1
|
Grieble GM, Knapp BI, Bidlack JM. Mu Opioid Receptor Positive Allosteric Modulator BMS-986122 Confers Agonist-Dependent G Protein Subtype Signaling Bias. Biochemistry 2025. [PMID: 40378294 DOI: 10.1021/acs.biochem.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The mu opioid receptor (MOR) is a G protein-coupled receptor (GPCR) and is responsible for the effects of all medically used opioids. Most opioids activate all inhibitory Gαi/o/z proteins through MOR, initiating signaling events that culminate in a variety of physiological effects such as analgesia, euphoria, and respiratory depression. Gaining a better understanding of how the chemical structure of opioids influences the functional activation profiles of G protein subtypes by MOR is critical for disentangling the multitude of opioid effects and the development of safer analgesics. A recent development in opioid pharmacology has been the discovery of positive allosteric modulators (PAMs) for opioid receptors, such as BMS-986122, which act at the MOR to increase the potency of full agonists and the efficacy of partial agonists. Here, we utilized a nanoBRET-based functional assay system in live HEK 293T cells to study how the pharmacological properties of opioids were uniquely affected by BMS-986122 when the MOR signaled through specific inhibitory Gα subunits. We report that BMS-986122 differentially enhanced opioid activity when the MOR signaled through different Gα subunits with the greatest difference observed with partial agonists. Additionally, the binding affinity of BMS-986122 to the MOR was significantly altered by the co-binding Gα subunit. Site-directed mutagenesis experiments revealed key amino acid residue differences on Gαi/o subunits involved in the differential effects observed. This study sheds light on the molecular features of biased signaling for both opioid ligands and G proteins, which may prove useful for the further development of biased agonists or allosteric modulators at the MOR.
Collapse
Affiliation(s)
- Grant M Grieble
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Brian I Knapp
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Jean M Bidlack
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
2
|
Franchini L, Porter JJ, Lueck JD, Orlandi C. G zESTY as an optimized cell-based assay for initial steps in GPCR deorphanization. Nat Commun 2025; 16:4521. [PMID: 40374633 PMCID: PMC12081699 DOI: 10.1038/s41467-025-59850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are key pharmacological targets, yet many remain underutilized due to unknown activation mechanisms and ligands. Orphan GPCRs, lacking identified natural ligands, are a high priority for research, as identifying their ligands will aid in understanding their functions and potential as drug targets. Most GPCRs, including orphans, couple to Gi/o/z family members, however current assays to detect their activation are limited, hindering ligand identification efforts. We introduce GzESTY, a sensitive, cell-based assay developed in an easily deliverable format designed to study the pharmacology of Gi/o/z-coupled GPCRs and assist in deorphanization. We optimized assay conditions and developed an all-in-one vector employing cloning methods to ensure the correct expression ratio of GzESTY components. GzESTY successfully assessed activation of a library of ligand-activated GPCRs, detecting both full and partial agonism, and responses from endogenous GPCRs. Notably, with GzESTY we established the presence of endogenous ligands for GPR176 and GPR37 in brain extracts, validating its use in deorphanization efforts. This assay enhances the ability to find ligands for orphan GPCRs, expanding the toolkit for GPCR pharmacologists.
Collapse
Grants
- R01DC022104 U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- R01HL153988 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL153988 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- This work was supported by start-up funding from the Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry to C.O.; Ernest J. Del Monte Institute for Neuroscience Pilot Program, University of Rochester, to C.O.; University Research Award, University of Rochester to C.O; NIDCD/NIH grant R01DC022104 to C.O.; R01HL153988 to J.D.L.; this work was aided by the GCE4All Biomedical Technology Optimization and Dissemination Center supported by National Institute of General Medical Science grant RM1-GM144227; The Foundation Blanceflor Boncompagni Ludovisi-née Bildt fellowship to L.F.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Joseph J Porter
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - John D Lueck
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Lamme TD, Smit MJ, Schafer CT. Signal termination of the chemokine receptor CCR9 is governed by an arrestin-independent phosphorylation mechanism. J Biol Chem 2025; 301:108462. [PMID: 40154615 DOI: 10.1016/j.jbc.2025.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The C-C chemokine receptor type 9 (CCR9) coordinates immune cell migration from the thymus to the small intestine along gradients of the chemokine CCL25. Receptor dysregulation is associated with a variety of inflammatory bowel diseases such as Crohn's and ulcerative colitis, whereas aberrant CCR9 overexpression correlates with tumor metastasis. Despite being an attractive therapeutic target, attempts to clinically antagonize CCR9 have been unsuccessful. This highlights the need for a deeper understanding of its specific regulatory mechanisms and signaling pathways. CCR9 is a G protein-coupled receptor (GPCR) and activates Gi and Gq pathways. Unexpectedly, live-cell bioluminescence resonance energy transfer assays reveal only limited G protein activation, and signaling is rapidly terminated. Truncating the receptor C terminus significantly enhanced G protein coupling, highlighting a regulatory role of this domain. Signal suppression was not because of canonical arrestin-coordinated desensitization. Rather, removal of GPCR kinase phosphorylation led to sustained and robust G protein activation by CCR9. Using site-directed mutagenesis, we identified specific phosphorylation motifs that attenuate G protein coupling. Receptor internalization did not correlate with G protein activation capabilities. Instead, CCR9 phosphorylation disrupted the interaction of G protein heterotrimers with the receptor. This interference may lead to rapid loss of productive coupling and downstream signaling as phosphorylation would effectively render the receptor incapable of G protein coupling. An arrestin-independent, phosphorylation-driven deactivation mechanism could complement arrestin-dependent regulation of other GPCRs and have consequences for therapeutically targeting these receptors.
Collapse
Affiliation(s)
- Thomas D Lamme
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christopher T Schafer
- Faculty of Science, Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Moo EV, Møller TC, Sørensen FA, Inoue A, Bräuner‐Osborne H. Arrestin-independent internalization of the GLP-1 receptor is facilitated by a GRK, clathrin, and caveolae-dependent mechanism. FEBS J 2025; 292:1675-1695. [PMID: 39756024 PMCID: PMC11970717 DOI: 10.1111/febs.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function. Utilizing a reliable and sensitive time-resolved fluorescence resonance energy transfer (TR-FRET) internalization assay, combined with HEK293-derived knockout cell lines, we were able to directly compare the involvement of different endocytic machinery in GLP-1R internalization. Our findings indicate that the receptor internalizes independently of arrestin and is dependent on Gs and Gi/o activation and G protein-coupled receptor kinase phosphorylation. Mechanistically, we observed that the receptor undergoes distinct clathrin- and caveolae-mediated internalization in HEK293 cells. This study also investigated the role of arrestins in GLP-1R function and regulation. These insights into key endocytic components that are involved in the GLP-1R internalization pathway could enhance the rational design of GLP-1R therapeutics for type 2 diabetes and other GLP-1R-related diseases.
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and PharmacologyUniversity of CopenhagenDenmark
| | | | | | - Asuka Inoue
- Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
- Graduate School of Pharmaceutical SciencesKyoto UniversityJapan
| | | |
Collapse
|
5
|
Shiimura Y, Im D, Tany R, Asada H, Kise R, Kurumiya E, Wakasugi-Masuho H, Yasuda S, Matsui K, Kishikawa JI, Kato T, Murata T, Kojima M, Iwata S, Masuho I. The structure and function of the ghrelin receptor coding for drug actions. Nat Struct Mol Biol 2025; 32:531-542. [PMID: 39833471 DOI: 10.1038/s41594-024-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Drugs targeting the ghrelin receptor hold therapeutic potential in anorexia, obesity and diabetes. However, developing effective drugs is challenging. To tackle this common issue across a broad drug target, this study aims to understand how anamorelin, the only approved drug targeting the ghrelin receptor, operates compared to other synthetic drugs. Our research elucidated the receptor's structure with anamorelin and miniGq, unveiling anamorelin's superagonistic activity. We demonstrated that ligands with distinct chemical structures uniquely bind to the receptor, resulting in diverse conformations and biasing signal transduction. Moreover, our study showcased the utility of structural information in effectively identifying natural genetic variations altering drug action and causing severe functional deficiencies, offering a basis for selecting the right medication on the basis of the individual's genomic sequence. Thus, by building on structural analysis, this study enhances the foundational framework for selecting therapeutic agents targeting the ghrelin receptor, by effectively leveraging signaling bias and genetic variations.
Collapse
Affiliation(s)
- Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan.
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Eon Kurumiya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, Osaka, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Ikuo Masuho
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
6
|
Benson MR, Wyatt RA, Levine MA, Gorvin CM. An activating calcium-sensing receptor variant with biased signaling reveals a critical residue for Gα11 coupling. J Bone Miner Res 2025; 40:270-282. [PMID: 39658204 PMCID: PMC11789390 DOI: 10.1093/jbmr/zjae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/05/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Autosomal dominant hypocalcemia (ADH) is due to enhanced calcium-dependent signaling caused by heterozygous gain-of-function (GOF) variants in the CASR gene (ADH1) or in the GNA11 gene, encoding Gα11 (ADH2). Both ADH1 and ADH2 are associated with hypocalcemia and normal or inappropriately low levels of circulating PTH. ADH1 patients typically manifest hypercalciuria, while ADH2 is associated with short stature in approximately 42% of cases. We evaluated a 10-yr-old boy with hypoparathyroidism and short stature. Biochemical analyses revealed hypocalcemia, hyperphosphatemia, and inconsistent hypercalciuria. Genetic analyses revealed a de novo heterozygous p.Leu723Arg variant in CASR. We characterized the expression of recombinant WT and Leu723Arg calcium-sensing receptor (CaSR) proteins in HEK293 cells and assessed G protein activation in vitro by CaSR using bioluminescence resonance energy transfer. Transient expression studies showed the Leu723Arg variant was normally expressed but resulted in a significantly lower EC50 for extracellular calcium activation of G11 but not other G proteins (ie, Gi, Gq, Gs). The Leu723Arg substitution has a novel GOF phenotype that leads to biased CaSR activation of G11 signaling, suggesting that residue 723 specifies activation of G11 but not other G proteins. Similar studies of a previously described CaSR variant associated with hypoparathyroidism and short stature, Leu616Val, showed no changes in any G protein pathways, indicating it is likely to be a benign variant. Given the preferential activation of G11 by the Leu723Arg CaSR variant, we propose that the patient's short stature shares a similar basis to that in patients with ADH2 due to GOF variants in GNA11.
Collapse
Affiliation(s)
- Matthew R Benson
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children’s Health, Jacksonville, FL 32207, United States
| | - Rachael A Wyatt
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| | - Michael A Levine
- Division of Endocrinology and Diabetes, Department of Pediatrics, Center for Bone Health, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
7
|
Perry-Hauser NA, Du Rand JR, Lee KH, Shi L, Javitch JA. N-terminal fragment shedding contributes to signaling of the full-length adhesion receptor ADGRL3. J Biol Chem 2025; 301:108174. [PMID: 39798870 PMCID: PMC11849108 DOI: 10.1016/j.jbc.2025.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025] Open
Abstract
Most adhesion G protein-coupled receptors (GPCRs) undergo autoproteolytic cleavage during receptor biosynthesis, resulting in noncovalently bound N-terminal fragments (NTFs) and C-terminal fragments (CTFs) that remain associated during receptor trafficking to the plasma membrane. While substantial evidence supports increased G protein signaling when just the CTF is expressed, there is an ongoing debate about whether NTF removal is required to initiate signaling in the context of the WT receptor. Here, we use adhesion GPCR latrophilin-3 (ADGRL3) as a model receptor to investigate tethered agonist (TA)-mediated activation. First, we show that extending the N terminus of the TA in ADGRL3 CTF disrupts G protein signaling. This suggests that if the TA is not fully exposed, it is unlikely to interact with the orthosteric pocket in an optimal manner for G protein activation. Second, we show that when full-length ADGRL3 is expressed in heterologous cells, approximately 5% of the receptor population spontaneously sheds its NTF. We hypothesized that the signaling activity observed for full-length ADGRL3 is largely because of this shedding, which exposes the native TA. To test this hypothesis, we used a full-length cleavage-deficient ADGRL3 mutant. Compared with WT receptor, this mutant lost ∼80% of its signaling through Gα13 and showed a much lower level of spontaneous NTF shedding, approximately 20% of that observed for WT receptor. This loss of spontaneous NTF shedding likely explains its diminished signaling activity. These findings suggest that TA-mediated signal transduction by full-length ADGRL3 requires removal of its NTF.
Collapse
Affiliation(s)
- Nicole A Perry-Hauser
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan R Du Rand
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA.
| |
Collapse
|
8
|
Du W, Rahman SN, Barker E, Bräuner-Osborne H, Mathiesen JM, Ward DT, Jensen AA. Detailed functional characterization of four nanobodies as positive allosteric modulators of the human calcium-sensing receptor. Biochem Pharmacol 2025; 231:116619. [PMID: 39522703 DOI: 10.1016/j.bcp.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The calcium-sensing receptor (CaSR) plays a key role in calcium homeostasis, and small-molecule and peptide positive allosteric modulators (PAMs) of CaSR, so-called calcimimetics, are used in the treatment of hyperparathyroidism and hypocalcemic disorders. In this study, four monovalent nanobodies - representing four distinct nanobody families with CaSR PAM activity - were subjected to elaborate pharmacological profiling at the receptor. While Nb5 displayed negligible PAM activity at CaSR in all assays, Nb4, Nb10 and Nb45 all potently potentiated Ca2+-evoked signalling through a myc epitope-tagged CaSR expressed in HEK293 or HEK293T cells in Gαq and Gαi1 protein activation assays and in a Ca2+/Fluo-4 assay. Nb4 and Nb10 also displayed comparable PAM properties at a stable CaSR-HEK293 cell line in a Ca2+/Fura-2 imaging assay, but surprisingly Nb45 was completely inactive at this cell line in both the Ca2+/Fura-2 and Ca2+/Fluo-4 assays. Investigations into this binary difference in Nb45 activity revealed that the nanobody only possesses modulatory activity at CaSRs tagged N-terminally with various epitopes (myc, HA, Flag-SNAP), whereas it is inactive at the untagged wild-type receptor. In conclusion, overall each of the four nanobodies exhibit similar CaSR PAM properties in a range of assays, and thus none of them display pathway bias as modulators. However, of the four nanobodies Nb4 and Nb10 would be applicable as pharmacological tools for the wild-type CaSR, whereas the complete inactivity of Nb45 at the untagged CaSR serves as an reminder that epitope-tagging of a receptor, even if deemed functionally silent, can have profound implications for ligand discovery efforts.
Collapse
Affiliation(s)
- Wei Du
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sabrina N Rahman
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Eleanor Barker
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
9
|
Janicot R, Garcia-Marcos M. Protocol for detecting endogenous GPCR activity in primary cell cultures using ONE-GO biosensors. STAR Protoc 2024; 5:103355. [PMID: 39356642 PMCID: PMC11480228 DOI: 10.1016/j.xpro.2024.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
ONE vector G protein Optical (ONE-GO) biosensors can measure the activity of endogenously expressed G protein-coupled receptors (GPCRs) in primary cells. By detecting G proteins that belong to all four families (Gs, Gi/o, Gq/11, G12/13) across cell types, these biosensors provide high experimental versatility. We first describe steps to express ONE-GO biosensors in primary cells using lentiviral transduction. We then detail how to carry out measurements and subsequent analysis to quantify changes in bioluminescence resonance energy transfer (BRET) reporting on endogenous GPCR activity. For complete details on the use and execution of this protocol, please refer to Janicot et al.1.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Janicot R, Garcia-Marcos M. Protocol to investigate G protein-coupled receptor signaling kinetics and concentration-dependent responses using ONE-GO biosensors. STAR Protoc 2024; 5:103383. [PMID: 39395175 PMCID: PMC11735995 DOI: 10.1016/j.xpro.2024.103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
ONE vector G protein optical (ONE-GO) biosensors are versatile tools to measure the activity of G protein-coupled receptors (GPCRs) in cells. The availability of ONE-GO biosensors for ten active Gα subunits representative of all four G protein families (Gs, Gi/o, Gq/11, and G12/13) permits the study of virtually any GPCR. Here, we present a protocol to implement ONE-GO biosensors in cell lines to investigate GPCR signaling kinetics and concentration-dependent responses. We describe steps for cell culture and transfection, response measurement, and data analysis. For complete details on the use and execution of this protocol, please refer to Janicot et al.1.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Luo H, Anderson A, Masuho I, Marron Fernandez de Velasco E, Birnbaumer L, Martemyanov KA, Wickman K. Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics. Prog Neurobiol 2024; 243:102686. [PMID: 39542413 PMCID: PMC11923652 DOI: 10.1016/j.pneurobio.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Most neurons are influenced by multiple neuromodulatory inputs that converge on common effectors. Mechanisms that route these signals are key to selective neuromodulation but are poorly understood. G protein-gated inwardly rectifying K+ (GIRK or Kir3) channels mediate postsynaptic inhibition evoked by G protein-coupled receptors (GPCRs) that signal via inhibitory G proteins. GIRK-dependent signaling is modulated by Regulator of G protein Signaling proteins RGS6 and RGS7, but their selectivity for distinct GPCR-GIRK signaling pathways in defined neurons is unclear. We compared how RGS6 and RGS7 impact GIRK channel regulation by the GABAB receptor (GABABR), 5HT1A receptor (5HT1AR), and A1 adenosine receptor (A1R) in hippocampal neurons. Our data show that RGS6 and RGS7 make non-redundant contributions to GABABR- and 5HT1AR-GIRK signaling and compartmentalization and suggest that GPCR-G protein preferences and the substrate bias of RGS proteins, as well as receptor-dependent differences in Gαo engagement and effector access, shape GPCR-GIRK signaling dynamics in hippocampal neurons.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ikuo Masuho
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | | | - Lutz Birnbaumer
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States; Biomedical Research Institute, Catholic University of Argentina, Buenos Aires C1107AAZ, Argentina
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
13
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Hoang HTM, George K, Ahmad M. Application of bioluminescence resonance energy transfer assays in primary mouse neuronal cultures. STAR Protoc 2024; 5:103228. [PMID: 39068655 PMCID: PMC11339249 DOI: 10.1016/j.xpro.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is widely employed for real-time monitoring of G protein-coupled receptor activity, interactions, and trafficking in heterologous cell lines, yet its use in neuronal systems remains limited. Here, we present a protocol to apply BRET assays to primary neuronal cultures from mouse embryos. We describe steps and key concepts for generating plasmid constructs and lentivirus preparations, plating and lentiviral transduction of primary cultured neurons in 96-well plates, and BRET data collection and analysis. For complete details on the use and execution of this protocol, please refer to George et al.1.
Collapse
Affiliation(s)
- Hanh T M Hoang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kiran George
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
15
|
Brands J, Bravo S, Jürgenliemke L, Grätz L, Schihada H, Frechen F, Alenfelder J, Pfeil C, Ohse PG, Hiratsuka S, Kawakami K, Schmacke LC, Heycke N, Inoue A, König G, Pfeifer A, Wachten D, Schulte G, Steinmetzer T, Watts VJ, Gomeza J, Simon K, Kostenis E. A molecular mechanism to diversify Ca 2+ signaling downstream of Gs protein-coupled receptors. Nat Commun 2024; 15:7684. [PMID: 39227390 PMCID: PMC11372221 DOI: 10.1038/s41467-024-51991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
A long-held tenet in inositol-lipid signaling is that cleavage of membrane phosphoinositides by phospholipase Cβ (PLCβ) isozymes to increase cytosolic Ca2+ in living cells is exclusive to Gq- and Gi-sensitive G protein-coupled receptors (GPCRs). Here we extend this central tenet and show that Gs-GPCRs also partake in inositol-lipid signaling and thereby increase cytosolic Ca2+. By combining CRISPR/Cas9 genome editing to delete Gαs, the adenylyl cyclase isoforms 3 and 6, or the PLCβ1-4 isozymes, with pharmacological and genetic inhibition of Gq and G11, we pin down Gs-derived Gβγ as driver of a PLCβ2/3-mediated cytosolic Ca2+ release module. This module does not require but crosstalks with Gαs-dependent cAMP, demands Gαq to release PLCβ3 autoinhibition, but becomes Gq-independent with mutational disruption of the PLCβ3 autoinhibited state. Our findings uncover the key steps of a previously unappreciated mechanism utilized by mammalian cells to finetune their calcium signaling regulation through Gs-GPCRs.
Collapse
Affiliation(s)
- Julian Brands
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 2873, University of Bonn, Bonn, Germany
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Fabian Frechen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Cy Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Paul Georg Ohse
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Suzune Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
| | - Luna C Schmacke
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Gabriele König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Jesús Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Yeung HY, Ramiro IBL, Andersen DB, Koch TL, Hamilton A, Bjørn-Yoshimoto WE, Espino S, Vakhrushev SY, Pedersen KB, de Haan N, Hipgrave Ederveen AL, Olivera BM, Knudsen JG, Bräuner-Osborne H, Schjoldager KT, Holst JJ, Safavi-Hemami H. Fish-hunting cone snail disrupts prey's glucose homeostasis with weaponized mimetics of somatostatin and insulin. Nat Commun 2024; 15:6408. [PMID: 39164229 PMCID: PMC11336141 DOI: 10.1038/s41467-024-50470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024] Open
Abstract
Venomous animals have evolved diverse molecular mechanisms to incapacitate prey and defend against predators. Most venom components disrupt nervous, locomotor, and cardiovascular systems or cause tissue damage. The discovery that certain fish-hunting cone snails use weaponized insulins to induce hypoglycemic shock in prey highlights a unique example of toxins targeting glucose homeostasis. Here, we show that, in addition to insulins, the deadly fish hunter, Conus geographus, uses a selective somatostatin receptor 2 (SSTR2) agonist that blocks the release of the insulin-counteracting hormone glucagon, thereby exacerbating insulin-induced hypoglycemia in prey. The native toxin, Consomatin nG1, exists in several proteoforms with a minimized vertebrate somatostatin-like core motif connected to a heavily glycosylated N-terminal region. We demonstrate that the toxin's N-terminal tail closely mimics a glycosylated somatostatin from fish pancreas and is crucial for activating the fish SSTR2. Collectively, these findings provide a stunning example of chemical mimicry, highlight the combinatorial nature of venom components, and establish glucose homeostasis as an effective target for prey capture.
Collapse
Affiliation(s)
- Ho Yan Yeung
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA
| | - Iris Bea L Ramiro
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Thomas Lund Koch
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Alexander Hamilton
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University, Malmö, Sweden
| | - Walden E Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Samuel Espino
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Kasper B Pedersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Noortje de Haan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333, ZA, Leiden, The Netherlands
| | - Agnes L Hipgrave Ederveen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333, ZA, Leiden, The Netherlands
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Jakob G Knudsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA.
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
17
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
18
|
George K, Hoang HT, Tibbs T, Nagaraja RY, Li G, Troyano-Rodriguez E, Ahmad M. Robust GRK2/3/6-dependent desensitization of oxytocin receptor in neurons. iScience 2024; 27:110047. [PMID: 38883814 PMCID: PMC11179071 DOI: 10.1016/j.isci.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Oxytocin plays critical roles in the brain as a neuromodulator, regulating social and other affective behavior. However, the regulatory mechanisms controlling oxytocin receptor (OXTR) signaling in neurons remain unexplored. In this study, we have identified robust and rapid-onset desensitization of OXTR response in multiple regions of the mouse brain. Both cell autonomous spiking response and presynaptic activation undergo similar agonist-induced desensitization. G-protein-coupled receptor kinases (GRK) GRK2, GRK3, and GRK6 are recruited to the activated OXTR in neurons, followed by recruitment of β-arrestin-1 and -2. Neuronal OXTR desensitization was impaired by suppression of GRK2/3/6 kinase activity but remained unaltered with double knockout of β-arrestin-1 and -2. Additionally, we observed robust agonist-induced internalization of neuronal OXTR and its Rab5-dependent recruitment to early endosomes, which was impaired by GRK2/3/6 inhibition. This work defines distinctive aspects of the mechanisms governing OXTR desensitization and internalization in neurons compared to prior studies in heterologous cells.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hanh T.M. Hoang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Taryn Tibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y. Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Guangpu Li
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eva Troyano-Rodriguez
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Roy S, Sinha S, Silas AJ, Ghassemian M, Kufareva I, Ghosh P. Growth factor-dependent phosphorylation of Gα i shapes canonical signaling by G protein-coupled receptors. Sci Signal 2024; 17:eade8041. [PMID: 38833528 PMCID: PMC11328959 DOI: 10.1126/scisignal.ade8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.
Collapse
Affiliation(s)
- Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Ananta James Silas
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| |
Collapse
|
20
|
Trovò L, Kouvaros S, Schwenk J, Fernandez-Fernandez D, Fritzius T, Rem PD, Früh S, Gassmann M, Fakler B, Bischofberger J, Bettler B. Synaptotagmin-11 facilitates assembly of a presynaptic signaling complex in post-Golgi cargo vesicles. EMBO Rep 2024; 25:2610-2634. [PMID: 38698221 PMCID: PMC11169412 DOI: 10.1038/s44319-024-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Collapse
Affiliation(s)
- Luca Trovò
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Simon Früh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Center for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Freiburg, Germany
| | | | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Bjørn-Yoshimoto WE, Ramiro IBL, Koch TL, Engholm E, Yeung HY, Sørensen KK, Goddard CM, Jensen KL, Smith NA, Martin LF, Smith BJ, Madsen KL, Jensen KJ, Patwardhan A, Safavi-Hemami H. Venom-inspired somatostatin receptor 4 (SSTR4) agonists as new drug leads for peripheral pain conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591104. [PMID: 38746149 PMCID: PMC11092515 DOI: 10.1101/2024.04.29.591104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Persistent pain affects one in five people worldwide, often with severely debilitating consequences. Current treatment options, which can be effective for mild or acute pain, are ill-suited for moderate-to-severe persistent pain, resulting in an urgent need for new therapeutics. In recent years, the somatostatin receptor 4 (SSTR 4 ), which is expressed in sensory neurons of the peripheral nervous system, has emerged as a promising target for pain relief. However, the presence of several closely related receptors with similar ligand-binding surfaces complicates the design of receptor-specific agonists. In this study, we report the discovery of a potent and selective SSTR 4 peptide, consomatin Fj1, derived from extensive venom gene datasets from marine cone snails. Consomatin Fj1 is a mimetic of the endogenous hormone somatostatin and contains a minimized binding motif that provides stability and drives peptide selectivity. Peripheral administration of synthetic consomatin Fj1 provided analgesia in mouse models of postoperative and neuropathic pain. Using structure-activity studies, we designed and functionally evaluated several Fj1 analogs, resulting in compounds with improved potency and selectivity. Our findings present a novel avenue for addressing persistent pain through the design of venom-inspired SSTR 4 -selective pain therapeutics. One Sentence Summary Venom peptides from predatory marine mollusks provide new leads for treating peripheral pain conditions through a non-opioid target.
Collapse
|
22
|
Nelic D, Chetverikov N, Hochmalová M, Diaz C, Doležal V, Boulos J, Jakubík J, Martemyanov K, Janoušková-Randáková A. Agonist-selective activation of individual G-proteins by muscarinic receptors. Sci Rep 2024; 14:9652. [PMID: 38671143 PMCID: PMC11053168 DOI: 10.1038/s41598-024-60259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.
Collapse
Affiliation(s)
- Dominik Nelic
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Nikolai Chetverikov
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Hochmalová
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Christina Diaz
- Department of Physical Sciences, Barry University, Miami Shores, Miami, FL, USA
| | - Vladimír Doležal
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - John Boulos
- Department of Physical Sciences, Barry University, Miami Shores, Miami, FL, USA
| | - Jan Jakubík
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kirill Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Alena Janoušková-Randáková
- Department of Neurochemistry, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
23
|
Mönnich D, Humphrys LJ, Höring C, Hoare BL, Forster L, Pockes S. Activation of Multiple G Protein Pathways to Characterize the Five Dopamine Receptor Subtypes Using Bioluminescence Technology. ACS Pharmacol Transl Sci 2024; 7:834-854. [PMID: 38481695 PMCID: PMC10928903 DOI: 10.1021/acsptsci.3c00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 11/01/2024]
Abstract
G protein-coupled receptors show preference for G protein subtypes but can recruit multiple G proteins with various downstream signaling cascades. This functional selection can guide drug design. Dopamine receptors are both stimulatory (D1-like) and inhibitory (D2-like) with diffuse expression across the central nervous system. Functional selectivity of G protein subunits may help with dopamine receptor targeting and their downstream effects. Three bioluminescence-based assays were used to characterize G protein coupling and function with the five dopamine receptors. Most proximal to ligand binding was the miniG protein assay with split luciferase technology used to measure recruitment. For endogenous and selective ligands, the G-CASE bioluminescence resonance energy transfer (BRET) assay measured G protein activation and receptor selectivity. Downstream, the BRET-based CAMYEN assay quantified cyclic adenosine monophosphate (cAMP) changes. Several dopamine receptor agonists and antagonists were characterized for their G protein recruitment and cAMP effects. G protein selectivity with dopamine revealed potential Gq coupling at all five receptors, as well as the ability to activate subtypes with the "opposite" effects to canonical signaling. D1-like receptor agonist (+)-SKF-81297 and D2-like receptor agonist pramipexole showed selectivity at all receptors toward Gs or Gi/o/z activation, respectively. The five dopamine receptors show a wide range of potentials for G protein coupling and activation, reflected in their downstream cAMP signaling. Targeting these interactions can be achieved through drug design. This opens the door to pharmacological treatment with more selectivity options for inducing the correct physiological events.
Collapse
Affiliation(s)
- Denise Mönnich
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Carina Höring
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bradley L. Hoare
- Florey
Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa Forster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
24
|
McCullock TW, Cardani LP, Kammermeier PJ. Signaling Specificity and Kinetics of the Human Metabotropic Glutamate Receptors. Mol Pharmacol 2024; 105:104-115. [PMID: 38164584 PMCID: PMC10794986 DOI: 10.1124/molpharm.123.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are obligate dimer G protein coupled receptors that can all function as homodimers. Here, each mGluR homodimer was examined for its G protein coupling profile using a bioluminescence resonance energy transfer-based assay that detects the interaction between a split YFP-tagged Gβ 1γ2 and a Nanoluciferase tagged free Gβγ sensor, MAS-GRK3-ct- nanoluciferase with 14 specific Gα proteins heterologously expressed, representing each family. Canonically, the group II and III mGluRs (2 and 3 and 4, 6, 7, and 8, respectively) are thought to couple to Gi/o exclusively. In addition, the group I mGluRs (1 and 5) are known to couple to the Gq/11 family and generally thought to also couple to the pertussis toxin-sensitive Gi/o family some reports have suggested Gs coupling is possible as cAMP elevations have been noted. In this study, coupling was observed with all eight mGluRs through the Gi/o proteins and only mGluR1 and mGluR5 through Gq/11, and, perhaps surprisingly, not G14 None activated any Gs protein. Interestingly, coupling was seen with the group I and II but not the group III mGluRs to G16 Slow but significant coupling to Gz was also seen with the group II receptors. SIGNIFICANCE STATEMENT: Metabotropic glutamate receptor (mGluR)-G protein coupling has not been thoroughly examined, and some controversy remains about whether some mGluRs can activate Gαs family members. Here we examine the ability of each mGluR to activate representative members of every Gα protein family. While all mGluRs can activate Gαi/o proteins, only the group I mGluRs couple to Gαq/11, and no members of the family can activate Gαs family members, including the group I receptors alone or with positive allosteric modulators.
Collapse
Affiliation(s)
- Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Loren P Cardani
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
25
|
Demby A, Zaccolo M. Investigating G-protein coupled receptor signalling with light-emitting biosensors. Front Physiol 2024; 14:1310197. [PMID: 38260094 PMCID: PMC10801095 DOI: 10.3389/fphys.2023.1310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the most frequent target of currently approved drugs and play a central role in both physiological and pathophysiological processes. Beyond the canonical understanding of GPCR signal transduction, the importance of receptor conformation, beta-arrestin (β-arr) biased signalling, and signalling from intracellular locations other than the plasma membrane is becoming more apparent, along with the tight spatiotemporal compartmentalisation of downstream signals. Fluorescent and bioluminescent biosensors have played a pivotal role in elucidating GPCR signalling events in live cells. To understand the mechanisms of action of the GPCR-targeted drugs currently available, and to develop new and better GPCR-targeted therapeutics, understanding these novel aspects of GPCR signalling is critical. In this review, we present some of the tools available to interrogate each of these features of GPCR signalling, we illustrate some of the key findings which have been made possible by these tools and we discuss their limitations and possible developments.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Pándy-Szekeres G, Taracena Herrera LP, Caroli J, Kermani AA, Kulkarni Y, Keserű GM, Gloriam DE. GproteinDb in 2024: new G protein-GPCR couplings, AlphaFold2-multimer models and interface interactions. Nucleic Acids Res 2024; 52:D466-D475. [PMID: 38000391 PMCID: PMC10767870 DOI: 10.1093/nar/gkad1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
G proteins are the major signal proteins of ∼800 receptors for medicines, hormones, neurotransmitters, tastants and odorants. GproteinDb offers integrated genomic, structural, and pharmacological data and tools for analysis, visualization and experiment design. Here, we present the first major update of GproteinDb greatly expanding its coupling data and structural templates, adding AlphaFold2 structure models of GPCR-G protein complexes and advancing the interactive analysis tools for their interfaces underlying coupling selectivity. We present insights on coupling agreement across datasets and parameters, including constitutive activity, agonist-induced activity and kinetics. GproteinDb is accessible at https://gproteindb.org.
Collapse
Affiliation(s)
- Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - Luis P Taracena Herrera
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jimmy Caroli
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ali A Kermani
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yashraj Kulkarni
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Rodgers J, Wright P, Ballister ER, Hughes RB, Storchi R, Wynne J, Martial FP, Lucas RJ. Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications. Pflugers Arch 2023; 475:1387-1407. [PMID: 38036775 PMCID: PMC10730688 DOI: 10.1007/s00424-023-02879-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells. We find that the application of the canonical rhodopsin kinase (GRK1)/visual arrestin signal termination mechanism to this problem is complicated by a generalised suppressive effect of GRK1 expression. This attenuation can be overcome using phosphorylation-independent mutants of arrestin, especially when these are tethered to the opsin protein. We further show that point mutations targeting the Schiff base stability of the opsin can also reduce signalling lifetime. Finally, we apply one such mutation (E122Q) to improve the temporal fidelity of restored visual responses following ectopic opsin expression in the inner retina of a mouse model of retinal degeneration (rd1). Our results reveal that these two strategies (targeting either arrestin binding or Schiff-base hydrolysis) can produce more time-delimited opsin signalling under heterologous expression and establish the potential of this approach to improve optogenetic performance.
Collapse
Affiliation(s)
- Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Phillip Wright
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Edward R Ballister
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, 10032, NY, USA
| | - Rebecca B Hughes
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Riccardo Storchi
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan Wynne
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Franck P Martial
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
28
|
Domínguez-Carral J, Ludlam WG, Segarra MJ, Marti MF, Balsells S, Muchart J, Petrović DČ, Espinoza I, GNAO1-Study Group, Ortigoza-Escobar JD, Martemyanov KA. Severity of GNAO1-Related Disorder Correlates with Changes in G-Protein Function. Ann Neurol 2023; 94:987-1004. [PMID: 37548038 PMCID: PMC10681096 DOI: 10.1002/ana.26758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE GNAO1-related disorders (OMIM #615473 and #617493), caused by variants in the GNAO1 gene, are characterized by developmental delay or intellectual disability, hypotonia, movement disorders, and epilepsy. Neither a genotype-phenotype correlation nor a clear severity score have been established for this disorder. The objective of this prospective and retrospective observational study was to develop a severity score for GNAO1-related disorders, and to delineate the correlation between the underlying molecular mechanisms and clinical severity. METHODS A total of 16 individuals with GNAO1-related disorders harboring 12 distinct missense variants, including four novel variants (p.K46R, p.T48I, p.R209P, and p.L235P), were examined with repeated clinical assessments, video-electroencephalogram monitoring, and brain magnetic resonance imaging. The molecular pathology of each variant was delineated using a molecular deconvoluting platform. RESULTS The patients displayed a wide variability in the severity of their symptoms. This heterogeneity was well represented in the GNAO1-related disorders severity score, with a broad range of results. Patients with the same variant had comparable severity scores, indicating that differences in disease profiles are not due to interpatient variability, but rather, to unique disease mechanisms. Moreover, we found a significant correlation between clinical severity scores and molecular mechanisms. INTERPRETATION The clinical score proposed here provides further insight into the correlation between pathophysiology and phenotypic severity in GNAO1-related disorders. We found that each variant has a unique profile of clinical phenotypes and pathological molecular mechanisms. These findings will contribute to better understanding GNAO1-related disorders. Additionally, the severity score will facilitate standardization of patients categorization and assessment of response to therapies in development. ANN NEUROL 2023;94:987-1004.
Collapse
Affiliation(s)
- Jana Domínguez-Carral
- Epilepsy Unit, Department of Child Neurology, Institut de
Recerca Sant Joan de Déu, Barcelona, Spain
| | - William Grant Ludlam
- Department of Neuroscience, The Herbert Wertheim UF
Scripps Institute for Biomedical Innovation & Technology, University of Florida,
Jupiter, FL 33458, USA
| | | | | | - Sol Balsells
- Department of Statistics Institut de Recerca Sant Joan de
Déu Barcelona Spain
| | - Jordi Muchart
- Department of Pediatric Radiology, Hospital Sant Joan de
Déu, Barcelona, Spain
| | | | - Iván Espinoza
- Pediatric Neurology Department, Hospital Nacional Cayetano
Heredia, Lima, Perú
| | | | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology,
Institut de Recerca Sant Joan de Déu
- U-703 Centre for Biomedical Research on Rare Diseases
(CIBER-ER), Instituto de Salud Carlos III, 08002 Barcelona, Spain
- European Reference Network for Rare Neurological
Diseases (ERN-RND), Barcelona, Spain
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF
Scripps Institute for Biomedical Innovation & Technology, University of Florida,
Jupiter, FL 33458, USA
| |
Collapse
|
29
|
Masuho I, Kise R, Gainza P, Von Moo E, Li X, Tany R, Wakasugi-Masuho H, Correia BE, Martemyanov KA. Rules and mechanisms governing G protein coupling selectivity of GPCRs. Cell Rep 2023; 42:113173. [PMID: 37742189 PMCID: PMC10842385 DOI: 10.1016/j.celrep.2023.113173] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ee Von Moo
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Xiaona Li
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hideko Wakasugi-Masuho
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kirill A Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
30
|
Patil DN, Pantalone S, Cao Y, Laboute T, Novick SJ, Singh S, Savino S, Faravelli S, Magnani F, Griffin PR, Singh AK, Forneris F, Martemyanov KA. Structure of the photoreceptor synaptic assembly of the extracellular matrix protein pikachurin with the orphan receptor GPR179. Sci Signal 2023; 16:eadd9539. [PMID: 37490546 PMCID: PMC10561654 DOI: 10.1126/scisignal.add9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Precise synapse formation is essential for normal functioning of the nervous system. Retinal photoreceptors establish selective contacts with bipolar cells, aligning the neurotransmitter release apparatus with postsynaptic signaling cascades. This involves transsynaptic assembly between the dystroglycan-dystrophin complex on the photoreceptor and the orphan receptor GPR179 on the bipolar cell, which is mediated by the extracellular matrix protein pikachurin (also known as EGFLAM). This complex plays a critical role in the synaptic organization of photoreceptors and signal transmission, and mutations affecting its components cause blinding disorders in humans. Here, we investigated the structural organization and molecular mechanisms by which pikachurin orchestrates transsynaptic assembly and solved structures of the human pikachurin domains by x-ray crystallography and of the GPR179-pikachurin complex by single-particle, cryo-electron microscopy. The structures reveal molecular recognition principles of pikachurin by the Cache domains of GPR179 and show how the interaction is involved in the transsynaptic alignment of the signaling machinery. Together, these data provide a structural basis for understanding the synaptic organization of photoreceptors and ocular pathology.
Collapse
Affiliation(s)
- Dipak N. Patil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Serena Pantalone
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Yan Cao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Scott J. Novick
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Shikha Singh
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | - Simone Savino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Francesca Magnani
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Appu K. Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
31
|
Janicot R, Park JC, Garcia-Marcos M. Detecting GPCR Signals With Optical Biosensors of Gα-GTP in Cell Lines and Primary Cell Cultures. Curr Protoc 2023; 3:e796. [PMID: 37310083 PMCID: PMC10266833 DOI: 10.1002/cpz1.796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors and mediate a wide variety of physiological processes. GPCRs respond to a plethora of extracellular ligands and initiate signaling pathways inside cells via heterotrimeric G proteins (Gαβγ). Because of the critical role GPCRs play in regulating biological processes and as pharmacological targets, the availability of tools to measure their signaling activity are of high interest. Live-cell biosensors that detect the activity of G proteins in response to GPCR stimulation have emerged as a powerful approach to investigate GPCR/G protein signaling. Here, we detail methods to monitor G protein activity through direct measurement of GTP-bound Gα subunits using optical biosensors based on bioluminescence resonance energy transfer (BRET). More specifically, this article describes the use of two types of complementary biosensors. The first protocol explains how to use a multicomponent BRET biosensor that relies on expression of exogenous G proteins in cell lines. This protocol yields robust responses that are compatible with endpoint measurements of dose-dependent ligand effects or with kinetic measurements of subsecond resolution. The second protocol describes the implementation of unimolecular biosensors that detect the activation of endogenous G proteins in cell lines expressing exogenous GPCRs or in primary cells upon stimulation of endogenous GPCRs. Overall, using the biosensors as described in this article will help users characterize the mechanisms of action of many pharmacological agents and natural ligands that modulate GPCR and G protein signaling with high precision. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Using bimolecular BRET biosensors to monitor Gα-GTP formation of tagged Gα in live cells Alternate Protocol 1: Measuring GPCR dose-dependent Gα-GTP responses in endpoint format Basic Protocol 2: Using unimolecular BRET biosensors to study endogenous G protein activity Alternate Protocol 2: Using unimolecular BRET biosensors to study endogenous G protein activity in mouse cortical neurons.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biology, Boston University College of Arts & Sciences, Boston, Massachusetts
| |
Collapse
|
32
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
33
|
Zhang Q, Sjögren B. Palmitoylation of RGS20 affects Gα o-mediated signaling independent of its GAP activity. Cell Signal 2023; 107:110682. [PMID: 37075876 DOI: 10.1016/j.cellsig.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Regulator of protein signaling (RGS20) is a member of the RGS protein superfamily, which serve as key negative regulators of G protein-mediated signal transduction. Through their GTPase accelerating protein (GAP) activity, RGS proteins deactivate α-subunits of heterotrimeric G proteins. In addition, the majority of RGS proteins also have the ability to act through other, non-GAP related, functions. RGS20 is one of three members of the RZ subfamily, which all show selective GAP activity towards Gαz, however emerging data suggest that RGS20 can also regulate Gi/o-mediated signaling. While increased RGS20 expression is associated with the progression of multiple cancers, a large gap still exists relating to the mechanisms of RGS20 regulation and function. RGS20 contains a poly-cysteine string motif and a conserved cysteine in RGS domain, which are assumed to be palmitoylated. Palmitoylation, an important post-translational modification, plays an important role in cells by changing cellular functions of proteins. Consequently, the aim of this study was to confirm that RGS20 is palmitoylated and determine how palmitoylation affects its inhibition of Gαo-mediated signaling. We found a significant positive correlation between RGS20 palmitoylation and its association with active Gαo. We also showed that a conserved cysteine residue in the RGS domain is a critical site for its palmitoylation, with large impact on its association with Gαo. Palmitoylation on this site did not affect its GAP activity, however, it increased the inhibition of Gαo-mediated cAMP signaling. Altogether these data suggest that palmitoylation is a regulatory mechanism controlling RGS20 function, and that RGS20 can inhibit Gαo signaling through both GAP activity and non-GAP mechanisms.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
34
|
Laboute T, Zucca S, Holcomb M, Patil DN, Garza C, Wheatley BA, Roy RN, Forli S, Martemyanov KA. Orphan receptor GPR158 serves as a metabotropic glycine receptor: mGlyR. Science 2023; 379:1352-1358. [PMID: 36996198 PMCID: PMC10751545 DOI: 10.1126/science.add7150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Glycine is a major neurotransmitter involved in several fundamental neuronal processes. The identity of the metabotropic receptor mediating slow neuromodulatory effects of glycine is unknown. We identified an orphan G protein-coupled receptor, GPR158, as a metabotropic glycine receptor (mGlyR). Glycine and a related modulator, taurine, directly bind to a Cache domain of GPR158, and this event inhibits the activity of the intracellular signaling complex regulator of G protein signaling 7-G protein β5 (RGS7-Gβ5), which is associated with the receptor. Glycine signals through mGlyR to inhibit production of the second messenger adenosine 3',5'-monophosphate. We further show that glycine, but not taurine, acts through mGlyR to regulate neuronal excitability in cortical neurons. These results identify a major neuromodulatory system involved in mediating metabotropic effects of glycine, with implications for understanding cognition and affective states.
Collapse
Affiliation(s)
- Thibaut Laboute
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dipak N. Patil
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Christina Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Brittany A. Wheatley
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Raktim N. Roy
- Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
35
|
Gogarnoiu ES, Vogt CD, Sanchez J, Bonifazi A, Saab E, Shaik AB, Soler-Cedeño O, Bi GH, Klein B, Xi ZX, Lane JR, Newman AH. Dopamine D 3/D 2 Receptor Ligands Based on Cariprazine for the Treatment of Psychostimulant Use Disorders That May Be Dual Diagnosed with Affective Disorders. J Med Chem 2023; 66:1809-1834. [PMID: 36661568 PMCID: PMC11100975 DOI: 10.1021/acs.jmedchem.2c01624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Highly selective dopamine D3 receptor (D3R) partial agonists/antagonists have been developed for the treatment of psychostimulant use disorders (PSUD). However, none have reached the clinic due to insufficient potency/efficacy or potential cardiotoxicity. Cariprazine, an FDA-approved drug for the treatment of schizophrenia and bipolar disorder, is a high-affinity D3R partial agonist (Ki = 0.22 nM) with 3.6-fold selectivity over the homologous dopamine D2 receptor (D2R). We hypothesized that compounds that are moderately D3R/D2R-selective partial agonists/antagonists may be effective for the treatment of PSUD. By systematically modifying the parent molecule, we discovered partial agonists/antagonists, as measured in bioluminescence resonance energy transfer (BRET)-based assays, with high D3R affinities (Ki = 0.14-50 nM) and moderate selectivity (<100-fold) over D2R. Cariprazine and two lead analogues, 13a and 13e, decreased cocaine self-administration (FR2; 1-10 mg/kg, i.p.) in rats, suggesting that partial agonists/antagonists with modest D3R/D2R selectivity may be effective in treating PSUD and potentially comorbidities with other affective disorders.
Collapse
Affiliation(s)
- Emma S. Gogarnoiu
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Caleb D. Vogt
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Anver Basha Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Omar Soler-Cedeño
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Guo-Hua Bi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Benjamin Klein
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Zheng-Xiong Xi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
36
|
Kowalski-Jahn M, Schihada H, Schulte G. Conformational GPCR BRET Sensors Based on Bioorthogonal Labeling of Noncanonical Amino Acids. Methods Mol Biol 2023; 2676:201-213. [PMID: 37277635 DOI: 10.1007/978-1-0716-3251-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here we describe the application of genetic code expansion and site-specific incorporation of noncanonical amino acids that serve as anchor points for fluorescent labeling to generate bioluminescence resonance energy transfer (BRET)-based conformational sensors. Using a receptor with an N-terminal NanoLuciferase (Nluc) and a fluorescently labeled noncanonical amino acid in the receptor's extracellular part allows to analyze receptor complex formation, dissociation, and conformational rearrangements over time and in living cells. These BRET sensors can be used to investigate ligand-induced intramolecular (cysteine-rich domain [CRD] dynamics), but also intermolecular (dimer dynamics) receptor rearrangements. With the design of BRET conformational sensors based on the minimally invasive bioorthogonal labeling procedure, we describe a method that can be used in a microtiter plate format and can be easily adopted to investigate ligand-induced dynamics in various membrane receptors.
Collapse
Affiliation(s)
- Maria Kowalski-Jahn
- Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Hopkins BE, Masuho I, Ren D, Iyamu ID, Lv W, Malik N, Martemyanov KA, Schiltz GE, Miller RJ. Effects of Small Molecule Ligands on ACKR3 Receptors. Mol Pharmacol 2022; 102:128-138. [PMID: 35809897 PMCID: PMC9393849 DOI: 10.1124/molpharm.121.000295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Chemokines such as stromal derived factor 1 and their G protein coupled receptors are well-known regulators of the development and functions of numerous tissues. C-X-C motif chemokine ligand 12 (CXCL12) has two receptors: C-X-C chemokine motif receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3). ACKR3 has been described as an atypical "biased" receptor because it does not appear to signal through G proteins and, instead, signals solely through the β-arrestin pathway. In support of this conclusion, we have shown that ACKR3 is unable to signal through any of the known mammalian G α isoforms and have generated a comprehensive map of the G α activation by CXCL12/CXCR4. We also synthesized a series of small molecule ligands which acted as selective agonists for ACKR3 as assessed by their ability to recruit β-arrestin to the receptor. Using select point mutations, we studied the molecular characteristics that determine the ability of small molecules to activate ACKR3 receptors, revealing a key role for the deeper binding pocket composed of residues in the transmembrane domains of ACKR3. The development of more selective ACKR3 ligands should allow us to better appreciate the unique roles of ACKR3 in the CXCL12/CXCR4/ACKR3-signaling axis and better understand the structural determinants for ACKR3 activation. SIGNIFICANCE STATEMENT: We are interested in the signaling produced by the G protein coupled receptor atypical chemokine receptor 3 (ACKR3), which signals atypically. In this study, novel selective ligands for ACKR3 were discovered and the site of interactions between these small molecules and ACKR3 was defined. This work will help to better understand the unique signaling roles of ACKR3.
Collapse
Affiliation(s)
- Brittany E Hopkins
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Ikuo Masuho
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Dongjun Ren
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Iredia D Iyamu
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Wei Lv
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Neha Malik
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Kirill A Martemyanov
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Gary E Schiltz
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Richard J Miller
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| |
Collapse
|
38
|
Yen YC, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, Handel TM. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. SCIENCE ADVANCES 2022; 8:eabn8063. [PMID: 35857509 PMCID: PMC9278869 DOI: 10.1126/sciadv.abn8063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward β-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie A. Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pawel K. Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Penglie Zhang
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Thomas J. Schall
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Keen AC, Pedersen MH, Lemel L, Scott DJ, Canals M, Littler DR, Beddoe T, Ono Y, Shi L, Inoue A, Javitch JA, Lane JR. OZITX, a pertussis toxin-like protein for occluding inhibitory G protein signalling including Gα z. Commun Biol 2022; 5:256. [PMID: 35322196 PMCID: PMC8943041 DOI: 10.1038/s42003-022-03191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are the main signalling effectors for G protein-coupled receptors. Understanding the distinct functions of different G proteins is key to understanding how their signalling modulates physiological responses. Pertussis toxin, a bacterial AB5 toxin, inhibits Gαi/o G proteins and has proven useful for interrogating inhibitory G protein signalling. Pertussis toxin, however, does not inhibit one member of the inhibitory G protein family, Gαz. The role of Gαz signalling has been neglected largely due to a lack of inhibitors. Recently, the identification of another Pertussis-like AB5 toxin was described. Here we show that this toxin, that we call OZITX, specifically inhibits Gαi/o and Gαz G proteins and that expression of the catalytic S1 subunit is sufficient for this inhibition. We identify mutations that render Gα subunits insensitive to the toxin that, in combination with the toxin, can be used to interrogate the signalling of each inhibitory Gα G protein.
Collapse
Affiliation(s)
- Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Maria Hauge Pedersen
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, VIC, 3052, Australia
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3052, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Nottingham, UK.
| |
Collapse
|
40
|
Hauser AS, Avet C, Normand C, Mancini A, Inoue A, Bouvier M, Gloriam DE. Common coupling map advances GPCR-G protein selectivity. eLife 2022; 11:74107. [PMID: 35302494 PMCID: PMC9005189 DOI: 10.7554/elife.74107] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Two-thirds of human hormones and one-third of clinical drugs act on membrane receptors that couple to G proteins to achieve appropriate functional responses. While G protein transducers from literature are annotated in the Guide to Pharmacology database, two recent large-scale datasets now expand the receptor-G protein ‘couplome’. However, these three datasets differ in scope and reported G protein couplings giving different coverage and conclusions on G protein-coupled receptor (GPCR)-G protein signaling. Here, we report a common coupling map uncovering novel couplings supported by both large-scale studies, the selectivity/promiscuity of GPCRs and G proteins, and how the co-coupling and co-expression of G proteins compare to the families from phylogenetic relationships. The coupling map and insights on GPCR-G protein selectivity will catalyze advances in receptor research and cellular signaling toward the exploitation of G protein signaling bias in design of safer drugs.
Collapse
Affiliation(s)
| | - Charlotte Avet
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montréal, Canada
| | | | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montréal, Canada
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
McDowell RJ, Rodgers J, Milosavljevic N, Lucas RJ. Divergent G-protein selectivity across melanopsins from mice and humans. J Cell Sci 2022; 135:274359. [PMID: 35274137 PMCID: PMC8977054 DOI: 10.1242/jcs.258474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Melanopsin is an opsin photopigment and light-activated G-protein-coupled receptor; it is expressed in photoreceptive retinal ganglion cells (mRGCs) and can be employed as an optogenetic tool. Mammalian melanopsins can signal via Gq/11 and Gi/o/t heterotrimeric G proteins, but aspects of the mRGC light response appear incompatible with either mode of signalling. We use live-cell reporter assays in HEK293T cells to show that melanopsins from mice and humans can also signal via Gs. We subsequently show that this mode of signalling is substantially divergent between species. The two established structural isoforms of mouse melanopsin (which differ in the length of their C-terminal tail) both signalled strongly through all three G-protein classes (Gq/11, Gi/o and Gs), whereas human melanopsin showed weaker signalling through Gs. Our data identify Gs as a new mode of signalling for mammalian melanopsins and reveal diversity in G-protein selectivity across mammalian melanopsins. Summary: The photopigment melanopsin (OPN4), which provides inner retinal photoreception in mammals, shows light-dependent activation of Gs G protein that is more pronounced for mouse than human photopigment.
Collapse
Affiliation(s)
- Richard J McDowell
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
42
|
Moo EV, Harpsøe K, Hauser AS, Masuho I, Bräuner-Osborne H, Gloriam DE, Martemyanov KA. Ligand-directed bias of G protein signaling at the dopamine D 2 receptor. Cell Chem Biol 2022; 29:226-238.e4. [PMID: 34302750 PMCID: PMC8770702 DOI: 10.1016/j.chembiol.2021.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) represent the largest family of drug targets. Upon activation, GPCRs signal primarily via a diverse set of heterotrimeric G proteins. Most GPCRs can couple to several different G protein subtypes. However, how drugs act at GPCRs contributing to the selectivity of G protein recognition is poorly understood. Here, we examined the G protein selectivity profile of the dopamine D2 receptor (D2), a GPCR targeted by antipsychotic drugs. We show that D2 discriminates between six individual members of the Gi/o family, and its profile of functional selectivity is remarkably different across its ligands, which all engaged D2 with a distinct G protein coupling pattern. Using structural modeling, receptor mutagenesis, and pharmacological evaluation, we identified residues in the D2 binding pocket that shape these ligand-directed biases. We further provide pharmacogenomic evidence that natural variants in D2 differentially affect its G protein biases in response to different ligands.
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA,Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
43
|
Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, Gloriam DE. Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX. Br J Pharmacol 2022; 179:3651-3674. [PMID: 35106752 PMCID: PMC7612872 DOI: 10.1111/bph.15811] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signaling' paradigm requires that we now characterize physiological signaling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signaling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.
Collapse
Affiliation(s)
- Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | | | - Marcel Bermudez
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christian S Breinholt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Stephen J Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Rick R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - H Ongun Onaran
- Molecular Biology and Technology Development Unit, Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital Del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Current affiliation: ISAR Bioscience Institute, Munich-Planegg, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Patil DN, Singh S, Laboute T, Strutzenberg TS, Qiu X, Wu D, Novick SJ, Robinson CV, Griffin PR, Hunt JF, Izard T, Singh AK, Martemyanov KA. Cryo-EM structure of human GPR158 receptor coupled to the RGS7-Gβ5 signaling complex. Science 2022; 375:86-91. [PMID: 34793198 PMCID: PMC8926151 DOI: 10.1126/science.abl4732] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
GPR158 is an orphan G protein–coupled receptor (GPCR) highly expressed in the brain, where it controls synapse formation and function. GPR158 has also been implicated in depression, carcinogenesis, and cognition. However, the structural organization and signaling mechanisms of GPR158 are largely unknown. We used single-particle cryo–electron microscopy (cryo-EM) to determine the structures of human GPR158 alone and bound to an RGS signaling complex. The structures reveal a homodimeric organization stabilized by a pair of phospholipids and the presence of an extracellular Cache domain, an unusual ligand-binding domain in GPCRs. We further demonstrate the structural basis of GPR158 coupling to RGS7-Gβ5. Together, these results provide insights into the unusual biology of orphan receptors and the formation of GPCR-RGS complexes.
Collapse
Affiliation(s)
- Dipak N. Patil
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Shikha Singh
- Department of Biological Sciences, Columbia University New York, NY 10027
| | - Thibaut Laboute
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Xingyu Qiu
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,The Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Di Wu
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,The Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Scott J. Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,The Kavli Institute for Nanoscience Discovery, Oxford, OX1 3QU, UK
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - John F. Hunt
- Department of Biological Sciences, Columbia University New York, NY 10027
| | - Tina Izard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Appu K. Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India,Co-corresponding authors: Dr. Kirill A. Martemyanov, ; Dr. Appu K. Singh,
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Co-corresponding authors: Dr. Kirill A. Martemyanov, ; Dr. Appu K. Singh,
| |
Collapse
|
45
|
Extended Phenotyping and Functional Validation Facilitate Diagnosis of a Complex Patient Harboring Genetic Variants in MCCC1 and GNB5 Causing Overlapping Phenotypes. Genes (Basel) 2021; 12:genes12091352. [PMID: 34573334 PMCID: PMC8469011 DOI: 10.3390/genes12091352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Identifying multiple ultra-rare genetic syndromes with overlapping phenotypes is a diagnostic conundrum in clinical genetics. This study investigated the pathogenicity of a homozygous missense variant in GNB5 (GNB5L; NM_016194.4: c.920T > G (p. Leu307Arg); GNB5S; NM_006578.4: c.794T > G (p. Leu265Arg)) identified through exome sequencing in a female child who also had 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency (newborn screening positive) and hemoglobin E trait. The proband presented with early-onset intellectual disability, the severity of which was more in keeping with GNB5-related disorder than 3-MCC deficiency. She later developed bradycardia and cardiac arrest, and upon re-phenotyping showed cone photo-transduction recovery deficit, all known only to GNB5-related disorders. Patient-derived fibroblast assays showed preserved GNB5S expression, but bioluminescence resonance energy transfer assay showed abolished function of the variant reconstituted Gβ5S containing RGS complexes for deactivation of D2 dopamine receptor activity, confirming variant pathogenicity. This study highlights the need for precise phenotyping and functional assays to facilitate variant classification and clinical diagnosis in patients with complex medical conditions.
Collapse
|
46
|
Watkins LR, Orlandi C. In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity. Br J Pharmacol 2021; 178:2963-2975. [PMID: 33784795 DOI: 10.1111/bph.15468] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Members of the GPCR family are targeted by a significant fraction of the available FDA-approved drugs. However, the physiological role and pharmacological properties of many GPCRs remain unknown, representing untapped potential in drug design. Of particular interest are ~100 less-studied GPCRs known as orphans because their endogenous ligands are unknown. Intriguingly, disease-causing mutations identified in patients, together with animal studies, have demonstrated that many orphan receptors play crucial physiological roles and, thus, represent attractive drug targets. EXPERIMENTAL APPROACH The majority of deorphanized GPCRs demonstrate coupling to Gi/o . However, a limited number of techniques allow the detection of intrinsically small constitutive activity associated with Gi/o protein activation, which represents a significant barrier in our ability to study orphan GPCR signalling. Using luciferase reporter assays, we effectively detected constitutive Gs , Gq and G12/13 protein signalling by unliganded receptors and introducing various G protein chimeras, we provide a novel, highly sensitive tool capable of identifying Gi/o coupling in unliganded orphan GPCRs. KEY RESULTS Using this approach, we measured the constitutive activity of the entire class C GPCR family that includes eight orphan receptors and a subset of 20 prototypical class A GPCR members, including 11 orphans. Excitingly, this approach illuminated the G protein coupling profile of eight orphan GPCRs (GPR22, GPR137b, GPR88, GPR156, GPR158, GPR179, GPRC5D and GPRC6A) previously linked to pathophysiological processes. CONCLUSION AND IMPLICATIONS We provide a new platform that could be utilized in ongoing studies in orphan receptor signalling and de-orphanization efforts.
Collapse
Affiliation(s)
- Lyndsay R Watkins
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
47
|
Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D 2 receptor regulation and signaling. Sci Rep 2021; 11:8288. [PMID: 33859231 PMCID: PMC8050214 DOI: 10.1038/s41598-021-87417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of Parkinson’s disease and schizophrenia. The D2R is regulated through its interaction with and phosphorylation by G protein receptor kinases (GRKs) and interaction with arrestins. More recently, D2R arrestin-mediated signaling has been shown to have distinct physiological functions to those of G protein signalling. Relatively little is known regarding the patterns of D2R phosphorylation that might control these processes. We aimed to generate antibodies specific for intracellular D2R phosphorylation sites to facilitate the investigation of these mechanisms. We synthesised double phosphorylated peptides corresponding to regions within intracellular loop 3 of the hD2R and used them to raise phosphosite-specific antibodies to capture a broad screen of GRK-mediated phosphorylation. We identify an antibody specific to a GRK2/3 phosphorylation site in intracellular loop 3 of the D2R. We compared measurements of D2R phosphorylation with other measurements of D2R signalling to profile selected D2R agonists including previously described biased agonists. These studies demonstrate the utility of novel phosphosite-specific antibodies to investigate D2R regulation and signalling.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Hanka Mark
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK. .,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
48
|
Diversity of the Gβγ complexes defines spatial and temporal bias of GPCR signaling. Cell Syst 2021; 12:324-337.e5. [PMID: 33667409 DOI: 10.1016/j.cels.2021.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
The signal transduction by G-protein-coupled receptors (GPCRs) is mediated by heterotrimeric G proteins composed from one of the 16 Gα subunits and the inseparable Gβγ complex assembled from a repertoire of 5 Gβ and 12 Gγ subunits. However, the functional role of compositional diversity in Gβγ complexes has been elusive. Using optical biosensors, we examined the function of all Gβγ combinations in living cells and uncovered two major roles of Gβγ diversity. First, we demonstrate that the identity of Gβγ subunits greatly influences the kinetics and efficacy of GPCR responses at the plasma membrane. Second, we show that different Gβγ combinations are selectively dispatched from the plasma membrane to various cellular organelles on a timescale from milliseconds to minutes. We describe the mechanisms regulating these processes and document their implications for GPCR signaling via various Gα subunits, thereby illustrating a role for the compositional diversity of G protein heterotrimers.
Collapse
|
49
|
Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep 2021; 34:108718. [PMID: 33535037 PMCID: PMC7903328 DOI: 10.1016/j.celrep.2021.108718] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 01/20/2023] Open
Abstract
The G protein alpha subunit o (Gαo) is one of the most abundant proteins in the nervous system, and pathogenic mutations in its gene (GNAO1) cause movement disorder. However, the function of Gαo is ill defined mechanistically. Here, we show that Gαo dictates neuromodulatory responsiveness of striatal neurons and is required for movement control. Using in vivo optical sensors and enzymatic assays, we determine that Gαo provides a separate transduction channel that modulates coupling of both inhibitory and stimulatory dopamine receptors to the cyclic AMP (cAMP)-generating enzyme adenylyl cyclase. Through a combination of cell-based assays and rodent models, we demonstrate that GNAO1-associated mutations alter Gαo function in a neuron-type-specific fashion via a combination of a dominant-negative and loss-of-function mechanisms. Overall, our findings suggest that Gαo and its pathological variants function in specific circuits to regulate neuromodulatory signals essential for executing motor programs. Muntean et al. describe biochemical, cellular, and physiological mechanisms by which the heterotrimeric G protein subunit Gαo controls neuromodulatory signaling in the striatum and elucidate mechanisms by which Gαo mutations compromise movements in GNAO1 disorder.
Collapse
|
50
|
Liu Q, Yang D, Zhuang Y, Croll TI, Cai X, Dai A, He X, Duan J, Yin W, Ye C, Zhou F, Wu B, Zhao Q, Xu HE, Wang MW, Jiang Y. Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nat Chem Biol 2021; 17:1238-1244. [PMID: 34556862 PMCID: PMC8604728 DOI: 10.1038/s41589-021-00841-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Cholecystokinin A receptor (CCKAR) belongs to family A G-protein-coupled receptors and regulates nutrient homeostasis upon stimulation by cholecystokinin (CCK). It is an attractive drug target for gastrointestinal and metabolic diseases. One distinguishing feature of CCKAR is its ability to interact with a sulfated ligand and to couple with divergent G-protein subtypes, including Gs, Gi and Gq. However, the basis for G-protein coupling promiscuity and ligand recognition by CCKAR remains unknown. Here, we present three cryo-electron microscopy structures of sulfated CCK-8-activated CCKAR in complex with Gs, Gi and Gq heterotrimers, respectively. CCKAR presents a similar conformation in the three structures, whereas conformational differences in the 'wavy hook' of the Gα subunits and ICL3 of the receptor serve as determinants in G-protein coupling selectivity. Our findings provide a framework for understanding G-protein coupling promiscuity by CCKAR and uncover the mechanism of receptor recognition by sulfated CCK-8.
Collapse
Affiliation(s)
- Qiufeng Liu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youwen Zhuang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tristan I. Croll
- grid.5335.00000000121885934Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Xiaoqing Cai
- grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Antao Dai
- grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jia Duan
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chenyu Ye
- grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China
| | - Fulai Zhou
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Beili Wu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.9227.e0000000119573309CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhao
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H. Eric Xu
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Wei Wang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.8547.e0000 0001 0125 2443School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi Jiang
- grid.9227.e0000000119573309The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|