negative feedback regulating the glucokinase activity. Due to the delay, a rapid glucose increase will cause a burst of activity in the glucose sensing system, before the glucokinase is down-regulated. The second mechanism corresponds to the translocation of glucokinase from an inactive to an active form. As the translocation is controlled by the product(s) of the glucokinase reaction rather than by the substrate glucose, this mechanism gives a positive, but saturable, feedback. Finally, the release of the insulin granules is assumed to be enhanced by previous glucose exposure, giving a so-called glucose memory to the beta-cells. The effect depends on the insulin release of the cells, and this mechanism constitutes a second positive, saturable feedback system. Taken together, the three phenomena describe most of the glucose sensing behaviour of the beta-cells. The results indicate that the insulin release is not a precise function of the plasma glucose concentration. It rather looks as if the beta-cells just increase the insulin production, until the plasma glucose has returned to normal. This type of integral control has the advantage that the precise glucose sensitivity of the beta-cells is not important for normal glucose homeostasis.
Collapse
Affiliation(s)
- Thomas Vagn Korsgaard
- Development Projects Management, Novo Nordisk A/S, Novo Allè, 2880 Bagsvaerd, Denmark
| | | |
Collapse
|
36
|
Cheviet S, Bezzi P, Ivarsson R, Renström E, Viertl D, Kasas S, Catsicas S, Regazzi R. Tomosyn-1 is involved in a post-docking event required for pancreatic β-cell exocytosis. J Cell Sci 2006; 119:2912-20. [PMID: 16787939 DOI: 10.1242/jcs.03037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the assembly of a ternary complex between the SNARE proteins syntaxin-1, SNAP25 and VAMP2 is known to be crucial for insulin exocytosis, the mechanisms controlling this key event are poorly understood. We found that pancreatic β-cells express different isoforms of tomosyn-1, a syntaxin-1-binding protein possessing a SNARE-like motif. Using atomic force microscopy we show that the SNARE-like domain of tomosyn-1 can form a complex with syntaxin-1 and SNAP25 but displays binding forces that are weaker than those observed for VAMP2 (237±13 versus 279±3 pN). In pancreatic β-cells tomosyn-1 was found to be concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of tomosyn-1 in the rat β-cell line INS-1E by RNA interference did not affect the number of secretory granules docked at the plasma membrane but led to a reduction in stimulus-induced exocytosis. Replacement of endogenous tomosyn-1 with mouse tomosyn-1, which differs in the nucleotide sequence from its rat homologue and escapes silencing, restored a normal secretory rate. Taken together, our data suggest that tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis of pancreatic β-cells in response to insulin secretagogues.
Collapse
Affiliation(s)
- Séverine Cheviet
- Department of Cell Biology and Morphology, Rue du Bugnon 9, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tomas A, Yermen B, Min L, Pessin JE, Halban PA. Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci 2006; 119:2156-67. [PMID: 16638805 DOI: 10.1242/jcs.02942] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously isolated two MIN6 beta-cell sublines, B1, highly responsive to glucose-stimulated insulin secretion, and C3, markedly refractory (Lilla, V., Webb, G., Rickenbach, K., Maturana, A., Steiner, D. F., Halban, P. A. and Irminger, J. C. (2003) Endocrinology 144, 1368-1379). We now demonstrate that C3 cells have substantially increased amounts of F-actin stress fibres whereas B1 cells have shorter cortical F-actin. Consistent with these data, B1 cells display glucose-dependent actin remodelling whereas, in C3 cells, F-actin is refractory to this secretagogue. Furthermore, F-actin depolymerisation with latrunculin B restores glucose-stimulated insulin secretion in C3 cells. In parallel, glucose-stimulated ERK1/2 activation is greater in B1 than in C3 cells, and is potentiated in both sublines following F-actin depolymerisation. Glucose-activated phosphoERK1/2 accumulates at actin filament tips adjacent to the plasma membrane, indicating that these are the main sites of action for this kinase during insulin secretion. In addition, B1 cell expression of the calcium-dependent F-actin severing protein gelsolin is >100-fold higher than that of C3 cells. Knock-down of gelsolin reduced glucose-stimulated insulin secretion, whereas gelsolin over-expression potentiated secretion from B1 cells. Gelsolin localised along depolymerised actin fibres after glucose stimulation. Taken together, these data demonstrate that F-actin reorganization prior to insulin secretion requires gelsolin and plays a role in the glucose-dependent MAPK signal transduction that regulates beta-cell insulin secretion.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.
| | | | | | | | | |
Collapse
|
38
|
Lingohr MK, Briaud I, Dickson LM, McCuaig JF, Alárcon C, Wicksteed BL, Rhodes CJ. Specific regulation of IRS-2 expression by glucose in rat primary pancreatic islet beta-cells. J Biol Chem 2006; 281:15884-92. [PMID: 16574657 DOI: 10.1074/jbc.m600356200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin receptor substrate 2 (IRS-2) plays a critical role in pancreatic beta-cells. Increased IRS-2 expression promotes beta-cell growth and survival, whereas decreased IRS-2 levels lead to apoptosis. It was found that IRS-2 turnover in rat islet beta-cells was rapid, with mRNA and protein half-lives of approximately 90 min and approximately 2 h, respectively. However, this was countered by specific glucose-regulated IRS-2 expression mediated at the transcriptional level. Glucose (> or = 6 mM) increased IRS-2 mRNA and protein levels in a dose-dependent manner, reaching a maximum 4-fold increase in IRS-2 mRNA and a 5-6-fold increase in IRS-2 protein levels at > or = 12 mM glucose (p < or = 0.01). Glucose (15 mM) regulation of islet beta-cell IRS-2 gene expression was rapid, with a significant increase in IRS-2 mRNA levels within 2 h that reached a maximum 4-fold increase by 4 h. IRS-2 protein expression in beta-cells followed that of IRS-2 mRNA. Glucose metabolism was necessary for increased IRS-2 expression in beta-cells. Moreover, inhibition of a glucose-induced rise in islet beta-cell cytosolic [Ca2+]i prevented an increase in IRS-2 expression, indicating this was Ca2+-dependent. The glucose-induced rise in IRS-2 levels correlated with increased IRS-2 tyrosine phosphorylation and downstream activation of protein kinase B. These data indicate that fluctuations of glucose in the normal physiological range (5-15 mM) promote beta-cell survival via regulation of IRS-2 expression and a subsequent parallel protein kinase B activation. Given that the onset of type-2 diabetes is marked by loss of beta-cells, these data further the idea that controlled IRS-2 expression in beta-cells could be a therapeutic means to promote beta-cell survival and delay the onset of the disease.
Collapse
Affiliation(s)
- Melissa K Lingohr
- The Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abderrahmani A, Cheviet S, Ferdaoussi M, Coppola T, Waeber G, Regazzi R. ICER induced by hyperglycemia represses the expression of genes essential for insulin exocytosis. EMBO J 2006; 25:977-86. [PMID: 16498408 PMCID: PMC1409716 DOI: 10.1038/sj.emboj.7601008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 01/26/2006] [Indexed: 12/28/2022] Open
Abstract
The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic beta-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of beta-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic beta-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Département de Médecine Interne, Université de Lausanne, Switzerland
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Switzerland
| | - Séverine Cheviet
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Switzerland
| | - Mourad Ferdaoussi
- Département de Médecine Interne, Université de Lausanne, Switzerland
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Switzerland
| | - Thierry Coppola
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, Université de Nice, Sophia-Antipolis, Valbonne, France
| | - Gérard Waeber
- Département de Médecine Interne, Université de Lausanne, Switzerland
| | - Romano Regazzi
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Switzerland
- Department of Cell Biology & Morphology, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland. Tel.: +41 21 692 5280; Fax: +41 21 692 5255; E-mail:
| |
Collapse
|
40
|
Waselle L, Gerona RRL, Vitale N, Martin TFJ, Bader MF, Regazzi R. Role of Phosphoinositide Signaling in the Control of Insulin Exocytosis. Mol Endocrinol 2005; 19:3097-106. [PMID: 16081518 DOI: 10.1210/me.2004-0530] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoinositides (PI) are important signaling molecules involved in the regulation of vesicular trafficking. We found that phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2)] increase the secretory response triggered by 10 mum Ca(2+) in streptolysin-O-permeabilized insulin-secreting INS-1E cells. In addition, nutrient-induced exocytosis was diminished in intact cells expressing constructs that sequester PI(4,5)P(2) and in cells transfected with constructs that reduce by RNA interference the level of two enzymes involved in PI(4,5)P(2) production, type III PI4-kinase beta and type I phosphatidylinositol 4-bisphosphate 5-kinase-gamma. To clarify the mechanism of action of PI, we investigated the involvement in the regulation of insulin exocytosis of three potential PI targets, phospholipase D1, the Ca(2+)-dependent activator protein for secretion 1, and Munc18-interacting protein 1. Transfection of insulin-secreting cells with plasmids that direct the synthesis of small interfering RNAs capable of reducing the endogenous levels of these proteins inhibited hormone release elicited by glucose- and cAMP-elevating agents without affecting basal release. Our data indicate that the production of PI(4,5)P(2) is necessary for proper control of beta-cell secretion and suggest that at least part of the effect of PI on insulin exocytosis could be exerted through the activation of phospholipase D1, Ca(2+)-dependent activator protein for secretion 1, and Munc18-interacting protein 1.
Collapse
Affiliation(s)
- Laurent Waselle
- Department of Cell Biology and Morphology, rue du Bugnon 9, 1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease in humans, is capable of invading and replicating within a wide variety of nucleated mammalian cell types. Host cell invasion by infective T. cruzi trypomastigotes is governed by parasite-triggered activation of host cell signaling pathways. Recent studies highlighting a role for host cell phosphatidylinositol 3-kinases (PI3Ks) in the T. cruzi invasion process have revealed surprising new insights into the mechanism of host cell invasion by this pathogen. In this Perspective, we discuss these findings and propose alternative models of T. cruzi invasion that incorporate this new information.
Collapse
Affiliation(s)
- Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Building I, Room 817, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Kanno T, Ma X, Barg S, Eliasson L, Galvanovskis J, Göpel S, Larsson M, Renström E, Rorsman P. Large dense-core vesicle exocytosis in pancreatic beta-cells monitored by capacitance measurements. Methods 2005; 33:302-11. [PMID: 15183179 DOI: 10.1016/j.ymeth.2004.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2004] [Indexed: 11/25/2022] Open
Abstract
This article discusses the currently used methodologies for monitoring exocytosis as changes in cell capacitance. Details are given on composition of solutions, experimental protocols, and how the observed responses can be interpreted physiologically. The concepts are illustrated by examples from our own work on insulin-releasing pancreatic beta-cells. Finally, we consider the feasibility of applying capacitance measurements to endocrine cells in intact pancreatic islets, where the cells are electrically coupled to each other.
Collapse
Affiliation(s)
- Takahiro Kanno
- Department of Physiology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Norlin S, Ahlgren U, Edlund H. Nuclear factor-{kappa}B activity in {beta}-cells is required for glucose-stimulated insulin secretion. Diabetes 2005; 54:125-32. [PMID: 15616019 DOI: 10.2337/diabetes.54.1.125] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells depends on coordinated glucose uptake, oxidative metabolism, and Ca(2+)-triggered insulin exocytosis. Impaired GSIS is a hallmark of type 2 diabetes. However, at present we know very little about the molecular mechanisms that induce and maintain the expression of genes required for GSIS in beta-cells. The transcription factor nuclear factor-kappaB (NF-kappaB) is activated by an increase in intracellular Ca(2+) in beta-cells. Here, we show that attenuation of NF-kappaB activation in beta-cells generates mice with impaired GSIS, and that the beta-cells show perturbed expression of genes required for glucose uptake, oxidative metabolism, and insulin exocytosis. Thus, NF-kappaB appears to be part of a positive regulatory circuit that maintains GSIS in pancreatic beta-cells.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Center for Molecular Medicine, University of Umeå, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
44
|
Lecture abstracts. Cell Biochem Biophys 2004. [DOI: 10.1385/cbb:40:3:221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Goren HJ, Kulkarni RN, Kahn CR. Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology 2004; 145:3307-23. [PMID: 15044376 DOI: 10.1210/en.2003-1400] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic mice phenotypes generally depend on the background strains used in their creation. To examine the effects of genetic background on insulin signaling, we analyzed glucose homeostasis in four inbred strains of mice [C57BL/6 (B6), C57BLKS/6 (KLS), DBA/2 (DBA), and 129X1] and quantitated mRNA content of insulin receptor (IR) and its substrates in insulin-responsive tissues. At 2 months, the male B6 mouse is the least glucose-tolerant despite exhibiting similar insulin sensitivity and first-phase insulin secretion as the other strains. The 129X1 male mouse islet contains less insulin and exhibits a higher threshold for glucose-stimulated first-phase insulin secretion than the other strains. Female mice generally manifest better glucose tolerance than males, which is likely due to greater insulin sensitivity in liver and adipose tissue, a robust first-phase insulin secretion in B6 and KLS females, and improved insulin sensitivity in muscle in DBA and 129X1 females. At 6 months, although males exhibit improved first-phase insulin secretion, their physiology was relatively unchanged, whereas female B6 and KLS mice became less insulin sensitive. Gene expression of insulin signaling intermediates in insulin-responsive tissues was generally not strain dependent with the cell content of IR mRNA being highest. IR substrate (IRS)-1 and IRS-2 mRNA are ubiquitously expressed and IRS-3 and IRS-4 mRNA were detected in significant amounts in fat and brain tissues, respectively. These data indicate strain-, gender-, and age-dependent tissue sensitivity to insulin that is generally not associated with transcript content of IR or its substrates and should be taken into consideration during phenotypic characterization of transgenic mice.
Collapse
Affiliation(s)
- H Joseph Goren
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
46
|
Li J, Luo R, Kowluru A, Li G. Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 beta-cells. Am J Physiol Endocrinol Metab 2004; 286:E818-27. [PMID: 14736704 DOI: 10.1152/ajpendo.00307.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stimulation of insulin secretion by glucose and other secretagogues from pancreatic islet beta-cells is mediated by multiple signaling pathways. Rac1 is a member of Rho family GTPases regulating cytoskeletal organization, and recent evidence also implicates Rac1 in exocytotic processes. Herein, we report that exposure of insulin-secreting (INS) cells to stimulatory glucose concentrations caused translocation of Rac1 from cytosol to the membrane fraction (including the plasmalemma), an indication of Rac1 activation. Furthermore, glucose stimulation increased Rac1 GTPase activity. Time course study indicates that such an effect is demonstrable only after 15 min stimulation with glucose. Expression of a dominant-negative Rac1 mutant (N17Rac1) abolished glucose-induced translocation of Rac1 and significantly inhibited insulin secretion stimulated by glucose and forskolin. This inhibitory effect on glucose-stimulated insulin secretion was more apparent in the late phase of secretion. However, N17Rac1 expression did not significantly affect insulin secretion induced by high K+. INS-1 cells expressing N17Rac1 also displayed significant morphological changes and disappearance of F-actin structures. Expression of wild-type Rac1 or a constitutively active Rac1 mutant (V12Rac1) did not significantly affect either the stimulated insulin secretion or basal release, suggesting that Rac1 activation is essential, but not sufficient, for evoking secretory process. These data suggest, for the first time, that Rac1 may be involved in glucose- and forskolin-stimulated insulin secretion, possibly at the level of recruitment of secretory granules through actin cytoskeletal network reorganization.
Collapse
Affiliation(s)
- Jingsong Li
- Cardiovascular Research Institute, National Univ. Medical Institutes, National Institutes of Singapore, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
47
|
Delghingaro-Augusto V, Ferreira F, Bordin S, do Amaral MEC, Toyama MH, Boschero AC, Carneiro EM. A low protein diet alters gene expression in rat pancreatic islets. J Nutr 2004; 134:321-7. [PMID: 14747667 DOI: 10.1093/jn/134.2.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insulin secretion is regulated mainly by circulating nutrients, particularly glucose, and is also modulated by hormonal and neuronal inputs. Nutritional alterations during fetal and early postnatal periods, induced by either low protein or energy-restricted diets, produce beta-cell dysfunction. As a consequence, insulin secretion in response to different secretagogues is reduced, as is the number of beta-cells and the size and vascularization of islets. In this study, we used a cDNA macroarray technique and RT-PCR to assess the pattern of gene expression in pancreatic islets from rats fed isocaloric low (6 g/100 g, LP) and normal (17 g/100 g, NP) protein diets, after weaning. Thirty-two genes related to metabolism, neurotransmitter receptors, protein trafficking and targeting, intracellular kinase network members and hormones had altered expression (up- or down-regulated). RT-PCR confirmed the macroarray results for five selected genes, i.e., clusterin, secretogranin II precursor, eukaryotic translation initiation factor 2, phospholipase A(2) and glucose transporter. Thus, cDNA macroarray analysis revealed significant changes in the gene expression pattern in rats fed a low protein diet after weaning. The range of proteins affected indicated that numerous mechanisms are involved in the intracellular alterations in the endocrine pancreas, including impaired glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Viviane Delghingaro-Augusto
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R. The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 2003; 18:117-26. [PMID: 14593078 DOI: 10.1210/me.2003-0300] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The small GTPases Rab3 and Rab27 are associated with secretory granules of pancreatic beta-cells and regulate insulin exocytosis. In this study, we investigated the role of Noc2, a potential partner of these two GTPases, in insulin secretion. In the beta-cell line INS-1E wild-type Noc2, Noc265E, and Noc258A, a mutant capable of interacting with Rab27 but not Rab3, colocalized with insulin-containing vesicles. In contrast, two mutants (Noc2138S,141S and Noc2154A,155A,156A) that bind neither Rab3 nor Rab27 did not associate with secretory granules and were uniformly distributed throughout the cell cytoplasm. Overexpression of wild-type Noc2, Noc265E, or Noc258A inhibited hormone secretion elicited by insulin secretagogues. In contrast, overexpression of the mutants not targeted to secretory granules was without effect. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of INS-1E cells to respond to insulin secretagogues, indicating that appropriate levels of Noc2 are essential for pancreatic beta-cell exocytosis. The defect was already detectable in the early secretory phase (0-10 min) but was particularly evident during the sustained release phase (10-45 min). Protein-protein binding studies revealed that Noc2 is a potential partner of Munc13, a component of the machinery that controls vesicle priming and insulin exocytosis. These data suggest that Noc2 is involved in the recruitment of secretory granules at the plasma membrane possibly via the interaction with Munc13.
Collapse
Affiliation(s)
- Séverine Cheviet
- Institut de Biologie Cellulaire et de Morphologie, University of Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Saito T, Okada S, Yamada E, Ohshima K, Shimizu H, Shimomura K, Sato M, Pessin JE, Mori M. Syntaxin 4 and Synip (syntaxin 4 interacting protein) regulate insulin secretion in the pancreatic beta HC-9 cell. J Biol Chem 2003; 278:36718-25. [PMID: 12855681 DOI: 10.1074/jbc.m305114200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although syntaxin 1 is generally thought to function as the primary target-N-ethylmaleimide-sensitive factor attachment protein receptor required for pancreatic beta cell insulin secretion, we have observed that overexpression of a dominant-interfering syntaxin 4 mutant (syntaxin 4/DeltaTM) attenuated glucose-stimulated insulin secretion in betaHC-9 cells. Furthermore, these cells express the selective syntaxin 4-binding protein Synip (syntaxin 4 interacting protein), and Synip was specifically co-immunoprecipitated with syntaxin 4 but not syntaxin 1. Overexpression of the full-length Synip protein (Synip/wild type) inhibited VAMP2 association with syntaxin 4 and decreased glucose-stimulated insulin secretion. This did not occur with a Synip mutant (Synip/ DeltaEF) that was incapable of binding syntaxin 4. Consistent with a functional role of syntaxin 4 in this process, expression of syntaxin 4/DeltaTM also inhibited glucose-stimulated insulin secretion. Furthermore, analysis of first and second phase insulin secretion demonstrated that syntaxin 4/DeltaTM mainly suppressed the second phase of insulin secretion. In contrast, overexpression of Synip resulted in an inhibition of both the first and second phase of glucose-stimulated insulin secretion. These data demonstrate that syntaxin 4 plays a functional role on insulin release and granule fusion in beta cells and that this process is regulated by the syntaxin 4-specific binding protein Synip.
Collapse
Affiliation(s)
- Tsugumichi Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15, Showa-machi, Maebashi-shi, Gunma-ken, 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|