1
|
Khalifa ME, Munir M. Protocol for constructing and characterizing recombinant vectored vaccines for rabies virus. STAR Protoc 2024; 5:103392. [PMID: 39423123 PMCID: PMC11513535 DOI: 10.1016/j.xpro.2024.103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Recombinant vectored vaccines provide economical, rapidly engineered, and tailored immunization strategies. Here, we present a protocol for constructing and characterizing recombinant vectored vaccines for rabies virus (RV). We describe steps for generating replication-competent vesicular stomatitis virus (rcVSV) by replacing vesicular stomatitis virus (VSV) glycoprotein (G) with RV G gene and for recovering rcVSV by co-transfecting baby hamster kidney (BHK-21) cells with the antigenomic VSV cDNA plasmid (pVSV). We then detail procedures for the functional, structural, and molecular characterization of generated rcVSV-RV-Gs.
Collapse
Affiliation(s)
- Manar E Khalifa
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
2
|
Wang S, Chen B, Ni S, Liang Y, Li Z. Efficient generation of recombinant eggplant mottled dwarf virus and expression of foreign proteins in solanaceous hosts. Virology 2024; 591:109980. [PMID: 38215560 DOI: 10.1016/j.virol.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Reverse genetics systems have only been successfully developed for a few plant rhabdoviruses. Additional systems are needed for molecular virology studies of these diverse viruses and development of viral vectors for biotechnological applications. Eggplant mottled dwarf virus (EMDV) is responsible for significant agricultural losses in various crops throughout the Mediterranean region and the Middle East. In this study, we report efficient recovery of infectious EMDV from cloned DNAs and engineering of EMDV-based vectors for the expression of foreign proteins in tobacco, eggplant, pepper, and potato plants. Furthermore, we show that the EMDV-based vectors are capable of simultaneously expressing multiple foreign proteins. The developed EMDV reverse genetics system offers a versatile tool for studying virus pathology and plant-virus interactions and for expressing foreign proteins in a range of solanaceous crops.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Binhuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Ni
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
4
|
Abstract
Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in West Africa have revealed the lack of investigation on this notorious virus. Ebola virus (EBOV) is a highly pathogenic negative-stranded RNA virus that has caused several deadly endemics in the past decades. EBOV reverse genetics systems are available for studying live viruses under biosafety level 4 (BSL-4) or subviral particles under BSL-2 conditions. However, these systems all require cotransfection of multiple plasmids expressing viral genome and viral proteins essential for EBOV replication, which is technically challenging and unable to naturally mimic virus propagation using the subviral particle. Here, we established a new EBOV reverse genetics system only requiring transfection of a single viral RNA genome into an engineered cell line that stably expresses viral nucleoprotein (NP), viral protein 35 (VP35), VP30, and large (L) proteins and has been fine-tuned for its superior permissiveness for EBOV replication. Using this system, subviral particles expressing viral VP40, glycoprotein (GP), and VP24 could be produced and continuously propagated and eventually infect the entire cell population. We demonstrated the authentic response of the subviral system to antivirals and uncovered that the VP35 amount is critical for optimal virus replication. Furthermore, we showed that fully infectious virions can be efficiently rescued by delivering the full-length EBOV genome into the same supporting cell, and the efficiency is not affected by genome polarity or virus variant specificity. In summary, our work provides a new tool for studying EBOV under different biosafety levels. IMPORTANCE Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in Africa have revealed the lack of investigation on this notorious virus. A reverse genetics system is an important tool for studying viruses by producing mutant viruses or generating safer and convenient model systems. Here, we developed an EBOV life cycle modeling system in which subviral particles can spontaneously propagate in cell culture. In addition, this system can be employed to rescue infectious virions of homologous or heterologous EBOV isolates using either sense or antisense viral RNA genomes. In summary, we developed a new tool for EBOV research.
Collapse
|
5
|
Li Z, Zhao C. Plant negative-stranded RNA virus biology and host interactions revitalized by reverse genetics. Curr Opin Virol 2021; 48:1-9. [PMID: 33774424 DOI: 10.1016/j.coviro.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the biology and pathogenesis of plant negative-stranded RNA viruses (NSVs) has lagged behind those made with positive-stranded RNA and DNA virus counterparts. This tardiness is mainly due to the lack of reverse genetics tools for NSV genome engineering for many years. The eventual establishment and application of recombinant systems with diverse plant NSVs has provided renewed momentum for investigations of these important viral pathogens. In this review, we summarize the recent advances in plant NSV reverse genetics systems, highlighting the general principles and the uniqueness of each system and emphasizing important considerations for strategy designing. We also provide a brief overview of the insights about NSV morphogenesis, movement, and virus-host interactions gained from reverse genetics-enabled studies.
Collapse
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Ma X, Li Z. Significantly Improved Recovery of Recombinant Sonchus Yellow Net Rhabdovirus by Expressing the Negative-Strand Genomic RNA. Viruses 2020; 12:v12121459. [PMID: 33348798 PMCID: PMC7766655 DOI: 10.3390/v12121459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of recombinant negative-stranded RNA viruses (NSVs) from plasmids involves in vivo reconstitution of biologically active nucleocapsids and faces a unique antisense problem where the negative-sense viral genomic RNAs can hybridize to viral messenger RNAs. To overcome this problem, a positive-sense RNA approach has been devised through expression of viral antigenomic (ag)RNA and core proteins for assembly of antigenomic nucleocapsids. Although this detour strategy works for many NSVs, the process is still inefficient. Using Sonchus yellow net rhabdovirus (SYNV) as a model; here, we develop a negative-sense genomic RNA-based approach that increased rescue efficiency by two orders of magnitude compared to the conventional agRNA approach. The system relied on suppression of double-stranded RNA induced antiviral responses by co-expression of plant viruses-encoded RNA silencing suppressors or animal viruses-encoded double-stranded RNA antagonists. With the improved approach, we were able to recover a highly attenuated SYNV mutant with a deletion in the matrix protein gene which otherwise could not be rescued via the agRNA approach. Reverse genetics analyses of the generated mutant virus provided insights into SYNV virion assembly and morphogenesis. This approach may potentially be applicable to other NSVs of plants or animals.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2387
| |
Collapse
|
7
|
Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine 2020; 38:6990-7001. [PMID: 32951939 DOI: 10.1016/j.vaccine.2020.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/04/2023]
Abstract
The most effective strategies for the control of disease in poultry are vaccination and biosecurity. Vaccines useful against pathogens affecting poultry must be safe, effective with a single dose, inexpensive, applicable by mass vaccination methods, and able to induce a protective immune response in the presence of maternal antibodies. Viral vector meet some of these characteristics and if the attenuated virus used as vector infects birds, the vaccine will have the advantage of being bivalent. Thus, viral vectors are currently a tool of choice for the development of new poultry vaccines. This review describes the main viruses used as vectors for the delivery and in vivo expression of antigens of poultry pathogens. It also presents the methodologies most frequently used to obtain recombinant viral vectors and summarizes the state-of-the-art related to vectored vaccines in poultry (some of them currently licensed), the pathogens targeted and their antigens, and the ability of these vaccines to induce an effective immune response. Finally, the review discusses the results of a few studies comparing recombinant viral vector vaccines and live-attenuated vaccines in vaccine matching challenges, and mentions strategies and future researches that can help to improve the efficacy of vectored vaccines in poultry birds.
Collapse
Affiliation(s)
- Carina Romanutti
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leticia Keller
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Flavia Adriana Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", CONICET, Saladillo 2468 (C1440FFX), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Watanabe S, Kanatsu-Shinohara M, Shinohara T. Sendai virus-mediated transduction of mammalian spermatogonial stem cells†. Biol Reprod 2019; 100:523-534. [PMID: 30165393 DOI: 10.1093/biolre/ioy192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation of spermatogenesis. However, because of their small number and slow self-renewal, transfection of SSCs has met with limited success. Although several viral vectors can infect SSCs, genome integration and an inability to maintain long-term gene expression have hampered studies on SSCs. Here we report successful SSC infection by Sendai virus (SV), an RNA virus in the Paramyxoviridae. The SV efficiently transduced germline stem (GS) cells, cultured spermatogonia with enriched SSC activity, and maintained gene expression for at least 5 months. It also infected freshly isolated SSCs from adult testes. The transfected GS cells reinitiated spermatogenesis following spermatogonial transplantation into seminiferous tubules of infertile mice, suggesting that SV transfection does not interfere with spermatogenesis progression. On the other hand, microinjection of SV into the seminiferous tubules of immature mice transduced SSCs and Sertoli cells, but did not transduce Leydig or peritubular cells by interstitial virus injection. SV-infected hamster GS cells, and freshly isolated rabbit or monkey SSC-like cells were identified following xenogeneic spermatogonial transplantation, suggesting that SV transduces SSCs from several mammalian species. Thus, SV is a useful vector that can transduce both SSCs and Sertoli cells and overcome problems associated with other viral vectors.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Qian S, Chen X, Sun K, Zhang Y, Li Z. Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus. Virol J 2017; 14:113. [PMID: 28610585 PMCID: PMC5470278 DOI: 10.1186/s12985-017-0776-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recovery of recombinant negative-stranded RNA viruses from cloned cDNAs is an inefficient process as multiple viral components need to be delivered into cells for reconstitution of infectious entities. Previously studies have shown that authentic viral RNA termini are essential for efficient virus rescue. However, little is known about the activity of viral RNAs processed by different strategies in supporting recovery of plant negative-stranded RNA virus. METHODS In this study, we used several versions of hammerhead ribozymes and a truncated cauliflower mosaic virus 35S promoter to generate precise 5' termini of sonchus yellow net rhabdovirus (SYNV) antigenomic RNA (agRNA) derivatives. These agRNAs were co-expressed with the SYNV core proteins in Nicotiana benthamiana leaves to evaluate their efficiency in supporting fluorescent reporter gene expression from an SYNV minireplicon (MR) and rescue of full-length virus. RESULTS Optimization of hammerhead ribozyme cleavage activities led to improved SYNV MR reporter gene expression. Although the MR agRNA processed by the most active hammerhead variants is comparable to the capped, precisely transcribed agRNA in supporting MR activity, efficient recovery of recombinant SYNV was only achieved with capped agRNA. Further studies showed that the capped SYNV agRNA permitted transient expression of the nucleocapsid (N) protein, and an agRNA derivatives unable to express the N protein in cis exhibited dramatically reduced rescue efficiency. CONCLUSION Our study reveals superior activity of precisely transcribed, capped SYNV agRNAs to uncapped, hammerhead ribozyme-processed agRNAs, and suggests a cis-acting function for the N protein expressed from the capped agRNA during recovery of SYNV from plasmids.
Collapse
Affiliation(s)
- Shasha Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaolan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yang Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Jackson AO, Li Z. Developments in Plant Negative-Strand RNA Virus Reverse Genetics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:469-498. [PMID: 27359368 DOI: 10.1146/annurev-phyto-080615-095909] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Twenty years ago, breakthroughs for reverse genetics analyses of negative-strand RNA (NSR) viruses were achieved by devising conditions for generation of infectious viruses in susceptible cells. Recombinant strategies have subsequently been engineered for members of all vertebrate NSR virus families, and research arising from these advances has profoundly increased understanding of infection cycles, pathogenesis, and complexities of host interactions of animal NSR viruses. These strategies also permitted development of many applications, including attenuated vaccines and delivery vehicles for therapeutic and biotechnology proteins. However, for a variety of reasons, it was difficult to devise procedures for reverse genetics analyses of plant NSR viruses. In this review, we discuss advances that have circumvented these problems and resulted in construction of a recombinant system for Sonchus yellow net nucleorhabdovirus. We also discuss possible extensions to other plant NSR viruses as well as the applications that may emanate from recombinant analyses of these pathogens.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China;
| |
Collapse
|
11
|
Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis. PLoS Pathog 2015; 11:e1005223. [PMID: 26484673 PMCID: PMC4616665 DOI: 10.1371/journal.ppat.1005223] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 01/21/2023] Open
Abstract
Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses. Reverse genetics is a powerful tool for fundamental studies of virus biology, pathology and biotechnology applications. Although plant negative-strand RNA (NSR) viruses consist of members in the Rhabdoviridae, Bunyaviridae, Ophioviridae families and several unassigned genera that collectively account for many economically important crop diseases, unfortunately, several technical difficulties have hindered application of genetic engineering to these groups of viruses. This study describes the first reverse genetics system developed for plant NSR viruses. We report an efficient procedure for production of infectious virus from cloned cDNAs of sonchus yellow net virus (SYNV) RNAs, a model plant rhabdovirus. We have also engineered a recombinant SYNV vector for stable expression of a fluorescent reporter gene. Using this system, we have generated targeted SYNV mutants whose analyses provide key insights into enveloped plant virus movement and morphogenesis processes. Moreover, our findings provide a template for reverse genetics studies with other plant rhabdoviruses, and a strategy to circumvent technical difficulties that have hampered these applications to plant NSR viruses.
Collapse
|
12
|
A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine. J Virol 2014; 89:2820-30. [PMID: 25540378 DOI: 10.1128/jvi.03246-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a potent antibody response in mice that was effective against infection with a lethal influenza virus. The mice showed no adverse reactions to the vaccine, and they were protected against an otherwise lethal influenza infection after only 14 days postvaccination and after as many as 140 days postvaccination. The ability to rapidly produce this safe and effective vaccine in cell culture is additionally advantageous.
Collapse
|
13
|
Zhang X, Wallace O, Wright KJ, Backer M, Coleman JW, Koehnke R, Frenk E, Domi A, Chiuchiolo MJ, DeStefano J, Narpala S, Powell R, Morrow G, Boggiano C, Zamb TJ, Richter King C, Parks CL. Membrane-bound SIV envelope trimers are immunogenic in ferrets after intranasal vaccination with a replication-competent canine distemper virus vector. Virology 2013; 446:25-36. [DOI: 10.1016/j.virol.2013.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/09/2013] [Accepted: 07/11/2013] [Indexed: 11/15/2022]
|
14
|
Nagai Y. Reverse Genetics of Mononegavirales: The Rabies Virus Paradigm. SENDAI VIRUS VECTOR 2013. [PMCID: PMC7121350 DOI: 10.1007/978-4-431-54556-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurotropic rabies virus (RABV) is a prototype member of the Mononegavirales order of viruses and is the most significant human pathogen of the Rhabdoviridae family. A reverse genetics system for RABV was established almost 20 years ago, providing a paradigm for other Mononegavirales members as well. The availability of engineered recombinant viruses opened a new era to study common aspects of Mononegavirales biology and specific aspects of the unique lifestyle and pathogenesis of individual members. Above all, the knowledge gained has allowed engineering of beneficial biomedical tools such as viral vectors, vaccines, and tracers. In this chapter, the development of the classical rabies virus reverse genetics approach is described, and some of the most exciting biomedical applications for recombinant RABV and other Mononegavirales are briefly addressed.
Collapse
|
15
|
Zhao L, Liu H. Newcastle disease virus: A promising agent for tumour immunotherapy. Clin Exp Pharmacol Physiol 2012; 39:725-30. [DOI: 10.1111/j.1440-1681.2011.05662.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lixiang Zhao
- Laboratory of Cellular and Molecular Tumor Immunology, Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences; Soochow University; Suzhou; China
| | | |
Collapse
|
16
|
Engelhardt OG. Many ways to make an influenza virus--review of influenza virus reverse genetics methods. Influenza Other Respir Viruses 2012; 7:249-56. [PMID: 22712782 PMCID: PMC5779834 DOI: 10.1111/j.1750-2659.2012.00392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Methods to introduce targeted mutations into a genome or, in the context of virology, into a virus are subsumed under the term reverse genetics (RG). Influenza viruses are important human pathogens that continue to surprise us. The development of RG for influenza viruses has greatly expanded our knowledge about influenza virus and enabled researchers to generate influenza viruses with rationally designed genotypes. Currently, a wide array of influenza virus RG methods is available. These can all be traced to fundamental principles essential in any RG system for negative-strand RNA viruses. This review gives an overview of these principles and of the multitude of RG methods, categorising them by technical characteristics.
Collapse
Affiliation(s)
- Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Health Protection Agency, Potters Bar, UK.
| |
Collapse
|
17
|
Walther W, Stein US. Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol 2008; 542:565-605. [PMID: 19565923 PMCID: PMC7122391 DOI: 10.1007/978-1-59745-561-9_30] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review deals with the avian paramyxovirus Newcastle disease virus (NDV) and describes properties that explain its oncolytic activity, its tumor-selective replication behavior, and its immune-stimulatory capacity with human cells. The strong interferon response of normal cells upon contact with NDV appears to be the basis for the good tolerability of the virus in cancer patients and for its immune stimulatory properties, whereas the weak interferon response of tumor cells explains the tumor selectivity of replication and oncolysis. Various concepts for the use of this virus for cancer treatment are pointed out and results from clinical studies are summarized. Reverse genetics technology has made it possible recently to clone the genome and to introduce new foreign genes thus generating new recombinant viruses. These can, in the future, be used to transfer new therapeutic genes into tumors and also to immunize against new emerging pathogens. The modular nature of gene transcription, the undetectable rate of recombination, and the lack of a DNA phase in the replication cycle make NDV a suitable candidate for the rational design of a safe and stable vaccine and gene therapy vector.
Collapse
Affiliation(s)
- Wolfgang Walther
- Molecular Medicine (MDC), Max Delbrück Center for, Robert-Rössle-Str. 10, Berlin, 13125 Germany
| | - Ulrike S. Stein
- Molecular Medicine (MDC), Max Delbrück Center for, Robert-Rössle-Str. 10, Berlin, 13125 Germany
| |
Collapse
|
18
|
Tompkins SM, Lin Y, Leser GP, Kramer KA, Haas DL, Howerth EW, Xu J, Kennett MJ, Durbin RK, Durbin JE, Tripp R, Lamb RA, He B. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge. Virology 2007; 362:139-50. [PMID: 17254623 PMCID: PMC1995462 DOI: 10.1016/j.virol.2006.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 10/23/2006] [Accepted: 12/03/2006] [Indexed: 10/23/2022]
Abstract
Parainfluenza virus type 5 (PIV5), formerly known as simian virus 5 (SV5), is a non-segmented negative strand RNA virus that offers several advantages as a vaccine vector. PIV5 infects many cell types causing little cytopathic effect, it replicates in the cytoplasm of infected cells, and does not have a DNA phase in its life cycle thus avoiding the possibility of introducing foreign genes into the host DNA genome. Importantly, PIV5 can infect humans but it is not associated with any known human illness. PIV5 grows well in tissue culture cells, including Vero cells, which have been approved for vaccine production, and the virus can be obtained easily from the media. To test the feasibility of using PIV5 as a live vaccine vector, the hemagglutinin (HA) gene from influenza A virus strain A/Udorn/72 (H3N2) was inserted into the PIV5 genome as an extra gene between the hemagglutinin-neuraminidase (HN) gene and the large (L) polymerase gene. Recombinant PIV5 containing the HA gene of Udorn (rPIV5-H3) was recovered and it replicated similarly to wild type PIV5, both in vitro and in vivo. The HA protein expressed by rPIV5-H3-infected cells was incorporated into the virions and addition of the HA gene did not increase virus virulence in mice. The efficacy of rPIV5-H3 as a live vaccine was examined in 6-week-old BALB/c mice. The results show that a single dose inoculation provides broad and considerable immunity against influenza A virus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Body Weight
- Cattle
- Cell Line
- Cells, Cultured
- Chlorocebus aethiops
- Disease Models, Animal
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/prevention & control
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Yuan Lin
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| | - George P. Leser
- Department of Biochemistry, Molecular Biology and Cellular Biology, Evanston, IL
| | - Kari A. Kramer
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Debra L. Haas
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Jie Xu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| | - Mary J. Kennett
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| | | | - Joan E. Durbin
- Children's Hospital, Ohio State University, Columbus, OH
| | - Ralph Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA
| | - Robert A. Lamb
- Department of Biochemistry, Molecular Biology and Cellular Biology, Evanston, IL
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL
| | - Biao He
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
- Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA
| |
Collapse
|
19
|
Johnson JE, Nasar F, Coleman JW, Price RE, Javadian A, Draper K, Lee M, Reilly PA, Clarke DK, Hendry RM, Udem SA. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology 2006; 360:36-49. [PMID: 17098273 PMCID: PMC1865117 DOI: 10.1016/j.virol.2006.10.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/16/2006] [Accepted: 10/02/2006] [Indexed: 12/28/2022]
Abstract
Although vesicular stomatitis virus (VSV) neurovirulence and pathogenicity in rodents have been well studied, little is known about VSV pathogenicity in non-human primates. To address this question, we measured VSV viremia, shedding, and neurovirulence in macaques. Following intranasal inoculation, macaques shed minimal recombinant VSV (rVSV) in nasal washes for 1 day post-inoculation; viremia was not detected. Following intranasal inoculation of macaques, wild type (wt) VSV, rVSV, and two rVSV-HIV vectors showed no evidence of spread to CNS tissues. However, macaques inoculated intrathalamically with wt VSV developed severe neurological disease. One of four macaques receiving rVSV developed clinical and histological signs similar to the wt group, while the remaining three macaques in this group and all of the macaques in the rVSV-HIV vector groups showed no clinical signs of disease and reduced severity of histopathology compared to the wt group. The implications of these findings for rVSV vaccine development are discussed.
Collapse
Affiliation(s)
- J Erik Johnson
- Wyeth Vaccines Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Borna disease virus (BDV) is an enveloped virus that has a non-segmented, negative-strand RNA genome with the characteristic organization of the mononegaviruses. However, based on its unique genetic and biological features, BDV is considered to be the prototypic member of a new mononegavirus family, the Bornaviridae. BDV causes central nervous system (CNS) disease in a wide variety of mammals. This article discusses the recently developed reverse-genetics systems for BDV, and the implications for the elucidation of the molecular mechanisms underlying BDV-host interactions, including the basis of BDV persistence in the CNS and its associated diseases.
Collapse
Affiliation(s)
- Juan C de la Torre
- Molecular Integrative Neuroscience Department IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
21
|
Publicover J, Ramsburg E, Robek M, Rose JK. Rapid pathogenesis induced by a vesicular stomatitis virus matrix protein mutant: viral pathogenesis is linked to induction of tumor necrosis factor alpha. J Virol 2006; 80:7028-36. [PMID: 16809308 PMCID: PMC1489072 DOI: 10.1128/jvi.00478-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix (M) protein blocks host mRNA export from the nucleus and thereby inhibits interferon induction in infected cells. M mutants with mutations of methionine 51 (M51) lack this shutoff function. We examined pathogenesis of a VSV M mutant with a deletion of M51 (VSVDeltaM51) after intranasal infection of BALB/c mice and found an unexpected phenotype. Mice that received VSVDeltaM51 experienced a more rapid but overall less severe weight loss than mice that received the recombinant wild-type VSV (rwtVSV). Rapid weight loss was not explained by faster initial replication because VSVDeltaM51 replication was controlled faster than rwtVSV replication in the lungs and did not spread systemically like rwtVSV. This faster control of VSVDeltaM51 correlated with a more rapid induction of interferon in the lung. Because tumor necrosis factor alpha (TNF-alpha) is associated with weight loss, we examined TNF-alpha induction in mice infected with rwtVSV or VSVDeltaM51. We found more-rapid induction of TNF-alpha by the mutant at early times after infection, while rwtVSV induced more TNF-alpha later in infection. This result suggested that TNF-alpha induction might explain both the rapid weight loss caused by the mutant and the overall greater weight loss caused by the rwtVSV. Using TNF-alpha knockout mice (C57BL/6 background), we showed that weight loss following rwtVSV infection was greatly reduced in the absence of TNF-alpha. Although the rapid weight loss caused by VSVDeltaM51 was less pronounced in C57BL/6 mice, it was eliminated in the absence of TNF-alpha. These results indicate a role for TNF-alpha in the pathogenesis of VSV.
Collapse
Affiliation(s)
- Jean Publicover
- Section of Microbial Pathogenesis, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
22
|
Witko SE, Kotash CS, Nowak RM, Johnson JE, Boutilier LAC, Melville KJ, Heron SG, Clarke DK, Abramovitz AS, Hendry RM, Sidhu MS, Udem SA, Parks CL. An efficient helper-virus-free method for rescue of recombinant paramyxoviruses and rhadoviruses from a cell line suitable for vaccine development. J Virol Methods 2006; 135:91-101. [PMID: 16569439 DOI: 10.1016/j.jviromet.2006.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 11/18/2022]
Abstract
Recovery of recombinant, negative-strand, nonsegmented RNA viruses from a genomic cDNA clone requires a rescue system that promotes de novo assembly of a functional ribonucleoprotein (RNP) complex in the cell cytoplasm. This is accomplished typically by cotransfecting permissive cells with multiple plasmids that encode the positive-sense genomic RNA, the nucleocapsid protein (N or NP), and the two subunits of the viral RNA-dependent RNA polymerase (L and P). The transfected plasmids are transcribed in the cell cytoplasm by phage T7 RNA polymerase (T7 RNAP), which usually is supplied by infection with a recombinant vaccinia virus or through use of a stable cell line that expresses the polymerase. Although both methods of providing T7 RNAP are effective neither is ideal for viral vaccine development for a number of reasons. Therefore, it was necessary to modify existing technology to make it possible to routinely rescue a variety of recombinant viruses when T7 RNAP was provided by a cotransfected expression plasmid. Development of a broadly applicable procedure required optimization of the helper-virus-free methodology, which resulted in several modifications that improved rescue efficiency such as inclusion of plasmids encoding viral glycoproteins and matrix protein, heat shock treatment, and use of electroporation. The combined effect of these enhancements produced several important benefits including: (1) a helper-virus-free methodology capable of rescuing a diverse variety of paramyxoviruses and recombinant vesicular stomatitis virus (rVSV); (2) methodology that functioned effectively when using Vero cells, a suitable substrate for vaccine production; and (3) a method that enabled rescue of highly attenuated recombinant viruses, which had proven refractory to rescue using published procedures.
Collapse
Affiliation(s)
- Susan E Witko
- Wyeth Vaccines Research, 401 North Middletown Road, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takeda M, Nakatsu Y, Ohno S, Seki F, Tahara M, Hashiguchi T, Yanagi Y. Generation of measles virus with a segmented RNA genome. J Virol 2006; 80:4242-8. [PMID: 16611883 PMCID: PMC1472037 DOI: 10.1128/jvi.80.9.4242-4248.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses classified in the order Mononegavirales have a single nonsegmented RNA molecule as the genome and employ similar strategies for genome replication and gene expression. Infectious particles of Measles virus (MeV), a member of the family Paramyxoviridae in the order Mononegavirales, with two or three RNA genome segments (2 seg- or 3 seg-MeV) were generated using a highly efficient reverse genetics system. All RNA segments of the viruses were designed to have authentic 3' and 5' self-complementary termini, similar to those of negative-stranded RNA viruses that intrinsically have multiple RNA genome segments. The 2 seg- and 3 seg-MeV were viable and replicated well in cultured cells. 3 seg-MeV could accommodate up to six additional transcriptional units, five of which were shown to be capable of expressing foreign proteins efficiently. These data indicate that the MeV genome can be segmented, providing an experimental insight into the divergence of the negative-stranded RNA viruses with nonsegmented or segmented RNA genomes. They also illustrate a new strategy to develop mononegavirus-derived vectors harboring multiple additional transcriptional units.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Komoto S, Sasaki J, Taniguchi K. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci U S A 2006; 103:4646-51. [PMID: 16537420 PMCID: PMC1450225 DOI: 10.1073/pnas.0509385103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe here the successful establishment of a reverse genetics system for rotavirus (RV), a member of the Reoviridae family whose genome consists of 10-12 segmented dsRNA. The system is based on the recombinant vaccinia virus T7 RNA polymerase-driven procedure for supplying artificial viral mRNA in the cytoplasm. With the aid of helper virus (human RV strain KU) infection, intracellularly transcribed full-length VP4 mRNA of simian RV strain SA11 resulted in the rescue of the KU-based transfectant virus carrying the SA11 VP4 RNA segment derived from cDNA. In addition to the rescued transfectant virus with the authentic SA11 VP4 gene, three more infectious RV transfectants, into which silent mutation(s) were introduced to destroy both or one of the two restriction enzyme sites as gene markers in the SA11 VP4 genome, were also rescued with this method. The ability to artificially manipulate the RV genome will greatly increase the understanding of the replication and the pathogenicity of RV and will provide a tool for the design of attenuated vaccine vectors.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Jun Sasaki
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Abstract
"Reverse genetics" or de novo synthesis of nonsegmented negative-sense RNA viruses (Mononegavirales) from cloned cDNA has become a reliable technique to study this group of medically important viruses. Since the first generation of a negative-sense RNA virus entirely from cDNA in 1994, reverse genetics systems have been established for members of most genera of the Rhabdo-, Paramyxo-, and Filoviridae families. These systems are based on intracellular transcription of viral full-length RNAs and simultaneous expression of viral proteins required to form the typical viral ribonucleoprotein complex (RNP). These systems are powerful tools to study all aspects of the virus life cycle as well as the roles of virus proteins in virus-host interplay and pathogenicity. In addition, recombinant viruses can be designed to have specific properties that make them attractive as biotechnological tools and live vaccines.
Collapse
Affiliation(s)
- K K Conzelmann
- Max von Pettenkofer-Institut and Genzentrum, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
26
|
Abstract
Avian influenza viruses are major contributors to viral disease in poultry as well as humans. Outbreaks of high-pathogenicity avian influenza viruses cause high mortality in poultry, resulting in significant economic losses. The potential of avian influenza viruses to reassort with human stains resulted in global pandemics in 1957 and 1968, while the introduction of an entirely avian virus into humans claimed several lives in Hong Kong in 1997. Despite considerable research, the mechanisms that determine the pathogenic potential of a virus or its ability to cross the species barrier are poorly understood. Reverse genetics methods, i.e., methods that allow the generation of an influenza virus entirely from cloned cDNAs, have provided us with one means to address these issues. In addition, reverse genetics is an excellent tool for vaccine production and development. This technology should increase our preparedness for future influenza virus outbreaks.
Collapse
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive West, Madison, WI 53706, USA
| | | | | |
Collapse
|
27
|
Kovacs GR, Parks CL, Vasilakis N, Udem SA. Enhanced genetic rescue of negative-strand RNA viruses: use of an MVA-T7 RNA polymerase vector and DNA replication inhibitors. J Virol Methods 2003; 111:29-36. [PMID: 12821194 DOI: 10.1016/s0166-0934(03)00132-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A modified cDNA rescue system that improves recovery of recombinant nonsegmented, negative-strand RNA viruses from cloned DNAs is described. Rescue systems based on vaccinia virus-T7 RNA polymerase vectors have been used to derive many negative-strand viruses; however, some strains can be recalcitrant to rescue possibly because of the simultaneous replication of the vaccinia virus-T7 vector. Our goal was to engineer a system where replication of the vaccinia virus-T7 vector could be blocked, yet allow for sufficient T7 RNA polymerase expression to enable genetic rescue. To that end, a recombinant modified vaccinia virus Ankara (MVA) was engineered that contained the bacteriophage T7 gene-1 under the control of a strong early promoter that would enable T7 RNA polymerase expression in the absence of MVA DNA replication. The new T7 helper, MVAGKT7, was then utilized successfully for the genetic rescue of a measles virus minigenome and full-length cDNAs, in the presence of DNA synthesis inhibitors. In addition to blocking completely MVAGKT7 replication, AraC treatment was found to enhance minigenome-encoded gene expression and the efficiency of measles virus rescue.
Collapse
Affiliation(s)
- Gerald R Kovacs
- Wyeth Research, Viral Vaccine Discovery, 401 North Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | |
Collapse
|
28
|
Huang Z, Elankumaran S, Panda A, Samal SK. Recombinant Newcastle disease virus as a vaccine vector. Poult Sci 2003; 82:899-906. [PMID: 12817444 DOI: 10.1093/ps/82.6.899] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Veterinary vaccines remained conventional for more than fifty years. Recent advances in the recombinant genetic engineering techniques brought forward a leap in designing vaccines for veterinary use. A novel approach of delivering protective immunogens of many different pathogens in a single virus vector was made possible with the introduction of a "reverse genetics" system for nonsegmented negative-sense RNA viruses. Newcastle disease virus (NDV), a nonsegmented negative-sense virus, is one of the major viruses of economic importance in the poultry industry throughout the world. Despite the availability of live virus vaccines of good potency, the intrinsic ability of attenuated strains to revert in virulence makes control of this disease by vaccination difficult. Armed with the knowledge of virulence factors of this virus, it is now possible to produce genetically stable vaccines and to engineer mutations that enhance immunogenicity. The modular nature of the genome of this virus facilitates engineering additional genes from several different pathogens or tumor-specific antigens to design contemporary vaccines for animals and humans. This review will summarize the developments in using NDV as a vaccine vector and the potential of this approach in designing next generation vaccines for veterinary use.
Collapse
Affiliation(s)
- Z Huang
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, Maryland 20742-3711, USA
| | | | | | | |
Collapse
|
29
|
Engel-Herbert I, Werner O, Teifke JP, Mebatsion T, Mettenleiter TC, Römer-Oberdörfer A. Characterization of a recombinant Newcastle disease virus expressing the green fluorescent protein. J Virol Methods 2003; 108:19-28. [PMID: 12565150 DOI: 10.1016/s0166-0934(02)00247-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recombinant Newcastle disease virus (NDV) expressing the green fluorescent protein (GFP) was generated by applying reverse genetics techniques. The GFP open reading frame flanked by NDV transcription start and stop sequences was inserted between the fusion (F)- and hemagglutinin-neuraminidase genes in a full-length cDNA clone of NDV. This plasmid transcribing antigenome RNA was cotransfected with helper plasmids expressing viral nucleoprotein, phosphoprotein and large protein into cells stably expressing T7 RNA polymerase. The rescued virus was first propagated in embryonated eggs and the allantoic fluid was used to infect cells. Northern blot analysis of RNA isolated from infected cells demonstrated the proper transcription of the introduced GFP-mRNA. The appearance of GFP in live infected cells confirmed further the recovery of a recombinant NDV (rNDVGFP1) expressing the reporter gene. The expression of the heterologous gene was maintained stably for at least five passages in embryonated eggs. The replication kinetics in embryonated eggs and pathogenicity in chickens of rNDVGFP1 did not differ significantly from that of the parent virus. Using GFP autofluorescence, virus infected cells could be tracked easily in native preparations, organ explants and primary tracheal cell cultures. Taken together, these data demonstrate the use of GFP-expressing recombinant NDV for analysis of NDV dissemination and pathogenesis and indicate the potential usefulness of NDV as a vaccine vector.
Collapse
Affiliation(s)
- Ines Engel-Herbert
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498, Insel Riems, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Neumann G, Whitt MA, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J Gen Virol 2002; 83:2635-2662. [PMID: 12388800 DOI: 10.1099/0022-1317-83-11-2635] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the first generation of a negative-sense RNA virus entirely from cloned cDNA in 1994, similar reverse genetics systems have been established for members of most genera of the Rhabdo- and Paramyxoviridae families, as well as for Ebola virus (Filoviridae). The generation of segmented negative-sense RNA viruses was technically more challenging and has lagged behind the recovery of nonsegmented viruses, primarily because of the difficulty of providing more than one genomic RNA segment. A member of the Bunyaviridae family (whose genome is composed of three RNA segments) was first generated from cloned cDNA in 1996, followed in 1999 by the production of influenza virus, which contains eight RNA segments. Thus, reverse genetics, or the de novo synthesis of negative-sense RNA viruses from cloned cDNA, has become a reliable laboratory method that can be used to study this large group of medically and economically important viruses. It provides a powerful tool for dissecting the virus life cycle, virus assembly, the role of viral proteins in pathogenicity and the interplay of viral proteins with components of the host cell immune response. Finally, reverse genetics has opened the way to develop live attenuated virus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA1
| | - Michael A Whitt
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA2
| | - Yoshihiro Kawaoka
- CREST, Japan Science and Technology Corporation, Japan4
- Institute of Medical Science, University of Tokyo, Tokyo, Japan3
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA1
| |
Collapse
|
31
|
Mebatsion T, Koolen MJM, de Vaan LTC, de Haas N, Braber M, Römer-Oberdörfer A, van den Elzen P, van der Marel P. Newcastle disease virus (NDV) marker vaccine: an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. J Virol 2002; 76:10138-46. [PMID: 12239288 PMCID: PMC136582 DOI: 10.1128/jvi.76.20.10138-10146.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoprotein (NP) of Newcastle disease virus (NDV) functions primarily to encapsidate the virus genome for the purpose of RNA transcription, replication, and packaging. This conserved multifunctional protein is also efficient in inducing NDV-specific antibody in chickens. Here, we localized a conserved B-cell immunodominant epitope (IDE) spanning residues 447 to 455 and successfully generated a recombinant NDV lacking the IDE by reverse genetics. Despite deletion of NP residues 443 to 460 encompassing the NP-IDE, the mutant NDV propagated in embryonated specific-pathogen-free chicken eggs to a level comparable to that of the parent virus. In addition, a B-cell epitope of the S2 glycoprotein of murine hepatitis virus (MHV) was inserted in-frame to replace the NP-IDE. Recombinant viruses properly expressing the introduced MHV epitope were successfully generated, demonstrating that the NP-IDE not only is dispensable for virus replication but also can be replaced by foreign sequences. Chickens immunized with the hybrid recombinants produced specific antibodies against the S2 glycoprotein of MHV and completely lacked antibodies directed against the NP-IDE. These marked-NDV recombinants, in conjunction with a diagnostic test, enable serological differentiation of vaccinated animals from infected animals and may be useful tools in ND eradication programs. The identification of a mutation-permissive region on the NP gene allows a rational approach to the insertion of protective epitopes and may be relevant for the design of NDV-based cross-protective marker vaccines.
Collapse
Affiliation(s)
- Teshome Mebatsion
- Department of Virology, Intervet International B.V., PO Box 31, 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fujii Y, Sakaguchi T, Kiyotani K, Huang C, Fukuhara N, Egi Y, Yoshida T. Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA. J Virol 2002; 76:8540-7. [PMID: 12163573 PMCID: PMC136997 DOI: 10.1128/jvi.76.17.8540-8547.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that a systematic passage of a pathogenic field isolate of Sendai virus (SeV), the Hamamatsu strain, in embryonated eggs caused attenuation of virulence to mice, and we isolated viral clones of distinct virulence (K. Kiyotani et al. Arch. Virol. 146:893-908, 2001). One of the clones, E15cl2, which was obtained from the virus at the 15th egg passage of E0, the parental Hamamatsu clone for egg passage, had 165-fold-attenuated virulence to mice and possessed only four mutations in the entire 15,384-base genome: in an antigenomic sense, U to A at position 20 (U20A) and U to A at position 24 (U24A) in the leader sequence, the promoter for transcription and replication, and A to G at position 9346 (silent) and A to U at position 12174 (Ser to Cys) in the L gene. To examine the possibility that leader mutations affect virus pathogenesis, we recovered live viruses from cDNA derived from the Hamamatsu strain. A mutant virus possessing either a mutation of U20A or U24A in the leader sequence showed a slightly lower pathogenicity than that of the parental virus, whereas a double mutant virus possessing both of the mutations showed 25-fold-attenuated virulence, accompanying a significantly lower virus replication in the mouse lung. Replications of the leader mutant viruses were also impaired in a primary culture of mouse pulmonary epithelial cells but not in chicken embryo fibroblasts. These findings suggest that leader mutations of SeV affect virus pathogenesis by altering virus replication in a host-dependent manner.
Collapse
Affiliation(s)
- Yutaka Fujii
- Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- K J Lee
- Department of Neuropharmacology, Scripps Research Institute, 10550 North Torrey Pines Road, IMM-6, La Jolla, CA 92037, USA
| | | |
Collapse
|
34
|
Parks CL, Wang HP, Kovacs GR, Vasilakis N, Kowalski J, Nowak RM, Lerch RA, Walpita P, Sidhu MS, Udem SA. Expression of a foreign gene by recombinant canine distemper virus recovered from cloned DNAs. Virus Res 2002; 83:131-47. [PMID: 11864746 DOI: 10.1016/s0168-1702(01)00430-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A canine distemper virus (CDV) genomic cDNA clone and expression plasmids required to establish a CDV rescue system were generated from a laboratory-adapted strain of the Onderstepoort vaccine virus. In addition, a CDV minireplicon was prepared and used in transient expression studies performed to identify optimal virus rescue conditions. Results from the transient expression experiments indicated that minireplicon-encoded reporter gene activity was increased when transfected cell cultures were maintained at 32 rather than 37 degrees C, and when the cellular stress response was induced by heat shock. Applying these findings to rescue of recombinant CDV (rCDV) resulted in efficient recovery of virus after transfected HEp2 or A549 cells were co-cultured with Vero cell monolayers. Nucleotide sequence determination and analysis of restriction site polymorphisms confirmed that rescued virus was rCDV. A rCDV strain also was engineered that contained the luciferase gene inserted between the P and M genes; this virus directed high levels of luciferase expression in infected cells.
Collapse
Affiliation(s)
- Christopher L Parks
- Wyeth-Lederle Vaccines, Department of Viral Vaccine Research, 401 North Middletown Road, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Neumann G, Kawaoka Y. Generation of influenza A virus from cloned cDNAs--historical perspective and outlook for the new millenium. Rev Med Virol 2002; 12:13-30. [PMID: 11787081 DOI: 10.1002/rmv.332] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza virus reverse genetics has reached a level of sophistication where one can confidently generate virus entirely from cloned DNAs. The new systems makes it feasible to study the molecular mechanisms of virus replication and pathogenicity, as well as to generate attenuated live virus vaccines, gene delivery vehicles, and possibly other RNA viruses from cloned cDNAs. During the next decade, one can anticipate the translation of influenza virus reverse genetics into biomedically relevant advances.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary edicine, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
36
|
Schickli JH, Flandorfer A, Nakaya T, Martinez-Sobrido L, García-Sastre A, Palese P. Plasmid-only rescue of influenza A virus vaccine candidates. Philos Trans R Soc Lond B Biol Sci 2001; 356:1965-73. [PMID: 11779399 PMCID: PMC1088576 DOI: 10.1098/rstb.2001.0979] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential threat of another influenza virus pandemic stimulates discussion on how to prepare for such an event. The most reasonable prophylactic approach appears to be the use of effective vaccines. Since influenza and other negative-stranded RNA viruses are amenable to genetic manipulation using transfection by plasmids, it is possible to outline new reverse genetics-based approaches for vaccination against influenza viruses. We suggest three approaches. First, we use a plasmid-only rescue system that allows the rapid generation of high-yield recombinant vaccine strains. Second, we propose developing second-generation live influenza virus vaccines by constructing an attenuated master strain with deletions in the NS1 protein, which acts as an interferon antagonist. Third, we suggest the use of Newcastle disease virus recombinants expressing influenza virus haemagglutinin proteins of pandemic (epizootic) strains as novel vaccine vectors for use in animals and possibly humans.
Collapse
Affiliation(s)
- J H Schickli
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nakaya T, Cros J, Park MS, Nakaya Y, Zheng H, Sagrera A, Villar E, García-Sastre A, Palese P. Recombinant Newcastle disease virus as a vaccine vector. J Virol 2001; 75:11868-73. [PMID: 11689668 PMCID: PMC114773 DOI: 10.1128/jvi.75.23.11868-11873.2001] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A complete cDNA clone of the Newcastle disease virus (NDV) vaccine strain Hitchner B1 was constructed, and infectious recombinant virus expressing an influenza virus hemagglutinin was generated by reverse genetics. The rescued virus induces a strong humoral antibody response against influenza virus and provides complete protection against a lethal dose of influenza virus challenge in mice, demonstrating the potential of recombinant NDV as a vaccine vector.
Collapse
Affiliation(s)
- T Nakaya
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ito N, Takayama M, Yamada K, Sugiyama M, Minamoto N. Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J Virol 2001; 75:9121-8. [PMID: 11533176 PMCID: PMC114481 DOI: 10.1128/jvi.75.19.9121-9128.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to identify the viral gene related to the pathogenicity of rabies virus, we tried to establish a reverse genetics system of the attenuated RC-HL strain, which causes nonlethal infection in adult mice after intracerebral inoculation. A full-length genome plasmid encoding the complete antigenomic cDNA of the RC-HL strain and helper plasmids containing cDNAs of the complete open reading frame of the N, P, and L genes, respectively, were constructed. After transfection of these plasmids into BHK-21 cells infected with the T7 RNA polymerase-expressing vaccinia virus, infectious rabies virus with almost the same biological properties as those of the wild-type RC-HL strain was rescued. Using this reverse genetics system of the RC-HL strain, we generated a chimeric virus with the open reading frame of the glycoprotein gene from the parent Nishigahara strain, which kills adult mice after intracerebral inoculation, in the background of the RC-HL genome. Since the chimeric virus killed adult mice following intracerebral inoculation, it became evident that the open reading frame of the glycoprotein gene is related to the pathogenicity of the Nishigahara strain for adult mice.
Collapse
Affiliation(s)
- N Ito
- Department of Veterinary Public Health, Faculty of Agriculture, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|
39
|
Wagner E, Engelhardt OG, Gruber S, Haller O, Kochs G. Rescue of recombinant Thogoto virus from cloned cDNA. J Virol 2001; 75:9282-6. [PMID: 11533190 PMCID: PMC114495 DOI: 10.1128/jvi.75.19.9282-9286.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thogoto virus (THOV) is a tick-transmitted orthomyxovirus with a genome consisting of six negative-stranded RNA segments. To rescue a recombinant THOV, the viral structural proteins were produced from expression plasmids by means of a vaccinia virus expressing the T7 RNA polymerase. Genomic virus RNAs (vRNAs) were generated from plasmids under the control of the RNA polymerase I promoter. Using this system, we could efficiently recover recombinant THOV following transfection of 12 plasmids into 293T cells. To verify the recombinant nature of the rescued virus, specific genetic tags were introduced into two vRNA segments. The availability of this efficient reverse genetics system will allow us to address hitherto-unanswered questions regarding the biology of THOV by manipulating viral genes in the context of infectious virus.
Collapse
Affiliation(s)
- E Wagner
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
Reverse genetics of negative-sense RNA viruses, which enables one to generate virus entirely from cloned cDNA, has progressed rapidly over the past decade. However, despite the relative ease with which nonsegmented negative-sense RNA viruses can now be produced from plasmids, the ability to generate viruses with segmented genomes has lagged considerably, largely because of the inherent technical difficulties in providing all viral RNAs and proteins from cloned cDNA. A breakthrough in reverse genetics technology in the influenza virus field came in 1999, when we (Neumann et al., 1999, Proc. Natl. Acad. Sci. USA 96, 9345-9350) and others (Fodor et al., 1999, J. Virol. 73, 9679-9682) exploited a new approach to viral RNA production. In this review, we discuss the background for this advance, the systems that are now available for the generation of influenza viruses, and the implications of these developments for the future of virus research.
Collapse
Affiliation(s)
- G Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
41
|
Marriott AC, Smith JM, Easton AJ. Fidelity of leader and trailer sequence usage by the respiratory syncytial virus and avian pneumovirus replication complexes. J Virol 2001; 75:6265-72. [PMID: 11413292 PMCID: PMC114348 DOI: 10.1128/jvi.75.14.6265-6272.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specificity of usage of promoters for replication and transcription by the pneumoviruses human respiratory syncytial virus (HRSV) and avian pneumovirus (APV) was studied using minigenomes containing a reporter gene. When infectious HRSV or APV was used as helper virus, replication could occur only if both the leader and trailer regions (containing the replicative and transcriptional promoters) were derived from the helper virus. In contrast, when the HRSV replication complex was supplied from cDNA plasmids, a minigenome containing either the APV leader or trailer was recognized and substantial levels of replication and transcription occurred. These data suggest that in pneumovirus-infected cells, helper virus functions can discriminate between genomes on the basis of the terminal sequences and that there is an association between the leader and trailer required for productive replication. This association is required only in virus-infected cells, not when replication and transcription are mediated by plasmid-directed expression of the component proteins required for replication and transcription. The possible implications of this are discussed.
Collapse
Affiliation(s)
- A C Marriott
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | |
Collapse
|
42
|
Tao T, Skiadopoulos MH, Davoodi F, Surman SR, Collins PL, Murphy BR. Construction of a live-attenuated bivalent vaccine virus against human parainfluenza virus (PIV) types 1 and 2 using a recombinant PIV3 backbone. Vaccine 2001; 19:3620-31. [PMID: 11395195 DOI: 10.1016/s0264-410x(01)00101-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PIV1 and PIV2 are important agents of pediatric respiratory tract disease. We are developing live-attenuated vaccines against these viruses. We earlier constructed a PIV3/PIV1 antigenic chimeric virus, designated rPIV3-1, in which the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of wild type rPIV3 were replaced by their PIV1 counterparts. In the present study, rPIV3-1 was used as a vector to express the HN protein of PIV2 to generate a single virus capable of inducing immunity to both PIV1 and PIV2. The PIV2 HN open reading frame was expressed from an extra gene cassette, under the control of PIV3 cis-acting transcription signals, inserted between the F and HN genes of rPIV3-1. The recombinant derivative, designated rPIV3-1.2HN, was readily recovered and exhibited a level of temperature sensitivity and in vitro growth similar to that of its parental virus. The rPIV3-1.2HN virus was restricted in replication in both the upper and lower respiratory tracts of hamsters compared with rPIV3-1, identifying an attenuating effect of the PIV2 HN insert in hamsters. rPIV3-1.2HN elicited serum antibodies to both PIV1 and PIV2 and induced resistance against challenge with wild type PIV1 or PIV2. Thus, rPIV3-1.2HN, a virus attenuated solely by the insertion of the PIV2 HN gene, functioned as a live attenuated bivalent vaccine candidate against both PIV1 and PIV2.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Humans
- Parainfluenza Vaccines/biosynthesis
- Parainfluenza Vaccines/genetics
- Parainfluenza Vaccines/therapeutic use
- Parainfluenza Virus 1, Human/genetics
- Parainfluenza Virus 1, Human/immunology
- Parainfluenza Virus 2, Human/genetics
- Parainfluenza Virus 2, Human/immunology
- Respirovirus Infections/prevention & control
- Vaccines, Attenuated/biosynthesis
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/therapeutic use
- Vaccines, DNA/biosynthesis
- Vaccines, DNA/genetics
- Vaccines, DNA/therapeutic use
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- T Tao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 7, Rm 106, 7 Center Drive MSC 0720, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The "rule of six" stipulates that the Paramyxovirus RNA polymerase efficiently replicates only viral genomes counting 6n + 0 nucleotides. Because the nucleocapsid proteins (N) interact with 6 nucleotides, an exact nucleotide-N match at the RNA 3'-OH end (3'-OH congruence) may be required for recognition of an active replication promoter. Alternatively, assuming that the six positions for the interaction of N with the nucleotides are not equivalent, the nucleotide position relative to N may be critical (N phase context). The replication abilities of various minireplicons, designed so that the 3'-OH congruence could be discriminated from the N phase context, were studied. The results strongly suggest that the application of the rule of six depends on the recognition of nucleotides positioned in the proper N phase context.
Collapse
Affiliation(s)
- D Vulliémoz
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
44
|
Flick R, Pettersson RF. Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 2001; 75:1643-55. [PMID: 11160662 PMCID: PMC114073 DOI: 10.1128/jvi.75.4.1643-1655.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2000] [Accepted: 11/07/2000] [Indexed: 12/28/2022] Open
Abstract
We describe here the development of a reverse genetics system for the phlebovirus Uukuniemi virus, a member of the Bunyaviridae family, by using RNA polymerase I (pol I)-mediated transcription. Complementary DNAs containing the coding sequence for either chloramphenicol acetyltransferase (CAT) or green fluorescent protein (GFP) (both in antisense orientation) were flanked by the 5'- and 3'-terminal untranslated regions of the Uukuniemi virus sense or complementary RNA derived from the medium-sized (M) RNA segment. This chimeric cDNA (pol I expression cassette) was cloned between the murine pol I promoter and terminator and the plasmid transfected into BHK-21 cells. When such cells were either superinfected with Uukuniemi virus or cotransfected with expression plasmids encoding the L (RNA polymerase), N (nucleoprotein), and NSs (nonstructural protein) viral proteins, strong CAT activity or GFP expression was observed. CAT activity was consistently stronger in cells expressing L plus N than following superinfection. No activity was seen without superinfection, nor was activity detected when either the L or N expression plasmid was omitted. Omitting NSs expression had no effect on CAT activity or GFP expression, indicating that this protein is not needed for viral RNA replication or transcription. CAT activity could be serially passaged to fresh cultures by transferring medium from CAT-expressing cells, indicating that recombinant virus containing the reporter construct had been produced. In summary, we demonstrate that the RNA pol I system, originally developed for influenza virus, which replicates in the nucleus, has strong potential for the development of an efficient reverse genetics system also for Bunyaviridae members, which replicate in the cytoplasm.
Collapse
Affiliation(s)
- R Flick
- Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Institute, S-17177 Stockholm, Sweden
| | | |
Collapse
|
45
|
Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA. Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 2001; 75:910-20. [PMID: 11134304 PMCID: PMC113987 DOI: 10.1128/jvi.75.2.910-920.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 10/16/2000] [Indexed: 12/15/2022] Open
Abstract
Protein-encoding nucleotide sequences of the N, P, M, F, H, and L genes were determined for a low-passage isolate of the Edmonston wild-type (wt) measles virus and five Edmonston-derived vaccine virus strains, including AIK-C, Moraten, Schwarz, Rubeovax, and Zagreb. Comparative analysis demonstrated a high degree of nucleotide sequence homology; vaccine viruses differed at most by 0. 3% from the Edmonston wt strain. Deduced amino acid sequences predicted substitutions in all viral polypetides. Eight amino acid coding changes were common to all vaccine viruses; an additional two were conserved in all vaccine strains except Zagreb. Comparisons made between vaccine strains indicated that commercial vaccine lots of Moraten and Schwarz had identical coding regions and were closely related to Rubeovax, while AIK-C and Zagreb diverged from the Edmonston wt along slightly different paths. These comparisons also revealed amino acid coding substitutions in Moraten and Schwarz that were absent from the closely related reactogenic Rubeovax strain. All of the vaccine viruses contained amino acid coding changes in the core components of the virus-encoded transcription and replication apparatus. This observation, combined with identification of noncoding region nucleotide changes in potential cis-acting sequences of the vaccine strains (C. L. Parks, R. A. Lerch, P. Walpita, H.-P. Wang, M. S. Sidhu, and S. A. Udem, J. Virol. 75:921-933, 2001), suggest that modulation of transcription and replication plays an important role in attenuation.
Collapse
Affiliation(s)
- C L Parks
- Department of Viral Vaccine Research, Wyeth-Lederle Vaccines, Pearl River, New York 10965, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mebatsion T, Verstegen S, De Vaan LT, Römer-Oberdörfer A, Schrier CC. A recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. J Virol 2001; 75:420-8. [PMID: 11119610 PMCID: PMC113934 DOI: 10.1128/jvi.75.1.420-428.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) edits its P-gene mRNA by inserting a nontemplated G residue(s) at a conserved editing site (3'-UUUUUCCC-template strand). In the wild-type virus, three amino-coterminal P-gene-derived proteins, P, V, and W, are produced at frequencies of approximately 68, 29, and 2%, respectively. By applying the reverse genetics technique, editing-defective mutants were generated in cell culture. Compared to the wild-type virus, mutants lacking either six nucleotides of the conserved editing site or the unique C-terminal part of the V protein produced as much as 5, 000-fold fewer infectious progeny in vitro or 200,000-fold fewer in 6-day-old embryonated chicken eggs. In addition, both mutants were unable to propagate in 9- to 11-day-old embryonated specific-pathogen-free (SPF) chicken eggs. In contrast, a mutant (NDV-P1) with one nucleotide substitution (UUCUUCCC) grew in eggs, albeit with a 100-fold-lower infectious titer than the parent virus. The modification in the first two mutants described above led to complete abolition of V expression, whereas in NDV-P1 the editing frequency was reduced to less than 2%, and as a result, V was expressed at a 20-fold-lower level. NDV-P1 showed markedly attenuated pathogenicity for SPF chicken embryos, unlike currently available ND vaccine strains. These findings indicate that the V protein of NDV has a dual function, playing a direct role in virus replication as well as serving as a virulence factor. Administration of NDV-P1 to 18-day-old embryonated chicken eggs hardly affected hatchability. Hatched chickens developed high levels of NDV-specific antibodies and were fully protected against lethal challenge, demonstrating the potential use of editing-defective recombinant NDV as a safe embryo vaccine.
Collapse
Affiliation(s)
- T Mebatsion
- Department of Virology, Intervet International B.V., 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Krishnamurthy S, Huang Z, Samal SK. Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 2000; 278:168-82. [PMID: 11112492 DOI: 10.1006/viro.2000.0618] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recombinant mesogenic NDV strain, Beaudette C, and an engineered recombinant NDV expressing an additional gene were generated entirely from cloned cDNAs. For this purpose, a full-length cDNA clone of the virus genome, represented in eight different subgenomic fragments, was assembled in a transcription plasmid between a T7 RNA polymerase promoter and a hepatitis delta virus ribozyme sequence. Infectious NDV could be generated in the cells infected with recombinant vaccinia virus, which expressed T7 RNA polymerase, by simultaneous expression of antigenome-sense NDV RNA from the full-length plasmid and NDV NP, P, and L proteins from cotransfected plasmids. Recombinant virus was then amplified and recovered, either after inoculation of transfection supernatant into the allantoic cavity of embryonated specific-pathogen-free eggs or after further passage in cell culture. Characterization of the recombinant NDV showed similarities in growth and pathogenicity to that of the parental wild-type virus. By using this system, a recombinant NDV containing a foreign gene encoding chloramphenicol acetyltransferase (CAT) was generated. To do this, the CAT transcription cassette containing the CAT open reading frame, flanked by NDV gene start and gene end sequence motifs, was inserted into the region between the HN and L genes of the full-length cDNA. This construct was then used in the generation of a recombinant NDV expressing CAT protein. The CAT gene was maintained stably for at least eight passages without any detectable loss of the gene from the recombinant. Generation of the recombinant virus, however, was associated with reduced plaque size, slower replication kinetics, and more than 100-fold decrease in yield. In addition, the virus showed an increase in mean death time for eggs and a lower intracerebral pathogenicity index in day-old chicks, implicating attenuation of the recombinant virus. Thus, introduction of an additional gene into the NDV genome represents a method to achieve growth retardation and attenuation. These results also indicate that NDV can be engineered to express foreign protein stably and can be manipulated in the future for use as a vaccine vector.
Collapse
Affiliation(s)
- S Krishnamurthy
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
48
|
Haller AA, Miller T, Mitiku M, Coelingh K. Expression of the surface glycoproteins of human parainfluenza virus type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector. J Virol 2000; 74:11626-35. [PMID: 11090161 PMCID: PMC112444 DOI: 10.1128/jvi.74.24.11626-11635.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39 degrees C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37 degrees C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses.
Collapse
Affiliation(s)
- A A Haller
- Aviron, Mountain View, California 94043, USA.
| | | | | | | |
Collapse
|
49
|
Hoffmann E, Webster RG. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol 2000; 81:2843-2847. [PMID: 11086114 DOI: 10.1099/0022-1317-81-12-2843] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, we developed a system for the generation of influenza A virus by cotransfecting only eight plasmids from which negative-sense vRNA and positive-sense mRNA are expressed (Hoffmann et al., Proceedings of the National Academy of Sciences, USA 97, 6108-6113, 2000). Here we report the establishment of a different transcription system for the expression of virus-like RNAs, allowing the intracellular synthesis of noncapped positive-sense cRNA and 5'-capped mRNA from one template. Cotransfection of eight RNA pol I-pol II tandem promoter plasmids containing the cDNA of A/WSN/33 (H1N1) resulted in the generation of infectious influenza A virus, albeit with a lower yield than the bidirectional system. Our approach of producing either vRNA and mRNA or cRNA and mRNA intracellularly from a minimum set of plasmids should be useful for the establishment or optimization of reverse genetics systems for other RNA viruses.
Collapse
Affiliation(s)
- Erich Hoffmann
- Department of Virology and Molecular Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105-2794, USA1
| | - Robert G Webster
- Department of Pathology, University of Tennessee, Memphis, TN, USA2
- Department of Virology and Molecular Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105-2794, USA1
| |
Collapse
|
50
|
Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee YS, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 2000; 74:6564-9. [PMID: 10864670 PMCID: PMC112166 DOI: 10.1128/jvi.74.14.6564-6569.2000] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have recovered a virion from defective cDNA of Sendai virus (SeV) that is capable of self-replication but incapable of transmissible-virion production. This virion delivers and expresses foreign genes in infected cells, and this is the first report of a gene expression vector derived from a defective viral genome of the Paramyxoviridae. First, functional ribonucleoprotein complexes (RNPs) were recovered from SeV cloned cDNA defective in the F (envelope fusion protein) gene, in the presence of plasmids expressing nucleocapsid protein and viral RNA polymerase. Then the RNPs were transfected to the cells inducibly expressing F protein. Virion-like particles thus obtained had a titer of 0.5 x 10(8) to 1. 0 x 10(8) cell infectious units/ml and contained F-defective RNA genome. This defective vector amplified specifically in an F-expressing packaging cell line in a trypsin-dependent manner but did not spread to F-nonexpressing cells. This vector infected and expressed an enhanced green fluorescent protein reporter gene in various types of animal and human cells, including nondividing cells, with high efficiency. These results suggest that this vector has great potential for use in human gene therapy and vaccine delivery systems.
Collapse
Affiliation(s)
- H O Li
- DNAVEC Research Inc., Tsukuba-shi, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|