1
|
Qiu S, Jia J, Xu B, Wu N, Cao H, Xie S, Cui J, Ma J, Pan YH, Yuan XB. Development and evaluation of an autism pig model. Lab Anim (NY) 2024; 53:376-386. [PMID: 39533118 PMCID: PMC11599057 DOI: 10.1038/s41684-024-01475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Developing cost-effective and disease-relevant animal models is essential for advancing biomedical research into human disorders. Here we investigate the feasibility of a pig model for autism spectrum disorder (ASD) using embryonic exposure to valproic acid (VPA), an antiepileptic drug known to increase ASD risk. We established experimental paradigms to assess the behavioral characteristics of these pig models. Administration of VPA to Bama miniature pigs (Sus scrofa domestica) during critical embryonic stages resulted in abnormal gait, increased anxiety levels, reduced learning capabilities and altered social patterns, while largely preserving social preference of treated piglets. Notably, we detected significant neuroanatomical changes in cortical regions associated with ASD in the VPA-treated pigs, including cortical malformation, increased neuronal soma size, decreased dendritic complexity and reduced dendritic spine maturation. Transcriptome analysis of the prefrontal cortex of VPA-treated pigs further revealed substantial alterations in the expression of genes linked to ASD, especially genes of the dopamine signaling pathway, highlighting the model's relevance and potential for shedding light on ASD's underlying neuropathological and molecular mechanisms. These findings suggest that pig models could serve as a promising alternative to traditional rodent models and provide a more ethical substitute for the use of primates in translational research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Jingyan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Benlei Xu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Huaqiang Cao
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Shuangyi Xie
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Jialong Cui
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Cavanagh AS, Kuter N, Sollinger BI, Aziz K, Turnbill V, Martin LJ, Northington FJ. Intranasal therapies for neonatal hypoxic-ischemic encephalopathy: Systematic review, synthesis, and implications for global accessibility to care. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615156. [PMID: 39386687 PMCID: PMC11463427 DOI: 10.1101/2024.09.26.615156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of neurodevelopmental morbidity in term infants worldwide. Incidence of HIE is highest in low and middle-income communities with minimal access to neonatal intensive care and an underdeveloped infrastructure for advanced neurologic interventions. Moreover, therapeutic hypothermia, standard of care for HIE in high resourced settings, is shown to be ineffective in low and middle-income communities. With their low cost, ease of administration, and capacity to potently target the central nervous system, intranasal therapies pose a unique opportunity to be a more globally accessible treatment for neonatal HIE. Intranasal experimental therapeutics have been studied in both rodent and piglet models, but no intranasal therapeutics for neonatal HIE have undergone human clinical trials. Additional research must be done to expand the array of treatments available for use as intranasal therapies for neonatal HIE thus improving the neurologic outcomes of infants worldwide.
Collapse
|
3
|
Pieszka M, Szczepanik K, Łoniewski I. Utilizing pigs as a model for studying intestinal barrier function. ANNALS OF ANIMAL SCIENCE 2024. [DOI: 10.2478/aoas-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Intestinal permeability has been extensively studied, particularly in gastrointestinal diseases such as inflammatory bowel disease, food allergy, visceral disease, celiac disease, and Crohn’s disease. These studies have established that changes in intestinal permeability contribute to the pathogenesis of many gastrointestinal and systemic diseases. While numerous works in the 20th century focused on this topic, it remains relevant for several reasons. Despite the development of new research techniques, it is still unclear whether changes in intestinal permeability are the primary mechanism initiating the disease process or if they occur secondary to an ongoing chronic inflammatory process. Investigating the possibility of stabilizing the intestinal barrier, thereby reducing its permeability preemptively to prevent damage and after the damage has occurred, may offer new therapeutic approaches. Increased intestinal permeability is believed to lead to reduced nutrient absorption, resulting in decreased immunity and production of digestive enzymes.
Collapse
Affiliation(s)
- Marek Pieszka
- Department of Animal Nutrition and Feed Sciences , National Research Institute of Animal Production , Balice , Poland
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Sciences , National Research Institute of Animal Production , Balice , Poland
| | - Igor Łoniewski
- Sanprobi sp. z o.o. sp. k ., Kurza Stopka 5/C , Szczecin , Poland
- Department of Biochemical Science , Pomeranian Medical University in Szczecin , Szczecin , Poland
| |
Collapse
|
4
|
Liu X, Gutierrez AG, Vega A, Willms JO, Driskill J, Panthagani P, Sanchez J, Aguilera M, Backus B, Bailoo JD, Bergeson SE. The horizontal ladder test (HLT) protocol: a novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus. Front Behav Neurosci 2024; 18:1357363. [PMID: 38510830 PMCID: PMC10951394 DOI: 10.3389/fnbeh.2024.1357363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. To address this knowledge gap, an apparatus modeled after a horizontally placed ladder and where the height of the rungs could be adjusted was developed. The protocol that was employed within the apparatus mimicked the walk and turn test of the human standardized field sobriety test. Here, five Sinclair miniature pigs were trained to cross the horizontally placed ladder, starting at a rung height of six inches and decreasing to three inches in one-inch increments. It was demonstrated that pigs can reliably learn to cross the ladder, with few errors, under baseline/unimpaired conditions. These animals were then involved in a voluntary consumption of ethanol study where animals were longitudinally evaluated for motor coordination changes at baseline, 2.5, 5, 7.5, and 10% ethanol concentrations subsequently to consuming ethanol. Consistent with our predictions, relative to baseline performance, motor incoordination increased as voluntary consumption of escalating concentrations of ethanol increased. Together these data highlight that the horizontal ladder test (HLT) test protocol is a novel, optimized and reliable test for evaluating motor coordination as well as changes in motor coordination in pigs.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ana G. Gutierrez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Arlette Vega
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Joshua O. Willms
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jackson Driskill
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jordan Sanchez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Aguilera
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brittany Backus
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, United States
| | - Jeremy D. Bailoo
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
5
|
Liu X, Gutierrez AG, Vega A, Willms JO, Driskill J, Panthagani P, Sanchez J, Aguilera M, Backus B, Bailoo JD, Bergeson SE. The Horizontal Ladder Test (HLT) protocol: A novel, optimized, and reliable means of assessing motor coordination in Sus scrofa domesticus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571517. [PMID: 38168162 PMCID: PMC10760169 DOI: 10.1101/2023.12.13.571517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pigs can be an important model for preclinical biological research, including neurological diseases such as Alcohol Use Disorder. Such research often involves longitudinal assessment of changes in motor coordination as the disease or disorder progresses. Current motor coordination tests in pigs are derived from behavioral assessments in rodents and lack critical aspects of face and construct validity. While such tests may permit for the comparison of experimental results to rodents, a lack of validation studies of such tests in the pig itself may preclude the drawing of meaningful conclusions. Here, we present a novel, optimized, and reliable horizontal ladder test (HLT) test protocol for evaluating motor coordination in pigs and an initial validation of its construct validity using voluntary alcohol consumption as an experimental manipulation.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Ana G Gutierrez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Arlette Vega
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Joshua O Willms
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jackson Driskill
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jordan Sanchez
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Monica Aguilera
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Brittany Backus
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX, 79430, USA
| | - Jeremy D Bailoo
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Susan E Bergeson
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| |
Collapse
|
6
|
Fan Y, McMath AL, Donovan SM. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients 2023; 15:3743. [PMID: 37686775 PMCID: PMC10490528 DOI: 10.3390/nu15173743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Milk Oligosaccharides (MOS), a group of complex carbohydrates found in human and bovine milk, have emerged as potential modulators of optimal brain development for early life. This review provides a comprehensive investigation of the impact of milk oligosaccharides on brain and neurocognitive development of early life by synthesizing current literature from preclinical models and human observational studies. The literature search was conducted in the PubMed search engine, and the inclusion eligibility was evaluated by three reviewers. Overall, we identified 26 articles for analysis. While the literature supports the crucial roles of fucosylated and sialylated milk oligosaccharides in learning, memory, executive functioning, and brain structural development, limitations were identified. In preclinical models, the supplementation of only the most abundant MOS might overlook the complexity of naturally occurring MOS compositions. Similarly, accurately quantifying MOS intake in human studies is challenging due to potential confounding effects such as formula feeding. Mechanistically, MOS is thought to impact neurodevelopment through modulation of the microbiota and enhancement of neuronal signaling. However, further advancement in our understanding necessitates clinical randomized-controlled trials to elucidate the specific mechanisms and long-term implications of milk oligosaccharides exposure. Understanding the interplay between milk oligosaccharides and cognition may contribute to early nutrition strategies for optimal cognitive outcomes in children.
Collapse
Affiliation(s)
- Yuting Fan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| |
Collapse
|
7
|
Netzley AH, Pelled G. The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research. Biomedicines 2023; 11:2165. [PMID: 37626662 PMCID: PMC10452425 DOI: 10.3390/biomedicines11082165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the pig has attracted considerable attention as an important intermediary model animal in translational biobehavioral research due to major similarities between pig and human neuroanatomy, physiology, and behavior. As a result, there is growing interest in using pigs to model many human neurological conditions and injuries. Pigs are highly intelligent and are capable of performing a wide range of behaviors, which can provide valuable insight into the effects of various neurological disease states. One area in which the pig has emerged as a particularly relevant model species is in the realm of neurotrauma research. Indeed, the number of investigators developing injury models and assessing treatment options in pigs is ever-expanding. In this review, we examine the use of pigs for cognitive and behavioral research as well as some commonly used physiological assessment methods. We also discuss the current usage of pigs as a model for the study of traumatic brain injury. We conclude that the pig is a valuable animal species for studying cognition and the physiological effect of disease, and it has the potential to contribute to the development of new treatments and therapies for human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Alesa H. Netzley
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Galit Pelled
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Choudhury R, Gu Y, Bolhuis JE, Kleerebezem M. Early feeding leads to molecular maturation of the gut mucosal immune system in suckling piglets. Front Immunol 2023; 14:1208891. [PMID: 37304274 PMCID: PMC10248722 DOI: 10.3389/fimmu.2023.1208891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diet-microbiota-host interactions are increasingly studied to comprehend their implications in host metabolism and overall health. Keeping in mind the importance of early life programming in shaping intestinal mucosal development, the pre-weaning period can be utilised to understand these interactions in suckling piglets. The objective of this study was to investigate the consequences of early life feeding on the time-resolved mucosal transcriptional program as well as mucosal morphology. Methods A customised fibrous feed was provided to piglets (early-fed or EF group; 7 litters) from five days of age until weaning (29 days of age) in addition to sow's milk, whereas control piglets (CON; 6 litters) suckled mother's milk only. Rectal swabs, intestinal content, and mucosal tissues (jejunum, colon) were obtained pre- and post-weaning for microbiota analysis (16S amplicon sequencing) and host transcriptome analysis (RNA sequencing). Results Early feeding accelerated both microbiota colonisation as well as host transcriptome, towards a more "mature state", with a more pronounced response in colon compared to jejunum. Early feeding elicited the largest impact on the colon transcriptome just before weaning (compared to post-weaning time-points), exemplified by the modulation of genes involved in cholesterol and energy metabolism and immune response. The transcriptional impact of early feeding persisted during the first days post-weaning and was highlighted by a stronger mucosal response to the weaning stress, via pronounced activation of barrier repair reactions, which is a combination of immune activation, epithelial migration and "wound-repair" like processes, compared to the CON piglets. Discussion Our study demonstrates the potential of early life nutrition in neonatal piglets as a means to support their intestinal development during the suckling period, and to improve adaptation during the weaning transition.
Collapse
Affiliation(s)
- Raka Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuner Gu
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Jeon JH, Kaiser EE, Waters ES, Yang X, Lourenco JM, Fagan MM, Scheulin KM, Sneed SE, Shin SK, Kinder HA, Kumar A, Platt SR, Ahn J, Duberstein KJ, Rothrock MJ, Callaway TR, Xie J, West FD, Park HJ. Tanshinone IIA-loaded nanoparticles and neural stem cell combination therapy improves gut homeostasis and recovery in a pig ischemic stroke model. Sci Rep 2023; 13:2520. [PMID: 36781906 PMCID: PMC9925438 DOI: 10.1038/s41598-023-29282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Impaired gut homeostasis is associated with stroke often presenting with leaky gut syndrome and increased gut, brain, and systemic inflammation that further exacerbates brain damage. We previously reported that intracisternal administration of Tanshinone IIA-loaded nanoparticles (Tan IIA-NPs) and transplantation of induced pluripotent stem cell-derived neural stem cells (iNSCs) led to enhanced neuroprotective and regenerative activity and improved recovery in a pig stroke model. We hypothesized that Tan IIA-NP + iNSC combination therapy-mediated stroke recovery may also have an impact on gut inflammation and integrity in the stroke pigs. Ischemic stroke was induced, and male Yucatan pigs received PBS + PBS (Control, n = 6) or Tan IIA-NP + iNSC (Treatment, n = 6) treatment. The Tan IIA-NP + iNSC treatment reduced expression of jejunal TNF-α, TNF-α receptor1, and phosphorylated IkBα while increasing the expression of jejunal occludin, claudin1, and ZO-1 at 12 weeks post-treatment (PT). Treated pigs had higher fecal short-chain fatty acid (SCFAs) levels than their counterparts throughout the study period, and fecal SCFAs levels were negatively correlated with jejunal inflammation. Interestingly, fecal SCFAs levels were also negatively correlated with brain lesion volume and midline shift at 12 weeks PT. Collectively, the anti-inflammatory and neuroregenerative treatment resulted in increased SCFAs levels, tight junction protein expression, and decreased inflammation in the gut.
Collapse
Affiliation(s)
- Julie H Jeon
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Erin E Kaiser
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Environmental Health Science Department, University of Georgia, Athens, GA, USA
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jeferson M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Madison M Fagan
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Kelly M Scheulin
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Soo K Shin
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Holly A Kinder
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Anil Kumar
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, USA
| | - Jeongyoun Ahn
- Department of Statistics, University of Georgia, Athens, GA, USA
- Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kylee J Duberstein
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | | | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jin Xie
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
10
|
Steinmüller JB, Binda KH, Lillethorup TP, Søgaard B, Orlowski D, Landau AM, Bjarkam CR, Sørensen JCH, Glud AN. Quantitative assessment of motor function in minipig models of neurological disorders using a pressure-sensitive gait mat. J Neurosci Methods 2022; 380:109678. [PMID: 35872152 DOI: 10.1016/j.jneumeth.2022.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Johannes Bech Steinmüller
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Department of Neurosurgery, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark.
| | - Karina Henrique Binda
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Bjarke Søgaard
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Dariusz Orlowski
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Carsten Reidies Bjarkam
- Department of Neurosurgery, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Jens Christian Hedemann Sørensen
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Andreas Nørgaard Glud
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| |
Collapse
|
11
|
Baratta AM, Brandner AJ, Plasil SL, Rice RC, Farris SP. Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Front Mol Neurosci 2022; 15:905328. [PMID: 35813067 PMCID: PMC9259865 DOI: 10.3389/fnmol.2022.905328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.
Collapse
Affiliation(s)
- Annalisa M. Baratta
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam J. Brandner
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel C. Rice
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sean P. Farris
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Cai Z, Christensen OF, Lund MS, Ostersen T, Sahana G. Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans. BMC Genomics 2022; 23:133. [PMID: 35168569 PMCID: PMC8845347 DOI: 10.1186/s12864-022-08373-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Imputation from genotyping array to whole-genome sequence variants using resequencing of representative reference populations enhances our ability to map genetic factors affecting complex phenotypes in livestock species. The accumulation of knowledge about gene function in human and laboratory animals can provide substantial advantage for genomic research in livestock species. Results In this study, 201,388 pigs from three commercial Danish breeds genotyped with low to medium (8.5k to 70k) SNP arrays were imputed to whole genome sequence variants using a two-step approach. Both imputation steps achieved high accuracies, and in total this yielded 26,447,434 markers on 18 autosomes. The average estimated imputation accuracy of markers with minor allele frequency ≥ 0.05 was 0.94. To overcome the memory consumption of running genome-wide association study (GWAS) for each breed, we performed within-breed subpopulation GWAS then within-breed meta-analysis for average daily weight gain (ADG), followed by a multi-breed meta-analysis of GWAS summary statistics. We identified 15 quantitative trait loci (QTL). Our post-GWAS analysis strategy to prioritize of candidate genes including information like gene ontology, mammalian phenotype database, differential expression gene analysis of high and low feed efficiency pig and human GWAS catalog for height, obesity, and body mass index, we proposed MRAP2, LEPROT, PMAIP1, ENSSSCG00000036234, BMP2, ELFN1, LIG4 and FAM155A as the candidate genes with biological support for ADG in pigs. Conclusion Our post-GWAS analysis strategy helped to identify candidate genes not just by distance to the lead SNP but also by multiple sources of biological evidence. Besides, the identified QTL overlap with genes which are known for their association with human growth-related traits. The GWAS with this large data set showed the power to map the genetic factors associated with ADG in pigs and have added to our understanding of the genetics of growth across mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08373-3.
Collapse
Affiliation(s)
- Zexi Cai
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark.
| | | | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Tage Ostersen
- SEGES Danish Pig Research Centre, Agro Food Park 15, 8200, Aarhus N, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
13
|
Multimodal characterization of Yucatan minipig behavior and physiology through maturation. Sci Rep 2021; 11:22688. [PMID: 34811385 PMCID: PMC8608884 DOI: 10.1038/s41598-021-00782-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
Brain injuries induced by external forces are particularly challenging to model experimentally. In recent decades, the domestic pig has been gaining popularity as a highly relevant animal model to address the pathophysiological mechanisms and the biomechanics associated with head injuries. Understanding cognitive, motor, and sensory aspects of pig behavior throughout development is crucial for evaluating cognitive and motor deficits after injury. We have developed a comprehensive battery of tests to characterize the behavior and physiological function of the Yucatan minipig throughout maturation. Behavioral testing included assessments of learning and memory, executive functions, circadian rhythms, gait analysis, and level of motor activity. We applied traditional behavioral apparatus and analysis methods, as well as state-of-the-art sensor technologies to report on motion and activity, and artificial intelligent approaches to analyze behavior. We studied pigs from 16 weeks old through sexual maturity at 35 weeks old. The results show multidimensional characterization of minipig behavior, and how it develops and changes with age. This animal model may capitulate the biomechanical consideration and phenotype of head injuries in the developing brain and can drive forward the field of understanding pathophysiological mechanisms and developing new therapies to accelerate recovery in children who have suffered head trauma.
Collapse
|
14
|
Afuwape OF, Runge J, Bentil SA, Jiles DC. Comparison of Coil Designs for Transcranial Magnetic Stimulation of a Pig Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1535-1538. [PMID: 34891576 DOI: 10.1109/embc46164.2021.9629707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial Magnetic Stimulation (TMS) is a modulation tool that is non-invasive and used to treat neuropsychiatric disorders. Over the last decade, TMS has been approved by the United States Food and Drug Administration (FDA) for the treatment of Major Depressive Disorders (MDD) and Obsessive-Compulsive Disorder (OCD). TMS is based on Faraday's law of electromagnetic induction, involving the generation of time-varying magnetic fields from electromagnetic coils when intense pulses of current flow through the coils. This transient magnetic field, in turn, induces an electric field within the brain, which results in excitation or inhibition of the brain's neurons. Several coil designs have been proposed for achieving targeted stimulation at great depth within the brain. With the advancement in TMS technology, there is a need for preclinical studies and testing of proposed coil designs. Using animal models to conduct these preclinical studies becomes of utmost importance, especially since a successful animal trial precedes a human clinical trial. In this research, the authors model six different coil designs for an anatomically heterogeneous adult pig model. The magnetic field intensity, H (A/m), and electric field intensity, E (V/m), were calculated and compared for each coil configuration. The maximum induced electric field in the scalp and brain (grey matter) were compared for all the different coil configurations. The electric field distribution as a function of depth within the brain was also compared for the different coil configurations.Clinical Relevance- This study will be beneficial to TMS coil designers and researchers to treat neuropsychiatric disorders and in the preclinical development of TMS coils. Results from studies with pig models are easy to compare with that of humans, and this will help to guide our understanding of the mechanism of TMS.
Collapse
|
15
|
Abdou H, Elansary N, Poliner D, Patel N, Edwards J, Richmond M, Rasmussen T, Ptak T, Scalea TM, Morrison JJ. Development of a computed tomography perfusion protocol to support large animal resuscitation research. J Trauma Acute Care Surg 2021; 91:879-885. [PMID: 33797493 DOI: 10.1097/ta.0000000000003189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adequate cerebral perfusion is crucial for a positive neurological outcome in trauma; however, it is difficult to characterize in the acute setting with noninvasive methods. Intra-arterial computed tomography perfusion may offer a solution. The aim of this study was to develop an intra-arterial computed tomography perfusion protocol for resuscitation research. METHODS The study examined intra-arterial contrast administration for computed tomography perfusion (CTP) acquisition. It consisted of three phases: intra-arterial contrast dose finding, evaluation of reproducibility, and evaluation during hypotension. Blood pressure and laser Doppler flow data were collected. In phase 1, animals underwent CTPs using several intra-arterial contrast injection protocols. In phase 2, animals underwent two CTPs 7 hours apart using the 2.5 mL/s for 3-second protocol. In phase 3, animals underwent CTPs at several pressures following a computer-controlled bleed including euvolemia and at systolic pressures of 60, 40, and 20 mm Hg. Phase 1 CTPs were evaluated for contrast-to-noise ratio. In phase 2, CTPs were compared within each animal and with laser Doppler flow using linear regression. Phase 3 CTPs were graphed against systolic pressure and fitted with a nonlinear fit. RESULTS The protocol using 2.5mL/s for 3 seconds was optimal, demonstrating a contrast-to-noise ratio of 40.1 and a superior arterial input function curve compared with the 1 mL/s bolus. Cerebral blood flow demonstrated high concordance between baseline and end of study CTPs (R2 = 0.82, p < 0.001). Cerebral blood flow also compared moderately well against laser Doppler flow during 8 (R2 = 0.53, p = 0.03); however, laser Doppler flow did not perform well during hypovolemia, and the favorable concordance was not maintained (R2 = 0.45, p = 0.06). Cerebral blood flow was graphed against systolic blood pressure and fitted with a nonlinear fit (R2 = 0.95, p = 0.003). CONCLUSION Computed tomography perfusion using intra-arterial contrast injection may offer a novel alternative to traditional CTP protocols that could prove a useful additional tool in the setting of resuscitation research.
Collapse
Affiliation(s)
- Hossam Abdou
- From the R Adams Cowley Shock Trauma Center (H.A., N.E., D.P., N.P., J.E., M.R., T.P., T.M.S., J.J.M.), University of Maryland Medical System, Baltimore; and Uniformed Services University of the Health Sciences (T.R.), Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pan Z, Yao Y, Yin H, Cai Z, Wang Y, Bai L, Kern C, Halstead M, Chanthavixay G, Trakooljul N, Wimmers K, Sahana G, Su G, Lund MS, Fredholm M, Karlskov-Mortensen P, Ernst CW, Ross P, Tuggle CK, Fang L, Zhou H. Pig genome functional annotation enhances the biological interpretation of complex traits and human disease. Nat Commun 2021; 12:5848. [PMID: 34615879 PMCID: PMC8494738 DOI: 10.1038/s41467-021-26153-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
The functional annotation of livestock genomes is crucial for understanding the molecular mechanisms that underpin complex traits of economic importance, adaptive evolution and comparative genomics. Here, we provide the most comprehensive catalogue to date of regulatory elements in the pig (Sus scrofa) by integrating 223 epigenomic and transcriptomic data sets, representing 14 biologically important tissues. We systematically describe the dynamic epigenetic landscape across tissues by functionally annotating 15 different chromatin states and defining their tissue-specific regulatory activities. We demonstrate that genomic variants associated with complex traits and adaptive evolution in pig are significantly enriched in active promoters and enhancers. Furthermore, we reveal distinct tissue-specific regulatory selection between Asian and European pig domestication processes. Compared with human and mouse epigenomes, we show that porcine regulatory elements are more conserved in DNA sequence, under both rapid and slow evolution, than those under neutral evolution across pig, mouse, and human. Finally, we provide biological insights on tissue-specific regulatory conservation, and by integrating 47 human genome-wide association studies, we demonstrate that, depending on the traits, mouse or pig might be more appropriate biomedical models for different complex traits and diseases.
Collapse
Affiliation(s)
- Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Yuelin Yao
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hongwei Yin
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Zexi Cai
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Lijing Bai
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Klaus Wimmers
- Leibniz-Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Tjele, 8300, Denmark
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederikgsberg C, 1870, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederikgsberg C, 1870, Denmark
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
17
|
Hahn K, Hardimon JR, Caskey D, Jost DA, Roady PJ, Brenna JT, Dilger RN. Safety and Efficacy of Sodium and Potassium Arachidonic Acid Salts in the Young Pig. Nutrients 2021; 13:nu13051482. [PMID: 33925724 PMCID: PMC8145490 DOI: 10.3390/nu13051482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Arachidonic acid (ARA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) are polyunsaturated fatty acids (FA) naturally present in breast milk and added to most North American infant formulas (IF). We investigated the safety and efficacy of novel sodium and potassium salts of arachidonic acid as bioequivalent to support tissue levels of ARA comparable to the parent oil; M. alpina oil (Na-ARA and K-ARA) and including a Na-DHA group. Pigs of both sexes were randomized to one of five dietary treatments (n = 16 per treatment; 8 male and 8 female) from postnatal day 2 to 23. ARA and DHA were included as either triglyceride (TG) or salt. Target dietary ARA/DHA concentrations as percent of total FA by weight were as follows: TT (0.47 TG/0.32 TG), NaT (0.47 Na-salt/0.32 TG), KT (0.47 K-salt/0.32 TG), and Na0 (0.47 Na-salt/0.00), NaNa (0.47 Na-salt/0.32 Na-salt). The primary outcome in this study was bioequivalence of ARA brain accretion. Growth performance; blood and tissue fatty acid levels; liver histology; complete blood cell counts; and serum chemistries were all evaluated. Overall, diets containing test sources of ARA and DHA did not affect growth performance; liver histology; or substantially influence hematological outcomes as compared with TT. The results confirm that the use of Na and K salt forms of ARA yield bioequivalent ARA accretion in the cerebral cortex and retinal tissue compared to TG-ARA. These findings confirm that use of Na-ARA and K-ARA salts in the young pig was safe and nutritionally bioequivalent to TG-ARA for critical neural tissues.
Collapse
Affiliation(s)
- Kaylee Hahn
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | | | - Doug Caskey
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Douglas A. Jost
- Jost Chemical Co, St., Louis, MO 63114, USA; (J.R.H.); (D.C.); (D.A.J.)
| | - Patrick J. Roady
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - J. Thomas Brenna
- Dell Pediatric Research Institute, Department of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, Austin, TX 78723, USA;
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan N. Dilger
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
18
|
Scheulin KM, Jurgielewicz BJ, Spellicy SE, Waters ES, Baker EW, Kinder HA, Simchick GA, Sneed SE, Grimes JA, Zhao Q, Stice SL, West FD. Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci Rep 2021; 11:3814. [PMID: 33589720 PMCID: PMC7884696 DOI: 10.1038/s41598-021-83432-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.
Collapse
Affiliation(s)
- Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | | | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Gregory A Simchick
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Aruna Bio Inc, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
19
|
Shin SK, Kaiser EE, West FD. Alcohol Induced Brain and Liver Damage: Advantages of a Porcine Alcohol Use Disorder Model. Front Physiol 2021; 11:592950. [PMID: 33488396 PMCID: PMC7818780 DOI: 10.3389/fphys.2020.592950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Alcohol is one of the most commonly abused intoxicants with 1 in 6 adults at risk for alcohol use disorder (AUD) in the United States. As such, animal models have been extensively investigated with rodent AUD models being the most widely studied. However, inherent anatomical and physiological differences between rodents and humans pose a number of limitations in studying the complex nature of human AUD. For example, rodents differ from humans in that rodents metabolize alcohol rapidly and do not innately demonstrate voluntary alcohol consumption. Comparatively, pigs exhibit similar patterns observed in human AUD including voluntary alcohol consumption and intoxication behaviors, which are instrumental in establishing a more representative AUD model that could in turn delineate the risk factors involved in the development of this disorder. Pigs and humans also share anatomical similarities in the two major target organs of alcohol- the brain and liver. Pigs possess gyrencephalic brains with comparable cerebral white matter volumes to humans, thus enabling more representative evaluations of susceptibility and neural tissue damage in response to AUD. Furthermore, similarities in the liver result in a comparable rate of alcohol elimination as humans, thus enabling a more accurate extrapolation of dosage and intoxication level to humans. A porcine model of AUD possesses great translational potential that can significantly advance our current understanding of the complex development and continuance of AUD in humans.
Collapse
Affiliation(s)
- Soo K Shin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Wang H, Baker EW, Mandal A, Pidaparti RM, West FD, Kinder HA. Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model. Neural Regen Res 2021; 16:338-344. [PMID: 32859794 PMCID: PMC7896230 DOI: 10.4103/1673-5374.290915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments; however, identification of specific magnetic resonance imaging (MRI) biomarkers that are most reflective of injury severity and functional prognosis remain elusive. Therefore, the objective of this study was to utilize advanced statistical approaches to identify clinically relevant MRI biomarkers and predict functional outcomes using MRI metrics in a translational large animal piglet TBI model. TBI was induced via controlled cortical impact and multiparametric MRI was performed at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. Changes in spatiotemporal gait parameters were also assessed using an automated gait mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to determine the MRI metrics and spatiotemporal gait parameters that explain the largest sources of variation within the datasets. We found that linear combinations of lesion size and midline shift acquired using T2-weighted imaging explained most of the variability of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of velocity, cadence, and stride length were found to explain most of the gait data variability at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine if MRI metrics are predictive of changes in gait. We found that both lesion size and midline shift are significantly correlated with decreases in stride and step length. These results from this study provide an important first step at identifying relevant MRI and functional biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI model. This study was approved by the University of Georgia Institutional Animal Care and Use Committee (AUP: A2015 11-001) on December 22, 2015.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Abhyuday Mandal
- Department of Statistics, University of Georgia, Athens, GA, USA
| | | | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Machado LS, Pieri NCG, Botigelli RC, de Castro RVG, de Souza AF, Bridi A, Lima MA, Fantinato Neto P, Pessôa LVDF, Martins SMMK, De Andrade AFC, Freude KK, Bressan FF. Generation of neural progenitor cells from porcine-induced pluripotent stem cells. J Tissue Eng Regen Med 2020; 14:1880-1891. [PMID: 33049106 DOI: 10.1002/term.3143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
In this study, porcine embryonic fibroblasts (pEFs) were reprogrammed into porcine-induced pluripotent stem cells (piPSCs) using either human or mouse specific sequences for the OCT4, SOX2, c-Myc, and KLF4 transcription factors. In total, three pEFs lines were reprogrammed, cultured for at least 15 passages, and characterized regarding their pluripotency status (alkaline phosphatase expression, embryoid body formation, expression of exogenous and endogenous genes, and immunofluorescence). Two piPSC lines were further differentiated, using chemical inhibitors, into putative neural progenitor-like (NPC-like) cells with subsequent analyses of their morphology and expression of neural markers such as NESTIN and GFAP as well as immunofluorescent labeling of NESTIN, β-TUBULIN III, and VIMENTIN. NPC-like cells were positive for all the neural markers tested. These results evidence of the generation of porcine NPC-like cells after in vitro induction with chemical inhibitors, representing an adequate model for future regenerative and translational medicine research.
Collapse
Affiliation(s)
- Lucas Simões Machado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Science, São Paulo State University, Jaboticabal, Brazil
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Marina Amaro Lima
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - André Furugen Cesar De Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Kristine Karla Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Hahn KE, Dahms I, Butt CM, Salem N, Grimshaw V, Bailey E, Fleming SA, Smith BN, Dilger RN. Impact of Arachidonic and Docosahexaenoic Acid Supplementation on Neural and Immune Development in the Young Pig. Front Nutr 2020; 7:592364. [PMID: 33195377 PMCID: PMC7658628 DOI: 10.3389/fnut.2020.592364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Human milk contains both arachidonic acid (ARA) and docosahexaenoic acid (DHA). Supplementation of infant formula with ARA and DHA results in fatty acid (FA) profiles, neurodevelopmental outcomes, and immune responses in formula-fed infants that are more like those observed in breastfed infants. Consequently, ARA and DHA have been historically added together to infant formula. This study investigated the impact of ARA or DHA supplementation alone or in combination on tissue FA incorporation, immune responses, and neurodevelopment in the young pig. Methods: Male pigs (N = 48 total) received one of four dietary treatments from postnatal day (PND) 2–30. Treatments targeted the following ARA/DHA levels (% of total FA): CON (0.00/0.00), ARA (0.80/0.00), DHA (0.00/0.80), and ARA+DHA (0.80/0.80). Plasma, red blood cells (RBC), and prefrontal cortex (PFC) were collected for FA analysis. Blood was collected for T cell immunophenotyping and to quantify a panel of immune outcomes. Myelin thickness in the corpus callosum was measured by transmission electron microscopy and pig movement was measured by actigraphy. Results: There were no differences in formula intake or growth between dietary groups. DHA supplementation increased brain DHA, but decreased ARA, compared with all other groups. ARA supplementation increased brain ARA compared with all other groups but did not affect brain DHA. Combined supplementation increased brain DHA levels but did not affect brain ARA levels compared with the control. Pigs fed ARA or ARA+DHA exhibited more activity than those fed CON or DHA. Diet-dependent differences in activity suggested pigs fed ARA had the lowest percent time asleep, while those fed DHA had the highest. No differences were observed for immune or myelination outcomes. Conclusion: Supplementation with ARA and DHA did not differentially affect immune responses, but ARA levels in RBC and PFC were reduced when DHA was provided without ARA. Supplementation of either ARA or DHA alone induced differences in time spent asleep, and ARA inclusion increased general activity. Therefore, the current data support the combined supplementation with both ARA and DHA in infant formula and raise questions regarding the safety and nutritional suitability of ARA or DHA supplementation individually.
Collapse
Affiliation(s)
- Kaylee E Hahn
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States
| | - Irina Dahms
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Norman Salem
- DSM Nutritional Products, Columbia, MD, United States
| | | | - Eileen Bailey
- DSM Nutritional Products, Columbia, MD, United States
| | - Stephen A Fleming
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Brooke N Smith
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Division of Nutrition Sciences, University of Illinois, Urbana, IL, United States.,Neuroscience Program, University of Illinois, Urbana, IL, United States
| |
Collapse
|
24
|
Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 2020; 5:141523. [PMID: 33055427 PMCID: PMC7605535 DOI: 10.1172/jci.insight.141523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Collapse
Affiliation(s)
- Erik A. Koppes
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bethany K. Redel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Marie A. Johnson
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen J. Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Megan E. Yates
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dale W. Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn E. Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Angela Leshinski
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee D. Spate
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joshua A. Benne
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Stephanie L. Murphy
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melissa S. Samuel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Eric M. Walters
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin D. Wells
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Uta Lichter-Konecki
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A. Wagner
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph T. Newsome
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Randall S. Prather
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert D. Nicholls
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Ziegler AL, Pridgen TA, Blikslager AT. Environmental stressors affect intestinal permeability and repair responses in a pig intestinal ischemia model. Tissue Barriers 2020; 8:1832421. [PMID: 33100144 PMCID: PMC7714481 DOI: 10.1080/21688370.2020.1832421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pig is a powerful model for intestinal barrier studies, and it is important to carefully plan animal care and handling for optimal study design as psychological and physiological stressors significantly impact intestinal mucosal barrier function. Here, we report the effects of a period of environmental acclimation versus acute transport stress on mucosal barrier repair after intestinal ischemic injury. Jejunal ischemia was induced in young pigs which had been allowed to acclimate to a biomedical research housing environment or had been transported immediately prior to experimental injury (non-acclimated). Mucosa was then incubated ex vivo on Ussing chambers. In uninjured mucosa, there was no difference in transepithelial electrical resistance (TEER) or epithelial integrity between groups. However, acclimated pigs had increased macromolecular flux as compared to non-acclimated pigs during the first hour of ex vivo incubation. Ischemia induced greater epithelial loss in non-acclimated pigs as compared to acclimated pigs, yet this group achieved greater wound healing during recovery. Non-acclimated pigs had more robust TEER recovery ex vivo following injury versus acclimated pigs. The expression pattern of the tight junction protein claudin-4 was disrupted in acclimated pigs following recovery but showed enhanced localization to the apical membrane in non-acclimated pigs following recovery. Acute transport stress increases mucosal susceptibility to epithelial loss but also primes the tissue for a more robust barrier repair response. Alternatively, environmental acclimation increases leak pathway and diminishes barrier repair responses after ischemic injury.
Collapse
Affiliation(s)
- Amanda L. Ziegler
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
| | - Tiffany A. Pridgen
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
| | - Anthony T. Blikslager
- North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
- Contact Amanda L. Ziegler North Carolina State University, College of Veterinary Medicine, Department of Clinical Sciences, Raleigh, NC, USA
| |
Collapse
|
26
|
Melià-Sorolla M, Castaño C, DeGregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation. Int J Mol Sci 2020; 21:ijms21186568. [PMID: 32911769 PMCID: PMC7555414 DOI: 10.3390/ijms21186568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.
Collapse
Affiliation(s)
- Marc Melià-Sorolla
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Carlos Castaño
- Neurointerventional Radiology Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain;
| | - Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Luis Rodríguez-Esparragoza
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Antoni Dávalos
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08916 Bellaterra, Catalonia, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| |
Collapse
|
27
|
Clicker Training Accelerates Learning of Complex Behaviors but Reduces Discriminative Abilities of Yucatan Miniature Pigs. Animals (Basel) 2020; 10:ani10060959. [PMID: 32486472 PMCID: PMC7341331 DOI: 10.3390/ani10060959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Animal training is intended to teach specific behavioral responses to specific requests. Clicker Training (CT) is a method to train animals based on the use of a device that emits a sound to be associated as a marker that predicts the delivery of something wanted (food). It is believed that CT decreases training time compared to other types of training that use different markers, such as voice. Herein, we used two-month-old miniature piglets to assess whether CT decreased the number of repeats required to learn complex behaviors compared to voice-trained animals. Furthermore, we compared the number of correct choices of animals from both groups when tested for the discrimination of objects. The results indicated that CT decreased the number of repetitions required to learn to fetch an object but reduced the animals’ ability to make correct decisions during discriminatory trials compared to voice-trained animals. This suggests that CT is more efficient than voice in teaching complex behaviors but reduces the ability of animals to use the cognitive processes necessary to discriminate and select objects associated with reward. Animal trainers might consider our results to decide which marker is to be implemented based on the aim and purpose of the training. Abstract Animal training is meant to teach specific behavioral responses to specific cues. Clicker training (CT) is a popular training method based on the use of a device that emits a sound of double-click to be associated as a first-order conditioned stimulus in contingency with positive reinforcements. After some repetitions, the clicker sound gains some incentive value and can be paired with the desired behavior. Animal trainers believed that CT can decrease training time compared to other types of training. Herein, we used two-month old miniature piglets to evaluate whether CT decreased the number of repetitions required to learn complex behaviors as compared with animals trained with voice instead of the clicker. In addition, we compared the number of correct choices of animals from both groups when exposed to object discriminative tests. Results indicated that CT decreased the number of repetitions required for pigs to learn to fetch an object but reduced the ability of animals to make correct choices during the discriminate trials. This suggests that CT is more efficient than voice to teach complex behaviors but reduces the ability of animals to use cognitive processes required to discriminate and select objects associated with reward.
Collapse
|
28
|
Ma C, Khederzadeh S, Adeola AC, Han XM, Xie HB, Zhang YP. Whole genome resequencing reveals an association of ABCC4 variants with preaxial polydactyly in pigs. BMC Genomics 2020; 21:268. [PMID: 32228435 PMCID: PMC7106734 DOI: 10.1186/s12864-020-6690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/20/2020] [Indexed: 11/28/2022] Open
Abstract
Background Polydactyly is one of the most common congenital limb dysplasia in many animal species. Although preaxial polydactyly (PPD) has been comprehensively studied in humans as a common abnormality, the genetic variations in other animal species have not been fully understood. Herein, we focused on the pig, as an even-toed ungulate mammal model with its unique advantages in medical and genetic researches, two PPD families consisting of four affected and 20 normal individuals were sequenced. Results Our results showed that the PPD in the sampled pigs were not related to previously reported variants. A strong association was identified at ABCC4 and it encodes a transmembrane protein involved in ciliogenesis. We found that the affected and normal individuals were highly differentiated at ABCC4, and all the PPD individuals shared long haplotype stretches as compared with the unaffected individuals. A highly differentiated missense mutation (I85T) in ABCC4 was observed at a residue from a transmembrane domain highly conserved among a variety of organisms. Conclusions This study reports ABCC4 as a new candidate gene and identifies a missense mutation for PPD in pigs. Our results illustrate a putative role of ciliogenesis process in PPD, coinciding with an earlier observation of ciliogenesis abnormality resulting in pseudo-thumb development in pandas. These results expand our knowledge on the genetic variations underlying PPD in animals.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xu-Man Han
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
29
|
A Porcine Model of Zika Virus Infection to Profile the In Utero Interferon Alpha Response. Methods Mol Biol 2020; 2142:181-195. [PMID: 32367368 DOI: 10.1007/978-1-0716-0581-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pigs are highly relevant to model human in utero Zika virus (ZIKV) infection because both species have similar physiology, genetics, immunity, fetal brain development, and postnatal brain growth. The virus causes persistent in utero infection and replicates in the fetal brain, fetal membranes, and placenta. Subclinical persistent in utero infection in mid-gestation also increases interferon alpha (IFN-α) levels in fetal blood plasma and amniotic fluid. Moreover, we demonstrated altered IFN-α responses in porcine offspring affected with subclinical in utero ZIKV infection. Elevated levels of in utero type I interferons were suggested to play a role in fetal pathology. Thus, the porcine model may provide an understanding of ZIKV-induced immunopathology in fetuses and sequelae in offspring, which is important for the development of targeted interventions. Here, we describe surgery, ultrasound-guided in utero injection, postoperative monitoring, sampling, and cytokine testing protocols.
Collapse
|
30
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Trus I, Udenze D, Cox B, Berube N, Nordquist RE, van der Staay FJ, Huang Y, Kobinger G, Safronetz D, Gerdts V, Karniychuk U. Subclinical in utero Zika virus infection is associated with interferon alpha sequelae and sex-specific molecular brain pathology in asymptomatic porcine offspring. PLoS Pathog 2019; 15:e1008038. [PMID: 31725819 PMCID: PMC6855438 DOI: 10.1371/journal.ppat.1008038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) infection during human pregnancy may lead to severe fetal pathology and debilitating impairments in offspring. However, the majority of infections are subclinical and not associated with evident birth defects. Potentially detrimental life-long health outcomes in asymptomatic offspring evoke high concerns. Thus, animal models addressing sequelae in offspring may provide valuable information. To induce subclinical infection, we inoculated selected porcine fetuses at the mid-stage of development. Inoculation resulted in trans-fetal virus spread and persistent infection in the placenta and fetal membranes for two months. Offspring did not show congenital Zika syndrome (e.g., microcephaly, brain calcifications, congenital clubfoot, arthrogryposis, seizures) or other visible birth defects. However, a month after birth, a portion of offspring exhibited excessive interferon alpha (IFN-α) levels in blood plasma in a regular environment. Most affected offspring also showed dramatic IFN-α shutdown during social stress providing the first evidence for the cumulative impact of prenatal ZIKV exposure and postnatal environmental insult. Other eleven cytokines tested before and after stress were not altered suggesting the specific IFN-α pathology. While brains from offspring did not have histopathology, lesions, and ZIKV, the whole genome expression analysis of the prefrontal cortex revealed profound sex-specific transcriptional changes that most probably was the result of subclinical in utero infection. RNA-seq analysis in the placenta persistently infected with ZIKV provided independent support for the sex-specific pattern of in utero-acquired transcriptional responses. Collectively, our results provide strong evidence that two hallmarks of fetal ZIKV infection, altered type I IFN response and molecular brain pathology can persist after birth in offspring in the absence of congenital Zika syndrome. A number of studies showed that Zika virus (ZIKV) can cause severe abnormalities in fetuses, e.g., brain lesions, and subsequently life-long developmental and cognitive impairment in children. However, the majority of infections in pregnant women are subclinical and are not associated with developmental abnormalities in fetuses and newborns. It is known that disruptions to the in utero environment during fetal development can program increased risks for disease in adulthood. For this reason, children affected in utero even by mild ZIKV infection can appear deceptively healthy at birth but develop immune dysfunction and brain abnormalities during postnatal development. Here, we used the porcine model of subclinical fetal ZIKV infection to determine health sequelae in offspring which did not show apparent signs of the disease. We demonstrated that subclinical fetal infection was associated with abnormal immunological responses in apparently healthy offspring under normal environmental conditions and during social stress. We also showed silent sex-specific brain pathology as represented by altered gene expression. Our study provides new insights into potential outcomes of subclinical in utero ZIKV infection. It also emphasizes that further attempts to better understand silent pathology and develop alleviative interventions in ZIKV-affected offspring should take into account interactions of host factors, like sex, and environmental insults, like social stress.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Daniel Udenze
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Brian Cox
- Department of Physiology, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Rebecca E. Nordquist
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
- Brain Center Rudolf Magnus, Utrecht University, Utrecht, Netherlands
| | - Franz Josef van der Staay
- Behavior and Welfare Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL, Netherlands
| | | | | | - David Safronetz
- Canada National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
32
|
Val-Laillet D. Review: Impact of food, gut-brain signals and metabolic status on brain activity in the pig model: 10 years of nutrition research using in vivo brain imaging. Animal 2019; 13:2699-2713. [PMID: 31354119 DOI: 10.1017/s1751731119001745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to offer a panorama on 10 years of nutrition research using in vivo brain imaging in the pig model. First, we will review some work describing the brain responses to food signals, including basic tastants such as sweet and bitter at both oral and visceral levels, as well as conditioned preferred and aversive flavours. Second, we will have a look at the impact of weight gain and obesity on brain metabolism and functional responses, drawing the parallel with obese human patients. Third, we will evoke the concept of the developmental origins of health and diseases, and how the pig model can shed light on the importance of maternal nutrition during gestation and lactation for the development of the gut-brain axis and adaptation abilities of the progeny to nutritional environments. Finally, three examples of preventive or therapeutic strategies will be introduced: the use of sensory food ingredients or pre-, pro-, and postbiotics to improve metabolic and cognitive functions; the implementation of chronic vagus nerve stimulation to prevent weight gain and glucose metabolism alterations; and the development of bariatric surgery in the pig model for the understanding of its complex mechanisms at the gut-brain level. A critical conclusion will brush the limitations of neurocognitive studies in the pig model and put in perspective the rationale and ethical concerns underlying the use of pig experimentation in nutrition and neurosciences.
Collapse
Affiliation(s)
- D Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
33
|
Choudhury R, Middelkoop A, Bolhuis JE, Kleerebezem M. Legitimate and Reliable Determination of the Age-Related Intestinal Microbiome in Young Piglets; Rectal Swabs and Fecal Samples Provide Comparable Insights. Front Microbiol 2019; 10:1886. [PMID: 31474964 PMCID: PMC6702655 DOI: 10.3389/fmicb.2019.01886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
A prerequisite for reliable microbiota analysis is having an effective and consistent sampling method. Fecal sampling, commonly used to study the intestinal microbiome, might not be suitable in all situations, especially considering the potential difficulties in obtaining fresh feces from young animals. Indeed, this study shows that the success rate of collecting fecal samples from young piglets (<2 weeks of age) was very low. Therefore, we evaluated rectal swabs as an alternative sample type (to feces) for studying porcine microbiome development and performed a comparative analysis of microbiome composition obtained from fresh fecal samples and rectal swabs in 15 healthy piglets at seven (6 piglets) and 20 (9 piglets) days of age. Three samples (fresh feces, rectal swab before and after defecation) were collected from individual piglets and microbiome composition was assessed by 16S rRNA gene sequencing. The results demonstrated that rectal swabs and fecal samples provide similar microbiome composition profiles, with samples clustering predominantly by individual animal rather than sample type. Furthermore, regardless of the sample type, the biological interpretation with respect to microbiota colonization patterns associated with different ages (7 and 20 days) was found to be comparable. Independent of sample type, we observed age-related changes like increasing microbiota diversity and alterations in relative abundances of the phyla Firmicutes, Bacteroidetes, and Fusobacteria, which was also reflected in consistent family- and genus-level microbiota changes. This study establishes that rectal swabs are a suitable alternative sample type to study the porcine microbiome development in early life, when fecal sampling is challenging.
Collapse
Affiliation(s)
- R Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - A Middelkoop
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - J E Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - M Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
34
|
Tanti GK, Srivastava R, Kalluri SR, Nowak C, Hemmer B. Isolation, Culture and Functional Characterization of Glia and Endothelial Cells From Adult Pig Brain. Front Cell Neurosci 2019; 13:333. [PMID: 31474831 PMCID: PMC6705213 DOI: 10.3389/fncel.2019.00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023] Open
Abstract
Primary cultures of glial and endothelial cells are important tools for basic and translational neuroscience research. Primary cell cultures are usually generated from rodent brain although considerable differences exist between human and rodent glia and endothelial cells. Because many translational research projects aim to identify mechanisms that eventually lead to diagnostic and therapeutic approaches to target human diseases, glia, and endothelial cultures are needed that better reflect the human central nervous system (CNS). Pig brain is easily accessible and, in many aspects, close to the human brain. We established an easy and cost-effective method to isolate and culture different primary glial and endothelial cells from adult pig brain. Oligodendrocyte, microglia, astrocyte, and endothelial primary cell cultures were generated from the same brain tissue and grown for up to 8 weeks. Primary cells showed lineage-specific morphology and expressed specific markers with a purity ranging from 60 to 95%. Cultured oligodendrocytes myelinated neurons and microglia secreted tumor necrosis factor alpha when induced with lipopolysaccharide. Endothelial cells showed typical tube formation when grown on Matrigel. Astrocytes enhanced survival of co-cultured neurons and were killed by Aquaporin-4 antibody positive sera from patients with Neuromyelitis optica. In summary, we established a new method for primary oligodendrocyte, microglia, endothelial and astrocyte cell cultures from pig brain that provide a tool for translational research on human CNS diseases.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rajneesh Srivastava
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Nowak
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
35
|
Simchick G, Shen A, Campbell B, Park HJ, West FD, Zhao Q. Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connect 2019; 9:566-579. [PMID: 31115245 DOI: 10.1089/brain.2019.0673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many neurological and psychiatric diseases in humans are caused by disruptions to large-scale functional properties of the brain, including functional connectivity. There has been growing interest in discovering the functional organization of brain networks in larger animal models. As a result, the use of translational pig models in neuroscience has significantly increased in the past decades. The gyrencephalic pig brain resembles the human brain more in anatomy, growth, and development than the brains of commonly used small laboratory animals such as rodents. In this work, resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) data were acquired from a group of pigs (n = 12). rs-fMRI data were analyzed for resting-state networks (RSNs) by using independent component analysis and sparse dictionary learning. Six RSNs (executive control, cerebellar, sensorimotor, visual, auditory, and default mode) were detected that resemble their counterparts in human brains, as measured by Pearson spatial correlations and mean ratios. Supporting evidence of the validity of these RSNs was provided through the evaluation and quantification of structural connectivity measures (mean diffusivity, fractional anisotropy, fiber length, and fiber density) estimated from the DTI data. This study shows that as a translational, large animal model, pigs demonstrate great potential for mapping connectome-scale functional connectivity in experimental modeling of human brain disorders.
Collapse
Affiliation(s)
- Gregory Simchick
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Alice Shen
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Brandon Campbell
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Qun Zhao
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
36
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
37
|
Kinder HA, Baker EW, West FD. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019; 14:413-424. [PMID: 30539807 PMCID: PMC6334610 DOI: 10.4103/1673-5374.245334] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models-the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Ulyanova AV, Koch PF, Cottone C, Grovola MR, Adam CD, Browne KD, Weber MT, Russo RJ, Gagnon KG, Smith DH, Isaac Chen H, Johnson VE, Kacy Cullen D, Wolf JA. Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus. eNeuro 2018; 5:ENEURO.0102-18.2018. [PMID: 30229132 PMCID: PMC6142048 DOI: 10.1523/eneuro.0102-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
The hippocampus is integral to working and episodic memory and is a central region of interest in diseases affecting these processes. Pig models are widely used in translational research and may provide an excellent bridge between rodents and nonhuman primates for CNS disease models because of their gyrencephalic neuroanatomy and significant white matter composition. However, the laminar structure of the pig hippocampus has not been well characterized. Therefore, we histologically characterized the dorsal hippocampus of Yucatan miniature pigs and quantified the cytoarchitecture of the hippocampal layers. We then utilized stereotaxis combined with single-unit electrophysiological mapping to precisely place multichannel laminar silicon probes into the dorsal hippocampus without the need for image guidance. We used in vivo electrophysiological recordings of simultaneous laminar field potentials and single-unit activity in multiple layers of the dorsal hippocampus to physiologically identify and quantify these layers under anesthesia. Consistent with previous reports, we found the porcine hippocampus to have the expected archicortical laminar structure, with some anatomical and histological features comparable to the rodent and others to the primate hippocampus. Importantly, we found these distinct features to be reflected in the laminar electrophysiology. This characterization, as well as our electrophysiology-based methodology targeting the porcine hippocampal lamina combined with high-channel-count silicon probes, will allow for analysis of spike-field interactions during normal and disease states in both anesthetized and future awake behaving neurophysiology in this large animal.
Collapse
Affiliation(s)
| | - Paul F. Koch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Carlo Cottone
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael R. Grovola
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Christopher D. Adam
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Kevin D. Browne
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Maura T. Weber
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robin J. Russo
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Kimberly G. Gagnon
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Victoria E. Johnson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - D. Kacy Cullen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - John A. Wolf
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
39
|
Parallels between Postpartum Disorders in Humans and Preweaning Piglet Mortality in Sows. Animals (Basel) 2018; 8:ani8020022. [PMID: 29485618 PMCID: PMC5836030 DOI: 10.3390/ani8020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/22/2018] [Accepted: 02/03/2018] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Humans and sows are both highly social species that exhibit a wide variety of maternal behaviors and responsivity to pregnancy and parturition. Piglet crushing is a production and welfare concern for the swine industry. Similar to rates of postpartum depression in humans, the performance of piglet crushing is more likely in first-time mothers. Furthermore, hormonal profiles and social factors that influence the development of this disease in humans mirror those observed in sows surrounding parturition. This article reviews the biological, social, and management factors that may be contributing to this problem of piglet crushing through the lens of how postpartum depression develops in humans. Utilizing knowledge from human psychology and animal welfare science may provide producers with management tools to mitigate piglet crushing and provide new insight into the factors that contribute to human postpartum disorders. Abstract Pregnancy and parturition in all mammals is accompanied with physical, psychological, social, and hormonal shifts that impact the mother physically and psychologically. Pre-weaning piglet mortality continues to be a major welfare and economic issue in U.S. swine production, running at 12–15% with crushing by the sow the major cause. Much research has focused on farrowing environment design, yet the fact that little progress has been made emphasizes that psychosocial factors may impact rates of postpartum disorders (PPD). There is a mismatch between evolved adaptations and contemporary psychosocial and management practices. Many factors associated with the development of PPD in humans are mirrored in sows that perform piglet crushing. These factors include poor mental welfare (anxiety, difficulty coping with stress), a lack of experience, a lack of social support, and individual differences in their sensitivity to hormone concentrations. Understanding what strategies are effective in preventing PPD in humans may have welfare and production benefits for sows—and sows may be a possible model for better understanding PPD in humans.
Collapse
|
40
|
Ziegler AL, Blikslager AT. Impaired intestinal barrier function and relapsing digestive disease: Lessons from a porcine model of early life stress. Neurogastroenterol Motil 2017; 29:1-4. [PMID: 29052972 PMCID: PMC5940449 DOI: 10.1111/nmo.13216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
Abstract
Within this issue of Neurogastroenterology and Motility, an article by Pohl et al highlights new insights from a powerful porcine model of the link between early life adversity and relapsing functional gastrointestinal disorders. Early weaning stress closely mimics the early life psychosocial stressors that have been linked to adult onset gastrointestinal dysfunction. This early weaning model provides reproducible and highly translatable outcomes in young stress-challenged pigs. Due to the convincingly comparable neurological and gastroenterological anatomy and physiology between pigs and human beings, gastrointestinal stress and injury studies utilizing swine models will provide invaluable insights to improve our understanding and treatment of gastrointestinal disease in human beings. Future studies to examine mechanisms underlying this link between early life adversity and functional gastrointestinal disorders will explore the roles of gender and hypomaturity in gastrointestinal responses to stress.
Collapse
Affiliation(s)
- A. L. Ziegler
- Department of Clinical Sciences; Center for Gastrointestinal Biology and Disease; College of Veterinary Medicine; NC State University; Raleigh NC USA
| | - A. T. Blikslager
- Department of Clinical Sciences; Center for Gastrointestinal Biology and Disease; College of Veterinary Medicine; NC State University; Raleigh NC USA
| |
Collapse
|
41
|
Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C, Wilson D, Walker S, Starrak G, Hockley D, Huang Y, Mutwiri G, Potter A, Gilmour M, Safronetz D, Gerdts V, Karniychuk U. Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine 2017; 25:73-86. [PMID: 29097124 PMCID: PMC5704061 DOI: 10.1016/j.ebiom.2017.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Outcomes of Zika virus (ZIKV) infection in pregnant women vary from the birth of asymptomatic offspring to abnormal development and severe brain lesions in fetuses and infants. There are concerns that offspring affected in utero and born without apparent symptoms may develop mental illnesses. Therefore, animal models are important to test interventions against in utero infection and health sequelae in symptomatic and likely more widespread asymptomatic offspring. To partially reproduce in utero infection in humans, we directly inoculated selected porcine conceptuses with ZIKV. Inoculation resulted in rapid trans-fetal infections, persistent infection in conceptuses, molecular pathology in fetal brains, fetal antibody and type I interferon responses. Offspring infected in utero showed ZIKV in their fetal membranes collected after birth. Some in utero affected piglets were small, depressed, had undersized brains, and showed seizures. Some piglets showed potentially increased activity. Our data suggest that porcine model of persistent in utero ZIKV infection has a strong potential for translational research and can be used to test therapeutic interventions in vivo.
Collapse
Affiliation(s)
- Joseph Darbellay
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Brian Cox
- Department of Physiology, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kenneth Lai
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Mario Delgado-Ortega
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Donald Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Stewart Walker
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Gregory Starrak
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Duncan Hockley
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yanyun Huang
- Prairie Diagnostic Services, Saskatoon, SK S7N 5B4, Canada
| | - George Mutwiri
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Matthew Gilmour
- Canada National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - David Safronetz
- Canada National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
42
|
Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C, Head E, Ihara M, Isaacs JD, Kalaria RN, Lesnik Oberstein SAMJ, Moss MB, Nitzsche B, Rosenberg GA, Rutten JW, Salkovic-Petrisic M, Troen AM. Translational models for vascular cognitive impairment: a review including larger species. BMC Med 2017; 15:16. [PMID: 28118831 PMCID: PMC5264492 DOI: 10.1186/s12916-017-0793-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, University of Lübeck, Lübeck, Germany.,Neurovascular Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Chad Farris
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jeremy D Isaacs
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Raj N Kalaria
- Institute of Neuroscience, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | | | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Björn Nitzsche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Clinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute for Anatomy, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gary A Rosenberg
- Department of Neurology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aron M Troen
- Institute of Biochemistry Food and Nutrition Science, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
43
|
Mudd AT, Dilger RN. Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Adv Nutr 2017; 8:92-104. [PMID: 28096130 PMCID: PMC5227977 DOI: 10.3945/an.116.013243] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation.
Collapse
Affiliation(s)
- Austin T Mudd
- Piglet Nutrition and Cognition Laboratory
- Neuroscience Program
| | - Ryan N Dilger
- Piglet Nutrition and Cognition Laboratory,
- Neuroscience Program
- Division of Nutritional Sciences, and
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
44
|
Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behav Brain Res 2016; 321:50-60. [PMID: 28042005 DOI: 10.1016/j.bbr.2016.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/23/2022]
Abstract
Novelty preference paradigms have been widely used to study recognition memory and its neural substrates. The piglet model continues to advance the study of neurodevelopment, and as such, tasks that use novelty preference will serve especially useful due to their translatable nature to humans. However, there has been little use of this behavioral paradigm in the pig, and previous studies using the novel object recognition paradigm in piglets have yielded inconsistent results. The current study was conducted to determine if piglets were capable of displaying a novelty preference. Herein a series of experiments were conducted using novel object recognition or location in 3- and 4-week-old piglets. In the novel object recognition task, piglets were able to discriminate between novel and sample objects after delays of 2min, 1h, 1 day, and 2 days (all P<0.039) at both ages. Performance was sex-dependent, as females could perform both 1- and 2-day delays (P<0.036) and males could perform the 2-day delay (P=0.008) but not the 1-day delay (P=0.347). Furthermore, 4-week-old piglets and females tended to exhibit greater exploratory behavior compared with males. Such performance did not extend to novel location recognition tasks, as piglets were only able to discriminate between novel and sample locations after a short delay (P>0.046). In conclusion, this study determined that piglets are able to perform the novel object and location recognition tasks at 3-to-4 weeks of age, however performance was dependent on sex, age, and delay.
Collapse
|
45
|
Medland JE, Pohl CS, Edwards LL, Frandsen S, Bagley K, Li Y, Moeser AJ. Early life adversity in piglets induces long-term upregulation of the enteric cholinergic nervous system and heightened, sex-specific secretomotor neuron responses. Neurogastroenterol Motil 2016; 28:1317-29. [PMID: 27134125 PMCID: PMC5002263 DOI: 10.1111/nmo.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Early life adversity (ELA) is a risk factor for the later-life onset of gastrointestinal (GI) diseases such as irritable bowel syndrome (IBS); however, the mechanisms are poorly understood. Here, we utilized a porcine model of ELA, early weaning stress (EWS), to investigate the influence of ELA on the development and function of the enteric nervous system (ENS). METHODS Female and castrated male (Male-C) piglets were weaned from their sow either at 15 days of age (EWS) or 28 days of age (late weaning control, LWC). At 60 and 170 days of age, ileal mucosa-submucosa preparations were mounted in Ussing chambers and veratridine- and corticotropin releasing factor (CRF)-releasing factor-evoked short circuit current (Isc ) responses were recorded as indices of secretomotor neuron function. Enteric neuron numbers and the expression of select neurotransmitters and their receptors were also measured. KEY RESULTS Compared with LWC pigs, female, but not Male-C EWS, pigs exhibited heightened veratridine-induced Isc responses at 60 and 170 days of age that were inhibited with tetrodotoxin and atropine. Ileum from EWS pigs had higher numbers of enteric neurons that were choline acetyltransferase positive. Markers of increased cholinergic signaling (increased acetylcholinesterase) and downregulated mucosal muscarinic receptor 3 gene expression were also observed in EWS pigs. CONCLUSIONS & INFERENCES This study demonstrated that EWS in pigs induces lasting and sex-specific hypersensitivity of secretomotor neuron function and upregulation of the cholinergic ENS. These findings may represent a mechanistic link between ELA and lifelong susceptibility to GI diseases such as IBS.
Collapse
Affiliation(s)
- Julia E. Medland
- Comparative Biomedical Sciences Program, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Calvin S. Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Laura L. Edwards
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Shellsea Frandsen
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Adam J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA,Neuroscience Program, Michigan State University
| |
Collapse
|
46
|
Antonides A, van Laarhoven S, van der Staay FJ, Nordquist RE. Non-anemic Iron Deficiency from Birth to Weaning Does Not Impair Growth or Memory in Piglets. Front Behav Neurosci 2016; 10:112. [PMID: 27378867 PMCID: PMC4905972 DOI: 10.3389/fnbeh.2016.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Early iron deficiency is associated with impaired (cognitive) development, the severity of which depends on the timing and duration of the under-supply of iron. To design effective treatment and prevention strategies for iron deficiency in humans, suited animal models are needed. In an earlier study (Antonides et al., 2015b) we separated 10 pairs of piglets from their mothers within a few days after birth and reared one sibling with artificial iron-deficient (ID) and the other with balanced control milk until weaning. ID piglets grew slower and showed poorer reference memory (RM) performance than their controls in a spatial holeboard task, even weeks after iron repletion. One putative intervening factor in that study was pre-weaning maternal deprivation. In an attempt to refine the piglet iron-deficiency model, we assessed whether piglets reared by sows, but withheld iron supplementation, can serve as animal model of iron deficiency. As sow milk is inherently ID, piglets normally receive a prophylactic iron injection. Ten pairs of piglets were housed with foster sows until weaning (4 weeks). One sibling per pair was randomly assigned to the control group (receiving iron dextran injections: 40 mg iron per kilogram body mass on days 3 and 10), the other to the ID group. From weaning, all pigs were fed a balanced commercial diet. Blood samples were taken in week 1, 3.5, 6, and 12. Pre-weaning blood iron values of ID piglets were lower than those of controls, but recovered to normal values after weaning. Hemoglobin of ID piglets did not reach anemic values. Hematocrit and hemoglobin of ID animals did not decrease, and serum iron even increased pre-weaning, suggesting that the piglets had access to an external source of iron, e.g., spilled feed or feces of the foster sows. Growth, and spatial memory assessed in the holeboard from 10 to 16 weeks of age, was unaffected in ID pigs. We conclude that sow-raised piglets are not a suitable model for iron-deficiency induced cognitive deficits in humans. Based on our previous and the present study, we conclude that growth and memory are only impaired in piglets that suffered from pre-weaning anemia.
Collapse
Affiliation(s)
- Alexandra Antonides
- Behaviour and Welfare Group (Formerly Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands; Brain Center Rudolf Magnus, Utrecht UniversityUtrecht, Netherlands
| | - Serana van Laarhoven
- Adaptation Physiology Group, Institute of Animal Sciences, Wageningen University Wageningen, Netherlands
| | - Franz J van der Staay
- Behaviour and Welfare Group (Formerly Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands; Brain Center Rudolf Magnus, Utrecht UniversityUtrecht, Netherlands
| | - Rebecca E Nordquist
- Behaviour and Welfare Group (Formerly Emotion and Cognition Group), Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht UniversityUtrecht, Netherlands; Brain Center Rudolf Magnus, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
47
|
Larsen K, Momeni J, Farajzadeh L, Bendixen C. Differential A-to-I RNA editing of the serotonin-2C receptor G-protein-coupled, HTR2C, in porcine brain tissues. Biochimie 2015; 121:189-96. [PMID: 26707647 DOI: 10.1016/j.biochi.2015.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/13/2015] [Indexed: 02/07/2023]
Abstract
The HTR2C gene encodes the 5-Hydroxytryptamine (serotonin) receptor 2C, G-protein-coupled protein which functions as a serotonin receptor. The HTR2C mRNA is subject to A-to-I RNA editing mediated by adenosine deaminases acting on RNA 1 and 2 (ADAR1 and ADAR2). In the current study we examined the molecular characteristics of the porcine HTR2C gene and determined the mRNA editing of the HTR2C transcript in different tissues. The A-to-I RNA editing of HTR2C was shown to be conserved in the porcine homologue with five nucleotides edited in exon 5. A differential editing was demonstrated with a high editing frequency in the frontal cortex, parietal cortex, occipital cortex, hypothalamus, brain stem and spinal cord and significantly lower in the cerebellum. No editing was seen in the liver and kidney. The porcine HTR2C gene was found to be exclusively expressed in brain tissues. The HTR2C gene was mapped to pig chromosome X. The methylation status of the HTR2C gene was examined in brain and liver by bisulfate sequencing and a high degree of methylation was found in the two tissues, at 89 and 72%, respectively. Our data describe differences in RNA editing in various regions of the porcine brain. The differences might reflect functional differences. Similarities between pigs and humans in differential RNA editing support the use of the pig as a model organism for the study of neurological diseases.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
48
|
Pohl CS, Medland JE, Moeser AJ. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. Am J Physiol Gastrointest Liver Physiol 2015; 309:G927-41. [PMID: 26451004 PMCID: PMC4683303 DOI: 10.1152/ajpgi.00206.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 01/31/2023]
Abstract
Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.
Collapse
Affiliation(s)
- Calvin S. Pohl
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| | - Julia E. Medland
- 3Comparative Biomedical Sciences Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Adam J. Moeser
- 1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; ,2Gastrointestinal Stress Biology Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
49
|
Gieling ET, Mijdam E, van der Staay FJ, Nordquist RE. Lack of mirror use by pigs to locate food. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Chronic allopurinol treatment during the last trimester of pregnancy in sows: effects on low and normal birth weight offspring. PLoS One 2014; 9:e86396. [PMID: 24466072 PMCID: PMC3899238 DOI: 10.1371/journal.pone.0086396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
Low-birth-weight (LBW) children are born with several risk factors for disease, morbidity and neonatal mortality, even if carried to term. Placental insufficiency leading to hypoxemia and reduced nutritional supply is the main cause for LBW. Brain damage and poor neurological outcome can be the consequence. LBW after being carried to term gives better chances for survival, but these children are still at risk for poor health and the development of cognitive impairments. Preventive therapies are not yet available. We studied the risk/efficacy of chronic prenatal treatment with the anti-oxidative drug allopurinol, as putative preventive treatment in piglets. LBW piglets served as a natural model for LBW. A cognitive holeboard test was applied to study the learning and memory abilities of these allopurinol treated piglets after weaning. Preliminary analysis of the plasma concentrations in sows and their piglets suggested that a daily dose of 15 mg.kg(-1) resulted in effective plasma concentration of allopurinol in piglets. No adverse effects of chronic allopurinol treatment were found on farrowing, birth weight, open field behavior, learning abilities, relative brain, hippocampus and spleen weights. LBW piglets showed increased anxiety levels in an open field test, but cognitive performance was not affected by allopurinol treatment. LBW animals treated with allopurinol showed the largest postnatal compensatory body weight gain. In contrast to a previous study, no differences in learning abilities were found between LBW and normal-birth-weight piglets. This discrepancy might be attributable to experimental differences. Our results indicate that chronic prenatal allopurinol treatment during the third trimester of pregnancy is safe, as no adverse side effects were observed. Compensatory weight gain of treated piglets is a positive indication for the chronic prenatal use of allopurinol in these animals. Further studies are needed to assess the possible preventive effects of allopurinol on brain functions in LBW piglets.
Collapse
|