1
|
Sidhambaram J, Sakayanathan P, Loganathan C, Iruthayaraj A, Thayumanavan P. Esterified Indole-3-propionic Acid: A Novel Inhibitor against Cholinesterase Identified through Experimental and Computational Approaches. ACS OMEGA 2025; 10:9073-9087. [PMID: 40092751 PMCID: PMC11904713 DOI: 10.1021/acsomega.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are targeted for designing drugs against cognitive dysfunction. Curcumin (CUR) and indole-3-propionic acid (IPA) are known for their neuroprotective activity. The clinical application of CUR is hindered due to poor absorption and bioavailability. Hence, CUR was conjugated with IPA to form the CUR-IPA diester. CUR-IPA inhibition against electric eel AChE (eAChE), human AChE (hAChE), and hBChE was carried out. In silico and molecular dynamics (MD) analyses of the interaction of CUR-IPA with hAChE and hBChE were done. UV-visible spectroscopy (λmax at 415 and 276 nm), NMR spectrum, and ESI/MS/MS [m/z = 711 (M + H)] confirmed CUR-IPA formation. CUR-IPA showed in vitro antioxidant activity. The IC50 values of eAChE, hAChE, and hBChE enzyme inhibition were 5.66, 59.30, and 60.66 μM, respectively. MD simulation-based analysis such as RMSD, RMSF, free-energy calculation, PCA, FEL, and DCCM confirmed the stable binding of CUR-IPA with hAChE and hBChE. Further QM/MM analysis confirmed the stable interaction of CUR-IPA with hAChE and hBChE. Since CUR-IPA showed in vitro inhibition against AChE and BChE, a further neuroprotective effect in in vivo could be studied.
Collapse
Affiliation(s)
| | | | - Chitra Loganathan
- Department
of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Chennai600 077, India
| | - Ancy Iruthayaraj
- Bioinnov
Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636009, India
| | | |
Collapse
|
2
|
Karami H, Soltani S, Wolber G, Sadigh-Eteghad S, Nikbakht R, Farrokhi H, Narimani F, Teimuri-Mofrad R, Rashidi MR. Anti-Alzheimer effects of the newly synthesized cationic compounds as multi-target dual hAChE/hBuChE inhibitor: An in silico, in vitro, and in vivo approach. BIOIMPACTS : BI 2024; 15:24196. [PMID: 40161933 PMCID: PMC11954736 DOI: 10.34172/bi.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/02/2025]
Abstract
Introduction Multi-target anti-Alzheimer's disease (AD) compounds are promising leads for the development of AD modifying agents. Ionic compounds containing quaternary ammonium moiety were synthesized, and their multi-targeted anti-AD effects were examined. Methods Imidazole derivatives containing a quaternary ammonium moiety were synthesized and evaluated for their potential anti-Alzheimer properties using computational (in silico), cellular (in vitro), and animal (in vivo) models. The inhibition kinetics of both human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) were assessed. Neuroprotective effects in amyloid-beta (Aβ)-exposed PC12 cells were also examined. Furthermore, the compounds' impact on Aβ-induced memory impairment in Wistar rats was evaluated, with a detailed analysis of the underlying mechanisms. Results Compound 5g demonstrated acceptable cytotoxicity against human cells. This compound exhibited non-competitive dual inhibition of both hAChE and hBuChE. Additionally, compound 5g mitigated the morphological changes induced by amyloid-beta (Aβ) in PC12 cells and decreased cell mortality. It exhibited anti-oxidative stress properties, evident by reduction in reactive oxygen species (ROS) production, and inhibition of lipid peroxidation. The compound also down regulated the expression of pro-inflammatory genes IL-1β and TNF-α. In vitro studies validated compound 5g's ability to inhibit lactate dehydrogenase (LDH), attenuate neuroinflammation, and prevent the autophagy-apoptosis cascade. When administered to rats with Aβ-induced memory dysfunction, compound 5g enhanced cognitive function and improved spatial memory. In the hippocampi of treated rats, there was a noted downregulation of TNF-α and NF-kB. Furthermore, compound 5g counteracted the elevated activity of AChE. Molecular modeling validated the binding of compound 5g to both steric and catalytic sites of cholinesterase enzymes. Conclusion The novel quaternary ammonium derivative, compound 5g, demonstrated multi-target anti-AD properties, as evidenced by in silico, in vitro and in vivo studies. Behavioral assessments and molecular analyses further confirmed its therapeutic efficacy in amyloid-beta (Aβ)-challenged rats.
Collapse
Affiliation(s)
- Hosna Karami
- Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Somaieh Soltani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gerhard Wolber
- Molecular Design Group, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Nikbakht
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hanieh Farrokhi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Farzaneh Narimani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Nanotechnology Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Kadyan P, Singh L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol Rep 2024; 76:665-678. [PMID: 38758470 DOI: 10.1007/s43440-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Neurodegenerative diseases (NDDs) encompass a range of conditions characterized by the specific dysfunction and continual decline of neurons, glial cells, and neural networks within the brain and spinal cord. The majority of NDDs exhibit similar underlying causes, including oxidative stress, neuroinflammation, and malfunctioning of mitochondria. Elevated levels of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), alongside decreased expression of brain-derived neurotrophic factor (BDNF) and glutamate transporter subtype 1 (GLT-1), constitute significant factors contributing to the pathogenesis of NDDs. Additionally, the dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) gene has emerged as a significant target for the treatment of NDDs at the preclinical level. It significantly contributes to developmental brain defects, early onset neurodegeneration, neuronal loss, and dementia in Down syndrome. Moreover, an impaired ubiquitin-proteosome system (UPS) also plays a pathological role in NDDs. Malfunctioning of UPS leads to abnormal protein buildup or aggregation of α-synuclein. α-Synuclein is a highly soluble unfolded protein that accumulates in Lewy bodies and Lewy neurites in Parkinson's disease and other synucleinopathies. Recent research highlights the promising potential of natural products in combating NDDs relative to conventional therapies. Alkaloids have emerged as promising candidates in the fight against NDDs. Harmine is a tricyclic β-carboline alkaloid (harmala alkaloid) with one indole nucleus and a six-membered pyrrole ring. It is extracted from Banisteria caapi and Peganum harmala L. and exhibits diverse pharmacological properties, encompassing neuroprotective, antioxidant, anti-inflammatory, antidepressant, etc. Harmine has been reported to mediate its neuroprotective via reducing the level of inflammatory mediators, NADPH oxidase, AChE, BChE and reactive oxygen species (ROS). Whereas, it has been observed to increase the levels of BDNF, GLT-1 and anti-oxidant enzymes, along with protein kinase-A (PKA)-mediated UPS activation. This review aims to discuss the mechanistic interplay of various mediators involved in the neuroprotective effect of harmine.
Collapse
Affiliation(s)
- Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
4
|
Ayoup MS, Ghanem M, Abdel-Hamid H, Abu-Serie MM, Masoud A, Ghareeb DA, Hawsawi MB, Sonousi A, Kassab AE. New 1,2,4-oxadiazole derivatives as potential multifunctional agents for the treatment of Alzheimer's disease: design, synthesis, and biological evaluation. BMC Chem 2024; 18:130. [PMID: 39003489 PMCID: PMC11246588 DOI: 10.1186/s13065-024-01235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
A series of new 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their anti-AD potential. The results revealed that eleven compounds (1b, 2a-c, 3b, 4a-c, and 5a-c) exhibited excellent inhibitory potential against AChE, with IC50 values ranging from 0.00098 to 0.07920 µM. Their potency was 1.55 to 125.47 times higher than that of donepezil (IC50 = 0.12297 µM). In contrast, the newly synthesized oxadiazole derivatives with IC50 values in the range of 16.64-70.82 µM exhibited less selectivity towards BuChE when compared to rivastigmine (IC50 = 5.88 µM). Moreover, oxadiazole derivative 2c (IC50 = 463.85 µM) was more potent antioxidant than quercetin (IC50 = 491.23 µM). Compounds 3b (IC50 = 536.83 µM) and 3c (IC50 = 582.44 µM) exhibited comparable antioxidant activity to that of quercetin. Oxadiazole derivatives 3b (IC50 = 140.02 µM) and 4c (IC50 = 117.43 µM) showed prominent MAO-B inhibitory potential. They were more potent than biperiden (IC50 = 237.59 µM). Compounds 1a, 1b, 3a, 3c, and 4b exhibited remarkable MAO-A inhibitory potential, with IC50 values ranging from 47.25 to 129.7 µM. Their potency was 1.1 to 3.03 times higher than that of methylene blue (IC50 = 143.6 µM). Most of the synthesized oxadiazole derivatives provided significant protection against induced HRBCs lysis, revealing the nontoxic effect of the synthesized compounds, thus making them safe drug candidates. The results unveiled oxadiazole derivatives 2b, 2c, 3b, 4a, 4c, and 5a as multitarget anti-AD agents. The high AChE inhibitory potential can be computationally explained by the synthesized oxadiazole derivatives' significant interactions with the AChE active site. Compound 2b showed good physicochemical properties. All these data suggest that 2b could be considered as a promising candidate for future development.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mariam Ghanem
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Aliaa Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt.
| |
Collapse
|
5
|
Dincel ED, Başoğlu-Ünal F, Kuran ED, Kayra T, Aydın N, Kanber E, Gülçin İ, Ulusoy-Güzeldemirci N. Design, synthesis, and evaluation of novel bistrifluoromethyl-based hydrazones as dual inhibitors of acetylcholinesterase and carbonic anhydrase enzymes for Alzheimer's disease. Chem Biol Drug Des 2024; 103:e14482. [PMID: 38378259 DOI: 10.1111/cbdd.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
In this project, non-sulfonamide bistrifluoromethyl-derived hydrazide-hydrazones were synthesized as multi-target-directed ligands to treat Alzheimer's disease and then, the novel derivatives were characterized by diverse spectral methods. Acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) inhibitory qualifications of these compounds were determined. The reported compounds (2a-y) were determined to be effective inhibitors of the hCA I, hCA II and AChE enzymes with Ki values in the range of 1.130 ± 0.15-5.440 ± 0.93 μM for hCA I, 0.894 ± 0.05-6.647 ± 1.35 μM for hCA II, and 0.196 ± 0.03-4.222 ± 1.04 μM for AChE. In silico studies were also performed to illuminate the binding interactions.
Collapse
Affiliation(s)
- Efe Doğukan Dincel
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Faika Başoğlu-Ünal
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, European University of Lefke, Mersin, Turkey
| | - Ebru Didem Kuran
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Tülay Kayra
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Nurcan Aydın
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - Esmanur Kanber
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, Turkey
| | | |
Collapse
|
6
|
El-Hussieny M, Abd-El-Maksoud MA, Soliman FM, Fouad MA, El-Ashrey MK. Dual-target ligand discovery for Alzheimer's disease: triphenylphosphoranylidene derivatives as inhibitors of acetylcholinesterase and β-amyloid aggregation. J Enzyme Inhib Med Chem 2023; 38:2166040. [PMID: 36695002 PMCID: PMC9879200 DOI: 10.1080/14756366.2023.2166040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alzheimer disease (AD) is one of the major neurodegenerative diseases that could not be prevented or completely cured and may lead to death. Here, we target AChE and β-amyloid proteins. Synthesising new triphenylphosphporanylidene derivatives based on the surveyed literature and testing their biological activity revealed promising results especially for the acetyl triphenylphosphoranylidene derivative 8c, which showed good inhibitor activity against AChE enzyme with IC50 in the nanomolar range (97.04 nM); on the other hand, it showed poor selectivity for AChE versus butyrylcholinesterase but with some futural structural modification, this selectivity can be improved. 8c showed MMP-2 IC50 of 724.19 nM and Aβ1-42 aggregation IC50 of 302.36 nM. A kinetic study demonstrated that compound 8c uncompetitively inhibited AChE. Moreover, derivative 8c showed low cytotoxicity, good in vivo behavioural studies including Y-maze and passive avoidance tests with activity similar to that of donepezil. Finally, in silico studies for 8c predict its good penetration into BBB and good binding affinity in the AChE binding site.
Collapse
Affiliation(s)
- Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt,Marwa El-Hussieny , Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir), Dokki, P.O. 12622, Giza, Egypt
| | | | - Fouad M. Soliman
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, Cairo, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Mohamed K. El-Ashrey Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, P.O. 11562, Giza, Egypt
| |
Collapse
|
7
|
Wang G, Du J, Ma J, Liu P, Xing S, Xia J, Dong S, Li Z. Discovery of Novel Tryptanthrin Derivatives with Benzenesulfonamide Substituents as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1468. [PMID: 37895939 PMCID: PMC10610214 DOI: 10.3390/ph16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Based on the multi-target-directed ligands (MTDLs) approach, two series of tryptanthrin derivatives with benzenesulfonamide substituents were evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). In vitro biological assays indicated most of the derivatives had good cholinesterase inhibitory activity and neuroprotective properties. Among them, the target compound 4h was considered as a mixed reversible dual inhibitor of acetylcholinesterase (AChE, IC50 = 0.13 ± 0.04 μM) and butyrylcholinesterase (BuChE, IC50 = 6.11 ± 0.15 μM). And it could also potentially prevent the generation of amyloid plaques by inhibiting self-induced Aβ aggregation (63.16 ± 2.33%). Molecular docking studies were used to explore the interactions of AChE, BuChE, and Aβ. Furthermore, possessing significant anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50 = 0.62 ± 0.07 μM, 1.78 ± 0.21 μM, 1.31 ± 0.28 μM, respectively) reduced ROS production, and chelated biometals were also found in compound 4h. Further studies showed that 4h had proper blood-brain barrier (BBB) permeability and suitable in vitro metabolic stability. In in vivo study, 4h effectively ameliorated the learning and memory impairment of the scopolamine-induced AD mice model. These findings suggested that 4h may be a promising compound for further development as a multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Guoxing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jie Ma
- Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Peipei Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
- Anhui BioX-Vision Biological Technology Co., Ltd., Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (G.W.); (J.D.); (P.L.); (S.X.); (J.X.); (S.D.)
| |
Collapse
|
8
|
Bhanukiran K, Singh SK, Singh R, Kumar A, Hemalatha S. Discovery of Multitarget-Directed Ligands from Piperidine Alkaloid Piperine as a Cap Group for the Management of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2743-2760. [PMID: 37433759 DOI: 10.1021/acschemneuro.3c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
The naturally inspired multitarget-directed ligands (PC01-PC10 and PD01-PD26) were synthesized from piperine for the management of Alzheimer's disease (AD). The compound PD07 showed significant inhibitory activity on ChEs, BACE1, and Aβ1-42 aggregation in in vitro studies. Further, compound PD07 effectively displaced the propidium iodide at the AChE PAS site. The compound PD07 exhibited significant lipophilicity in PAMPA studies. Additionally, PD07 demonstrated neuroprotective properties in the Aβ1-42 induced SH-SY5Y cell line. Furthermore, DFT calculations were performed using B3LYP/6-311G(d,p) basis sets to explore the PD07 physical and chemical properties. The compound PD07 showed a similar binding interaction profile at active sites of AChE, BuChE, and BACE1 proteins as compared to reference ligands (donepezil, tacrine, and BSD) in molecular docking and dynamic simulation studies. In acute oral toxicity studies, compound PD07 exhibited no toxicity symptoms up to 300 mg/kg, po. The compound PD07 (10 mg/kg, po) improved memory and cognition in scopolamine-induced amnesia rats. Further, PD07 increased ACh levels in the brain by inhibiting the AChE activity. The results from in vitro, in silico, and in vivo studies suggested that compound PD07 is a potent multitarget-directed lead from piperine to overcome Alzheimer's disease.
Collapse
Affiliation(s)
- Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
Abolhasani F, Pourshojaei Y, Mohammadi F, Esmaeilpour K, Asadipour A, Ilaghi M, Shabani M. Exploring the potential of a novel phenoxyethyl piperidine derivative with cholinesterase inhibitory properties as a treatment for dementia: Insights from STZ animal model of dementia. Neurosci Lett 2023; 810:137332. [PMID: 37302565 DOI: 10.1016/j.neulet.2023.137332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, often characterized by progressive deficits in memory and cognitive functions. Cholinesterase inhibitors have been introduced as promising agents to enhance cognition and memory in both human patients and animal models of AD. In the current study, we assessed the effects of a synthetic phenoxyethyl piperidine derivative, compound 7c, as a novel dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), on learning and memory, as well as serum and hippocampal AChE levels in an animal model of AD. The model of dementia was induced by intracerebroventricular injection of streptozotocin (STZ, 2 mg/kg) to male Wistar rats. STZ-treated rats received compound 7c (3, 30, and 300 µg/kg) for five consecutive days. Passive avoidance (PA) learning and memory, as well as spatial learning and memory using Morris water maze, were evaluated. The level of AChE was measured in the serum and the left and right hippocampus. Findings demonstrated that compound 7c (300 µg/kg) was able to reverse STZ-induced impairments in PA memory, while also reduced the increased AChE level in the left hippocampus. Taken together, compound 7c appeared to act as a central AChE inhibitor, and its role in alleviating cognitive deficits in the AD animal model suggests that it may have therapeutic potential in AD dementia. Further research is required to assess the effectiveness of compound 7c in more reliable models of AD in light of these preliminary findings.
Collapse
Affiliation(s)
- Fatemeh Abolhasani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Khadijeh Esmaeilpour
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
11
|
Jing L, Wei W, Meng B, Chantegreil F, Nachon F, Martínez A, Wu G, Zhao H, Song Y, Kang D, Brazzolotto X, Zhan P, Liu X. Rapid discovery and crystallography study of highly potent and selective butylcholinesterase inhibitors based on oxime-containing libraries and conformational restriction strategies. Bioorg Chem 2023; 134:106465. [PMID: 36933339 DOI: 10.1016/j.bioorg.2023.106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Butyrylcholinesterase is regarded as a promising drug target in advanced Alzheimer's disease. In order to identify highly selective and potent BuChE inhibitors, a 53-membered compound library was constructed via the oxime-based tethering approach based on microscale synthesis. Although A2Q17 and A3Q12 exhibited higher BuChE selectivity versus acetylcholinesterase, the inhibitory activities were unsatisfactory and A3Q12 did not inhibit Aβ1-42 peptide self-induced aggregation. With A2Q17 and A3Q12 as leads, a novel series of tacrine derivatives with nitrogen-containing heterocycles were designed based on conformation restriction strategy. The results demonstrated that 39 (IC50 = 3.49 nM) and 43 (IC50 = 7.44 nM) yielded much improved hBuChE inhibitory activity compared to the lead A3Q12 (IC50 = 63 nM). Besides, the selectivity indexes (SI = AChE IC50 / BChE IC50) of 39 (SI = 33) and 43 (SI = 20) were also higher than A3Q12 (SI = 14). The results of the kinetic study showed that 39 and 43 exhibited a mixed-type inhibition against eqBuChE with respective Ki values of 1.715 nM and 0.781 nM. And 39 and 43 could inhibit Aβ1-42 peptide self-induced aggregation into fibril. X-ray crystallography structures of 39 or 43 complexes with BuChE revealed the molecular basis for their high potency. Thus, 39 and 43 are deserve for further study to develop potential drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Ji'nan, Shandong, PR China.
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220, Brétigny-sur-Orge, France.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
12
|
Espinosa-Jiménez T, Cano A, Sánchez-López E, Olloquequi J, Folch J, Bulló M, Verdaguer E, Auladell C, Pont C, Muñoz-Torrero D, Parcerisas A, Camins A, Ettcheto M. A novel rhein-huprine hybrid ameliorates disease-modifying properties in preclinical mice model of Alzheimer's disease exacerbated with high fat diet. Cell Biosci 2023; 13:52. [PMID: 36895036 PMCID: PMC9999531 DOI: 10.1186/s13578-023-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD and the advances made in AD drug research and development, the cure of the disease remains elusive, since any developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiological features. In fact, β-secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions, have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these diseases, current research efforts are focusing on the development of multi-target drugs as a very promising option to derive effective treatments for both conditions. In the present study, we evaluated the effect of rhein-huprine hybrid (RHE-HUP), a synthesized BACE1 and AChE inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is to evaluate the effects of this compound in APP/PS1 female mice, a well-established familial AD mouse model, challenged by high-fat diet (HFD) consumption to concomitantly simulate a T2DM-like condition. RESULTS Intraperitoneal treatment with RHE-HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD, including Tau hyperphosphorylation, Aβ42 peptide levels and plaque formation. Moreover, we found a decreased inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synaptophysin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD consumption was observed. CONCLUSIONS Our results suggest that RHE-HUP could be a new candidate for the treatment of AD, even for individuals with high risk due to peripheral metabolic disturbances, given its multi-target profile which allows for the improvement of some of the most important hallmarks of the disease.
Collapse
Affiliation(s)
- Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Ace Alzheimer Center Barcelona-International University of Catalunya (UIC), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.,Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain
| | - Jordi Olloquequi
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), 43201, Reus, Spain.,Nutrition and Metabolic Health Research Group, Institute of Health Pere Virgili-IISPV, 43201, Reus, Spain
| | - Mònica Bulló
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43201, Reus, Spain.,Nutrition and Metabolic Health Research Group, Institute of Health Pere Virgili-IISPV, 43201, Reus, Spain.,CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029, Madrid, Spain
| | - Ester Verdaguer
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Caterina Pont
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antoni Parcerisas
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain. .,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain. .,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028, Barcelona, Spain.
| |
Collapse
|
13
|
Bhanukiran K, T A G, Krishnamurthy S, Singh SK, Hemalatha S. Discovery of multi-target directed 3-OH pyrrolidine derivatives through a semisynthetic approach from alkaloid vasicine for the treatment of Alzheimer's disease. Eur J Med Chem 2023; 249:115145. [PMID: 36706620 DOI: 10.1016/j.ejmech.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Vasicine is a pyrroloquinazoline alkaloid, which has been isolated from the plant Adhatoda vasica. Naturally inspired semi-synthetic transformations were prepared using vasicine as a synthetic precursor to overcome Alzheimer's disease (AD). These semi-synthetic analogs exhibited stable interactions and were well resided at AChE and BChE active sites in in-silico studies. Further, in-vitro experiments were performed to assess the cholinesterase inhibitory activity and reduction of amyloid-beta (Aβ1-42) plaques potency, PAMPA assay permeability, and antioxidant activity, these findings suggested that compound VA10 can be a lead molecule among all the synthesized analogs. The compound VA10 binds towards AChE peripheral anionic site (PAS) property was established through propidium iodide displacement assay. Moreover, VA10 showed no notable cytotoxicity and exhibited neuroprotective nature on Aβ1-42 treated SH-SY5Y cell line. In addition, VA10 was found to be safe in rats, which was confirmed by acute oral toxicity studies. Furthermore, in-vivo studies suggested that compound VA10 (10 mg/kg, p.o) ameliorated the memory and cognition impairment in scopolamine-induced amnesia model and Aβ1-42 induced Alzheimer rat model. Ex-vivo studies of compound VA10 demonstrate improved ACh levels by inhibiting AChE activity in rat brain. Moreover, histopathological observations on rats brain sections indicate VA10 (10 mg/kg, p.o) recovered the neuronal cells at hippocampus region (DG, CA3, and CA1). These positive experimental data from in-silico, in-vitro and in-vivo studies, suggested that compound VA10 can be a lead compound for further preclinical development studies as a naturally derived alkaloid for anti-AD.
Collapse
Affiliation(s)
- Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
14
|
Parlar S, Sayar G, Tarikogullari AH, Karadagli SS, Alan E, Sevin G, Erciyas E, Holzgrabe U, Alptuzun V. N-Substituted piperidine-3-carbohydrazide-hydrazones against Alzheimer's disease: Synthesis and evaluation of cholinesterase, beta-amyloid inhibitory activity, and antioxidant capacity. Arch Pharm (Weinheim) 2023; 356:e2200519. [PMID: 36461719 DOI: 10.1002/ardp.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
A series of piperidine-3-carbohydrazide-hydrazones bearing phenylethyl, phenylpropyl, and phenylbutyl substituents on piperidine nitrogen were designed and synthesized as cholinesterase (ChE) inhibitors. The title compounds were screened for acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) inhibitory activities and antioxidant capacities, and the active ones for Aβ42 self-aggregation inhibition, in vitro. The chemiluminescence method was used to determine the effect of the selected compounds on the reactive oxygen species (ROS) levels in brain tissue. Physicochemical properties were calculated by the MOE program. Kinetic analysis and molecular modeling studies were also carried out for the most active compounds. Generally, the final compounds exhibited moderate to good AChE or BuChE inhibitory activity. Among them, 3g and 3j showed the most potent activity against AChE (IC50 = 4.32 µM) and BuChE (IC50 = 1.27 µM), respectively. The kinetic results showed that both compounds exhibited mixed-type inhibition. Among the selected compounds, nitro derivatives (3g, 4g, and 5g) provided better Aβ42 inhibition. According to the chemiluminescence assay, 4i exhibited the most active superoxide free-radical scavenger activity and 3g, 3j, and 4i showed similar scavenger activity on other ROS. All results suggested that 3g, 3j, and 4i have good AChE/BuChE, Aβ42 inhibitory potentials and antioxidant capacities and can therefore be suggested as promising multifunctional agents to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Sulunay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gozde Sayar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Sumru Sozer Karadagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Elif Alan
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
15
|
Babaei E, Küçükkılınç TT, Jalili-Baleh L, Nadri H, Öz E, Forootanfar H, Hosseinzadeh E, Akbari T, Ardestani MS, Firoozpour L, Foroumadi A, Sharifzadeh M, Mirjalili BBF, Khoobi M. Novel Coumarin–Pyridine Hybrids as Potent Multi-Target Directed Ligands Aiming at Symptoms of Alzheimer’s Disease. Front Chem 2022; 10:895483. [PMID: 35844650 PMCID: PMC9280334 DOI: 10.3389/fchem.2022.895483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, a series of coumarin-based scaffolds linked to pyridine derivatives via a flexible aliphatic linkage were synthesized and assessed as multifunctional anti-AD agents. All the compounds showed acceptable acetylcholinesterase (AChE) inhibition activity in the nanomolar range (IC50 = 2–144 nM) and remarkable butyrylcholinesterase (BuChE) inhibition property (IC50 = 9–123 nM) compared to donepezil as the standard drug (IC50 = 14 and 275 nM, respectively). Compound 3f as the best AChE inhibitor (IC50 = 2 nM) showed acceptable BuChE inhibition activity (IC50 = 24 nM), 100 times more active than the standard drug. Compound 3f could also significantly protect PC12 and SH-SY5Y cells against H2O2-induced cell death and amyloid toxicity, respectively, superior to the standard drugs. It could interestingly reduce β-amyloid self and AChE-induced aggregation, more potent than the standard drug. All the results suggest that compound 3f could be considered as a promising multi-target-directed ligand (MTDL) against AD.
Collapse
Affiliation(s)
- Elaheh Babaei
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | - Leili Jalili-Baleh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esin Öz
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Hosseinzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| | - Mehdi Khoobi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bi Bi Fatemeh Mirjalili, ; Mehdi Khoobi, ,
| |
Collapse
|
16
|
Fabiani C, Biscussi B, Munafó JP, Murray AP, Corradi J, Antollini SS. New Synthetic Caffeine Analogs as Modulators of the Cholinergic System. Mol Pharmacol 2022; 101:154-167. [PMID: 34969831 DOI: 10.1124/molpharm.121.000415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disorder. Since cholinergic deficit is a major factor in this disease, two molecular targets for its treatment are the acetylcholinesterase (AChE) and the nicotinic acetylcholine receptors (nAChRs). Given that caffeine is a natural compound that behaves as an AChE inhibitor and as a partial agonist of nAChRs, the aim of this work was to synthetize more potent bifunctional caffeine analogs that modulate these two molecular targets. To this end, a theophylline structure was connected to a pyrrolidine structure through a methylene chain of different lengths (3 to 7 carbon atoms) to give compounds 7-11 All caffeine derivatives inhibited the AChE, of which compound 11 showed the strongest effect. Electrophysiological studies showed that all compounds behave as agonists of the muscle and the neuronal α7 nAChR with greater potency than caffeine. To explore whether the different analogs could affect the nAChR conformational state, the nAChR conformational-sensitive probe crystal violet (CrV) was used. Compounds 9 and 10 conduced the nAChR to a different conformational state comparable with a control nAChR desensitized state. Finally, molecular docking experiments showed that all derivatives interacted with both the catalytic and anionic sites of AChE and with the orthosteric binding site of the nAChR. Thus, the new synthetized compounds can inhibit the AChE and activate muscle and α7 nAChRs with greater potency than caffeine, which suggests that they could be useful leaders for the development of new therapies for the treatment of different neurologic diseases. SIGNIFICANCE STATEMENT: In this work we synthetized caffeine derivatives which can inhibit acetylcholinesterase and activate both muscle and α7 nicotinic acetylcholine receptors (nAChRs) with higher potency than caffeine. These analogs can be divided into two groups: a non-desensitizing and a desensitizing nAChR group. From the nAChR non-desensitizing group, we propose compound 11 as the most interesting analog for further studies since it inhibits acetylcholinesterase with the highest potency and activates the nAChRs in the picomolar range without inducing receptor desensitization.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, (C.F., J.P.M., J.C., S.S.A.) and Instituto de Química del Sur, Departamento de Química, (B.B., A.P.M.), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Brunella Biscussi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, (C.F., J.P.M., J.C., S.S.A.) and Instituto de Química del Sur, Departamento de Química, (B.B., A.P.M.), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Juan P Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, (C.F., J.P.M., J.C., S.S.A.) and Instituto de Química del Sur, Departamento de Química, (B.B., A.P.M.), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Ana P Murray
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, (C.F., J.P.M., J.C., S.S.A.) and Instituto de Química del Sur, Departamento de Química, (B.B., A.P.M.), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, (C.F., J.P.M., J.C., S.S.A.) and Instituto de Química del Sur, Departamento de Química, (B.B., A.P.M.), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, (C.F., J.P.M., J.C., S.S.A.) and Instituto de Química del Sur, Departamento de Química, (B.B., A.P.M.), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas
| |
Collapse
|
17
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Zhu Q, Lin M, Zhuo W, Li Y. Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study. Molecules 2021; 26:molecules26237299. [PMID: 34885880 PMCID: PMC8659057 DOI: 10.3390/molecules26237299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Screening the lead compounds which could interact both with PAS and CAS of acetylcholinesterase (AChE) is an important trend in finding innovative drugs for Alzheimer's disease (AD). In this paper, four sesquiterpenes, i.e., atractylenolide III (1), atractylenolide IV (2), 3-acetyl-atractylon (3) and β-eudesmol (4), were obtained from the wild Atractylode macrocephala grown in Qimen for the first time. Their structures were elucidated mainly by NMR spectroscopy. To screen the potential dual site inhibitors of AChE, the compounds 1, 2, 3, as well as a novel and rare bisesquiterpenoid lactone, biatractylenolide II (5), which was also obtained from the tilted plant in our previous investigation, were evaluated their AChE inhibitory activities by using Ellman's colorimetric method. The results showed that biatractylenolide II displayed moderate inhibitory activity (IC50 = 19.61 ± 1.11 μg/mL) on AChE. A further molecular docking study revealed that biatractylenolide II can interact with both the peripheral anionic site (PAS) and the catalytic active site (CAS) of AChE. These data suggest that biatractylenolide II can be considered a new lead compound to research and develop more potential dual site inhibitors of AChE.
Collapse
Affiliation(s)
- Qiannan Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
| | - Min Lin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
| | - Wanying Zhuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
| | - Yunzhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Correspondence:
| |
Collapse
|
19
|
Ali AA, Khalil MG, Abd El-Latif DM, Okda T, Abdelaziz AI, Abu-Elfotuh K, Kamal MM, Wahid A. The influence of vinpocetine alone or in combination with Epigallocatechin-3-gallate, Coenzyme COQ10, Vitamin E and Selenium as a potential neuroprotective combination against aluminium-induced Alzheimer's disease in Wistar Albino Rats. Arch Gerontol Geriatr 2021; 98:104557. [PMID: 34706318 DOI: 10.1016/j.archger.2021.104557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of such diseases that represent the most prominent cause of dementia in elderly people. To explore the possible neuroprotective effect as well as mechanism of action of Vinpocetine either alone or in combination with EGCG, CoQ10, or VE & Se in ameliorating aluminum chloride-induced AD in rats. Rats were received AlCl3 (70 mg/kg) intraperitoneal daily dose for 30 days along with EGCG (10 mg/kg, I.P), CoQ10 (200 mg/kg, P.O), VE (100 mg/kg, P.O) & Se (1 mg/kg, P.O) as well as Vinpocetine (20 mg/kg, P.O) either alone or in combination. Results revealed that the combination of Vinpocetine with EGCG showed the best neuroprotection. This protection in the brain was indicated by the significant decrease in Aβ and ACHE. The same pattern of results were shown in the levels of monoamines and BDNF. In addition, the combination of Vinpocetine with EGCG showed more pronounced anti-inflammatory (TNF-α, IL-1β) and antioxidant (MDA, SOD, TAC) effects in comparison to other combinations. These results were confirmed using histopathological examinations as well as DNA fragmentation assays. Vinpocetine with EGCG showed pronounced protection on neurons against AD induced by AlCl3 in rats.
Collapse
Affiliation(s)
- Azza A Ali
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona G Khalil
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Doaa M Abd El-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Tarek Okda
- Department of Biochemistry, Faculty of pharmacy, Damanhour University, Egypt
| | - Aya I Abdelaziz
- Medical Research Center, Faculty of pharmacy, Heliopolis University, Egypt
| | - Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona M Kamal
- Department of Pharmacology and Toxicology; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of pharmacy, Alexandria University, Egypt.
| |
Collapse
|
20
|
Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E, Hoe HS. Donepezil Regulates LPS and Aβ-Stimulated Neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 Signaling. Int J Mol Sci 2021; 22:10637. [PMID: 34638977 PMCID: PMC8508964 DOI: 10.3390/ijms221910637] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The acetylcholinesterase inhibitors donepezil and rivastigmine have been used as therapeutic drugs for Alzheimer's disease (AD), but their effects on LPS- and Aβ-induced neuroinflammatory responses and the underlying molecular pathways have not been studied in detail in vitro and in vivo. In the present study, we found that 10 or 50 μM donepezil significantly decreased the LPS-induced increases in the mRNA levels of a number of proinflammatory cytokines in BV2 microglial cells, whereas 50 μM rivastigmine significantly diminished only LPS-stimulated IL-6 mRNA levels. In subsequent experiments in primary astrocytes, donepezil suppressed only LPS-stimulated iNOS mRNA levels. To identify the molecular mechanisms by which donepezil regulates LPS-induced neuroinflammation, we examined whether donepezil alters LPS-stimulated proinflammatory responses by modulating LPS-induced downstream signaling and the NLRP3 inflammasome. Importantly, we found that donepezil suppressed LPS-induced AKT/MAPK signaling, the NLRP3 inflammasome, and transcription factor NF-kB/STAT3 phosphorylation to reduce neuroinflammatory responses. In LPS-treated wild-type mice, a model of neuroinflammatory disease, donepezil significantly attenuated LPS-induced microglial activation, microglial density/morphology, and proinflammatory cytokine COX-2 and IL-6 levels. In a mouse model of AD (5xFAD mice), donepezil significantly reduced Aβ-induced microglial and astrocytic activation, density, and morphology. Taken together, our findings indicate that donepezil significantly downregulates LPS- and Aβ-evoked neuroinflammatory responses in vitro and in vivo and may be a therapeutic agent for neuroinflammation-associated diseases such as AD.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Hyun-ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
| | - Soojung Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Heeyong Lee
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Eunyoung Seol
- G2GBIO, Inc., Science Park #411, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (S.L.); (H.L.); (E.S.)
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea; (J.K.); (H.-j.L.); (S.K.P.); (J.-H.P.); (H.-R.J.)
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea
| |
Collapse
|
21
|
Sadafi Kohnehshahri M, Chehardoli G, Bahiraei M, Akbarzadeh T, Ranjbar A, Rastegari A, Najafi Z. Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer's disease: Quinolotacrine hybrids. Mol Divers 2021; 26:489-503. [PMID: 34491490 DOI: 10.1007/s11030-021-10307-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
A new series of quinolotacrine hybrids including cyclopenta- and cyclohexa-quinolotacrine derivatives were designed, synthesized, and assessed as anti-cholinesterase (ChE) agents. The designed derivatives indicated higher inhibitory effect on the acetylcholinesterase (AChE) with IC50 values of 0.285-100 µM compared to butyrylcholinesterase (BChE) with IC50 values of > 100 µM. Of these compounds, cyclohexa-quinolotacrine hybrids displayed a little better anti-AChE activity than cyclopenta-quinolotacrine hybrids. Compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6m) including 3-hydroxyphenyl and cyclohexane ring moieties exhibited the best AChE inhibitory activity with IC50 value of 0.285 µM. The kinetic and molecular docking studies indicated that compound 6m occupied both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE as a mixed inhibitor. Using neuroprotective assay against H2O2-induced cell death in PC12 cells, the compound 6h illustrated significant protection among the assessed compounds. In silico ADME studies estimated good drug-likeness for the designed compounds. As a result, these quinolotacrine hybrids can be very encouraging AChE inhibitors to treat Alzheimer's disease. A novel series of quinolotacrine hybrids were designed, synthesized, and evaluated against AChE and BChE enzymes as potential agents for the treatment of AD. The hybrids showed good to significant inhibitory activity against AChE (0.285-100 μM) compared to butyrylcholinesterase (BChE) with IC50 values of > 100 μM. Among them, compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6 m) bearing 3-hydroxyphenyl moiety and cyclohexane ring exhibited the highest anti-AChE activity with IC50 value of 0.285 μM. The kinetic and molecular docking studies illustrated that compound 6 m is a mixed inhibitor and binds to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE.
Collapse
Affiliation(s)
- Mehrdad Sadafi Kohnehshahri
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoomeh Bahiraei
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rastegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Bowroju SK, Penthala NR, Lakkaniga NR, Balasubramaniam M, Ayyadevara S, Shmookler Reis RJ, Crooks PA. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer's disease. Bioorg Med Chem 2021; 45:116311. [PMID: 34304133 DOI: 10.1016/j.bmc.2021.116311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022]
Abstract
A series of novel 2-hydroxybenzylamine-deoxyvasicinone hybrid analogs (8a-8n) have been synthesized and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid peptide (Aβ1-42) aggregation, for treatment of Alzheimer's disease (AD). These dual acting compounds exhibited good AChE inhibitory activities ranging from 0.34 to 6.35 µM. Analogs8g and 8n were found to be the most potent AChE inhibitors in the series with IC50values of 0.38 µM and 0.34 µM, respectively. All the analogs (8a-8n) exhibited weak BuChE inhibitory activities ranging from 14.60 to 21.65 µM. Analogs8g and 8n exhibited BuChE with IC50values of 15.38 µM and 14.60 µM, respectively, demonstrating that these analogs were greater than 40-fold more selective for inhibition of AChE over BuChE. Additionally, compounds8g and 8n were also found to be the best inhibitors of self-induced Aβ1-42 peptide aggregation with IC50values of 3.91 µM and 3.22 µM, respectively; 8g and 8n also inhibited AChE-induced Aβ1-42 peptide aggregation by 68.7% and 72.6%, respectively. Kinetic analysis and molecular docking studies indicate that analogs 8g and 8n bind to a new allosteric pocket (site B) on AChE. In addition, the observed inhibition of AChE-induced Aβ1-42 peptide aggregation by 8n is likely due to allosteric inhibition of the binding of this peptide at the CAS site on AChE. Overall, these results indicate that 8g and 8n are examples of dual-acting lead compounds for the development of highly effective anti-AD drugs.
Collapse
Affiliation(s)
- Suresh K Bowroju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, United States; BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
23
|
Xuan Z, Gu X, Yan S, Xie Y, Zhou Y, Zhang H, Jin H, Hu S, Mak MSH, Zhou D, Keung Tsim KW, Carlier PR, Han Y, Cui W. Dimeric Tacrine(10)-hupyridone as a Multitarget-Directed Ligand To Treat Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2462-2477. [PMID: 34156230 DOI: 10.1021/acschemneuro.1c00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, a multitarget-directed ligands (MTDLs) strategy has been developed to treat AD. We have previously designed and synthesized dimeric tacrine(10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognitive-enhancing ability in AD animal models. In this study, A10E could prevent cognitive impairments in APP/PS1 transgenic mice and β-amyloid (Aβ) oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aβ production and deposition, alleviate neuroinflammation, enhance BDNF expression, and elevate cholinergic neurotransmission in vivo. At nanomolar concentrations, A10E could inhibit Aβ oligomers-induced neurotoxicity via the activation of tyrosine kinase receptor B (TrkB)/Akt pathway in SH-SY5Y cells. Furthermore, Aβ oligomerization and fibrillization could be directly disrupted by A10E. Importantly, A10E at high concentrations did not produce obvious hepatotoxicity. Our results indicated that A10E could produce anti-AD neuroprotective effects via the inhibition of Aβ aggregation, the activation of the BDNF/TrkB pathway, the alleviation of neuroinflammation, and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results also suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinmei Gu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yiying Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haibo Jin
- Affiliated Hospital of Medical School Ningbo University and Ningbo City Third Hospital, Ningbo 315211, China
| | - Shengquan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Marvin S. H. Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | | | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
24
|
Proença ICT, Gonçalves LK, Schmitz F, Mello A, Funchal CS, Wyse A, Dani C. Purple grape juice consumption during the gestation reduces acetylcholinesterase activity and oxidative stress levels provoked by high-fat diet in hippocampus from adult female rats descendants. AN ACAD BRAS CIENC 2021; 93:e20191002. [PMID: 34190844 DOI: 10.1590/0001-3765202120191002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
The enzyme acetylcholinesterase participates in the end of cholinergic transmission and it has been shown that its activity is increased in some diseases that affect the brain, including Alzheimer disease. The objective of this study was to investigate the effect of purple grape juice consumption with or without high-fat diet in the gestational and lactation period on acetylcholinesterase activity and oxidative stress parameters in the hippocampus of female descendants. During pregnancy and lactation, 40 female Wistar rats received a control diet or a high-fat diet, with half of them receiving grape juice. After lactation, the female descendants received water and control diet in ad libitum until euthanasia on the 120 postnatal day. Hippocampus from were removed for analysis of AChE activity, protein oxidation and lipid peroxidation. It was observed that high-fat diet consumption during the pregnancy increased the AChE activity and the grape juice reduced this activity in descendants. The same was observed in protein oxidation, the descendants from high-fat diet had significantly highest values, and grape juice decreased the levels. We conclude that dietary choices during pregnancy can alter the acetylcholinesterase levels and grape juice is an important alternative to improve this function in adulthood.
Collapse
Affiliation(s)
- Isabel C T Proença
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Luciana K Gonçalves
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Alexandre Mello
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Claudia S Funchal
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil
| | - Angela Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Santa Cecília, 90035-003 Porto Alegre, RS, Brazil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação- Centro Universitário Metodista - IPA, Cel. Joaquim Pedro Salgado, 80, Rio Branco, 90420-060 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Centro Histórico, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Chromone derivatives bearing pyridinium moiety as multi-target-directed ligands against Alzheimer's disease. Bioorg Chem 2021; 110:104750. [PMID: 33691251 DOI: 10.1016/j.bioorg.2021.104750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/16/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
A new serise of 7-hydroxy-chromone derivatives bearing pyridine moiety were synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). Most of the compounds were good AChE inhibitors (IC50 = 9.8-0.71 µM) and showed remarkable BuChE inhibition activity (IC50 = 1.9-0.006 µM) compared with donepezil as the standard drug (IC50 = 0.023 and 3.4 µM). Compounds 14 and 10 showed the best inhibitory activity toward AChE (IC50 = 0.71 µM) and BuChE (IC50 = 0.006 µM), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 14 and 10 could bind effectively to the peripheral anionic binding site (PAS) of the AChE and BuChE through mixed-type inhibition. In addition, the most potent compounds showed acceptable neuroprotective activity on H2O2- and Aβ-induced .neurotoxicity in PC12 cells, more than standard drugs. The compounds could block effectively self- and AChE-induced Aβ aggregation. All the results suggest that compounds 14 and 10 could be considered as promising multi-target-directed ligands against AD.
Collapse
|
26
|
Atali S, Dorandish S, Devos J, Williams A, Price D, Taylor J, Guthrie J, Heyl D, Evans HG. Interaction of amyloid beta with humanin and acetylcholinesterase is modulated by ATP. FEBS Open Bio 2020; 10:2805-2823. [PMID: 33145964 PMCID: PMC7714071 DOI: 10.1002/2211-5463.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Humanin (HN) is known to bind amyloid beta (Aβ)‐inducing cytoprotective effects, while binding of acetylcholinesterase (AChE) to Aβ increases its aggregation and cytotoxicity. Previously, we showed that binding of HN to Aβ blocks aggregation induced by AChE and that HN decreases but does not abolish Aβ‐AChE interactions in A549 cell media. Here, we set out to shed light on factors that modulate the interactions of Aβ with HN and AChE. We found that binding of either HN or AChE to Aβ is not affected by heparan sulfate, while ATP, thought to reduce misfolding of Aβ, weakened interactions between AChE and Aβ but strengthened those between Aβ and HN. Using media from either A549 or H1299 lung cancer cells, we observed that more HN was bound to Aβ upon addition of ATP, while levels of AChE in a complex with Aβ were decreased by ATP addition to A549 cell media. Exogenous addition of ATP to either A549 or H1299 cell media increased interactions of endogenous HN with Aβ to a comparable extent despite differences in AChE expression in the two cell lines, and this was correlated with decreased binding of exogenously added HN to Aβ. Treatment with exogenous ATP had no effect on cell viability under all conditions examined. Exogenously added ATP did not affect viability of cells treated with AChE‐immunodepleted media, and there was no apparent protection against the cytotoxicity resulting from immunodepletion of HN. Moreover, exogenously added ATP had no effect on the relative abundance of oligomer versus total Aβ in either cell line.
Collapse
Affiliation(s)
- Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jonathan Devos
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jaylen Taylor
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, USA
| |
Collapse
|
27
|
Mezeiova E, Soukup O, Korabecny J. Huprines — an insight into the synthesis and biological properties. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Keowkase R, Kijmankongkul N, Sangtian W, Poomborplab S, Santa-ardharnpreecha C, Weerapreeyakul N, Sitthithaworn W. Protective Effect and Mechanism of Fruit Extract of Aegle marmelos Against Amyloid-β Toxicity in a Transgenic Caenorhabditis elegans. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20933511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia found in the elderly. AD is caused by the accumulation of toxic proteins including amyloid-β (Aβ). The purpose of this study was to investigate the effect of fruit extract of Aegle marmelos against Aβ toxicity in Caenorhabditis elegans. The fruit of A. marmelos has been used in a traditional Thai herb formula in fatigue patients recovering from illnesses such as fever and diarrhea. We used a transgenic C. elegans strain CL4176, which expresses the human Aβ42, to investigate the effects and the mechanisms of action of the extracts against Aβ toxicity. The extract of A. marmelos significantly delayed Aβ-induced paralysis. Aegle marmelos lost the ability to delay Aβ-induced paralysis in worms fed with daf-16 ribonucleic acid interference (RNAi) bacteria, but not in worms fed with hsf-1 and skin-1 RNAi bacteria. These results indicated that daf-16 transcription factor was required for A. marmelos-mediated delayed paralysis. Aegle marmelos enhanced the level of daf-16 gene. Taken together, these results indicated that A. marmelos reduced Aβ toxicity via the DAF-16-mediated cell signaling pathway. In addition, A. marmelos reduced toxic Aβ oligomers. Aegle marmelos also displayed antioxidative effect in in vivo as it enhanced resistance to paraquat-induced oxidative stress in wild type worms. All of the results suggested that A. marmelos can protect against Aβ-induced toxicity and can be a potential candidate for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Roongpetch Keowkase
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Nattanon Kijmankongkul
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Wanapong Sangtian
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Sireethorn Poomborplab
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | | | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Thailand
| | - Worapan Sitthithaworn
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| |
Collapse
|
29
|
Kabir MT, Uddin MS, Begum MM, Thangapandiyan S, Rahman MS, Aleya L, Mathew B, Ahmed M, Barreto GE, Ashraf GM. Cholinesterase Inhibitors for Alzheimer's Disease: Multitargeting Strategy Based on Anti-Alzheimer's Drugs Repositioning. Curr Pharm Des 2020; 25:3519-3535. [PMID: 31593530 DOI: 10.2174/1381612825666191008103141] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
In the brain, acetylcholine (ACh) is regarded as one of the major neurotransmitters. During the advancement of Alzheimer's disease (AD) cholinergic deficits occur and this can lead to extensive cognitive dysfunction and decline. Acetylcholinesterase (AChE) remains a highly feasible target for the symptomatic improvement of AD. Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AChE for myasthenia gravis had effectively proven that AChE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEIs) have been continued to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs which are under development and their respective mechanisms of actions.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Price D, Dorandish S, Williams A, Iwaniec B, Stephens A, Marshall K, Guthrie J, Heyl D, Evans HG. Humanin Blocks the Aggregation of Amyloid-β Induced by Acetylcholinesterase, an Effect Abolished in the Presence of IGFBP-3. Biochemistry 2020; 59:1981-2002. [PMID: 32383868 PMCID: PMC8193794 DOI: 10.1021/acs.biochem.0c00274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is known that the humanin (HN) peptide binding to amyloid-β (Aβ) protects against its cytotoxic effects, while acetylcholinesterase (AChE) binding to Aβ increases its aggregation and cytotoxicity. HN is also known to bind the insulin-like growth factor binding protein-3 (IGFBP-3). Here, we examined the regulation of Aβ conformations by HN, AChE, and IGFBP-3 both in vitro and in the conditioned media from A549 and H1299 lung cancer cells. Our in vitro results showed the following: IGFBP-3 binds HN and blocks it from binding Aβ in the absence or presence of AChE; HN and AChE can simultaneously bind Aβ but not when in the presence of IGFBP-3; HN is unable to reduce the aggregation of Aβ in the presence of IGFBP-3; and HN abolishes the aggregation of Aβ induced by the addition of AChE in the absence of IGFBP-3. In the media, AChE and HN can simultaneously bind Aβ. While both AChE and HN are detected when using 6E10 Aβ antibodies, only AChE is detected when using the Aβ 17-24 antibody 4G8, the anti-oligomer A11, and the anti-amyloid fibril LOC antibodies. No signal was observed for IGFBP-3 with any of the anti-amyloid antibodies used. Exogenously added IGFBP-3 reduced the amount of HN found in a complex when using 6E10 antibodies and correlated with a concomitant increase in the amyloid oligomers. Immunodepletion of HN from the media of the A549 and H1299 cells increased the relative abundance of the oligomer vs the total amount of Aβ, the A11-positive prefibrillar oligomers, and to a lesser extent the LOC-positive fibrillar oligomers, and was also correlated with diminished cell viability and increased apoptosis.
Collapse
Affiliation(s)
- Deanna Price
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Sadaf Dorandish
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Asana Williams
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Brandon Iwaniec
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Alexis Stephens
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Keyan Marshall
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Jeffrey Guthrie
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Deborah Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Hedeel Guy Evans
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
31
|
Lalut J, Payan H, Davis A, Lecoutey C, Legay R, Sopkova-de Oliveira Santos J, Claeysen S, Dallemagne P, Rochais C. Rational design of novel benzisoxazole derivatives with acetylcholinesterase inhibitory and serotoninergic 5-HT 4 receptors activities for the treatment of Alzheimer's disease. Sci Rep 2020; 10:3014. [PMID: 32080261 PMCID: PMC7033111 DOI: 10.1038/s41598-020-59805-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
A rigidification strategy was applied to the preclinical candidate donecopride, an acetylcholinesterase inhibitor possessing 5-HT4R agonist activity. Inspired by promising bioactive benzisoxazole compounds, we have conducted a pharmacomodulation study to generate a novel series of multitarget directed ligands. The chemical synthesis of the ligand was optimized and compounds were evaluated in vitro against each target and in cellulo. Structure-activity relationship was supported by docking analysis in human acetylcholinesterase binding site. Among the synthesized compounds, we have identified a novel hybrid 32a (3-[2-[1-(cyclohexylmethyl)-4-piperidyl]ethyl]-4-methoxy-1,2-benzoxazole) able to display nanomolar acetylcholinesterase inhibitory effects and nanomolar Ki for 5-HT4R.
Collapse
Affiliation(s)
- Julien Lalut
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Hugo Payan
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Audrey Davis
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Cédric Lecoutey
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Rémi Legay
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | | | | | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France.
| |
Collapse
|
32
|
Panche AN, Chandra S, Diwan AD. Multi-Target β-Protease Inhibitors from Andrographis paniculata: In Silico and In Vitro Studies. PLANTS 2019; 8:plants8070231. [PMID: 31319560 PMCID: PMC6681301 DOI: 10.3390/plants8070231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
Natural products derived from plants play a vital role in the discovery of new drug candidates, and these are used for novel therapeutic drug development. Andrographis paniculata and Spilanthes paniculata are used extensively as medicinal herbs for the treatment of various ailments, and are reported to have neuroprotective properties. β-amyloid is a microscopic brain protein whose significant aggregation is detected in mild cognitive impairment and Alzheimer’s disease (AD) brains. The accumulation of β-amyloid disrupts cell communication and triggers inflammation by activating immune cells, leading to neuronal cell death and cognitive disabilities. The proteases acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta secretase-1 (BACE-1) have been reported to be correlated with the synthesis and growth of β-amyloid plaques in the brains of AD patients. In the present study, the phenolic compounds from A. paniculata and S. paniculata that have been reported in the literature were selected for the current investigation. Furthermore, we employed molecular docking and molecular dynamics studies of the phenolic compounds with the proteins AChE, BChE, and BACE-1 in order to evaluate the binding characteristics and identify potent anti-amyloid agents against the neurodegenerative diseases such as AD. In this investigation, we predicted three compounds from A. paniculata with maximum binding affinities with cholinesterases and BACE-1. The computational investigations predicted that these compounds follow the rule of five. We further evaluated these molecules for in vitro inhibition activity against all the enzymes. In the in vitro investigations, 3,4-di-o-caffeoylquinic acid (5281780), apigenin (5280443), and 7-o-methylwogonin (188316) were found to be strong inhibitors of AChE, BChE, and BACE-1. These findings suggest that these compounds can be potent multi-target inhibitors of the proteases that might cumulatively work and inhibit the initiation and formation of β-amyloid plaques, which is a prime cause of neurotoxicity and dementia. According to our knowledge, these findings are the first report on natural compounds isolated from A. paniculata as multi-target potent inhibitors and anti-amyloid agents.
Collapse
Affiliation(s)
- Archana N Panche
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
- MGM's Institute of Biosciences & Technology, Mahatma Gandhi Mission, N-6, CIDCO, Aurangabad 431003, India
| | - Sheela Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - A D Diwan
- MGM's Institute of Biosciences & Technology, Mahatma Gandhi Mission, N-6, CIDCO, Aurangabad 431003, India
| |
Collapse
|
33
|
Tehrani MB, Rezaei Z, Asadi M, Behnammanesh H, Nadri H, Afsharirad F, Moradi A, Larijani B, Mohammadi-Khanaposhtani M, Mahdavi M. Design, Synthesis, and Cholinesterase Inhibition Assay of Coumarin-3-carboxamide-N-morpholine Hybrids as New Anti-Alzheimer Agents. Chem Biodivers 2019; 16:e1900144. [PMID: 31155827 DOI: 10.1002/cbdv.201900144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
A new series of coumarin-3-carboxamide-N-morpholine hybrids 5a-5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2-hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin-3-carboxylic acids. Then, amidation of the latter compounds with 2-morpholinoethylamine or N-(3-aminopropyl)morpholine led to the formation of the compounds 5a-5l. The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N-[3-(morpholin-4-yl)propyl]-2-oxo-2H-chromene-3-carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6-bromo-N-[2-(morpholin-4-yl)ethyl]-2-oxo-2H-chromene-3-carboxamide) bearing a 6-bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti-BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.
Collapse
Affiliation(s)
- Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Hossein Behnammanesh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160, Iran
| | - Fatemeh Afsharirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 4717647745, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| |
Collapse
|
34
|
Wei M, Liu Y, Pi Z, Yue K, Li S, Hu M, Liu Z, Song F, Liu Z. Investigation of plasma metabolomics and neurotransmitter dysfunction in the process of Alzheimer's disease rat induced by amyloid beta 25-35. RSC Adv 2019; 9:18308-18319. [PMID: 35515227 PMCID: PMC9064735 DOI: 10.1039/c9ra00302a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/15/2021] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) has become one of the major diseases endangering the health of the elderly. Clarifying the features of each AD animal model is valuable for understanding the onset and progression of diseases and developing potential treatments in the pharmaceutical industry. In this study, we aimed to clarify plasma metabolomics and neurotransmitter dysfunction in the process of AD model rat induced by amyloid beta 25-35 (Aβ 25-35). Firstly, Morris Water Maze (MWM) test was used to investigate cognitive impairment in AD rat after 2, 4 and 8 weeks of modelling. Based on this, the effects on levels of AD-related enzymes and eight neurotransmitters were analyzed. And plasma metabolomics analysis based on ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was used to research the metabolic disturbances in the process of AD rat. The results shown the injury on the spatial learning ability of AD rats was gradually aggravated within 4 weeks, reached the maximum at 4 weeks and then was stable until 8 weeks. During 8 weeks of modeling, the levels of enzymes including β-secretase, γ-secretase, glycogen synthase kinase-3β (GSK-3β), acetyl cholinesterase (AchE) and nitric oxide synthase (NOS) were significant increased in the plasma of AD rats. The neurotransmitter dysfunction was mainly involved in γ-aminobutyric acid (GABA), acetyl choline (Ach), glutamic acid (Glu), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE). 17 endogenous metabolites correlated with AD were successfully detected in the metabolomics analysis. These metabolites were mainly involved in fatty acids, sphingolipids, and sterols metabolisms, vitamin metabolism, and amino acid metabolism. These metabolites might be the potential biomarkers that correctly mark different stages of AD. The study on peripheral plasma indices reflecting the process of AD laid the foundation for understand the pathophysiology of AD and find an effective and radical cure. And the rules of endogenous metabolic disorder in AD rats also have a certain guiding significance for the future study of food-drug interactions at different stages of AD.
Collapse
Affiliation(s)
- Mengying Wei
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yuanyuan Liu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Kexin Yue
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Shizhe Li
- Guangdong Univ Technol, Inst Biomed & Pharmaceut Sci Guangzhou 510006 Guangdong People's Republic of China
| | - Mingxin Hu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| |
Collapse
|
35
|
Li DD, Zhang YH, Zhang W, Zhao P. Meta-Analysis of Randomized Controlled Trials on the Efficacy and Safety of Donepezil, Galantamine, Rivastigmine, and Memantine for the Treatment of Alzheimer's Disease. Front Neurosci 2019; 13:472. [PMID: 31156366 PMCID: PMC6529534 DOI: 10.3389/fnins.2019.00472] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/26/2019] [Indexed: 01/02/2023] Open
Abstract
To study the impact of donepezil, rivastigmine, galantamine, and memantine on cognitive, functional, behavioral, global changes and adverse effects in patients with mild, moderate and severe Alzheimer’s disease (AD), we screened the literature published before September 2017 in the Pubmed, Embase, Cochrane library and Web of Science Electronic databases according to the inclusion criteria. Thirty-six studies were finally determined from 1560 preliminary screened articles. The AD Assessment Scale-cognitive Subscale (ADAS-cog), AD Cooperative Study-Activities of Daily Living (ADCS-ADL), Neuropsychiatric Inventory (NPI), and Clinician’s Interview-Based Impression of Change Plus Caregiver Input scale (CIBIC+) were used as valid endpoints. Of the 36 trials included, meta-analyses of these placebo-control trials showed that there were significant differences between the donepezil, rivastigmine and placebo groups using ADAS-cog, ADCS-ADL, and CIBIC+. Meta-analyses of these placebo-controlled trials showed that there were significant differences between the galantamine and placebo groups using ADAS-cog, ADCS-ADL, NPI, and CIBIC+. These observations suggest that memantine is beneficial for stabilizing or slowing the decline in ADAS-cog and ADCS-ADL19 changes in AD patients. However, there was no significant effect according to the ADCS-ADL23, NPI, and CIBIC+ tests, which indicated that memantine treatment has no significant effect on these cognitive aspects of AD patients. Different effects of donepezil, rivastigmine, galantamine, or memantine on AD were found in this study. According to the results, we conclude that galantamine is effective in treating all aspects of AD and is the first choice for the treatment of AD. However, due to limited data, we should consider additional data to obtain more stable results.
Collapse
Affiliation(s)
- Dan-Dan Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ya-Hong Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
36
|
Molochkina EM, Treshchenkova YA. The Effect of Alpha-Tocopherol on the Activity of Acetylcholinesterases from Different Sources. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Ghafary S, Najafi Z, Mohammadi-Khanaposhtani M, Nadri H, Edraki N, Ayashi N, Larijani B, Amini M, Mahdavi M. Novel cinnamic acid-tryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study. Arch Pharm (Weinheim) 2018; 351:e1800115. [PMID: 30284339 DOI: 10.1002/ardp.201800115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 11/11/2022]
Abstract
A novel series of cinnamic acid-tryptamine hybrids was designed, synthesized, and evaluated as cholinesterase inhibitors. Anticholinesterase assays showed that all of the synthesized compounds displayed a clearly selective inhibition of butyrylcholinesterase (BChE), but only a moderate inhibitory effect toward acetylcholinesterase (AChE) was detected. Among these cinnamic acid-tryptamine hybrids, compound 7d was found to be the most potent inhibitor of BChE with an IC50 value of 0.55 ± 0.04 μM. This compound showed a 14-fold higher inhibitory potency than the standard drug donepezil (IC50 = 7.79 ± 0.81 μM) and inhibited BChE through a mixed-type inhibition mode. Moreover, a docking study revealed that compound 7d binds to both the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of BChE. Also, compound 7d was evaluated against β-secretase, which exhibited low activity (inhibition percentage: 38%).
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Nadri
- Faculty of Pharmacy, Department of Medicinal Chemistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Ayashi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Brai E, Simon F, Cogoni A, Greenfield SA. Modulatory Effects of a Novel Cyclized Peptide in Reducing the Expression of Markers Linked to Alzheimer's Disease. Front Neurosci 2018; 12:362. [PMID: 29950969 PMCID: PMC6008575 DOI: 10.3389/fnins.2018.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Despite many studies attempt to identify the primary mechanisms underlying neurodegeneration in Alzheimer's disease (AD), the key events still remain elusive. We have previously shown that a peptide cleaved from the acetylcholinesterase (AChE) C-terminus (T14) can play a pivotal role as a signaling molecule in neurodegeneration, via its interaction with the α7 nicotinic acetylcholine receptor. The main goal of this study is to determine whether a cyclized variant (NBP14) of the toxic AChE-derived peptide can antagonize the effects of its linear counterpart, T14, in modulating well-known markers linked to neurodegeneration. We investigate this hypothesis applying NBP14 on ex-vivo rat brain slices containing the basal forebrain. Western blot analysis revealed an inhibitory action of NBP14 on naturally occurring T14 peptide, as well as on endogenous amyloid beta, whereas the expression of the nicotinic receptor and phosphorylated Tau was relatively unaffected. These results further confirm the neurotoxic properties of the AChE-peptide and show for the first time in an ex-vivo preparation the possible neuroprotective activity of NBP14, over a protracted period of hours, indicating that T14 pathway may offer a new prospect for therapeutic intervention in AD pathobiology.
Collapse
Affiliation(s)
- Emanuele Brai
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom
| | - Florian Simon
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom.,Department of Biotechnology, University of Nîmes, Nîmes, France
| | - Antonella Cogoni
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom
| | | |
Collapse
|
39
|
Discovery of novel dual acetylcholinesterase inhibitors with antifibrillogenic activity related to Alzheimer's disease. Future Med Chem 2018; 10:1037-1053. [PMID: 29676170 DOI: 10.4155/fmc-2017-0201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM Alzheimer's disease is a progressive and neurodegenerative disorder of the CNS, affecting elderly people. The current pharmacological approach is based on the improvement of cholinergic neurotransmission by inhibiting acetylcholinesterase (AChE) with AChE inhibitors. The disease is also characterized by the accelerated accumulation of β-amyloid plaques around neurons. Furthermore, in vitro studies revealed that AChE can induce β-amyloid peptide (Aβ) aggregation. METHODOLOGY Computer-aided molecular design by virtual screening was here employed to discover novel potential AChE inhibitors, with antifibrillogenic properties, in other words, inhibiting Aβ aggregation. RESULTS Compounds 1, 4 and 6 showed interesting AChE inhibition. In addition, they particularly inhibit Aβ aggregation in vitro, indicating to be promising novel anti-Alzheimer agents.
Collapse
|
40
|
Hepnarova V, Korabecny J, Matouskova L, Jost P, Muckova L, Hrabinova M, Vykoukalova N, Kerhartova M, Kucera T, Dolezal R, Nepovimova E, Spilovska K, Mezeiova E, Pham NL, Jun D, Staud F, Kaping D, Kuca K, Soukup O. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer's disease. Eur J Med Chem 2018. [PMID: 29533874 DOI: 10.1016/j.ejmech.2018.02.083] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Novel tacrine-benzyl quinolone carboxylic acid (tacrine-BQCA) hybrids were designed based on multi-target directed ligands (MTLDs) paradigm, synthesized and evaluated in vitro as inhibitors of human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE). Tacrine moiety is represented herein as 7-methoxytacrine, 6-chlorotacrine or unsubstituted tacrine forming three different families of seven members, i.e. 21 compounds in overall. Introducing BQCA, a positive modulator of M1 muscarinic acetylcholine receptors (mAChRs), the action of novel compounds on M1 mAChRs was evaluated via Fluo-4 NW assay on the Chinese hamster ovarian (CHO-M1WT2) cell line. All the novel tacrine-BQCA hybrids were able to block the action of hAChE and hBChE in micromolar to nanomolar range. The hAChE kinetic profile of 5p was found to be mixed-type which is consistent with our docking experiments. Moreover, selected ligands were assessed for their potential hepatotoxicity on HepG2 cell line and presumable permeation through the blood-brain barrier by PAMPA assay. Expected agonistic profile towards M1 mAChRs delivered by BQCA moiety was not confirmed. From all the hybrids, 5o can be highlighted as non-selective cholinesterase inhibitor (hAChE IC50 = 74.5 nM; hBChE IC50 = 83.3 nM) with micromolar antagonistic activity towards M1 mAChR (IC50 = 4.23 μM). A non-selective pattern of cholinesterase inhibition is likely to be valuable during the onset as well as later stages of AD.
Collapse
Affiliation(s)
- V Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - J Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - L Matouskova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - P Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - L Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - M Hrabinova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - N Vykoukalova
- Department of Pharmacology and Toxicology, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - M Kerhartova
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - T Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - R Dolezal
- Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - E Nepovimova
- Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - K Spilovska
- Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - E Mezeiova
- Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - N L Pham
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - D Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - F Staud
- Department of Pharmacology and Toxicology, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - D Kaping
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - K Kuca
- Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - O Soukup
- Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
41
|
Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2547532. [PMID: 29581965 PMCID: PMC5822892 DOI: 10.1155/2018/2547532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 11/17/2022]
Abstract
The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU) treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d) in Sprague-Dawley (SD) rats were implemented. Cognitive function was assessed using the Morris water maze (MWM) and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE) activity, malondialdehyde (MDA) level in brain, reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d) to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions.
Collapse
|
42
|
Chen Y, Zhu J, Mo J, Yang H, Jiang X, Lin H, Gu K, Pei Y, Wu L, Tan R, Hou J, Chen J, Lv Y, Bian Y, Sun H. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer's disease. J Enzyme Inhib Med Chem 2018; 33:290-302. [PMID: 29278947 PMCID: PMC7011792 DOI: 10.1080/14756366.2017.1412314] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer's disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure-activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC50 = 10.2 ± 1.2, 16.5 ± 1.7, and 15.3 ± 1.8 nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.
Collapse
Affiliation(s)
- Yao Chen
- a School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,b Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , China.,c State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Jie Zhu
- d Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jun Mo
- d Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Hongyu Yang
- d Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- e Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , China
| | - Hongzhi Lin
- d Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Kai Gu
- d Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Yuqiong Pei
- a School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Liang Wu
- a School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Renxiang Tan
- e Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , China
| | - Jing Hou
- c State Key Laboratory Cultivation Base for TCM Quality and Efficacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Jingyi Chen
- f School of Nursing , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yang Lv
- a School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yaoyao Bian
- f School of Nursing , Nanjing University of Chinese Medicine , Nanjing , China
| | - Haopeng Sun
- d Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
43
|
Acetylcholinesterase inhibition by products generated in situ from the transformation of N-arylisomaleimides. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2122-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Stephenson DJ, Hoeferlin LA, Chalfant CE. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res 2017; 189:13-29. [PMID: 28668521 PMCID: PMC5659874 DOI: 10.1016/j.trsl.2017.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
Lipidomics is a rapidly developing field of study that focuses on the identification and quantitation of various lipid species in the lipidome. Lipidomics has now emerged in the forefront of scientific research due to the importance of lipids in metabolism, cancer, and disease. Using both targeted and untargeted mass spectrometry as a tool for analysis, progress in the field has rapidly progressed in the last decade. Having the ability to assess these small molecules in vivo has led to better understanding of several lipid-driven mechanisms and the identification of lipid-based biomarkers in neurodegenerative disease, cancer, sepsis, wound healing, and pre-eclampsia. Biomarker identification and mechanistic understanding of specific lipid pathways linked to a disease's pathologies can form the foundation in the development of novel therapeutics in hopes of curing human disease.
Collapse
Affiliation(s)
- Daniel J Stephenson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, Va
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, Va
| | - Charles E Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, Va; Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Va; VCU Massey Cancer Center, Cancer Cell Signaling Program, Virginia Commonwealth University, Richmond, Va; VCU Institute of Molecular Medicine, Richmond, Va; VCU Johnson Center for Critical Care and Pulmonary Research, Richmond, Va.
| |
Collapse
|
45
|
Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017; 22:molecules22060864. [PMID: 28538692 PMCID: PMC6152669 DOI: 10.3390/molecules22060864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer’s is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer’s pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases’ biological processes and, if known, their role in Alzheimer’s. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Collapse
|
46
|
Chen Y, Lin H, Yang H, Tan R, Bian Y, Fu T, Li W, Wu L, Pei Y, Sun H. Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Adv 2017. [DOI: 10.1039/c6ra25887e] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Small molecule cholinesterase (ChE) inhibitors represent one of the most effective therapeutic strategies for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yao Chen
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Hongzhi Lin
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Hongyu Yang
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Renxiang Tan
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Yaoyao Bian
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tingming Fu
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Liang Wu
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Yuqiong Pei
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Haopeng Sun
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
47
|
Chen Y, Lin H, Zhu J, Gu K, Li Q, He S, Lu X, Tan R, Pei Y, Wu L, Bian Y, Sun H. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer's disease. RSC Adv 2017. [DOI: 10.1039/c7ra04385f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of tacrine–cinnamic acid hybrids are synthesized as multi-target cholinesterase inhibitors against Alzheimer's disease.
Collapse
|
48
|
Armijos C, Gilardoni G, Amay L, Lozano A, Bracco F, Ramirez J, Bec N, Larroque C, Finzi PV, Vidari G. Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:546-554. [PMID: 27686269 DOI: 10.1016/j.jep.2016.09.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 05/04/2023]
Abstract
ETHNOBOTANICAL AND ETHNOMEDICINAL RELEVANCE This study concerns seven Huperzia species (Lycopodiaceae), namely H. brevifolia, H. columnaris, H. compacta, H. crassa, H. espinosana, H. tetragona, H. weberbaueri, which are considered sacred plants by the Saraguro community, living in the Southern Andes of Ecuador; these plants are widely used in traditional medicine and ritual ceremonies. MATERIAL AND METHODS The plants were selected on the basis of written interviews with 10 visionary healers (yachak) (2 women, 8 men), indicated as the most credible by the Saraguro Healers Council. The Informant Consensus Factor (Fic) was determined. The first phytochemical study of the plants was performed by standard procedures, while the AChE and MAO-A inhibition by fractions enriched in high MW alkaloids, was measured in vitro. AIMS OF THE STUDY i) to investigate the uses of some Huperzia plants in healing and magical-religious practices of Saraguros; ii) to identify the main components of plant hydromethanolic extracts; iiì) to test the effects of alkaloidal fractions on the activity of two enzymes linked to mental health. RESULTS All the interviewed Saraguro yachak showed a high consensus about the uses of the seven Huperzia plants as purgatives and against supernatural diseases, such as the "espanto" (startle). In admixtures with other plants, some species also induce a state of trance or hallucinations in participants in magical-religious rituals. GC-MS of the volatile alkaloid fractions allowed the identification of some lycodine-type and lycopodine-type alkaloids (1-5) in H. compacta, H. columnaris, and H. tetragona. The flavones selgin) (6) and tricin (7) were isolated from H. brevifolia and H. espinosana. Tricin (7) was also detected in the other five species. The rare serratene triterpenes serratenediol (8) serratenediol-3-O-acetate (9), 21-episerratenediol (10), and 21-episerratenediol-3-O-acetate (11) were isolated from H. crassa. In addition, the presence of an unprecedented group of high molecular weight alkaloids has been determined. Alkaloid fractions of H. brevifolia, H. compacta, H. espinosana, and H. tetragona significantly inhibited AChE and MAO-A activities in vitro. CONCLUSIONS The first phytochemical and ethnopharmacological study of seven Huperzia plants, widely used by Saraguro healers, led to the identification of several alkaloids and triterpenoids with different remarkable biological activities. In addition, alkaloid fractions exhibited a significant AChE and MAO-A inhibitory activity. These results may support the use of these plants in brews prepared for inducing psychoactive effects in participants in magical-religious ceremonies. This study confirms the rich traditional medical knowledge of Saraguro healers which must be documented and preserved for future generations.
Collapse
Affiliation(s)
- Chabaco Armijos
- Universidad Técnica Particular de Loja, Departamento de Química, San Cayetano Alto, s/n. AP, 1101608 Loja, Ecuador.
| | - Gianluca Gilardoni
- Universidad Técnica Particular de Loja, Departamento de Química, San Cayetano Alto, s/n. AP, 1101608 Loja, Ecuador
| | - Luis Amay
- Universidad Técnica Particular de Loja, Departamento de Química, San Cayetano Alto, s/n. AP, 1101608 Loja, Ecuador
| | - Antonio Lozano
- Comunidad de Saraguro, Barrio Illincho, Saraguro, Ecuador
| | - Francesco Bracco
- Dipartimento di Scienze della terra e dell'ambiente, Università degli Studi di Pavia, Viale S. Epifanio 14, 27100 Pavia, Italy
| | - Jorge Ramirez
- Universidad Técnica Particular de Loja, Departamento de Química, San Cayetano Alto, s/n. AP, 1101608 Loja, Ecuador
| | - Nicole Bec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Montpellier F-34298, France; Institut régional du Cancer de Montpellier, Montpellier F-34298, France; Université de Montpellier, Montpellier F-34090, France
| | - Christian Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Montpellier F-34298, France; Institut régional du Cancer de Montpellier, Montpellier F-34298, France; Université de Montpellier, Montpellier F-34090, France
| | - Paola Vita Finzi
- Dipartimento di Chimica e Centro CEMEC, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giovanni Vidari
- Dipartimento di Chimica e Centro CEMEC, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
49
|
Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 2016; 125:1200-1212. [PMID: 27863370 DOI: 10.1016/j.ejmech.2016.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
A new series of tacrine-1,2,3-triazole hybrids were designed, synthesized, and evaluated as potent dual cholinesterase inhibitors. Most of synthesized compounds showed good in vitro inhibitory activities toward both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among them, 7-chloro-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2,3,4-tetrahydroacridin-9-amine (5l) was found to be the most potent anti-AChE derivative (IC50 = 0.521 μM) and N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2,3,4-tetrahydroacridin-9-amine (5j) demonstrated the best anti-BChE activity (IC50 = 0.055 μM). In vivo studies of compound 5l in Morris water maze task confirmed memory improvement in scopolamine-induced impairment. Also, molecular modeling and kinetic studies showed that compounds 5l and 5j bound simultaneously to the peripheral anionic site (PAS) and catalytic sites (CS) of the AChE and BChE.
Collapse
|
50
|
Jiang D, Yang X, Li M, Wang Y, Wang Y. Efficacy and safety of galantamine treatment for patients with Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Neural Transm (Vienna) 2014; 122:1157-66. [DOI: 10.1007/s00702-014-1358-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/20/2014] [Indexed: 11/25/2022]
|