1
|
Zheng Q, Li H, Jiang Y, Yang P, Yin G, Yang L, Li S, Sun L. Fibroblast activation protein-targeted chimeric antigen-receptor-modified NK cells alleviate cardiac fibrosis. Int Immunopharmacol 2025; 157:114760. [PMID: 40319747 DOI: 10.1016/j.intimp.2025.114760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/19/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cardiac fibrosis (CF) is a common pathophysiological process in the development of various cardiovascular diseases, during which many cardiac fibroblasts undergo myofibroblast transdifferentiation. Fibroblast activation protein (FAP) can serve as a specific target for myofibroblasts, and chimeric antigen receptor (CAR)-based therapy is a promising immunotherapy strategy. In this study, we attempted to construct CAR natural killer (NK) cells that target FAP and explored their potential therapeutic role in CF. Our results suggested FAP CAR-NK-92 cells can specifically recognize and kill FAP+ cells in vitro. In addition, compared with parental NK-92 cells, FAP CAR-NK cells cocultured with FAP HEK-293 T cells presented increased cytotoxicity, cytokine secretion, and degranulation, indicating an effect-to-target ratio dependence. Coculturing FAP CAR-NK cells with mouse cardiac fibroblast lines (MCFs) eliminated the activated fibroblasts, reduced fibrosis-related protein secretion, and significantly reversed the contractile phenotype of myofibroblasts, which is characterized by alpha-smooth muscle actin (α-SMA) and stress fiber formation. Intravenous injection of FAP CAR-NK cells in mice 7 days after Ang II/PE-induced injury significantly improved cardiac function and reduced fibrosis. In terms of the killing mechanism, the early apoptosis rate of target cells was significantly increased, the antiapoptotic protein Bcl-2 was significantly decreased, and the proapoptotic proteins Bax and Caspase 3 were markedly increased. Our findings demonstrate that FAP CAR-NK-92 cells can specifically recognize FAP+ target cells and exert potent anti-fibrotic effects both in vitro and in vivo. Therefore, FAP CAR-NK-92 cells could be considered an effective therapeutic option for CF patients.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yongliang Jiang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Gaosheng Yin
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lin Yang
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Shuangxiu Li
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China.
| |
Collapse
|
2
|
Jin J, Wang Z, Liu Y, Chen J, Jiang M, Lu L, Xu J, Gao F, Wang J, Zhang J, Xu GT, Jin C, Tian H, Zhao J, Ou Q. miR-143-3p boosts extracellular vesicles to improve the dermal fibrosis of localized scleroderma. J Autoimmun 2025; 153:103422. [PMID: 40273600 DOI: 10.1016/j.jaut.2025.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 03/15/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Localized scleroderma (LoSc) is an autoimmune disease that features extensive fibrosis of the skin. Due to its severity and limited understanding, no effective treatments have been developed to date. Bone marrow mesenchymal stem cells (BMSCs) derived extracellular vesicles (EVs) have been demonstrated promising therapeutic effects on the LoSc mouse model in our previous study. However, identifying the targets and underlying mechanisms of EVs remains a significant challenge for therapeutic applications. miR-143-3p, a critical and abundant factor in BMSC-EVs identified through miRNA sequencing, mediates antifibrotic effects in a LoSc mouse model and is significantly lacking in the dermis of LoSc patients. This microRNA inhibits myofibroblast formation and collagen synthesis, contributing to the therapeutic effects of BMSC-EVs in the LoSc mouse model. Moreover, miR-143-3p-reinforced BMSC-EVs demonstrated enhanced therapeutic efficacy compared to normal BMSC-EVs, reducing dermal thickening, collagen deposition, fibroblast differentiation into myofibroblasts, and promoting skin tissue remodeling. IGF1R, highly expressed in the skin of LoSc, was identified as a potential target of miR-143-3p and was inhibited by miR-143-3p-reinforced EVs, thereby modulating the IGF1/IGF1R-AKT/MAPK pathway. In conclusion, miR-143-3p-enriched EVs could be a more efficient candidate for treating dermal fibrosis in LoSc.
Collapse
Affiliation(s)
- Jiahui Jin
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Physiology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yifan Liu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Miao Jiang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingying Xu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Haibin Tian
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jingjun Zhao
- Department of Dermatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingjian Ou
- Department of Dermatology and Laboratory of Clinical and Visual Sciences, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Ke MH, Huang SY, Lin WG, Xu ZG, Zheng XX, Liu XB, Cheng YM, Li ZF. Single-nucleus RNA sequencing and spatial transcriptomics reveal the mechanism by which Xiaozhiling injection treats internal hemorrhoids. World J Gastrointest Surg 2025; 17:103494. [PMID: 40291892 PMCID: PMC12019062 DOI: 10.4240/wjgs.v17.i4.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Hemorrhoids, a prevalent chronic condition globally, significantly impact patients' quality of life. While various surgical interventions, such as external stripping and internal ligation, procedure for prolapse and hemorrhoids, and tissue selecting technique, are employed for treatment, they are often associated with postoperative complications, including unsatisfactory defecation, bleeding, and anal stenosis. In contrast, Xiaozhiling injection, a traditional Chinese medicine-based therapy, has emerged as a minimally invasive and effective alternative for internal hemorrhoids. This treatment offers distinct advantages, such as reduced dietary restrictions, broad applicability, and minimal induction of systemic inflammatory responses. Additionally, Xiaozhiling injection effectively eliminates hemorrhoid nuclei, prevents local tissue necrosis, preserves anal cushion integrity, and mitigates postoperative complications, including bleeding and prolapse. Despite its clinical efficacy, the molecular mechanisms underlying its therapeutic effects remain poorly understood, warranting further investigation. AIM To investigate the molecular mechanism underlying the therapeutic effect of Xiaozhiling injection in the treatment of internal hemorrhoids. METHODS An internal hemorrhoid model was established in rats, and the rats were randomly divided into a modeling group [control group (CK group)] and a treatment group. One week after injection, Stereo-seq and electron microscopy were used to study the changes in gene expression and subcellular structures in fibroblasts. RESULTS Single-cell sequencing revealed differences in the expression and transcript levels of the genes collagen 3 alpha 1, decorin, and actin alpha 2 in fibroblasts between the CK group and the treatment group. Spatial transcriptome analysis revealed that genes of the sphingosine kinase 1 (Sphk1)/sphingosine-1-phosphate (S1P) pathway spatially overlapped with key genes of the transforming growth factor beta 1 pathway, namely, Sphk1, S1P receptor, and transforming growth factor beta 1, in the treatment group. The proportion of fibroblasts was lower in the treatment group than in the CK group, and Xiaozhiling treatment had a significant effect on the proportion of fibroblasts in hemorrhoidal tissue. Immunohistochemistry revealed a significant increase in the expression of a fibroblast marker. Electron microscopy showed that the endoplasmic reticulum of fibroblasts contained a large amount of glycogen, indicating cell activation. Fibroblast activation and the expression of key genes of the Sphk1-S1P pathway could be observed at the injection site, suggesting that after Xiaozhiling intervention, the Sphk1-S1P pathway could be activated to promote fibrosis. CONCLUSION Xiaozhiling injection exerts its therapeutic effects on internal hemorrhoids by promoting collagen synthesis and secretion in fibroblasts. After Xiaozhiling intervention, the Sphk1-S1P pathway can be activated to promote fibrosis.
Collapse
Affiliation(s)
- Min-Hui Ke
- Department of Proctology, The Second People’s Hospital Affiliated with Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Shu-Yan Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Wei-Gan Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Zhen-Guo Xu
- Department of Proctology, The Second People’s Hospital Affiliated with Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Xia-Xia Zheng
- Department of Proctology, The Second People’s Hospital Affiliated with Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Xian-Bao Liu
- Department of Proctology, The Second People’s Hospital Affiliated with Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - You-Min Cheng
- Fujian Academy of Chinese Medical Sciences, Fuzhou 350003, Fujian Province, China
| | - Zuan-Fang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| |
Collapse
|
4
|
Liao C, Wang P, Zeng Q, Yan G, Gao J, Liu J, Yan J, Zhang G, Liu Y, Wang X. Piezo1-Mediated Calcium Flux Transfers Mechanosignal to Yes-Associated Protein to Stimulate Matrix Production in Keloid. J Invest Dermatol 2025:S0022-202X(25)00415-4. [PMID: 40254148 DOI: 10.1016/j.jid.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/17/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025]
Abstract
Keloids are fibroproliferative diseases affecting millions of people worldwide, but curing keloids remains challenging. Mechanical force is a common initiator and driver of keloids, and blocking the proadhesive signaling pathways is expected to cure keloids. This study found higher levels of Piezo1 in human keloid fibroblasts than in normal skin fibroblasts. Single-cell transcriptome analysis revealed a correlation of Piezo1 with Yes-associated protein (YAP) in keloid fibroblasts. Knockdown of Piezo1/YAP in keloid fibroblasts versus fibroblasts decreased CCN2 and CCN1 expression and fibrosis-related cell behaviors, identifying Piezo1 and YAP as upstream signals of proadhesive signaling loop in keloids. Treatment of patient-derived keloid xenograft model with Piezo1 inhibitor GsMTx4 and YAP inhibitor verteporfin reduced keloid volume and decreased type I/III collagen ratio. Atomic force microscopy further confirmed the biomechanical improvements of keloids in elasticity, viscoelasticity, and roughness ex vivo. In addition, the calcium ion-sensitive fluorescent indicator Fluo-3/AM and double-labeling immunofluorescence stains showed that Piezo1 transferred mechanosignal to increase YAP nuclear translocation through calcium flux. Finally, transcriptomics revealed target genes of the Piezo1/YAP signaling pathway, such as TBX3, SESN2, SMAD7, FOSB, JARID2, and HAS2. Consequently, the Piezo1/calcium flux/YAP signaling axis contributes to the mechanically induced proadhesive signaling pathway, and thus, Piezo1 and YAP are promising targets for keloid treatment.
Collapse
Affiliation(s)
- Caihe Liao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiawen Gao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yeqiang Liu
- Department of Pathology at Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Selvam P, Tseng CH, Wang CT, Sun YY, Chen YL, Kao YT, Dahms HU, Cheng CM. 4-Anilinoquinolinylchalcone derivatives mediate antifibrotic effects through ERK/MRTF-a signaling pathway crosstalk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11685-11696. [PMID: 40234319 DOI: 10.1007/s11356-025-36382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Quinolones and their analogues are a remarkable group of drugs that have multiple impacts on the human immune system. They are suspected to mediate anti-cancer and anti-inflammatory responses. However, due to their effectiveness in treating a number of significant diseases, such as genitourinary cancer and breast cancer, as well as their antiangiogenic and immunomodulatory qualities, interest in this group of traditional medicines has recently increased. Unfortunately, numerous side effects were observed, such as diarrhea, skin rashes, nausea, vomiting, bleeding, and abnormal liver functions. To overcome these restrictions and to enhance the pharmacological profile, research efforts are focusing on the synthesis and optimization of novel quinolone analogues that lack severe side effects. The present study focuses on the mechanism of action and the signaling pathway involving the 4-anilinoquinolinylchalcone derivative. The objective of the present work was to better understand the mechanism by which anti-fibrosis is mediated by screening 6 synthesized 4-anilinoquinolinylchalcone derivatives for their potential as novel anti-fibrosis therapeutics.
Collapse
Affiliation(s)
- Padhmavathi Selvam
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan
| | - Chih Hua Tseng
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Fragrance & Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 801, Taiwan
| | - Ching Tung Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Yu-Tse Kao
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Chih Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Khang A, Barmore A, Tseropoulos G, Bera K, Batan D, Anseth KS. Automated prediction of fibroblast phenotypes using mathematical descriptors of cellular features. Nat Commun 2025; 16:2841. [PMID: 40121192 PMCID: PMC11929917 DOI: 10.1038/s41467-025-58082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Fibrosis is caused by pathological activation of resident fibroblasts to myofibroblasts that leads to aberrant tissue stiffening and diminished function of affected organs with limited pharmacological interventions. Despite the prevalence of myofibroblasts in fibrotic tissue, existing methods to grade fibroblast phenotypes are typically subjective and qualitative, yet important for screening of new therapeutics. Here, we develop mathematical descriptors of cell morphology and intracellular structures to identify quantitative and interpretable cell features that capture the fibroblast-to-myofibroblast phenotypic transition in immunostained images. We train and validate models on features extracted from over 3000 primary heart valve interstitial cells and test their predictive performance on cells treated with the small molecule drugs 5-azacytidine and bisperoxovanadium (HOpic), which inhibited and promoted myofibroblast activation, respectively. Collectively, this work introduces an analytical framework that unveils key features associated with distinct fibroblast phenotypes via quantitative image analysis and is broadly applicable for high-throughput screening assays of candidate treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Abigail Barmore
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Rieder F, Nagy LE, Maher TM, Distler JHW, Kramann R, Hinz B, Prunotto M. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 2025:10.1038/s41573-025-01158-9. [PMID: 40102636 DOI: 10.1038/s41573-025-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA.
- Program for Global Translational Inflammatory Bowel Diseases (GRID), Chicago, IL, USA.
| | - Laura E Nagy
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen; Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Ohlendieck CM, Matellan C, Manresa MC. Regulation of pathologic fibroblast functions in digestive diseases: a role for hypoxia? Am J Physiol Gastrointest Liver Physiol 2025; 328:G229-G242. [PMID: 39873349 DOI: 10.1152/ajpgi.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
The recent uncovering of fibroblast heterogeneity has given great insight into the versatility of the stroma. Among other cellular processes, fibroblasts are now thought to contribute to the coordination of immune responses in a range of chronic inflammatory diseases and cancer. Although the pathologic roles of myofibroblasts, inflammatory fibroblasts, and cancer-associated fibroblasts in disease are reasonably well understood, the mechanisms behind their activation remain to be uncovered. In the gastrointestinal (GI) tract, several interleukins and tumor necrosis factor superfamily members have been identified as possible mediators driving the acquisition of inflammatory and fibrotic properties in fibroblasts. In addition to cytokines, other microenvironmental factors such as nutrient and oxygen availability are likely contributors to this process. In this respect, the phenomenon of low cellular oxygen levels known as hypoxia is common in a plethora of GI diseases. Indeed, the cross talk between hypoxia and inflammation is well-documented, with an abundance of studies suggesting that oxygen-sensing enzymes may have regulatory effects on inflammatory signaling pathways such as NF-κB. However, the impact that this has in GI fibroblasts in the context of chronic diseases has not been fully uncovered. Here we discuss the role of fibroblasts in GI diseases, the mediators that have emerged as regulators of their functions and the potential impact of hypoxia in this process, highlighting areas that require further investigation.
Collapse
Affiliation(s)
- Cian M Ohlendieck
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Carlos Matellan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Levuschkina YG, Dugina VB, Shagieva GS, Boichuk SV, Eremin II, Khromova NV, Kopnin PB. Induction of Fibroblast-to-Myofibroblast Differentiation by Changing Cytoplasmic Actin Ratio. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:289-298. [PMID: 40254406 DOI: 10.1134/s000629792460412x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 04/22/2025]
Abstract
Myofibroblasts, which play a crucial role in the tumour microenvironment, represent a promising avenue for research in the field of oncotherapy. This study investigates the potential for the induced differentiation of human fibroblasts into myofibroblasts through downregulation of the γ-cytoplasmic actin (γ-CYA) achieved by RNA interference. A decrease in the γ-CYA expression in human subcutaneous fibroblasts resulted in upregulation of myofibroblast markers, including α-smooth muscle actin (α-SMA), ED-A FN, and type III collagen. These changes were accompanied by notable alterations in cellular morphology, characterized by a significant increase in cell area and the formation of pronounced supermature focal adhesions. Downregulation of γ-CYA resulted in the compensatory increase in expression of the β-cytoplasmic actin and α-SMA, and formation of the characteristic α-SMA-positive stress fibers. In conclusion, our results demonstrate that a decrease in the γ-CYA expression leads to myofibroblastic trans-differentiation of human subcutaneous fibroblasts.
Collapse
Affiliation(s)
- Yulia G Levuschkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera B Dugina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina S Shagieva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Sergey V Boichuk
- Department of Pathology, Kazan State Medical University, Moscow, 420012, Russia
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow, 119454, Russia
| | - Ilya I Eremin
- Petrovsky National Research Center of Surgery, Moscow, 119991, Russia
| | - Natalia V Khromova
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Pavel B Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
10
|
Yuan B, Yu J, Dong J, Mao Z, Wang X. Bacteria in hypertrophic scars promote scar formation through HSBP1-mediated autophagy. Wound Repair Regen 2025; 33:e13253. [PMID: 39823159 PMCID: PMC11740274 DOI: 10.1111/wrr.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S. aureus) and evaluated their levels of apoptosis and proliferation by flow cytometry and Cell Counting Kit-8 assay, respectively. Additionally, we performed proteomic analysis and western blotting to identify upregulated proteins. To assess autophagy levels, we examined light chain 3 (LC3) expression through western blotting and immunofluorescence, and transmission electron microscopy (TEM) was performed to detect autophagy-associated vesicles. Our results demonstrated a notable increase in bacterial load, primarily S. aureus, in HS tissues. Furthermore, S. aureus promoted fibroblast proliferation and enhanced the expression of profibrotic markers such as transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), collagen I, collagen III and α smooth muscle actin (α-SMA). Proteomic analysis highlighted heat shock factor-binding protein 1 (HSBP1) as a key upregulated protein mediating the profibrotic effects induced by S. aureus. Knockdown of HSBP1 reversed these effects. Intriguingly, HSBP1 also upregulated LC3 and Beclin-1 expression and increased the number of autophagosomes in fibroblasts. Finally, when fibroblasts stimulated by S. aureus were treated with HSBP1 siRNA, autophagy levels decreased significantly. Collectively, our findings suggest that S. aureus, via HSBP1, stimulates fibroblast proliferation and promotes their transition into myofibroblasts, triggering autophagy and fibrosis. These results underscore the potential of HSBP1 as a therapeutic target for the management of HSs.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Burn, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiarong Yu
- Department of Burn, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaoyun Dong
- Department of Burn, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhigang Mao
- Department of Plastic Surgery, Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiqiao Wang
- Department of Burn, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Lee CM, Lee HY, Jarrell ZR, Smith MR, Jones DP, Go YM. Mechanistic role for mTORC1 signaling in profibrotic toxicity of low-dose cadmium. Toxicol Appl Pharmacol 2025; 494:117159. [PMID: 39557346 DOI: 10.1016/j.taap.2024.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Cadmium (Cd) is a toxic environmental metal that occurs naturally in food and drinking water. Cd is of increasing concern to human health due to its association with age-related diseases and long biological half-life. Previous studies show that low-dose Cd exposure via drinking water induces mechanistic target of rapamycin complex 1 (mTORC1) signaling in mice; however, the role of mTORC1 pathway in Cd-induced pro-fibrotic responses has not been established. In the present study, we used human lung fibroblasts to examine whether inhibiting the mTORC1 pathway prevents lung fibrosis signaling induced by low-dose Cd exposure. Results show that rapamycin, a pharmacological inhibitor of mTORC1, inhibited Cd-dependent phosphorylation of ribosomal protein S6, a downstream marker of mTORC1 activation. Rapamycin also decreased Cd-dependent increases in pro-fibrotic markers, α-smooth muscle actin, collagen 1α1 and fibronectin. Cd activated mitochondrial spare respiratory capacity in association with increased cell proliferation. Rapamycin decreased these responses, showing that mTORC1 signaling supports mitochondrial energy supply for cell proliferation, an important step in fibroblast trans-differentiation into myofibroblasts. Collectively, these results establish a key mechanistic role for mTORC1 activation in environmental Cd-dependent lung fibrosis.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Ho Young Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America; VA Healthcare System of Atlanta, Decatur, GA 30033, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America.
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
12
|
Tang Y, Xu L, Yang Y, Qin F, Meng F, Dai L, Meng Z, Ren S. TGF-β1-mediated upregulation of LMCD1 drives corneal myofibroblast differentiation and corneal fibrosis. Exp Eye Res 2024; 249:110130. [PMID: 39426558 DOI: 10.1016/j.exer.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Transforming growth factor β1 (TGF-β1) drives corneal fibroblasts to differentiate into corneal myofibroblasts and plays a key role in corneal fibrosis. However, the role of LIM and cysteine-rich domains-1 (LMCD1) in TGF-β1-induced corneal myofibroblast differentiation and corneal fibrosis remains elusive. Thus, this study aimed to investigate the expression, regulatory mechanism, and role of LMCD1 in TGF-β1-induced corneal myofibroblast differentiation and corneal fibrosis. The expression of LMCD1 in TGF-β1-stimulated corneal fibroblasts was found to be upregulated through mRNA sequencing, quantitative PCR (qPCR), and Western blotting. Moreover, LMCD1 was identified to be upregulated in a mouse model of corneal fibrosis via qPCR and Western blotting. Additionally, our results demonstrated that the increase in LMCD1 expression induced by TGF-β1 in corneal fibroblasts was primarily regulated by the SMAD3 signaling pathway. Furthermore, LMCD1 knockdown significantly inhibited TGF-β1-induced corneal fibroblast-to-myofibroblast differentiation and simultaneously activated SMAD3, JNK, and p38 by promoting TGF-β1 transcription. These findings collectively suggest that LMCD1 could upregulate alpha-smooth muscle actin (α-SMA) expression and downregulate TGF-β1 expression in corneal myofibroblast differentiation. Consequently, upregulation of LMCD1 expression could potentially serve as a strategy to mediate the TGF-β1 signaling pathway in corneal myofibroblast differentiation and corneal fibrosis, laying a theoretical reference for corneal fibrosis and contributing to the development of effective therapeutic strategies for corneal fibrosis.
Collapse
Affiliation(s)
- Yunlan Tang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Yiran Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Fangyuan Qin
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Feiying Meng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Lijuan Dai
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Zhihong Meng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
13
|
Jun YK, Kim N, Yoon H, Park JH, Kim HK, Choi Y, Lee JA, Shin CM, Park YS, Lee DH. Molecular Activity of Inflammation and Epithelial-Mesenchymal Transition in the Microenvironment of Ulcerative Colitis. Gut Liver 2024; 18:1037-1047. [PMID: 38384179 PMCID: PMC11565011 DOI: 10.5009/gnl230283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 02/23/2024] Open
Abstract
Background/Aims : The genetic expression in the active inflammatory regions is increased in ulcerative colitis (UC) with endoscopic activity. The aim of this study was to investigate the molecular activity of inflammation and tissue remodeling markers in endoscopically inflamed and uninflamed regions of UC. Methods : Patients with UC (n=47) and controls (n=20) were prospectively enrolled at the Seoul National University Bundang Hospital. Inflamed tissue was obtained at the most active lesion, and uninflamed tissue was collected from approximately 15 cm above the upper end of the active lesion via colonoscopic biopsies. The messenger RNA expression levels of transforming growth factor β (TGF-β), interleukin (IL)-1β, IL-6, IL-17A, E-cadherin, olfactomedin-4 (OLFM4), leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), vimentin, fibroblast-specific protein-1 (FSP1), and α-smooth muscle actin (SMA) were evaluated. Mucosal healing (MH) was defined according to a Mayo endoscopic score of 0, 1 or non-MH (Mayo endoscopic score of 2 or 3). Results : The messenger RNA expressions of TGF-β, IL-1β, OLFM4, FSP1, vimentin, and α-SMA were significantly higher, and that of E-cadherin was significantly lower in inflamed and uninflamed regions of patients with UC than those in controls. In the inflamed regions, patients in the non-MH group had significantly increased genetic expression of TGF-β, FSP1, vimentin, and α-SMA compared to patients in the MH group. Similarly, the non-MH group had significantly higher genetic expression of TGF-β, IL-1β, IL-6, vimentin, and α-SMA than the MH group in the uninflamed regions. Conclusions : Endoscopic activity in UC suggests inflammation and tissue remodeling of uninflamed regions similar to inflamed regions (ClinicalTrials.gov, NCT05653011).
Collapse
Affiliation(s)
- Yu Kyung Jun
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Kyung Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Seoul, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Göksu AY, Dirol H, Kocanci FG. Cromolyn sodium and masitinib combination inhibits fibroblast-myofibroblast transition and exerts additive cell-protective and antioxidant effects on a bleomycin-induced in vitro fibrosis model. Pharmacol Res Perspect 2024; 12:e70018. [PMID: 39360479 PMCID: PMC11447456 DOI: 10.1002/prp2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. While recent studies have suggested the potential efficacy of tyrosine kinase inhibitors in managing IPF, masitinib, a clinically used tyrosine kinase inhibitor, has not yet been investigated for its efficacy in fibrotic lung diseases. In a previous study on an in vitro neurodegenerative model, we demonstrated the synergistic antitoxic and antioxidant effects of masitinib combined with cromolyn sodium, an FDA-approved mast cell stabilizer. This study aims to investigate the anti-fibrotic and antioxidant effects of the masitinib-cromolyn sodium combination in an in vitro model of pulmonary fibrosis. Fibroblast cell cultures treated with bleomycin and/or hydrogen peroxide (H2O2) were subjected to masitinib and/or cromolyn sodium, followed by assessments of cell viability, morphological and apoptotic nuclear changes, triple-immunofluorescence labeling, and total oxidant/antioxidant capacities, besides ratio of Bax and Bcl-2 mRNA expressions as an indication of apoptosis. The combined treatment of masitinib and cromolyn sodium effectively prevented the fibroblast myofibroblast transition, a hallmark of fibrosis, and significantly reduced bleomycin / H2O2-induced apoptosis and oxidative stress. This study is the first to demonstrate the additive anti-fibrotic, cell-protective, and antioxidant effects of the masitinib-cromolyn sodium combination in an in vitro fibrosis model, suggesting its potential as an innovative therapeutic approach for pulmonary fibrosis. Combination therapy may be more advantageous in that both drugs could be administered in lower doses, exerting less side effects, and at the same time providing diverse mechanisms of action simultaneously.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and EmbryologyAkdeniz University, School of MedicineAntalyaTurkey
- Department of Gene and Cell TherapyAkdeniz University, School of MedicineAntalyaTurkey
| | - Hulya Dirol
- Department of Chest DiseasesAkdeniz University, School of MedicineAntalyaTurkey
| | - Fatma Gonca Kocanci
- Vocational High School of Health Services, Department of Medical Laboratory TechniquesAlanya Alaaddin Keykubat UniversityAlanyaTurkey
| |
Collapse
|
15
|
Brizio M, Mancini M, Lora M, Joy S, Zhu S, Brilland B, Reinhardt DP, Farge D, Langlais D, Colmegna I. Cytokine priming enhances the antifibrotic effects of human adipose derived mesenchymal stromal cells conditioned medium. Stem Cell Res Ther 2024; 15:329. [PMID: 39334258 PMCID: PMC11438190 DOI: 10.1186/s13287-024-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fibrosis is a pathological scarring process characterized by persistent myofibroblast activation with excessive accumulation of extracellular matrix (ECM). Fibrotic disorders represent an increasing burden of disease-associated morbidity and mortality worldwide for which there are limited therapeutic options. Reversing fibrosis requires the elimination of myofibroblasts, remodeling of the ECM, and regeneration of functional tissue. Multipotent mesenchymal stromal cells (MSC) have antifibrotic properties mediated by secreted factors present in their conditioned medium (MSC-CM). However, there are no standardized in vitro assays to predict the antifibrotic effects of human MSC. As a result, we lack evidence on the effect of cytokine priming on MSC's antifibrotic effects. We hypothesize that the MSC-CM promotes fibrosis resolution in vitro and that this effect is enhanced following MSC cytokine priming. METHODS We compared the antifibrotic effects of resting versus interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) primed MSC-CM in four in vitro assays: prevention of fibroblast activation, myofibroblasts deactivation, ECM degradation and fibrosis resolution in lung explant cultures. Furthermore, we performed transcriptomic analysis of myofibroblasts treated or not with resting or primed MSC-CM and proteomic characterization of resting and primed MSC-CM. RESULTS We isolated MSC from adipose tissue of 8 donors, generated MSC-CM and tested each MSC-CM independently. We report that MSC-CM treatment prevented TGF-β induced fibroblast activation to a similar extent as nintedanib but, in contrast to nintedanib, MSC-CM reduced fibrogenic myofibroblasts (i.e. transcriptomic upregulation of apoptosis, senescence, and inflammatory pathways). These effects were larger when primed rather than resting MSC-CM were used. Priming increased the ability of MSC-CM to remodel the ECM, reducing its content of collagen I and fibronectin, and reduced the fibrotic load in TGF-β treated lung explant cultures. Priming increased the following antifibrotic proteins in MSC-CM: DKK1, MMP-1, MMP-3, follistatin and cathepsin S. Inhibition of DKK1 reduced the antifibrotic effects of MSC-CM. CONCLUSIONS In vitro, MSC-CM promote fibrosis resolution, an effect enhanced following MSC cytokine priming. Specifically, MSC-CM reduces fibrogenic myofibroblasts through apoptosis, senescence, and by enhancing ECM degradation. Future studies will establish the in vivo relevance of MSC priming to fibrosis resolution.
Collapse
Affiliation(s)
- Marianela Brizio
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mathieu Mancini
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Maximilien Lora
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Sydney Joy
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Benoit Brilland
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, Angers, France
- Univ Angers, Nantes Université, Inserm, CNRS, ICAT, CRCI2NA, Angers, SFR, France
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Dominique Farge
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Internal Médicine Unit (04): CRMR MATHEC, Maladies Auto-Immunes Et Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Centre de Référence Des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France, Paris, France
| | - David Langlais
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Inés Colmegna
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
16
|
Luo Y, Gao Z, Guo H, Duan K, Lan T, Tao B, Shen X, Guo Q. Multifunctional Photothermal Nanorods for Targeted Treatment of Drug-Resistant Bacteria-Induced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51480-51495. [PMID: 39287360 DOI: 10.1021/acsami.4c10198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The challenge of drug-resistant bacteria-induced wound healing in clinical and public healthcare settings is significant due to the negative impacts on surrounding tissues and difficulties in monitoring the healing progress. We developed photothermal antibacterial nanorods (AuNRs-PU) with the aim of selectively targeting and combating drug-resistant Pseudomonas aeruginosa (P. aeruginosa). The AuNRs-PU were engineered with a bacterial-specific targeting polypeptide (UBI29-41) and a bacterial adhesive carbohydrate polymer composed of galactose and phenylboronic acid. The objective was to facilitate sutureless wound closure by specially distinguishing between bacteria and nontarget cells and subsequently employing photothermal methods to eradicate the bacteria. AuNRs-PU demonstrated high photothermal conversion efficiency in 808 nm laser and effectively caused physical harm to drug-resistant P. aeruginosa. By integrating the multifunctional bacterial targeting copolymer onto AuNRs, AuNRs-PU showed rapid and efficient bacterial targeting and aggregation in the presence of bacteria and cells, consequently shielding cells from bacterial harm. In a diabetic rat wound model, AuNRs-PU played a crucial role in enhancing healing by markedly decreasing inflammation and expediting epidermis formation, collagen deposition, and neovascularization levels. Consequently, the multifunctional photothermal therapy shows promise in addressing the complexities associated with managing drug-resistant infected wound healing.
Collapse
Affiliation(s)
- Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Zhenglan Gao
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Honglei Guo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Tianyu Lan
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, Guizhou 550025, China
| | - Buhui Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| |
Collapse
|
17
|
Son DO, Benitez R, Diao L, Hinz B. How to Keep Myofibroblasts under Control: Culture of Mouse Skin Fibroblasts on Soft Substrates. J Invest Dermatol 2024; 144:1923-1934. [PMID: 39078357 DOI: 10.1016/j.jid.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024]
Abstract
During the physiological healing of skin wounds, fibroblasts recruited from the uninjured adjacent dermis and deeper subcutaneous fascia layers are transiently activated into myofibroblasts to first secrete and then contract collagen-rich extracellular matrix into a mechanically resistant scar. Scar tissue restores skin integrity after damage but comes at the expense of poor esthetics and loss of tissue function. Stiff scar matrix also mechanically activates various precursor cells into myofibroblasts in a positive feedback loop. Persistent myofibroblast activation results in pathologic accumulation of fibrous collagen and hypertrophic scarring, called fibrosis. Consequently, the mechanisms of fibroblast-to-myofibroblast activation and persistence are studied to develop antifibrotic and prohealing treatments. Mechanistic understanding often starts in a plastic cell culture dish. This can be problematic because contact of fibroblasts with tissue culture plastic or glass surfaces invariably generates myofibroblast phenotypes in standard culture. We describe a straight-forward method to produce soft cell culture surfaces for fibroblast isolation and continued culture and highlight key advantages and limitations of the approach. Adding a layer of elastic silicone polymer tunable to the softness of normal skin and the stiffness of pathologic scars allows to control mechanical fibroblast activation while preserving the simplicity of conventional 2-dimensional cell culture.
Collapse
Affiliation(s)
- Dong Ok Son
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Li Diao
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada; Faculty of Dentistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
19
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Chan AHP, Xu XS, Chin IL, Grant AJ, Lau K, Hu Y, Michael PL, Lam YT, Wise SG, Tan RP. Dapansutrile OLT1177 suppresses foreign body response inflammation while preserving vascularisation of implanted materials. J Mater Chem B 2024. [PMID: 38973614 DOI: 10.1039/d4tb00705k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Mitigating inflammation associated with the foreign body response (FBR) remains a significant challenge in enhancing the performance of implantable medical devices. Current anti-inflammatory approaches aim to suppress implant fibrosis, the major outcome of the FBR, but also inadvertently inhibit beneficial immune signalling necessary for tissue healing and vascularization. In a previous study, we demonstrated the feasibility of 'selective' immunosuppression targeting the NLRP3 inflammasome using the small molecule inhibitor MCC950, leading to reduced implant fibrosis without compromising healing and leading to enhanced vascularization. However, the clinical potential of MCC950 is severely limited due to its failure to pass Phase I clinical safety trials. This has triggered substantial efforts to develop safer analogues of NLRP3 inhibitors. Dapansutrile (OLT1177) is emerging as a leading candidate amongst current NLRP3 inhibitors, demonstrating both safety and effectiveness in a growing number of clinical indications and Phase 2 trials. While the anti-inflammatory effects of OLT1177 have been shown, validation of these effects in the context of implanted materials and the FBR have not yet been demonstrated. In this study, we show OLT1177 possesses beneficial effects on key cell types which drive FBR outcomes, including macrophages, fibroblasts, and smooth muscle cells. Evaluation of OLT1177 in a 28 day subcutaneous implantation model showed OLT1177 reduced fibrotic capsule formation while promoting implant vascularization. Mechanistic studies revealed that this occurred through activation of early pro-angiogenic markers while suppressing late-stage anti-angiogenic markers. These findings establish OLT1177 as a promising therapeutic approach for mitigating implant fibrosis while supporting vascularisation, suggesting a highly promising selective immunosuppressive strategy for the FBR warranting further research to explore its optimal integration into medical materials and devices.
Collapse
Affiliation(s)
- Alex H P Chan
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Xueying S Xu
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Ian L Chin
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Angus J Grant
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Kieran Lau
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Yunfei Hu
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Praveesuda L Michael
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Yuen Ting Lam
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| | - Richard P Tan
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Miron-Mendoza M, Poole K, DiCesare S, Nakahara E, Bhatt MP, Hulleman JD, Petroll WM. The Role of Vimentin in Human Corneal Fibroblast Spreading and Myofibroblast Transformation. Cells 2024; 13:1094. [PMID: 38994947 PMCID: PMC11240817 DOI: 10.3390/cells13131094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell-matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFβ-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFβ had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, β1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kara Poole
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophie DiCesare
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emi Nakahara
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meet Paresh Bhatt
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Walter Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Cassel SE, Huntington BM, Chen W, Lei P, Andreadis ST, Kloxin AM. Dynamic reporters for probing real-time activation of human fibroblasts from single cells to populations. APL Bioeng 2024; 8:026127. [PMID: 38938687 PMCID: PMC11209894 DOI: 10.1063/5.0166152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Activation of fibroblasts is pivotal for wound healing; however, persistent activation leads to maladaptive processes and is a hallmark of fibrosis, where disease mechanisms are only partially understood. Human in vitro model systems complement in vivo animal models for both hypothesis testing and drug evaluation to improve the identification of therapeutics relevant to human disease. Despite advances, a challenge remains in understanding the dynamics of human fibroblast responses to complex microenvironment stimuli, motivating the need for more advanced tools to investigate fibrotic mechanisms. This work established approaches for assessing the temporal dynamics of these responses using genetically encoded fluorescent reporters of alpha smooth muscle actin expression, an indicator of fibroblast activation. Specifically, we created a toolset of human lung fibroblast reporter cell lines from different origins (male, female; healthy, idiopathic pulmonary fibrosis) and used three different versions of the reporter with the fluorescent protein modified to exhibit different temporal stabilities, providing temporal resolution of protein expression processes over a range of timescales. Using this toolset, we demonstrated that reporters provide insight into population shifts in response to both mechanical and biochemical cues that are not detectable by traditional end point assessments with differential responses based on cell origin. Furthermore, individual cells can also be tracked over time, with opportunities for comparison to complementary end point measurements. The establishment of this reporter toolset enables dynamic cell investigations that can be translated into more complex synthetic culture environments for elucidating disease mechanisms and evaluating therapeutics for lung fibrosis and other complex biological processes more broadly.
Collapse
Affiliation(s)
- Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Breanna M. Huntington
- Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Wilfred Chen
- Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Pedro Lei
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| | - Stelios T. Andreadis
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| | | |
Collapse
|
23
|
Bueno-Urquiza LJ, Godínez-Rubí M, Villegas-Pineda JC, Vega-Magaña AN, Jave-Suárez LF, Puebla-Mora AG, Aguirre-Sandoval GE, Martínez-Silva MG, Ramírez-de-Arellano A, Pereira-Suárez AL. Phenotypic Heterogeneity of Cancer Associated Fibroblasts in Cervical Cancer Progression: FAP as a Central Activation Marker. Cells 2024; 13:560. [PMID: 38606999 PMCID: PMC11010959 DOI: 10.3390/cells13070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) is the fourth leading cancer among women and is one of the principal gynecological malignancies. In the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role during malignant progression, exhibiting a variety of heterogeneous phenotypes. CAFs express phenotypic markers like fibroblast activation protein (FAP), vimentin, S100A4, α-smooth muscle actin (αSMA), and functional markers such as MMP9. This study aimed to evaluate the protein expression of vimentin, S100A4, αSMA, FAP, and MMP9 in mesenchymal stem cells (MSC)-CAF cells, as well as in cervical cancer samples. MSC cells were stimulated with HeLa and SiHa tumor cell supernatants, followed by protein evaluation and cytokine profile to confirm differentiation towards a CAF phenotype. In addition, automated immunohistochemistry (IHQa) was performed to evaluate the expression of these proteins in CC samples at different stages. Our findings revealed a high expression of FAP in stimulated MSC cells, accompanied by the secretion of pro/anti-inflammatory cytokines. In the other hand, CC samples were observed to have high expression of FAP, vimentin, αSMA, and MMP9. Most importantly, there was a high expression of their activation proteins αSMA and FAP during the different stages. In the early stages, a myofibroblast-like phenotype (CAFs αSMA+ FAP+), and in the late stages a protumoral phenotype (CAF αSMA- FAP+). In summary, FAP has a crucial role in the activation of CAFs during cervical cancer progression.
Collapse
Affiliation(s)
- Lesly Jazmin Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
| | - Marisol Godínez-Rubí
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Alejandra Natali Vega-Magaña
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| | - Ana Graciela Puebla-Mora
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - Gloria Estefanía Aguirre-Sandoval
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| | - María Guadalupe Martínez-Silva
- Departamento de Anatomía Patológica, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (L.J.B.-U.); (A.N.V.-M.); (A.R.-d.-A.)
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.G.-R.); (J.C.V.-P.); (A.G.P.-M.); (G.E.A.-S.)
| |
Collapse
|
24
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
25
|
Cho S, Dadson K, Sung HK, Ayansola O, Mirzaesmaeili A, Noskovicova N, Zhao Y, Cheung K, Radisic M, Hinz B, Sater AAA, Hsu HH, Lopaschuk GD, Sweeney G. Cardioprotection by the adiponectin receptor agonist ALY688 in a preclinical mouse model of heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2024; 171:116119. [PMID: 38181714 DOI: 10.1016/j.biopha.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1β, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1β, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Ali Mirzaesmaeili
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nina Noskovicova
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada
| | - Yimu Zhao
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Krisco Cheung
- Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milica Radisic
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada; Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Ali A Abdul Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc. Bellevue, WA, USA
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
26
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
27
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Illescas-Montes R, Rueda-Fernández M, González-Acedo A, Melguizo-Rodríguez L, García-Recio E, Ramos-Torrecillas J, García-Martínez O. Effect of Punicalagin and Ellagic Acid on Human Fibroblasts In Vitro: A Preliminary Evaluation of Their Therapeutic Potential. Nutrients 2023; 16:23. [PMID: 38201853 PMCID: PMC10781179 DOI: 10.3390/nu16010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Pomegranate is a fruit that contains various phenolic compounds, including punicalagin and ellagic acid, which have been attributed to anti-inflammatory, antioxidant, and anticarcinogenic properties, among others. OBJECTIVE To evaluate the effect of punicalagin and ellagic acid on the viability, migration, cell cycle, and antigenic profile of cultured human fibroblasts (CCD-1064Sk). MTT spectrophotometry was carried out to determine cell viability, cell culture inserts were used for migration trials, and flow cytometry was performed for antigenic profile and cell cycle analyses. Cells were treated with each phenolic compound for 24 h at doses of 10-5 to 10-9 M. RESULTS Cell viability was always significantly higher in treated versus control cells except for punicalagin at 10-9 M. Doses of punicalagin and ellagic acid in subsequent assays were 10-6 M or 10-7 M, which increased the cell migration capacity and upregulated fibronectin and α-actin expression without altering the cell cycle. CONCLUSIONS These in vitro findings indicate that punicalagin and ellagic acid promote fibroblast functions that are involved in epithelial tissue healing.
Collapse
Affiliation(s)
- Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Manuel Rueda-Fernández
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Anabel González-Acedo
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences of Melilla, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Enrique García-Recio
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences of Melilla, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| |
Collapse
|
29
|
Rauchenwald T, Handle F, Connolly CE, Degen A, Seifarth C, Hermann M, Tripp CH, Wilflingseder D, Lobenwein S, Savic D, Pölzl L, Morandi EM, Wolfram D, Skvortsova II, Stoitzner P, Haybaeck J, Konschake M, Pierer G, Ploner C. Preadipocytes in human granulation tissue: role in wound healing and response to macrophage polarization. Inflamm Regen 2023; 43:53. [PMID: 37904253 PMCID: PMC10617061 DOI: 10.1186/s41232-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.
Collapse
Affiliation(s)
- Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Degen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Marko Konschake
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
30
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Altrieth AL, O’Keefe KJ, Gellatly VA, Tavarez JR, Feminella SM, Moskwa NL, Cordi CV, Turrieta JC, Nelson DA, Larsen M. Identifying fibrogenic cells following salivary gland obstructive injury. Front Cell Dev Biol 2023; 11:1190386. [PMID: 37287453 PMCID: PMC10242138 DOI: 10.3389/fcell.2023.1190386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands. To experimentally induce a fibrotic response in female murine submandibular salivary glands, we performed ductal ligation surgery. We detected a progressive fibrotic response where both extracellular matrix accumulation and actively remodeled collagen significantly increased at 14 days post-ligation. Macrophages, which participate in extracellular matrix remodeling, and Gli1+ and PDGFRα+ stromal cells, which may deposit extracellular matrix, both increased with injury. Using single-cell RNA-sequencing, Gli1 + cells were not found in discrete clusters at embryonic day 16 but were found in clusters expressing the stromal genes Pdgfra and/or Pdgfrb. In adult mice, Gli1+ cells were similarly heterogeneous but more cells co-expressed PDGFRα and PDGFRβ. Using Gli1-CreERT2; ROSA26tdTomato lineage-tracing mice, we found that Gli1-derived cells expand with ductal ligation injury. Although some of the Gli1 lineage-traced tdTomato+ cells expressed vimentin and PDGFRβ following injury, there was no increase in the classic myofibroblast marker, smooth muscle alpha-actin. Additionally, there was little change in extracellular matrix area, remodeled collagen area, PDGFRα, PDGFRβ, endothelial cells, neurons, or macrophages in Gli1 null salivary glands following injury when compared with controls, suggesting that Gli1 signaling and Gli1+ cells have only a minor contribution to mechanical injury-induced fibrotic changes in the salivary gland. We used scRNA-seq to examine cell populations that expand with ligation and/or showed increased expression of matrisome genes. Some Pdgfra + /Pdgfrb + stromal cell subpopulations expanded in response to ligation, with two stromal cell subpopulations showing increased expression of Col1a1 and a greater diversity of matrisome genes, consistent with these cells being fibrogenic. However, only a few cells in these subpopulations expressed Gli1, consistent with a minor contribution of these cells to extracellular matrix production. Defining the signaling pathways driving fibrotic responses in stromal cell sub-types could reveal future therapeutic targets.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Kevin J. O’Keefe
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Victoria A. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Sage M. Feminella
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Nicholas L. Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Carmalena V. Cordi
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Judy C. Turrieta
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
33
|
Kaku C, Ichinose S, Dohi T, Tosa M, Ogawa R. Keloidal Collagen May Be Produced Directly by αSMA-positive Cells: Morphological Analysis and Protein Shotgun Analysis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4897. [PMID: 37051211 PMCID: PMC10085511 DOI: 10.1097/gox.0000000000004897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 04/14/2023]
Abstract
Keloids are fibroproliferative lesions caused by abnormal dermal wound healing. Keloidal collagen (KC) is a pathognomic feature of keloids, but the mechanism by which it forms is unknown. This study aimed to evaluate the histopathology of KC and thereby gain clues into how it forms. Methods The cross-sectional study cohort consisted of a convenience series of patients with keloids who underwent surgical excision. Skin pieces (3 mm2) were collected from the keloid center and nearby control skin. Histopathology was conducted with light and electron microscopy and immunohistochemistry. KC composition was analyzed with protein shotgun analysis. Results Microscopic analyses revealed the ubiquitous close association between KC and αSMA-positive spindle-shaped cells that closely resembled myofibroblasts. Neither KC nor the spindle-shaped cells were observed in the control tissues. Compared with control skin, the collagen fibers in the KC were overall thinner, their diameter varied more, and their spacing was irregular. These features were particularly pronounced in the collagens in the vicinity of the spindle-shaped cells. Protein shotgun analysis did not reveal a specific collagen in KC but showed abnormally high abundance of collagens I, III, VI, XII, and XIV. Conclusions These findings suggest that KC may be produced directly by myofibroblasts rather than simply being denatured collagen fibers. Because collagens VI and XII associate with myofibroblast differentiation, and collagen XIV associates with local mechanical stress, these collagens may reflect, and perhaps contribute to, the keloid-specific local conditions that lead to the formation of KC.
Collapse
Affiliation(s)
- Chiemi Kaku
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Shizuko Ichinose
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Teruyuki Dohi
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Mamiko Tosa
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Rei Ogawa
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
34
|
Altrieth AL, O’Keefe KJ, Gellatly VA, Tavarez JR, Feminella SM, Moskwa NL, Cordi CV, Turrieta JC, Nelson DA, Larsen M. Identifying Fibrogenic Cells Following Salivary Gland Obstructive Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531751. [PMID: 36945483 PMCID: PMC10028956 DOI: 10.1101/2023.03.09.531751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Fibrosis results from excess extracellular matrix accumulation, which alters normal tissue architecture and impedes function. In the salivary gland, fibrosis can be induced by irradiation treatment for cancer therapy, Sjögren's Disease, and other causes; however, it is unclear which stromal cells and signals participate in injury responses and disease progression. As hedgehog signaling has been implicated in fibrosis of the salivary gland and other organs, we examined contributions of the hedgehog effector, Gli1, to fibrotic responses in salivary glands. To experimentally induce a fibrotic response in female murine submandibular salivary glands, we performed ductal ligation surgery. We detected a progressive fibrotic response where both extracellular matrix accumulation and actively remodeled collagen trended upwards at 7 days and significantly increased at 14 days post- ligation. Macrophages, which participate in extracellular matrix remodeling, Gli1 + and PDGFRα + stromal cells, which may deposit extracellular matrix, both increased with injury. Using single-cell RNA-sequencing, we found that a majority of Gli1 + cells at embryonic day 16 also express Pdgfra and/or Pdgfrb. However, in adult mice, only a small subset of Gli1 + cells express PDGFRα and/or PDGFRβ at the protein level. Using lineage-tracing mice, we found that Gli1-derived cells expand with ductal ligation injury. Although some of the Gli1 lineage-traced tdTomato + cells expressed vimentin and PDGFRβ following injury, there was no increase in the classic myofibroblast marker, smooth muscle alpha-actin. Additionally, there was little change in extracellular matrix area, remodeled collagen area, PDGFRα, PDGFRβ, endothelial cells, neurons, or macrophages in Gli1 null salivary glands following injury when compared with controls, suggesting that Gli1 signaling and Gli1 + cells have only a minor contribution to mechanical injury-induced fibrotic changes in the salivary gland. We used scRNA-seq to examine cell populations that expand with ligation and/or showed increased expression of matrisome genes. Pdgfra + /Pdgfrb + stromal cell subpopulations both expanded in response to ligation, showed increased expression and a greater diversity of matrisome genes expressed, consistent with these cells being fibrogenic. Defining the signaling pathways driving fibrotic responses in stromal cell sub-types could reveal future therapeutic targets.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kevin J. O’Keefe
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Carl Zeiss Microscopy, LLC, White Plains, New York, USA
| | - Victoria A. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Sage M. Feminella
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Albany Medical College, Albany, New York, USA
| | - Nicholas L. Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
- Current Location: The Jackson Laboratory, Farmington, Connecticut, USA
| | - Carmalena V. Cordi
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Current Location: Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Judy C. Turrieta
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
35
|
Ultrastructural and Immunohistochemical Characterization of Maternal Myofibroblasts in the Bovine Placenta around Parturition. Vet Sci 2023; 10:vetsci10010044. [PMID: 36669044 PMCID: PMC9863730 DOI: 10.3390/vetsci10010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Myofibroblasts are contractile cells that exhibit features of both fibroblasts and smooth muscle cells. In the synepitheliochorial placenta of the cow myofibroblasts are found in the maternal stroma. However, a deeper understanding of the structure and function of the stromal myofibroblasts in the developed bovine placenta is still missing. Thus, immunohistochemical and ultrastructural analyses in bovine term placentomes, compared to non-pregnant caruncle samples, were conducted. To investigate functional aspects, contractility of placentomal caruncle slices was assessed in an in vitro contraction assay. Additionally, a three-dimensional reconstruction of a bovine placental myofibroblast was created. Immunofluorescent staining revealed a characteristic pattern, including cytoplasmic expression of α-smooth muscle actin, strong perinuclear signal for the intermediate filament vimentin and nuclear progesterone receptor staining. Ultrastructurally, stress fibers, extended cisternae of the rough endoplasmic reticulum and perinuclear intermediate filaments were observed. Moreover, in vitro stimulation with angiotensin-II, but not with prostaglandin F2α, induced contraction of placental caruncle tissue. Altogether, these results indicate that progesterone-responsive myofibroblasts represent a mesenchymal phenotype that is involved in the contractile properties of bovine placental stroma. Therefore, the present findings suggest a potential involvement of myofibroblasts in post-partum events of cattle, i.e., expulsion of fetal membranes and uterine involution.
Collapse
|
36
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
37
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
38
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
39
|
Canadian Contributions in Fibroblast Biology. Cells 2022; 11:cells11152272. [PMID: 35892569 PMCID: PMC9331635 DOI: 10.3390/cells11152272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblasts are stromal cells found in virtually every tissue and organ of the body. For many years, these cells were often considered to be secondary in functional importance to parenchymal cells. Over the past 2 decades, focused research into the roles of fibroblasts has revealed important roles for these cells in the homeostasis of healthy tissue, and has demonstrated that activation of fibroblasts to myofibroblasts is a key step in disease initiation and progression in many tissues, with fibrosis now recognized as not only an outcome of disease, but also a central contributor to tissue dysfunction, particularly in the heart and lungs. With a growing understanding of both fibroblast and myofibroblast heterogeneity, and the deciphering of the humoral and mechanical cues that impact the phenotype of these cells, fibroblast biology is rapidly becoming a major focus in biomedical research. In this review, we provide an overview of fibroblast and myofibroblast biology, particularly in the heart, and including a discussion of pathophysiological processes such as fibrosis and scarring. We then discuss the central role of Canadian researchers in moving this field forwards, particularly in cardiac fibrosis, and highlight some of the major contributions of these individuals to our understanding of fibroblast and myofibroblast biology in health and disease.
Collapse
|
40
|
Hillsley A, Santoso MS, Engels SM, Halwachs KN, Contreras LM, Rosales AM. A strategy to quantify myofibroblast activation on a continuous spectrum. Sci Rep 2022; 12:12239. [PMID: 35851602 PMCID: PMC9293987 DOI: 10.1038/s41598-022-16158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Myofibroblasts are a highly secretory and contractile cell phenotype that are predominant in wound healing and fibrotic disease. Traditionally, myofibroblasts are identified by the de novo expression and assembly of alpha-smooth muscle actin stress fibers, leading to a binary classification: "activated" or "quiescent (non-activated)". More recently, however, myofibroblast activation has been considered on a continuous spectrum, but there is no established method to quantify the position of a cell on this spectrum. To this end, we developed a strategy based on microscopy imaging and machine learning methods to quantify myofibroblast activation in vitro on a continuous scale. We first measured morphological features of over 1000 individual cardiac fibroblasts and found that these features provide sufficient information to predict activation state. We next used dimensionality reduction techniques and self-supervised machine learning to create a continuous scale of activation based on features extracted from microscopy images. Lastly, we compared our findings for mechanically activated cardiac fibroblasts to a distribution of cell phenotypes generated from transcriptomic data using single-cell RNA sequencing. Altogether, these results demonstrate a continuous spectrum of myofibroblast activation and provide an imaging-based strategy to quantify the position of a cell on that spectrum.
Collapse
Affiliation(s)
- Alexander Hillsley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Matthew S Santoso
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sean M Engels
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Kathleen N Halwachs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
41
|
Controlled release of low-molecular weight, polymer-free corticosteroid coatings suppresses fibrotic encapsulation of implanted medical devices. Biomaterials 2022; 286:121586. [DOI: 10.1016/j.biomaterials.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
|
42
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
43
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|