1
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Rennick LJ, Duprex WP, Tilston-Lunel NL. Generation of Defective Interfering Particles of Morbilliviruses Using Reverse Genetics. Methods Mol Biol 2024; 2808:57-70. [PMID: 38743362 DOI: 10.1007/978-1-0716-3870-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.
Collapse
Affiliation(s)
- Linda J Rennick
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Natasha L Tilston-Lunel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
4
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Wignall-Fleming EB, Vasou A, Young D, Short JAL, Hughes DJ, Goodbourn S, Randall RE. Innate Intracellular Antiviral Responses Restrict the Amplification of Defective Virus Genomes of Parainfluenza Virus 5. J Virol 2020; 94:e00246-20. [PMID: 32295916 PMCID: PMC7307174 DOI: 10.1128/jvi.00246-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
During the replication of parainfluenza virus 5 (PIV5), copyback defective virus genomes (DVGs) are erroneously produced and are packaged into "infectious" virus particles. Copyback DVGs are the primary inducers of innate intracellular responses, including the interferon (IFN) response. While DVGs can interfere with the replication of nondefective (ND) virus genomes and activate the IFN-induction cascade before ND PIV5 can block the production of IFN, we demonstrate that the converse is also true, i.e., high levels of ND virus can block the ability of DVGs to activate the IFN-induction cascade. By following the replication and amplification of DVGs in A549 cells that are deficient in a variety of innate intracellular antiviral responses, we show that DVGs induce an uncharacterized IFN-independent innate response(s) that limits their replication. High-throughput sequencing was used to characterize the molecular structure of copyback DVGs. While there appears to be no sequence-specific break or rejoining points for the generation of copyback DVGs, our findings suggest there are region, size, and/or structural preferences selected for during for their amplification.IMPORTANCE Copyback defective virus genomes (DVGs) are powerful inducers of innate immune responses both in vitro and in vivo They impact the outcome of natural infections, may help drive virus-host coevolution, and promote virus persistence. Due to their potent interfering and immunostimulatory properties, DVGs may also be used therapeutically as antivirals and vaccine adjuvants. However, little is known of the host cell restrictions which limit their amplification. We show here that the generation of copyback DVGs readily occurs during parainfluenza virus 5 (PIV5) replication, but that their subsequent amplification is restricted by the induction of innate intracellular responses. Molecular characterization of PIV5 copyback DVGs suggests that while there are no genome sequence-specific breaks or rejoin points for the generation of copyback DVGs, genome region, size, and structural preferences are selected for during their evolution and amplification.
Collapse
Affiliation(s)
| | - Andri Vasou
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Dan Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - John A L Short
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - David J Hughes
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Steve Goodbourn
- Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Richard E Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
6
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
7
|
Structure of the Paramyxovirus Parainfluenza Virus 5 Nucleoprotein in Complex with an Amino-Terminal Peptide of the Phosphoprotein. J Virol 2018; 92:JVI.01304-17. [PMID: 29237836 DOI: 10.1128/jvi.01304-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Parainfluenza virus 5 (PIV5) belongs to the family Paramyxoviridae, which consists of enveloped viruses with a nonsegmented negative-strand RNA genome encapsidated by the nucleoprotein (N). Paramyxovirus replication is regulated by the phosphoprotein (P) through protein-protein interactions with N and the RNA polymerase (L). The chaperone activity of P is essential to maintain the unassembled RNA-free form of N in order to prevent nonspecific RNA binding and premature N oligomerization. Here, we determined the crystal structure of unassembled PIV5 N in complex with a P peptide (N0P) derived from the N terminus of P (P50) at 2.65 Å. The PIV5 N0P consists of two domains: an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a hinge region. The cleft at the hinge region of RNA-bound PIV5 N was previously shown to be an RNA binding site. The N0P structure shows that the P peptide binds to the CTD of N and extends toward the RNA binding site to inhibit N oligomerization and, hence, RNA binding. Binding of P peptide also keeps the PIV5 N in the open form. A molecular dynamics (MD) analysis of both the open and closed forms of N shows the flexibility of the CTD and the preference of the N protein to be in an open conformation. The gradual opening of the hinge region, to release the RNA, was also observed. Together, these results advance our knowledge of the conformational swapping of N required for the highly regulated paramyxovirus replication.IMPORTANCE Paramyxovirus replication is regulated by the interaction of P with N and L proteins. Here, we report the crystal structure of unassembled parainfluenza virus 5 (PIV5) N chaperoned with P peptide. Our results provide a detailed understanding of the binding of P to N. The conformational switching of N between closed and open forms during its initial interaction with P, as well as during RNA release, was analyzed. Our data also show the plasticity of the CTD and the importance of domain movement for conformational switching. The results improve our understanding of the mechanism of interchanging N conformations for RNA replication and release.
Collapse
|
8
|
Molouki A, Peeters B. Rescue of recombinant Newcastle disease virus: a short history of how it all started. Arch Virol 2017; 162:1845-1854. [PMID: 28316014 DOI: 10.1007/s00705-017-3308-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/16/2017] [Indexed: 01/24/2023]
Abstract
Reverse genetics of viruses has come a long way, and many recombinant viruses have been generated since the first successful "rescues" were reported in the late 1970s. Recombinant Newcastle disease virus (rNDV), a non-segmented negative-sense RNA virus (NSNSV), was first rescued in 1999 using a reverse genetics approach similar to that reported for other recombinant viruses of the order Mononegavirales a few years before. The route from an original NDV isolate to the generation of its recombinant counterpart requires many steps that have to be sequentially and carefully completed. Background knowledge of each of these steps is essential because it allows one to make the best choices for fulfilling the specific requirements of the final recombinant virus. We have previously reviewed the latest strategies in cloning the NDV full-length cDNA into transcription vectors and the use of different RNA polymerase systems for the generation of viral RNA from plasmid DNA. In this article, we review a number of discoveries on the mechanism of transcription and replication of NDV, including a brief history behind the discovery of its RNP complex. This includes the generation of artificial and functional RNP constructs, in combination with the smart use of available knowledge and technologies that ultimately resulted in rescue of the first rNDV.
Collapse
Affiliation(s)
- Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ben Peeters
- Department of Virology, Wageningen Bioveterinary Research, PO Box 65, 8200 AB, Lelystad, The Netherlands
| |
Collapse
|
9
|
Evidence that a polyhexameric genome length is preferred, but not strictly required, for efficient mumps virus replication. Virology 2016; 493:173-88. [PMID: 27058764 DOI: 10.1016/j.virol.2016.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/22/2022]
Abstract
Mumps virus (MuV) is postulated to adhere to the "rule of six" for efficient replication. To examine the requirement for MuV, minigenomes of nonpolyhexameric length (6n-1 and 6n+1) were analyzed. Expression of the reporter gene CAT was significantly reduced with minigenomes of nonpolyhexameric length compared to the wild type 6n genome, and reduction was more pronounced for the 6n-1 than for the 6n+1 minigenome. That 6n-1 genomes are impacted by nonconformance with the rule of six to a greater degree as compared to 6n+1 genomes was also suggested with MuV derived from cDNA coding for 6n+1 or 6n-1 genomes. While viruses recovered from 6n+1 cDNAs maintained a nonpolyhexameric genome length over multiple replication cycles, viruses rescued from the 6n-1 cDNAs acquired length correcting mutations rapidly following rescue. Our data indicate that polyhexameric genomes are the preferred template for the MuV RNA polymerase, but that this requirement is not absolute.
Collapse
|
10
|
Sauder CJ, Ngo L, Simonyan V, Cong Y, Zhang C, Link M, Malik T, Rubin SA. Generation and propagation of recombinant mumps viruses exhibiting an additional U residue in the homopolymeric U tract of the F gene-end signal. Virus Genes 2015; 51:12-24. [DOI: 10.1007/s11262-015-1204-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
|
11
|
Kawaoka Y, Neumann G. Reverse Genetics Approaches for Rational Design of Inactivated and Live Attenuated Influenza Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014:3-32. [DOI: 10.1007/978-3-7091-1818-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Killip MJ, Young DF, Gatherer D, Ross CS, Short JAL, Davison AJ, Goodbourn S, Randall RE. Deep sequencing analysis of defective genomes of parainfluenza virus 5 and their role in interferon induction. J Virol 2013; 87:4798-807. [PMID: 23449801 PMCID: PMC3624313 DOI: 10.1128/jvi.03383-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/20/2013] [Indexed: 12/24/2022] Open
Abstract
Preparations of parainfluenza virus 5 (PIV5) that are potent activators of the interferon (IFN) induction cascade were generated by high-multiplicity passage in order to accumulate defective interfering virus genomes (DIs). Nucleocapsid RNA from these virus preparations was extracted and subjected to deep sequencing. Sequencing data were analyzed using methods designed to detect internal deletion and "copyback" DIs in order to identify and characterize the different DIs present and to approximately quantify the ratio of defective to nondefective genomes. Trailer copybacks dominated the DI populations in IFN-inducing preparations of both the PIV5 wild type (wt) and PIV5-VΔC (a recombinant virus that does not encode a functional V protein). Although the PIV5 V protein is an efficient inhibitor of the IFN induction cascade, we show that nondefective PIV5 wt is unable to prevent activation of the IFN response by coinfecting copyback DIs due to the interfering effects of copyback DIs on nondefective virus protein expression. As a result, copyback DIs are able to very rapidly activate the IFN induction cascade prior to the expression of detectable levels of V protein by coinfecting nondefective virus.
Collapse
Affiliation(s)
- M. J. Killip
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - D. F. Young
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - D. Gatherer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - C. S. Ross
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | - J. A. L. Short
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - A. J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - S. Goodbourn
- Division of Basic Medical Sciences, St. George's, University of London, London, United Kingdom
| | - R. E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife, United Kingdom
| |
Collapse
|
13
|
Noton SL, Deflubé LR, Tremaglio CZ, Fearns R. The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter. PLoS Pathog 2012; 8:e1002980. [PMID: 23093940 PMCID: PMC3475672 DOI: 10.1371/journal.ppat.1002980] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1–25 of the trailer complement (TrC) promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3′ end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3′ end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3′ terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection. Respiratory syncytial virus (RSV) is a major pathogen of infants with the potential to cause severe respiratory disease. RSV has an RNA genome and one approach to developing a drug against this virus is to gain a greater understanding of the mechanisms used by the viral polymerase to generate new RNA. In this study we developed a novel assay for examining how the RSV polymerase interacts with a specific promoter sequence at the end of an RNA template, and performed analysis of RSV RNA produced in infected cells to confirm the findings. Our experiments showed that the behavior of the polymerase on the promoter was surprisingly complex. We found that not only could the polymerase initiate synthesis of progeny genome RNA from an initiation site at the end of the template, but it could also generate another small RNA from a second initiation site. In addition, we showed that the polymerase could add additional RNA sequence to the template promoter, which affected its ability to initiate RNA synthesis. These findings extend our understanding of the functions of the promoter, and suggest a mechanism by which RNA synthesis from the promoter is regulated.
Collapse
Affiliation(s)
- Sarah L. Noton
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Laure R. Deflubé
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Chadene Z. Tremaglio
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gander JR, Schwan LM, Hoffman MA. Analysis of nucleotides 13-96 of the human parainfluenza virus type 3 antigenomic promoter reveals positive- and negative-acting replication elements. Virology 2011; 419:90-6. [PMID: 21880340 DOI: 10.1016/j.virol.2011.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 06/27/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
During replication of human parainfluenza virus type 3 (HPIV3), the 96-nucleotide antigenomic promoter (AGP) of HPIV3 directs the synthesis of genomic RNA. Previous work showed that nucleotides 1-12 were critical in promoting replication of an HPIV3 minireplicon, but nucleotides 13-96 were not investigated. In this study, the role of nucleotides 13-96 in AGP function was analyzed by creating and assaying mutations in an HPIV3 minireplicon. A replication promoting element known as promoter element II (nt 79-96) was confirmed in the HPIV3 AGP. Additionally, nucleotides 13-39 were found to constitute an additional positive-acting cis-element. However, detailed analysis of the 13-39 element revealed a complicated control element with both stimulatory and repressing elements. Specifically, nucleotides 21-28 were shown to repress RNA replication, while flanking sequences had a stimulatory effect.
Collapse
Affiliation(s)
- Jill R Gander
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | | | | |
Collapse
|
15
|
Sauder CJ, Zhang CX, Ngo L, Werner K, Lemon K, Duprex WP, Malik T, Carbone K, Rubin SA. Gene-specific contributions to mumps virus neurovirulence and neuroattenuation. J Virol 2011; 85:7059-69. [PMID: 21543475 PMCID: PMC3126569 DOI: 10.1128/jvi.00245-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/28/2011] [Indexed: 01/21/2023] Open
Abstract
Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence.
Collapse
Affiliation(s)
- Christian J Sauder
- United States Food and Drug Administration, CBER, OVRR, DVP, 8800 Rockville Pike, Building 29A, HFM 460, Room 2C20, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The complete sequence of a human parainfluenzavirus 4 genome. Viruses 2009; 1:26-41. [PMID: 21994536 PMCID: PMC3185463 DOI: 10.3390/v1010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 02/06/2023] Open
Abstract
Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized.
Collapse
|
17
|
The measles virus fusion protein transmembrane region modulates availability of an active glycoprotein complex and fusion efficiency. J Virol 2008; 82:11437-45. [PMID: 18786999 DOI: 10.1128/jvi.00779-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the measles virus (MV) fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (H) protein. Structures and single amino acids influencing fusion function have been identified in the F-protein ectodomain and cytoplasmic tail, but not in its transmembrane (TM) region. Since this region influences function of the envelope proteins of other viruses, we examined its role in the MV F protein. Alanine-scanning mutagenesis revealed that an F protein with a single mutation of a central TM region leucine (L507A) was more fusogenic than the unmodified F protein while retaining similar kinetics of proteolytic processing. In contrast, substitution of residues located near the edges of the lipid bilayer reduced fusion activity. This was true not only when the mutated F proteins were coexpressed with H but also in the context of infections with recombinant viruses. Analysis of the H-F complexes with reduced fusion activities revealed that more precursor (F(0)) than activated (F(1+2)) protein coprecipitated with H. In contrast, in complexes with enhanced fusion activity, including H-F(L507A), the F(0)/F(1+2) ratio shifted toward F(1+2). Thus, fusion activity correlated with an active F-H protein complex, and the MV F protein TM region modulated availability of this complex.
Collapse
|
18
|
Hoffman MA, Thorson LM, Vickman JE, Anderson JS, May NA, Schweitzer MN. Roles of human parainfluenza virus type 3 bases 13 to 78 in replication and transcription: identification of an additional replication promoter element and evidence for internal transcription initiation. J Virol 2007; 80:5388-96. [PMID: 16699019 PMCID: PMC1472146 DOI: 10.1128/jvi.00204-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomic promoter of human parainfluenza virus type 3 (HPIV3) contains multiple cis-elements controlling transcription and replication. Previous work showed that regions 1 to 12 and 79 to 96 were critical in promoting replication of an HPIV3 minireplicon, while the intergenic sequence and N gene start signal (IS/Ngs, bases 49 to 61) were important for transcription. Because these data were collected primarily using point mutations, not every base from position 1 to 96 was analyzed, and some important control elements may have been missed. To clarify the role of bases 13 to 78 in transcription and replication, a series of mutations were made which collectively scanned this entire region. Mutation of bases 13 to 28 resulted in markedly decreased HPIV3 minireplicon replication, indicating these bases constitute an additional cis-element involved in the synthesis of the HPIV3 antigenomic RNA. The position dependence of the IS/Ngs was also examined. Analysis of mutants in which the IS/Ngs was shifted 5' or 3' showed that this segment could be moved without significantly disrupting transcription initiation. Additional mutants which contained two successive IS/Ngs segments were created to test whether the polymerase accessed the gene start signal by proceeding along the template 3' to 5' or by binding internally at the gene start signal. Based on analysis of the double gene start mutants, we propose a model of internal transcription initiation in which the polymerase enters the template at approximately the location of the natural N gene start but then scans the template bidirectionally to find a gene start signal and initiate transcription.
Collapse
Affiliation(s)
- Michael A Hoffman
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Tompkins SM, Lin Y, Leser GP, Kramer KA, Haas DL, Howerth EW, Xu J, Kennett MJ, Durbin RK, Durbin JE, Tripp R, Lamb RA, He B. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge. Virology 2007; 362:139-50. [PMID: 17254623 PMCID: PMC1995462 DOI: 10.1016/j.virol.2006.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 10/23/2006] [Accepted: 12/03/2006] [Indexed: 10/23/2022]
Abstract
Parainfluenza virus type 5 (PIV5), formerly known as simian virus 5 (SV5), is a non-segmented negative strand RNA virus that offers several advantages as a vaccine vector. PIV5 infects many cell types causing little cytopathic effect, it replicates in the cytoplasm of infected cells, and does not have a DNA phase in its life cycle thus avoiding the possibility of introducing foreign genes into the host DNA genome. Importantly, PIV5 can infect humans but it is not associated with any known human illness. PIV5 grows well in tissue culture cells, including Vero cells, which have been approved for vaccine production, and the virus can be obtained easily from the media. To test the feasibility of using PIV5 as a live vaccine vector, the hemagglutinin (HA) gene from influenza A virus strain A/Udorn/72 (H3N2) was inserted into the PIV5 genome as an extra gene between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Recombinant PIV5 containing the HA gene of Udorn (rPIV5-H3) was recovered and it replicated similarly to wild type PIV5, both in vitro and in vivo. The HA protein expressed by rPIV5-H3-infected cells was incorporated into the virions and addition of the HA gene did not increase virus virulence in mice. The efficacy of rPIV5-H3 as a live vaccine was examined in 6-week-old BALB/c mice. The results show that a single dose inoculation provides broad and considerable immunity against influenza A virus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Body Weight
- Cattle
- Cell Line
- Cells, Cultured
- Chlorocebus aethiops
- Disease Models, Animal
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/prevention & control
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Yuan Lin
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| | - George P. Leser
- Department of Biochemistry, Molecular Biology and Cellular Biology, Evanston, IL
| | - Kari A. Kramer
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Debra L. Haas
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Jie Xu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| | - Mary J. Kennett
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| | | | - Joan E. Durbin
- Children's Hospital, Ohio State University, Columbus, OH
| | - Ralph Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Robert A. Lamb
- Department of Biochemistry, Molecular Biology and Cellular Biology, Evanston, IL
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL
| | - Biao He
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
- Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA
| |
Collapse
|
20
|
Marcos F, Ferreira L, Cros J, Park MS, Nakaya T, García-Sastre A, Villar E. Mapping of the RNA promoter of Newcastle disease virus. Virology 2005; 331:396-406. [PMID: 15629782 DOI: 10.1016/j.virol.2004.10.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/25/2004] [Accepted: 10/25/2004] [Indexed: 11/18/2022]
Abstract
The RNA promoters of the genome and antigenome of Newcastle disease virus (NDV) were studied by mutational analysis of their 3' terminal ends. Similarly to other paramyxoviruses, NDV RNA replication follows the rule of six, and the genomic and antigenomic promoters require two discontinuous regions: conserved region I (first 18 nucleotides) and conserved region II (nucleotides 73-90). Proper spacing between those regions and the phase of six in region II is critical for efficient RNA promoter activity. As expected, the gene start signal at the 3' end of the NDV genome was required for mRNA transcription, but not for RNA replication. Surprisingly, mutation of the polyadenylation signal in the 5' end did not affect gene expression transcription. Although the conserved region I of NDV (avulavirus) promoter appears to be more similar to that of Sendai virus (SeV) (respirovirus), conserved region II is analogous to that of rubulaviruses.
Collapse
Affiliation(s)
- Fernando Marcos
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Plaza Doctores de la Reina s/n, Edificio Departamental, lab. 108. Salamanca 37007, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Shihmanter E, Panshin A, Lipkind M. Nucleotide sequence of the matrix protein gene of avian paramyxovirus, serotype 3b: evidence on another member of the suggested new genus of the subfamily Paramyxovirinae. Comp Immunol Microbiol Infect Dis 2005; 28:37-51. [PMID: 15563952 DOI: 10.1016/j.cimid.2004.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 11/25/2022]
Abstract
The complete nucleotide sequence of the gene encoding the matrix protein (M) of the avian paramyxovirus, serotype 3b (APMV-3b), has been determined by means of the direct sequencing of viral RNA using reverse transcriptase reaction. The adjacent portions of the neighboring phosphoprotein (P) and fusion (F) protein genes were also sequenced that permitted to determine the consensus sequence of the viral genome, the poly(A) tract, downstream and upstream non-coding portions of the P and F genes, respectively, as well as the corresponding intergenic regions. The gene is 1478 nucleotides long with a protein-coding sequence of 1194 nucleotides. The deduced protein consists of 398 amino acids with a calculated MW 44,465. According to the multalignment and phylogenetic analyses, the APMV-3b M protein has shown the closest relatedness towards Newcastle disease virus (NDV) which has recently been suggested to be excluded from the Rubulavirus genus and assigned (together with APMV-6) to a new Avulavirus genus within the subfamily Paramyxovirinae of the Paramyxoviridae family. On the basis of the M protein genetic multalignment, phylogenetic relationships, bipartite nuclear localization signal identification in combination with the cysteine residues distribution, and by the degree of intrageneric heterogeneity, the APMV-3b is proposed to be another member (together with NDV and APMV-6) of the new genus.
Collapse
|
22
|
Chen Z, Green TJ, Luo M, Li H. Visualizing the RNA molecule in the bacterially expressed vesicular stomatitis virus nucleoprotein-RNA complex. Structure 2004; 12:227-35. [PMID: 14962383 DOI: 10.1016/j.str.2004.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 10/07/2003] [Accepted: 10/22/2003] [Indexed: 11/28/2022]
Abstract
Packaging of the RNA molecule in viruses is important for the preservation and expression of viral genomic information. The vesicular stomatitis virus (VSV) nucleoproteins are kept associated with its negative-strand RNA during the mRNA synthesis and replication, in contrast to the tobacco mosaic virus whose nucleoproteins are released from RNA. It has been a puzzle how the VSV RNA is packaged to meet the contradicting requirements of protection and the accessibility to the polymerase. We report an 18 A resolution structure of the recombinant nucleoprotein-RNA complex determined by single-particle electron microscopy. In the 3D density map, a ring of density is resolved on the inner surface and the density is proposed to be the RNA. The RNA is located on the inner surface of the decameric complex near the top end. This is dramatically different from the RNA packaging in TMV, but consistent with previously published biochemical findings.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | |
Collapse
|
23
|
Miller JT, Khvorova A, Scaringe SA, Le Grice SFJ. Synthetic tRNALys,3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes. Nucleic Acids Res 2004; 32:4687-95. [PMID: 15342789 PMCID: PMC516074 DOI: 10.1093/nar/gkh813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to determine the contribution of modified bases on the efficiency with which tRNA(Lys,3) is used in vitro as the HIV-1 replication primer, the properties of synthetic derivatives prepared by three independent methods were compared to the natural, i.e. fully modified, tRNA. When prepared directly by in vitro run-off transcription, we show here that the predominant tRNA species is 77 nt, representing a non-templated addition of a single nucleotide. As a consequence, this aberrant tRNA inefficiently primes (-) strand strong stop DNA synthesis from the primer binding site (PBS) on the HIV-1 viral RNA genome to which it must hybridize. In contrast, correctly sized tRNA(Lys,3) can be prepared by (i) total chemical synthesis and ligation of 'half' tRNAs, (ii) transcription of a cassette whose DNA template contained strategically placed 2'-O-Methyl-containing ribonucleotides and (iii) processing from a larger precursor by means of targeted cleavage with Escherichia coli RNase H. When each of these 76 nt tRNAs was supplemented into a (-) strand strong stop DNA synthesis reaction utilizing the HXB2 strain of HIV-1, the amount of product obtained was comparable to that from the fully modified counterpart. Parallel assays monitoring early events in (-) strand strong stop DNA synthesis using either the HXB2 or Mal strain of HIV-1 RNA as the template indicated little difference in the pattern or total product amount when primed with either natural or synthetic tRNA(Lys,3). In addition, nuclease mapping of PBS-bound tRNA suggests inter-molecular base pairing between bases of the tRNA anticodon domain and the U-rich U5-IR loop of the viral 5' leader region is less stable on the HIV-1(HXB2) genome than the HIV-1(Mal) isolate.
Collapse
Affiliation(s)
- Jennifer T Miller
- Reverse Transcriptase Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
24
|
Abstract
"Reverse genetics" or de novo synthesis of nonsegmented negative-sense RNA viruses (Mononegavirales) from cloned cDNA has become a reliable technique to study this group of medically important viruses. Since the first generation of a negative-sense RNA virus entirely from cDNA in 1994, reverse genetics systems have been established for members of most genera of the Rhabdo-, Paramyxo-, and Filoviridae families. These systems are based on intracellular transcription of viral full-length RNAs and simultaneous expression of viral proteins required to form the typical viral ribonucleoprotein complex (RNP). These systems are powerful tools to study all aspects of the virus life cycle as well as the roles of virus proteins in virus-host interplay and pathogenicity. In addition, recombinant viruses can be designed to have specific properties that make them attractive as biotechnological tools and live vaccines.
Collapse
Affiliation(s)
- K K Conzelmann
- Max von Pettenkofer-Institut and Genzentrum, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
25
|
Chare ER, Gould EA, Holmes EC. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 2003; 84:2691-2703. [PMID: 13679603 DOI: 10.1099/vir.0.19277-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination is increasingly seen as an important means of shaping genetic diversity in RNA viruses. However, observed recombination frequencies vary widely among those viruses studied to date, with only sporadic occurrences reported in RNA viruses with negative-sense genomes. To determine the extent of homologous recombination in negative-sense RNA viruses, phylogenetic analyses of 79 gene sequence alignments from 35 negative-sense RNA viruses (a total of 2154 sequences) were carried out. Powerful evidence was found for recombination, in the form of incongruent phylogenetic trees between different gene regions, in only five sequences from Hantaan virus, Mumps virus and Newcastle disease virus. This is the first report of recombination in these viruses. More tentative evidence for recombination, where conflicting phylogenetic trees were observed (but were without strong bootstrap support) and/or where putative recombinant regions were very short, was found in three alignments from La Crosse virus and Puumala virus. Finally, patterns of sequence variation compatible with the action of recombination, but not definitive evidence for this process, were observed in a further ten viruses: Canine distemper virus, Crimean-Congo haemorrhagic fever virus, Influenza A virus, Influenza B virus, Influenza C virus, Lassa virus, Pirital virus, Rabies virus, Rift Valley Fever virus and Vesicular stomatitis virus. The possibility of recombination in these viruses should be investigated further. Overall, this study reveals that rates of homologous recombination in negative-sense RNA viruses are very much lower than those of mutation, with many viruses seemingly clonal on current data. Consequently, recombination rate is unlikely to be a trait that is set by natural selection to create advantageous or purge deleterious mutations.
Collapse
Affiliation(s)
- Elizabeth R Chare
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ernest A Gould
- Centre for Ecology and Hydrology, Mansfield Road, Oxford, UK
| | - Edward C Holmes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
26
|
Zhao H, Peeters BPH. Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication. J Gen Virol 2003; 84:781-788. [PMID: 12655078 DOI: 10.1099/vir.0.18884-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newcastle disease virus (NDV) was examined for its suitability as a vector for the expression and delivery of foreign genes for vaccination and gene therapy. A reporter gene encoding human secreted alkaline phosphatase (SEAP) was inserted as an additional transcription unit at four different positions in the NDV genome, between the NP and P, M and F, and HN and L genes and behind the L gene. Eight infectious recombinant NDV (rNDV) viruses, four in the non-virulent strain NDFL and four in the virulent derivative NDFLtag, were generated by reverse genetics. SEAP expression levels, replication kinetics and virus yield were examined. Replication kinetics of the rNDV viruses in primary chicken embryo fibroblasts showed that the insertion of an additional gene resulted in a delay in the onset of replication. This effect was most prominent when the gene was inserted between the NP and P genes. With the exception of the strain that carried the SEAP gene behind the L gene, all recombinant strains expressed high levels of SEAP, both in cell culture and in embryonated chicken eggs. In embryonated eggs, the rNDV viruses showed a 2.6- to 5.6-fold (NDFL) or 2.1- to 8.1-fold (NDFLtag) reduction in yield compared with the parent strains. These results show that foreign genes can be inserted at different positions in the NDV genome without severely affecting replication efficiency or virus yield.
Collapse
Affiliation(s)
- Heng Zhao
- Institute for Animal Science and Health (ID-Lelystad), Division of Infectious Diseases and Food Chain Quality, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Ben P H Peeters
- Institute for Animal Science and Health (ID-Lelystad), Division of Infectious Diseases and Food Chain Quality, PO Box 65, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
27
|
Keller MA, Parks GD. Positive- and negative-acting signals combine to determine differential RNA replication from the paramyxovirus simian virus 5 genomic and antigenomic promoters. Virology 2003; 306:347-58. [PMID: 12642107 DOI: 10.1016/s0042-6822(02)00071-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cis-acting signals found at the 3' ends of the genomic and antigenomic RNAs are a major factor determining the level of paramyxovirus RNA replication from each promoter. Using a minigenome system that reconstitutes SV5 RNA synthesis from cDNA-derived components, we show here that the genomic promoter (GP) for the paramyxovirus SV5 directs RNA replication approximately 14-fold lower than that seen from the antigenomic promoter (AGP). The goal of this study was to identify cis-acting signals responsible for differential levels of RNA replication from the SV5 GP and AGP. We have previously shown that the SV5 AGP contains three sequence-dependent elements (CRI, CRII, and Region III) that are separated by sequence-independent spacer regions. Minigenomes containing chimeric promoters were constructed to test the hypothesis that transfer of discrete cis-acting AGP elements to the GP could confer higher replication properties to the GP. Minigenomes containing a substitution of the AGP CRI, CRII, or Region III elements alone in place of the corresponding GP sequences did not show enhanced levels of RNA replication. However, transfer of both the AGP 3' terminal CRI and Region III elements into the corresponding sites of the GP led to a minigenome which replicated to approximately 40% of the levels seen with the AGP. This enhanced RNA replication from the GP was further increased up to AGP levels by also including the intervening AGP segment (bases 20-50) located between CRI and Region III. Importantly, transfer of nonviral sequences in place of GP bases 20-50 also increased RNA replication to levels approaching that of the AGP, but only in the context of the AGP CRI and Region III substitutions. These data indicate that differential levels of RNA replication from the SV5 GP and AGP are due to a combination of positive-acting signals in the AGP (CRI and Region III) and a negative-acting signal in the GP (bases 20-50). Possible functions for the SV5 promoter elements in determining RNA replication levels are proposed.
Collapse
Affiliation(s)
- Michael A Keller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1064, USA
| | | |
Collapse
|
28
|
Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR. The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol 2003; 77:270-9. [PMID: 12477832 PMCID: PMC140631 DOI: 10.1128/jvi.77.1.270-279.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Members of the Paramyxovirinae subfamily of the Paramyxoviridae family of viruses have the unusual requirement that the nucleotide length of the viral genome must be an even multiple of six in order for efficient RNA replication, and hence virus replication, to occur. Human parainfluenza virus type 2 (HPIV2) is the only member of the genus that has been reported to have a genome length that is not an even multiple of six, and it has also been recovered from a full-length antigenomic-sense cDNA that did not conform to the "rule of six." To reexamine the issue of nucleotide length in natural isolates of HPIV2, a complete consensus genomic sequence was determined for three HPIV2 strains: Greer, Vanderbilt/1994 (V94), and Vanderbilt/1998. Each of these strains was found to have a genome length of 15,654 nucleotides (nt), thus conforming in each case to the rule of six. To directly examine the requirement that the genomic length of HPIV2 be an even multiple of six, we constructed six full-length antigenomic HPIV2/V94 cDNAs that deviated from a polyhexameric length by 0 to 5 nt. Recombinant HPIV2s were readily recovered from all of the cDNAs, including those that did not conform to the rule of six. One recombinant HPIV2 isolate was completely sequenced for each of the nonpolyhexameric antigenomic cDNAs. These were found to contain small nucleotide insertions or deletions that conferred polyhexameric length to the recovered genome. Interestingly, almost all of the length corrections occurred within the hemagglutinin-neuraminidase and large polymerase genes or the intervening intergenic region and thus were proximal to the insert that caused the deviation from the rule of six. These results demonstrate, in the context of complete infectious virus, that HPIV2 has a strong and seemingly absolute requirement for a polyhexameric genome.
Collapse
Affiliation(s)
- Mario H Skiadopoulos
- Respiratory Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Neumann G, Whitt MA, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J Gen Virol 2002; 83:2635-2662. [PMID: 12388800 DOI: 10.1099/0022-1317-83-11-2635] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the first generation of a negative-sense RNA virus entirely from cloned cDNA in 1994, similar reverse genetics systems have been established for members of most genera of the Rhabdo- and Paramyxoviridae families, as well as for Ebola virus (Filoviridae). The generation of segmented negative-sense RNA viruses was technically more challenging and has lagged behind the recovery of nonsegmented viruses, primarily because of the difficulty of providing more than one genomic RNA segment. A member of the Bunyaviridae family (whose genome is composed of three RNA segments) was first generated from cloned cDNA in 1996, followed in 1999 by the production of influenza virus, which contains eight RNA segments. Thus, reverse genetics, or the de novo synthesis of negative-sense RNA viruses from cloned cDNA, has become a reliable laboratory method that can be used to study this large group of medically and economically important viruses. It provides a powerful tool for dissecting the virus life cycle, virus assembly, the role of viral proteins in pathogenicity and the interplay of viral proteins with components of the host cell immune response. Finally, reverse genetics has opened the way to develop live attenuated virus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA1
| | - Michael A Whitt
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA2
| | - Yoshihiro Kawaoka
- CREST, Japan Science and Technology Corporation, Japan4
- Institute of Medical Science, University of Tokyo, Tokyo, Japan3
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA1
| |
Collapse
|
30
|
Wansley EK, Parks GD. Naturally occurring substitutions in the P/V gene convert the noncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death. J Virol 2002; 76:10109-21. [PMID: 12239285 PMCID: PMC136585 DOI: 10.1128/jvi.76.20.10109-10121.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The V protein of the paramyxovirus simian virus 5 (SV5) is responsible for targeted degradation of STAT1 and the block in alpha/beta interferon (IFN-alpha/beta) signaling that occurs after SV5 infection of human cells. We have analyzed the growth properties of a recombinant SV5 that was engineered to be defective in targeting STAT1 degradation. A recombinant SV5 (rSV5-P/V-CPI-) was engineered to contain six naturally occurring P/V protein mutations, three of which have been shown in previous transfection experiments to disrupt the V-mediated block in IFN-alpha/beta signaling. In contrast to wild-type (WT) SV5, human cells infected with rSV5-P/V-CPI- had STAT1 levels similar to those in mock-infected cells. Cells infected with rSV5-P/V-CPI- were found to express higher-than-WT levels of viral proteins and mRNA, suggesting that the P/V mutations had disrupted the regulation of viral RNA synthesis. Despite the inability to target STAT1 for degradation, single-step growth assays showed that the rSV5-P/V-CPI- mutant virus grew better than WT SV5 in all cell lines tested. Unexpectedly, cells infected with rSV5-P/V-CPI- but not WT SV5 showed an activation of a reporter gene that was under control of the IFN-beta promoter. The secretion of IFN from cells infected with rSV5-P/V-CPI- but not WT SV5 was confirmed by a bioassay for IFN. The rSV5-P/V-CPI- mutant grew to higher titers than did WT rSV5 at early times in multistep growth assays. However, rSV5-P/V-CPI- growth quickly reached a final plateau while WT rSV5 continued to grow and produced a final titer higher than that of rSV5-P/V-CPI- by late times postinfection. In contrast to WT rSV5, infection of a variety of cell lines with rSV5-P/V-CPI- induced cell death pathways with characteristics of apoptosis. Our results confirm a role for the SV5 V protein in blocking IFN signaling but also suggest new roles for the P/V gene products in controlling viral gene expression, the induction of IFN-alpha/beta synthesis, and virus-induced apoptosis.
Collapse
Affiliation(s)
- Elizabeth K Wansley
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1064, USA
| | | |
Collapse
|
31
|
Nishio M, Garcin D, Simonet V, Kolakofsky D. The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Virology 2002; 300:92-9. [PMID: 12202209 DOI: 10.1006/viro.2002.1509] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viruses of the Paramyxovirinae, similar to other viruses, have evolved specific proteins that interdict IFN action as part of a general strategy to counteract host innate immunity. In many (but not all) cases, this interdiction is accompanied by a lowering of the intracellular levels of the STAT proteins. Among rubulaviruses, there is a notable variation in how they interfere with IFN action. Whereas SV41, SV5, and MuV all act by lowering Stat1, hPIV2 acts by lowering Stat2. Here, we show that the mumps and hPIV2 V proteins both form a complex with several Stat proteins in a mixed-extract assay. This suggests that the specific degradation of these Stat proteins is not determined by complex formation, but presumably at some later stage of the degradation pathway. V/Stat complex formation requires a specific carboxyl segment of V. However, a previously unrecognized trp-rich motif, rather than the Zn(++)-binding cys-cluster of this segment, appears to be required for V/Stat interaction. The C protein of Sendai (respiro-) virus, another P gene encoded protein, also forms a complex with Stat1, and prebinding of MuV V to Stat1 prevents the subsequent binding of SeV C. Our results suggest that rubulavirus V proteins may be related to both the C and the V proteins of respiroviruses.
Collapse
Affiliation(s)
- Machiko Nishio
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CMU, 9 Ave de Champel, CH1211, Geneva, Switzerland
| | | | | | | |
Collapse
|
32
|
Bhella D, Ralph A, Murphy LB, Yeo RP. Significant differences in nucleocapsid morphology within the Paramyxoviridae. J Gen Virol 2002; 83:1831-1839. [PMID: 12124447 DOI: 10.1099/0022-1317-83-8-1831] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleocapsid (N) proteins from representative viruses of three genera within the Paramyxoviridae were expressed in insect cells using recombinant baculoviruses. RNA-containing structures, which appear morphologically identical to viral nucleocapsids, were isolated and subsequently imaged under a transmission electron microscope. Analysis of these images revealed marked differences in nucleocapsid morphology among the genera investigated, most notably between viruses of the Paramyxovirinae and the Pneumovirinae subfamilies. Helical pitch measurements were made, revealing that measles virus (MV, a Morbillivirus within the subfamily Paramyxovirinae) N protein produces helices that adopt multiple conformations with varying degrees of flexibility, while that of the Rubulavirus simian virus type 5 (SV5, subfamily Paramyxovirinae) produces more rigid structures with a less heterogeneous pitch distribution. Nucleocapsids produced by respiratory syncytial virus (RSV, subfamily Pneumovirinae) appear significantly narrower than those of MV and SV5 and have a longer pitch than the most extended form of MV. In addition to helical nucleocapsids, ring structures were also produced, image analysis of which has demonstrated that rings assembled from MV N protein consist of 13 subunits. This is consistent with previous reports that Sendai virus nucleocapsids have 13.07 subunits per turn. It was determined, however, that SV5 subnucleocapsid rings have 14 subunits, while rings derived from the radically different RSV nucleocapsid have been found to contain predominantly 10 subunits.
Collapse
Affiliation(s)
- David Bhella
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | - Adam Ralph
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | - Lindsay B Murphy
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | - Robert P Yeo
- Medical Research Council Virology Unit, Church Street, Glasgow G11 5JR, UK1
| |
Collapse
|
33
|
Skiadopoulos MH, Surman SR, Riggs JM, Orvell C, Collins PL, Murphy BR. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology 2002; 297:136-52. [PMID: 12083844 DOI: 10.1006/viro.2002.1415] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The level of replication and immunogenicity of recombinant parainfluenza virus type 3 (rHPIV3) bearing one, two, or three gene insertions expressing foreign protective antigens was examined. cDNA-derived recombinant HPIV3s bearing genes encoding the open reading frames (ORFs) of the hemagglutinin-neuraminidase (HN) of HPIV1, the HN of HPIV2, or the hemagglutinin (HA) of measles virus replicated efficiently in vitro, including the largest recombinant, which had three gene unit insertions and which was almost 23 kb in length, 50% longer than unmodified HPIV3. Several viruses were recovered from cDNAs whose genome length was not a multiple of six nucleotides and these contained nucleotide insertions that corrected the length to be a multiple of 6, confirming that the "rule of six" applies to HPIV3. Using a hemagglutination inhibition assay, we determined that the HPIV1 HN expressed by recombinant HPIV3 was incorporated into HPIV3 virions, whereas using this assay incorporation of the HPIV2 HN could not be detected. HPIV3 virions bearing HPIV1 HN were not neutralized by HPIV1 antiserum but were readily neutralized by antibodies to the HPIV3 HN or fusion protein (F). Viruses with inserts were restricted for replication in the respiratory tract of hamsters, and the level of restriction was a function of the total number of genes inserted, the nature of the insert, and the position of the inserted gene in the gene order. A single insert of HPIV2 HN or measles virus HA reduced the in vivo replication of rHPIV3 up to 25-fold, whereas the HPIV1 HN insert decreased replication almost 1000-fold. This indicates that the HPIV1 HN insert has an attenuating effect in addition to that of the extra gene insert itself, presumably because it is incorporated into the virus particle. Viruses containing two inserts were generally more attenuated than those with a single insert, and viruses with three inserts were over-attenuated for replication in hamsters. Inserts between the N and P genes were slightly more attenuating than those between the P and the M genes. A recombinant HPIV3 bearing both the HPIV1 and the HPIV2 HN genes (r1HN 2HN) was attenuated, immunogenic, and protected immunized hamsters from challenge with HPIV1, HPIV2, and HPIV3. Thus, it is possible to use a single HPIV vector expressing two foreign gene inserts to protect infants and young children from the severe lower respiratory tract disease caused by the three major human PIV pathogens.
Collapse
Affiliation(s)
- Mario H Skiadopoulos
- Respiratory Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Particles of most virus species accurately package a single genome, but there are indications that the pleomorphic particles of parainfluenza viruses incorporate multiple genomes. We characterized a stable measles virus mutant that efficiently packages at least two genomes. The first genome is recombinant and codes for a defective attachment protein with an appended domain interfering with fusion-support function. The second has one adenosine insertion in a purine run that interrupts translation of the appended domain and restores function. In that genome, a one base deletion in a different purine run abolishes polymerase synthesis, but restores hexameric genome length, thus ensuring accurate RNA encapsidation, which is necessary for efficient replication. Thus, the two genomes are complementary. The infection kinetics of this mutant indicate that packaging of multiple genomes does not negatively affect growth. We also show that polyploid particles are produced in standard infections at no expense to infectivity. Our results illustrate how the particles of parainfluenza viruses efficiently accommodate cargoes of different volume, and suggest a mechanism by which segmented genomes may have evolved.
Collapse
Affiliation(s)
| | | | | | - Roberto Cattaneo
- Molecular Medicine Program, Mayo Clinic, Guggenheim 1838, 200 First Street SW, Rochester, MN 55905, USA
Corresponding author e-mail:
| |
Collapse
|
35
|
von Messling V, Cattaneo R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function. J Virol 2002; 76:4172-80. [PMID: 11932382 PMCID: PMC155104 DOI: 10.1128/jvi.76.9.4172-4180.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion (F) proteins of most paramyxoviruses are classical type I glycoproteins with a short hydrophobic leader sequence closely following the translation initiation codon. The predicted reading frame of the canine distemper virus (CDV) F protein is more complex, with a short hydrophobic sequence beginning 115 codons downstream of the first AUG. To verify if the sequence between the first AUG and the hydrophobic region is translated, we produced a specific antiserum that indeed detected a short-lived F protein precursor that we named PreF(0). A peptide resulting from PreF(0) cleavage was identified and named Pre, and its half-life was measured to be about 30 min. PreF(0) cleavage was completed before proteolytic activation of F(0) into its F(1) and F(2) subunits by furin. To test the hypothesis that the Pre peptide may influence protein activity, we compared the function of F proteins synthesized with that peptide to that of F proteins synthesized with a shorter amino-terminal signal sequence. F proteins synthesized with the Pre peptide were more stable and less active. Thus, the Pre peptide modulates the function of the CDV F protein. Interestingly, a distinct two-hit activation process has been recently described for human respiratory syncytial virus, another paramyxovirus.
Collapse
|
36
|
Parks GD, Young VA, Koumenis C, Wansley EK, Layer JL, Cooke KM. Controlled cell killing by a recombinant nonsegmented negative-strand RNA virus. Virology 2002; 293:192-203. [PMID: 11853412 DOI: 10.1006/viro.2001.1298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most tissue culture cell lines tested, infection with the paramyxovirus simian virus 5 (SV5) results in very little cell death. To determine if SV5 could be used as a vector for controlled killing of tumor cells, a recombinant SV5 (rSV5-TK) was constructed to encode the herpes simplex virus thymidine kinase (TK) gene. MDBK cells infected with rSV5-TK showed a time-dependent loss of viability when infected cells were cultured in the presence of the prodrug acyclovir (ACV) or ganciclovir (GCV) while no significant toxicity was observed in the absence of prodrug. Cells infected with a control rSV5 expressing GFP and cultured with prodrug showed only a slight reduction in growth rate and little cell death. Time-lapse video microscopy of rSV5-TK-infected MDBK cells that were cultured in the presence of ACV showed an accumulation of cells with morphological effects characteristic of apoptotic cell death. An MDBK cell line persistently infected with rSV5-TK retained long-term expression of TK and sensitivity to prodrug-mediated cell killing that were comparable to those found in an acute infection. Titration experiments showed that the rSV5-TK plus GCV combination resulted in cell death for all mouse and human cell lines tested, although the kinetics and efficiency of cell death varied between cell types. Our results demonstrating controlled cell killing by a recombinant paramyxovirus support the use of negative-strand RNA viruses as therapeutic vectors for targeted killing of cancer cells.
Collapse
Affiliation(s)
- Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| | | | | | | | | | | |
Collapse
|
37
|
von Messling V, Zimmer G, Herrler G, Haas L, Cattaneo R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol 2001; 75:6418-27. [PMID: 11413309 PMCID: PMC114365 DOI: 10.1128/jvi.75.14.6418-6427.2001] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canine distemper virus (CDV) and measles virus (MV) cause severe illnesses in their respective hosts. The viruses display a characteristic cytopathic effect by forming syncytia in susceptible cells. For CDV, the proficiency of syncytium formation varies among different strains and correlates with the degree of viral attenuation. In this study, we examined the determinants for the differential fusogenicity of the wild-type CDV isolate 5804Han89 (CDV(5804)), the small- and large-plaque-forming variants of the CDV vaccine strain Onderstepoort (CDV(OS) and CDV(OL), respectively), and the MV vaccine strain Edmonston B (MV(Edm)). The cotransfection of different combinations of fusion (F) and hemagglutinin (H) genes in Vero cells indicated that the H protein is the main determinant of fusion efficiency. To verify the significance of this observation in the viral context, a reverse genetic system to generate recombinant CDVs was established. This system is based on a plasmid containing the full-length antigenomic sequence of CDV(OS). The coding regions of the H proteins of all CDV strains and MV(Edm) were introduced into the CDV and MV genetic backgrounds, and recombinant viruses rCDV-H(5804), rCDV-H(OL), rCDV-H(Edm), rMV-H(5804), rMV-H(OL), and rMV-H(OS) were recovered. Thus, the H proteins of the two morbilliviruses are interchangeable and fully functional in a heterologous complex. This is in contrast with the glycoproteins of other members of the family Paramyxoviridae, which do not function efficiently with heterologous partners. The fusogenicity, growth characteristics, and tropism of the recombinant viruses were examined and compared with those of the parental strains. All these characteristics were found to be predominantly mediated by the H protein regardless of the viral backbone used.
Collapse
Affiliation(s)
- V von Messling
- Molecular Medicine Program, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
38
|
Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, Ito Y. Recovery of Infectious Human Parainfluenza Type 2 Virus from cDNA Clones and Properties of the Defective Virus without V-Specific Cysteine-Rich Domain. Virology 2001; 284:99-112. [PMID: 11352671 DOI: 10.1006/viro.2001.0864] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A full-length cDNA clone was constructed from the genome of the human parainfluenza type 2 virus (hPIV2). First, Vero cells were infected with recombinant vaccinia virus expressing T7 RNA polymerase, and then the plasmid encoding the antigenome sequence was transfected into Vero cells together with polymerase unit plasmids, NP, P, and L, which were under control of the T7 polymerase promoter. Subsequently, the transfected cells were cocultured with fresh Vero cells. Rescue of recombinant hPIV2 (rPIV2) from cDNA clone was demonstrated by finding the introduced genetic tag. As an application of reverse genetics, we introduced one nucleotide change (UCU to ACU) to immediate downstream of the RNA-editing site of the V gene in the full-length hPIV2 cDNA and were able to obtain infectious viruses [rPIV2V(-)] from the cDNA. The rPIV2V(-) possessed a defective V protein that did not have the unique cysteine-rich domain in its carboxyl terminus (the V-protein-specific domain). The rPIV2V(-) showed no growth in CV-1 and FL cells. Replication of the rPIV2V(-) in these cells, however, was partially recovered by adding anti-interferon (IFN)-beta antibody into the culture medium, showing that the rPIV2V(-) is highly sensitive against IFN and that no growth of rPIV2V(-) in CV-1 and FL cells is mainly due to its hypersensitivity to endogenously produced IFN. These findings indicate that the V-protein-specific domain of hPIV2 is related to IFN resistance. On the other hand, the rPIV2V(-) efficiently replicated in Vero cells, which are known as a IFN-non-producers. However, the virus yields of rPIV2V(-) in Vero cells were 10- to100-fold lower than those of control rPIV2, although syntheses of the viral-specific proteins and their mRNAs in rPIV2V(-)-infected Vero cells were augmented up to 48 p.i. in comparison with those of rPIV2. Furthermore, the rPIV2V(-) virions showed anomalous in size as compared with rPIV2 virions. These results suggest that the V protein plays an important role in the hPIV2 assembly, maturation, and morphogenesis.
Collapse
Affiliation(s)
- M Kawano
- Department of Microbiology, Mie University School of Medicine, 2-174 Edobashi, Mie, 514-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The "rule of six" stipulates that the Paramyxovirus RNA polymerase efficiently replicates only viral genomes counting 6n + 0 nucleotides. Because the nucleocapsid proteins (N) interact with 6 nucleotides, an exact nucleotide-N match at the RNA 3'-OH end (3'-OH congruence) may be required for recognition of an active replication promoter. Alternatively, assuming that the six positions for the interaction of N with the nucleotides are not equivalent, the nucleotide position relative to N may be critical (N phase context). The replication abilities of various minireplicons, designed so that the 3'-OH congruence could be discriminated from the N phase context, were studied. The results strongly suggest that the application of the rule of six depends on the recognition of nucleotides positioned in the proper N phase context.
Collapse
Affiliation(s)
- D Vulliémoz
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
40
|
Keller MA, Murphy SK, Parks GD. RNA replication from the simian virus 5 antigenomic promoter requires three sequence-dependent elements separated by sequence-independent spacer regions. J Virol 2001; 75:3993-8. [PMID: 11264390 PMCID: PMC114892 DOI: 10.1128/jvi.75.8.3993-3998.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown for the paramyxovirus simian virus 5 (SV5) that a functional promoter for RNA replication requires proper spacing between two discontinuous elements: a 19-base segment at the 3' terminus (conserved region I [CRI]) and an 18-base internal region (CRII) that is contained within the coding region of the L protein gene. In the work described here, we have used a reverse-genetics system to determine if the 53-base segment between CRI and CRII contains additional sequence-specific signals required for optimal replication or if this segment functions solely as a sequence-independent spacer region. A series of copyback defective interfering minigenome analogs were constructed to contain substitutions of nonviral sequences in place of bases 21 to 72 of the antigenomic promoter, and the relative level of RNA replication was measured by Northern blot analysis. The results from our mutational analysis indicate that in addition to CRI and CRII, optimal replication from the SV5 antigenomic promoter requires a third sequence-dependent element located 51 to 66 bases from the 3' end of the RNA. Minigenome RNA replication was not affected by changes in the either the position of this element in relation to CRI and CRII or the predicted hexamer phase of NP encapsidation. Thus, optimal RNA replication from the SV5 antigenomic promoter requires three sequence-dependent elements, CRI, CRII and bases 51 to 66.
Collapse
Affiliation(s)
- M A Keller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | | | |
Collapse
|
41
|
Parks GD, Ward KR, Rassa JC. Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis. J Virol 2001; 75:2213-23. [PMID: 11160725 PMCID: PMC114805 DOI: 10.1128/jvi.75.5.2213-2223.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant simian virus 5 (rSV5) mutants containing substitutions in the M-F intergenic region were generated to determine the effect of increased readthrough transcription on the paramyxovirus growth cycle. We have previously shown, using an SV5 dicistronic minigenome, that replacement of the 22-base M-F intergenic region with a foreign sequence results in a template (Rep22) that directs very high levels of M-F readthrough transcription. An rSV5 containing the Rep22 substitution grew slower and to final titers that were 50- to 80-fold lower than those of wild-type (WT) rSV5. Cells infected with the Rep22 virus produced very low levels of monocistronic M and F mRNA, consistent with the M-F readthrough phenotype. Surprisingly, Rep22 virus-infected cells also displayed a global decrease in the accumulation of viral mRNA from genes located upstream and downstream of the M-F junction, and overall viral protein synthesis was reduced. Second-site revertants of the Rep22 virus that had regained WT transcription and growth properties contained a single base substitution that increased the M gene end U tract from four to eight residues, suggesting that the growth defects originated from higher-than-normal M-F readthrough transcription. Thus, the primary growth defect for the Rep22 virus appears to be in viral RNA synthesis and not in morphogenesis. A second rSV5 virus (G14), which contained a different foreign M-F intergenic sequence, grew to similar or slightly higher titers than WT rSV5 in some cell types and produced ~1.5- to 2-fold more mRNA and viral protein. The data support the hypothesis that inhibition of Rep22 virus growth is due to increased access by the polymerase to the 5' end of the genome and to the resulting overexpression of L protein. We propose that the elevated naturally occurring M-F readthrough which is characteristic of many paramyxoviruses serves as a mechanism to fine-tune the level of polymerase that is optimal for virus growth.
Collapse
Affiliation(s)
- G D Parks
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA.
| | | | | |
Collapse
|
42
|
Kao C, Rüdisser S, Zheng M. A simple and efficient method to transcribe RNAs with reduced 3' heterogeneity. Methods 2001; 23:201-5. [PMID: 11243833 DOI: 10.1006/meth.2000.1131] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ribose C2' methoxy groups (-OCH3) on the penultimate nucleotide or the last two nucleotides of DNA templates can dramatically improve the quality of transcripts produced by T7 RNA polymerase. This strategy can be adapted to generate transcripts of varying lengths and will allow greater ease in purification of the products.
Collapse
Affiliation(s)
- C Kao
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
43
|
Krishnamurthy S, Huang Z, Samal SK. Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 2000; 278:168-82. [PMID: 11112492 DOI: 10.1006/viro.2000.0618] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recombinant mesogenic NDV strain, Beaudette C, and an engineered recombinant NDV expressing an additional gene were generated entirely from cloned cDNAs. For this purpose, a full-length cDNA clone of the virus genome, represented in eight different subgenomic fragments, was assembled in a transcription plasmid between a T7 RNA polymerase promoter and a hepatitis delta virus ribozyme sequence. Infectious NDV could be generated in the cells infected with recombinant vaccinia virus, which expressed T7 RNA polymerase, by simultaneous expression of antigenome-sense NDV RNA from the full-length plasmid and NDV NP, P, and L proteins from cotransfected plasmids. Recombinant virus was then amplified and recovered, either after inoculation of transfection supernatant into the allantoic cavity of embryonated specific-pathogen-free eggs or after further passage in cell culture. Characterization of the recombinant NDV showed similarities in growth and pathogenicity to that of the parental wild-type virus. By using this system, a recombinant NDV containing a foreign gene encoding chloramphenicol acetyltransferase (CAT) was generated. To do this, the CAT transcription cassette containing the CAT open reading frame, flanked by NDV gene start and gene end sequence motifs, was inserted into the region between the HN and L genes of the full-length cDNA. This construct was then used in the generation of a recombinant NDV expressing CAT protein. The CAT gene was maintained stably for at least eight passages without any detectable loss of the gene from the recombinant. Generation of the recombinant virus, however, was associated with reduced plaque size, slower replication kinetics, and more than 100-fold decrease in yield. In addition, the virus showed an increase in mean death time for eggs and a lower intracerebral pathogenicity index in day-old chicks, implicating attenuation of the recombinant virus. Thus, introduction of an additional gene into the NDV genome represents a method to achieve growth retardation and attenuation. These results also indicate that NDV can be engineered to express foreign protein stably and can be manipulated in the future for use as a vaccine vector.
Collapse
Affiliation(s)
- S Krishnamurthy
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
44
|
Rassa JC, Wilson GM, Brewer GA, Parks GD. Spacing constraints on reinitiation of paramyxovirus transcription: the gene end U tract acts as a spacer to separate gene end from gene start sites. Virology 2000; 274:438-49. [PMID: 10964786 DOI: 10.1006/viro.2000.0494] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paramyxovirus gene end U tracts are thought to serve as templates for the addition of a 3' polyA tail to viral mRNAs. The goal of the work described here was to determine the function in transcription of the naturally occurring variability in length of the gene end U tracts of the paramyxovirus simian virus 5 (SV5). An anchored RT-PCR assay was developed to test the hypothesis that the variable U tracts template the addition of variable lengths of polyA tails to mRNAs. The results showed that although the SV5 NP, M, and SH genes encode U tracts of seven, four, and six U residues, respectively, their mRNAs contain similar polyA tails of approximately 250-290 bases. These results indicate that the variable gene end U tracts are functionally equivalent in directing polyadenylation. A reverse genetics system based on a dicistronic minigenome containing the SH-HN gene junction was used to test the hypothesis that the variable U tracks affect the efficiency of transcription termination. Minigenome templates containing an SH gene end with a long U tract of six residues (U6) directed efficient transcription termination and reinitiation at the downstream HN start site with no nucleotide preference for the downstream intergenic region. Surprisingly, truncating the SH gene end U tract to four residues (U4) did not affect SH termination but, rather, reduced downstream HN reinitiation to 20-30% of wild-type levels. Efficient HN reinitiation could be restored to mutant U4 templates in either of two ways: by increasing the U-tract length from four to six residues or by increasing the length of the intergenic region. Efficient HN reinitiation required a minimum of six bases between the last nucleotide in SH and the first nucleotide in HN. We propose that for some paramyxoviruses, the gene end U tract serves a previously unrecognized role as a spacer region between the gene end and gene start sites.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Dogs
- Genes, Viral/genetics
- Genetic Variation/genetics
- Genome, Viral
- Models, Genetic
- Poly A/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Respirovirus/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Templates, Genetic
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- J C Rassa
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | | | | | |
Collapse
|
45
|
Clarke DK, Sidhu MS, Johnson JE, Udem SA. Rescue of mumps virus from cDNA. J Virol 2000; 74:4831-8. [PMID: 10775622 PMCID: PMC112006 DOI: 10.1128/jvi.74.10.4831-4838.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Accepted: 02/23/2000] [Indexed: 11/20/2022] Open
Abstract
A complete DNA copy of the genome of a Jeryl Lynn strain of mumps virus (15,384 nucleotides) was assembled from cDNA fragments such that an exact antigenome RNA could be generated following transcription by T7 RNA polymerase and cleavage by hepatitis delta virus ribozyme. The plasmid containing the genome sequence, together with support plasmids which express mumps virus NP, P, and L proteins under control of the T7 RNA polymerase promoter, were transfected into A549 cells previously infected with recombinant vaccinia virus (MVA-T7) that expressed T7 RNA polymerase. Rescue of infectious virus from the genome cDNA was demonstrated by amplification of mumps virus from transfected-cell cultures and by subsequent consensus sequencing of reverse transcription-PCR products generated from infected-cell RNA to verify the presence of specific nucleotide tags introduced into the genome cDNA clone. The only coding change (position 8502, A to G) in the cDNA clone relative to the consensus sequence of the Jeryl Lynn plaque isolate from which it was derived, resulting in a lysine-to-arginine substitution at amino acid 22 of the L protein, did not prevent rescue of mumps virus, even though an amino acid alignment for the L proteins of paramyxoviruses indicates that lysine is highly conserved at that position. This system may provide the basis of a safe and effective virus vector for the in vivo expression of immunologically and biologically active proteins, peptides, and RNAs.
Collapse
Affiliation(s)
- D K Clarke
- Wyeth-Lederle Vaccines, Pearl River, New York 10965, USA.
| | | | | | | |
Collapse
|
46
|
Hoffman MA, Banerjee AK. Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3. Virology 2000; 269:201-11. [PMID: 10725212 DOI: 10.1006/viro.2000.0223] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The terminal RNA regions of the genomic and antigenomic RNAs of the paramyxoviruses and rhabdoviruses are known to contain sequences essential for directing RNA replication and transcription. The 3' terminus (leader region) of the negative-sense, genomic RNA of the rhabdoviruses and paramyxoviruses is known as the leader (Le) promoter and directs synthesis of positive-sense replication and transcription products. The 3' terminus of the antigenome is termed the trailer complementary (TrC) promoter and directs the synthesis of genomic RNA. By creating mutations in the corresponding regions of an HPIV3 minireplicon in which the viral protein coding sequences were replaced by the luciferase gene, we were able to precisely define the elements of the leader promoter involved in directing positive-strand replication of HPIV3. Nucleotides 1 through 12 (from the terminus) formed a domain critical for replication. The region from nucleotides 13 through 55 was important but not crucial for replication, while G residues at positions 79, 85, and 91 comprised another domain critical for replication. It was also shown that the TrC promoter is similar, though not identical, to the Le promoter. Nucleotides 1 through 12 of the TrC promoter were critical for synthesis of genomic RNA, though specific positions behaved differently from the corresponding positions of the Le promoter. While many of these mutations could not be analyzed for transcription because they completely abrogated genomic RNA synthesis (the template for transcription), we were surprised to find that no mutations in the leader promoter which decreased replication had any significant effect on transcription. However, mutations in the intergenic sequence and gene start signal following the leader and preceding the luciferase message severely decreased transcription, but not replication.
Collapse
MESH Headings
- Base Sequence
- Gene Expression Regulation, Viral/genetics
- Genes, Reporter/genetics
- Genome, Viral
- HeLa Cells
- Humans
- Mutation/genetics
- Parainfluenza Virus 3, Human/genetics
- Physical Chromosome Mapping
- Promoter Regions, Genetic/genetics
- RNA, Complementary/analysis
- RNA, Complementary/biosynthesis
- RNA, Complementary/genetics
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Replication Origin/genetics
- Replicon
- Sequence Alignment
- Templates, Genetic
- Transcription, Genetic/genetics
- Transfection
Collapse
Affiliation(s)
- M A Hoffman
- Department of Virology, Lerner Research Institute, Cleveland, OH 44195, USA
| | | |
Collapse
|
47
|
Abstract
Molecular studies on the replication of paramyxoviruses have undergone a revolution in recent years due to the development of techniques that permit the manipulation of their genomes as cDNA. This has led to new information on the structure-function organization of the viral proteins involved in genome expression, as well as dissection of the cis-acting template sequences that regulate transcription and replication. Studies using recombinant viruses have also provided new insights into the role of the accessory proteins (V, C, M1/M2) in both for virus growth in cultured cells and pathogenesis in animals.
Collapse
Affiliation(s)
- J Curran
- Department of Genetics and Microbiology, University of Geneva Medical School (CMU), Switzerland
| | | |
Collapse
|
48
|
Schmitt AP, He B, Lamb RA. Involvement of the cytoplasmic domain of the hemagglutinin-neuraminidase protein in assembly of the paramyxovirus simian virus 5. J Virol 1999; 73:8703-12. [PMID: 10482624 PMCID: PMC112891 DOI: 10.1128/jvi.73.10.8703-8712.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient assembly of enveloped viruses at the plasma membranes of virus-infected cells requires coordination between cytosolic viral components and viral integral membrane glycoproteins. As viral glycoprotein cytoplasmic domains may play a role in this coordination, we have investigated the importance of the hemagglutinin-neuraminidase (HN) protein cytoplasmic domain in the assembly of the nonsegmented negative-strand RNA paramyxovirus simian virus 5 (SV5). By using reverse genetics, recombinant viruses which contain HN with truncated cytoplasmic tails were generated. These viruses were shown to be replication impaired, as judged by small plaque size, reduced replication rate, and low maximum titers when compared to those features of wild-type (wt) SV5. Release of progeny virus particles from cells infected with HN cytoplasmic-tail-truncated viruses was inefficient compared to that of wt virus, but syncytium formation was enhanced. Furthermore, accumulation of viral proteins at presumptive budding sites on the plasma membranes of infected cells was prevented by HN cytoplasmic tail truncations. We interpret these data to indicate that formation of budding complexes, from which efficient release of SV5 particles can occur, depends on the presence of an HN cytoplasmic tail.
Collapse
Affiliation(s)
- A P Schmitt
- Howard Hughes Medical Institute, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
49
|
Calain P, Monroe MC, Nichol ST. Ebola virus defective interfering particles and persistent infection. Virology 1999; 262:114-28. [PMID: 10489346 DOI: 10.1006/viro.1999.9915] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ebola virus (Zaire subtype) is associated with high mortality disease outbreaks that commonly involve human to human transmission. Surviving patients can show evidence of prolonged virus persistence. The potential for Ebola virus to generate defective interfering (DI) particles and establish persistent infections in tissue culture was investigated. It was found that serial undiluted virus passages quickly resulted in production of an evolving population of virus minireplicons possessing both deletion and copyback type DI genome rearrangements. The tenth undiluted virus passage resulted in the establishment of virus persistently infected cell lines. Following one or two crises, these cells were stably maintained for several months with continuous shedding of infectious virus. An analysis of the estimated genome lengths of a selected set of the Ebola virus minireplicons and standard filoviruses revealed no obvious genome length rule, such as "the rule of six" found for the phylogenetically related Paramyxovirinae subfamily viruses. Minimal promoters for Ebola virus replication were found to be contained within 156 and 177 nucleotide regions of the genomic and antigenomic RNA 3' termini, respectively, based on the length of authentic termini retained in the naturally occurring minireplicons analyzed. In addition, using UV-irradiated preparations of virus released from persistently infected cells, it was demonstrated that Ebola virus DI particles could potentially be used as natural minireplicons to assay standard virus support functions.
Collapse
Affiliation(s)
- P Calain
- Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Mailstop G14, 1600 Clifton Road, N.E., Atlanta, Georgia 30329-4018, USA
| | | | | |
Collapse
|
50
|
He B, Lamb RA. Effect of inserting paramyxovirus simian virus 5 gene junctions at the HN/L gene junction: analysis of accumulation of mRNAs transcribed from rescued viable viruses. J Virol 1999; 73:6228-34. [PMID: 10400712 PMCID: PMC112699 DOI: 10.1128/jvi.73.8.6228-6234.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian parainfluenza virus 5 (SV5) is a prototype of the Paramyxoviridae family of nonsegmented negative-sense RNA viruses. The single-stranded RNA genomes of these viruses contain a series of tandemly linked genes separated by intergenic (IG) sequences flanked by gene-end (GE) and gene-start (GS) sequences. The viral RNA polymerase (vRNAP) complex is thought to enter the genome at its 3' end, and synthesis of mRNAs is thought to occur by a stop-start mechanism in a sequential and polar manner, with transcriptional attenuation occurring primarily at the intergenic regions. As a result, multiple nonoverlapping mRNA species are generated for each single entry of the vRNAP. To investigate the functions of GE, IG, and GS sequences in transcription, we constructed plasmids containing cDNAs of the full-length SV5 genome in which the gene junction sequences (GE, IG, and GS sequences) located between the hemagglutinin-neuraminidase (HN) and the polymerase (L) genes were replaced with the counterpart sequences from other gene junctions. By using reverse genetics, we recovered viable viruses from each cDNA construct, although their growth characteristics varied. Analysis of the HN and L mRNAs by quantitative RNase protection assay indicated that the ratios of HN to L mRNAs varied over a fourfold range. The alteration of the gene junction sequences also permitted examination of the hypothesized requirement for hexamer nucleotide position of the GS sites. The recovery of infectious viruses with transcription initiation sites that occurred at nucleotide positions 1, 2, 3, 5, and 6 of the hexamer suggest that the requirement is nonstringent.
Collapse
Affiliation(s)
- B He
- Howard Hughes Medical Institute, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|