1
|
Nicolini C, Nelson AJ. Current Methodological Pitfalls and Caveats in the Assessment of Exercise-Induced Changes in Peripheral Brain-Derived Neurotrophic Factor: How Result Reproducibility Can Be Improved. FRONTIERS IN NEUROERGONOMICS 2021; 2:678541. [PMID: 38235217 PMCID: PMC10790889 DOI: 10.3389/fnrgo.2021.678541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2024]
Abstract
Neural mechanisms, such as enhanced neuroplasticity within the motor system, underpin exercise-induced motor improvements. Being a key mediator of motor plasticity, brain-derived neurotrophic factor (BDNF) is likely to play an important role in mediating exercise positive effects on motor function. Difficulties in assessing brain BDNF levels in humans have drawn attention to quantification of blood BDNF and raise the question of whether peripheral BDNF contributes to exercise-related motor improvements. Methodological and non-methodological factors influence measurements of blood BDNF introducing a substantial variability that complicates result interpretation and leads to inconsistencies among studies. Here, we discuss methodology-related issues and approaches emerging from current findings to reduce variability and increase result reproducibility.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Padmanabhan Nair V, Liu H, Ciceri G, Jungverdorben J, Frishman G, Tchieu J, Cederquist GY, Rothenaigner I, Schorpp K, Klepper L, Walsh RM, Kim TW, Cornacchia D, Ruepp A, Mayer J, Hadian K, Frishman D, Studer L, Vincendeau M. Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 2021; 28:1566-1581.e8. [PMID: 33951478 DOI: 10.1016/j.stem.2021.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
The biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system. We found that elevated HERV-K(HML-2) transcription is detrimental for the development and function of cortical neurons. These effects are cell-type-specific, as dopaminergic neurons are unaffected. Moreover, high HERV-K(HML-2) transcription alters cortical layer formation in forebrain organoids. HERV-K(HML-2) transcriptional activation leads to hyperactivation of NTRK3 expression and other neurodegeneration-related genes. Direct activation of NTRK3 phenotypically resembles HERV-K(HML-2) induction, and reducing NTRK3 levels in context of HERV-K(HML-2) induction restores cortical neuron differentiation. Hence, these findings unravel a cell-type-specific role for HERV-K(HML-2) in cortical neuron development.
Collapse
Affiliation(s)
| | - Hengyuan Liu
- Department of Genome-Oriented Bioinformatics, Technical University Munich, Munich, Germany
| | - Gabriele Ciceri
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Johannes Jungverdorben
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Goar Frishman
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jason Tchieu
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gustav Y Cederquist
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lena Klepper
- Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ryan M Walsh
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tae Wan Kim
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniela Cornacchia
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Ruepp
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dmitrij Frishman
- Department of Genome-Oriented Bioinformatics, Technical University Munich, Munich, Germany
| | - Lorenz Studer
- Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, Neuherberg, Germany; Developmental Biology and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018. [PMID: 30394011 PMCID: PMC6240825 DOI: 10.3325/cmj.2018.59.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. Methods We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. Results Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long “dormant” period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. Conclusion Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
4
|
Sedmak D, Hrvoj-Mihić B, Džaja D, Habek N, Uylings HB, Petanjek Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development. Croat Med J 2018; 59:189-202. [PMID: 30394011 PMCID: PMC6240825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/31/2018] [Indexed: 10/05/2023] Open
Abstract
AIM To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. METHODS We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. RESULTS Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long "dormant" period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. CONCLUSION Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.
Collapse
Affiliation(s)
| | | | | | | | | | - Zdravko Petanjek
- Zdravko Petanjek, Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, Croatia,
| |
Collapse
|
5
|
Dunbar GL, Sandstrom MI, Rossignol J, Lescaudron L. Neurotrophic Enhancers as Therapy for Behavioral Deficits in Rodent Models of Huntington's Disease: Use of Gangliosides, Substituted Pyrimidines, and Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2016; 5:63-79. [PMID: 16801683 DOI: 10.1177/1534582306289367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interest in using neurotrophic factors as potential treatments for neurodegenerative disorders, such as Huntington's disease, has grown in the past decade. A major impediment for the clinical utility of neurotrophic factors is their inability to cross the blood-brain barrier in therapeutically significant amounts. Although several novel mechanisms for delivering exogenous neurotrophins to the brain have been developed, most of them involve invasive procedures or present significant risks. One approach to circumventing these problems is using therapeutic agents that can be administered systemically and have the ability to enhance the activity of neurotrophic factors. This review highlights the use of gangliosides, substituted pyrimidines, and mesenchymal stem cells as neurotrophic enhancers that have significant therapeutic potential while avoiding the pitfalls of delivering exogenous neurotrophic factors through the blood-brain barrier. The review focuses on the potential of these neurotrophic enhancers for treating the behavioral deficits in rodent models of Huntington's disease.
Collapse
|
6
|
Rao R, Ennis K, Mitchell EP, Tran PV, Gewirtz JC. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Posthypoglycemic Period in Young Rats. Dev Neurosci 2016; 38:74-82. [PMID: 26820887 DOI: 10.1159/000442878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/29/2015] [Indexed: 01/04/2023] Open
Abstract
Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing the prepulse inhibition of the acoustic startle reflex on postnatal day 29 and 2 weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF/TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, the prepulse inhibition had recovered at 2 weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the posthypoglycemic period.
Collapse
|
7
|
Larson TA, Thatra NM, Lee BH, Brenowitz EA. Reactive neurogenesis in response to naturally occurring apoptosis in an adult brain. J Neurosci 2014; 34:13066-76. [PMID: 25253853 PMCID: PMC4172801 DOI: 10.1523/jneurosci.3316-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022] Open
Abstract
Neuronal birth and death are tightly coordinated to establish and maintain properly functioning neural circuits. Disruption of the equilibrium between neuronal birth and death following brain injury or pharmacological insult often induces reactive, and in some cases regenerative, neurogenesis. Many neurodegenerative disorders are not injury-induced, however, so it is critical to determine if and how reactive neurogenesis occurs under noninjury-induced neurodegenerative conditions. Here, we used a model of naturally occurring neural degradation in a neural circuit that controls song behavior in Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) and examined the temporal dynamics between neuronal birth and death. We found that during seasonal-like regression of the song, control nucleus HVC (proper name), caspase-mediated apoptosis increased within 2 d following transition from breeding to nonbreeding conditions and neural stem-cell proliferation in the nearby ventricular zone (VZ) increased shortly thereafter. We show that inhibiting caspase-mediated apoptosis in HVC decreased neural stem-cell proliferation in the VZ. In baseline conditions the extent of neural stem-cell proliferation correlated positively with the number of dying cells in HVC. We demonstrate that as apoptosis increased and the number of both recently born and pre-existing neurons in HVC decreased, the structure of song, a learned sensorimotor behavior, degraded. Our data illustrate that reactive neurogenesis is not limited to injury-induced neuronal death, but also can result from normally occurring degradation of a telencephalic neural circuit.
Collapse
Affiliation(s)
| | - Nivretta M Thatra
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195, and
| | - Brian H Lee
- Psychology, University of Washington, Seattle, Washington 98195, and Department of Neuroscience, John's Hopkins University, Baltimore, Maryland 21218
| | - Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195, and
| |
Collapse
|
8
|
Neuser F, Polack M, Annaheim C, Tucker KL, Korte M. Region-specific integration of embryonic stem cell-derived neuronal precursors into a pre-existing neuronal circuit. PLoS One 2013; 8:e66497. [PMID: 23840491 PMCID: PMC3688776 DOI: 10.1371/journal.pone.0066497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
Enduring reorganization is accepted as a fundamental process of adult neural plasticity. The most dramatic example of this reorganization is the birth and continuously occurring incorporation of new neurons into the pre-existing network of the adult mammalian hippocampus. Based on this phenomenon we transplanted murine embryonic stem (ES)-cell derived neuronal precursors (ESNPs) into murine organotypic hippocampal slice cultures (OHC) and examined their integration. Using a precise quantitative morphological analysis combined with a detailed electrophysiology, we show a region-specific morphological integration of transplanted ESNPs into different subfields of the hippocampal tissue, resulting in pyramidal neuron-like embryonic stem cell-derived neurons (ESNs) in the Cornu Ammonis (CA1 and CA3) and granule neuron-like ESNs in the dentate gyrus (DG), respectively. Subregion specific structural maturation was accompanied by the development of dendritic spines and the generation of excitatory postsynaptic currents (EPSCs). This cell type specific development does not depend upon NMDA-receptor-dependent synaptic transmission. The presented integration approach was further used to determine the cell-autonomous function of the pan-neurotrophin receptor p75 (P75(NTR)), as a possible negative regulator of ESN integration. By this means we used p75(NTR)-deficient ESNPs to study their integration into a WT organotypic environment. We show here that p75(NTR) is not necessary for integration per se but plays a suppressing role in dendritic development.
Collapse
Affiliation(s)
- Franziska Neuser
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Martin Polack
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | | | - Kerry L. Tucker
- Interdisciplinary Center for Neurosciences, Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
Leschik J, Eckenstaler R, Nieweg K, Lichtenecker P, Brigadski T, Gottmann K, Leßmann V, Lutz B. Stably BDNF-GFP expressing embryonic stem cells exhibit a BDNF release-dependent enhancement of neuronal differentiation. J Cell Sci 2013; 126:5062-73. [DOI: 10.1242/jcs.135384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known to be a crucial regulator of neuronal survival and synaptic plasticity in the mammalian brain. Furthermore, BDNF positively influences differentiation of embryonic neural precursors as well as of neural stem cells from adult neurogenic niches. To study the impact of cell-released BDNF on neural differentiation of embryonic stem cells (ESCs), which represent an attractive source for cell transplantation studies, we have generated BDNF-GFP overexpressing mouse ESC clones by knock-in technology. After neural differentiation in vitro, we observed that BDNF-GFP overexpressing ESC clones gave rise to an increased number of neurons as compared to control ESCs. Neurons derived from BDNF-GFP expressing ESCs harbored a more complex dendritic morphology and differentiated to a higher extent into the GABAergic lineage than controls. Moreover, we show that ESC-derived neurons released BDNF-GFP in an activity-dependent manner and displayed similar electrophysiological properties as cortical neurons. Thus, our study describes the generation of stably BDNF-GFP overexpressing ESCs which are ideally suited to investigate the ameliorating effects of BDNF in cell transplantation studies for various neuropathological conditions.
Collapse
|
10
|
de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72:22-40. [PMID: 21982366 DOI: 10.1016/j.neuron.2011.09.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century, neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems.
Collapse
Affiliation(s)
- Luis de la Torre-Ubieta
- Department of Neurobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Atkinson-Leadbeater K, McFarlane S. Extrinsic factors as multifunctional regulators of retinal ganglion cell morphogenesis. Dev Neurobiol 2011; 71:1170-85. [DOI: 10.1002/dneu.20924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Schumann CM, Nordahl CW. Bridging the gap between MRI and postmortem research in autism. Brain Res 2010; 1380:175-86. [PMID: 20869352 DOI: 10.1016/j.brainres.2010.09.061] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 02/02/2023]
Abstract
Autism is clearly a disorder of neural development, but when, where, and how brain pathology occurs remain elusive. Typical brain development is comprised of several stages, including proliferation and migration of neurons, creation of dendritic arbors and synaptic connections, and eventually dendritic pruning and programmed cell death. Any deviation at one or more of these stages could produce catastrophic downstream effects. MRI studies of autism have provided important clues, describing an aberrant trajectory of growth during early childhood that is both present in the whole brain and marked in specific structures such as the amygdala. However, given the coarse resolution of MRI, the field must also look towards postmortem human brain research to help elucidate the neurobiological underpinnings of MRI volumetric findings. Likewise, studies of postmortem tissue may benefit by looking to the findings from MRI studies to narrow hypotheses and target specific brain regions and subject populations. In this review, we discuss the strengths, limitations, and major contributions of each approach to autism research. We then describe how they relate and what they can learn from each other. Only by integrating these approaches will we be able to fully explain the neuropathology of autism.
Collapse
Affiliation(s)
- Cynthia Mills Schumann
- University of California, Davis School of Medicine, Department of Psychiatry and Behavioral Sciences, The MIND Institute, Sacramento, CA 95817, USA.
| | | |
Collapse
|
13
|
|
14
|
Abstract
Improving clinical tests are allowing us to more precisely classify autism spectrum disorders and diagnose them at earlier ages. This raises the possibility of earlier and potentially more effective therapeutic interventions. To fully capitalize on this opportunity, however, will require better understanding of the neurobiological changes underlying this devastating group of developmental disorders. It is becoming clear that the normal trajectory of neurodevelopment is altered in autism, with aberrations in brain growth, neuronal patterning and cortical connectivity. Changes to the structure and function of synapses and dendrites have also been strongly implicated in the pathology of autism by morphological, genetic and animal modeling studies. Finally, environmental factors are likely to interact with the underlying genetic profile, and foster the clinical heterogeneity seen in autism spectrum disorders. In this review we attempt to link the molecular pathways altered in autism to the neurodevelopmental and clinical changes that characterize the disease. We focus on signaling molecules such as neurotrophin, Reelin, PTEN and hepatocyte growth factor, neurotransmitters such as serotonin and glutamate, and synaptic proteins such as neurexin, SHANK and neuroligin. We also discuss evidence implicating oxidative stress, neuroglial activation and neuroimmunity in autism.
Collapse
Affiliation(s)
- Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287. USA.
| | | |
Collapse
|
15
|
Bachmann RF, Schloesser RJ, Gould TD, Manji HK. Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 2007; 32:173-202. [PMID: 16215281 DOI: 10.1385/mn:32:2:173] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium's inhibition of some enzymes, such as inositol monophosphatase and glycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.
Collapse
Affiliation(s)
- Rosilla F Bachmann
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
16
|
Namba H, Nagano T, Iwakura Y, Xiong H, Jourdi H, Takei N, Nawa H. Transforming growth factor alpha attenuates the functional expression of AMPA receptors in cortical GABAergic neurons. Mol Cell Neurosci 2006; 31:628-41. [PMID: 16443372 PMCID: PMC3683556 DOI: 10.1016/j.mcn.2005.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/05/2005] [Accepted: 12/08/2005] [Indexed: 02/04/2023] Open
Abstract
In the developing neocortex, brain-derived neurotrophic factor (BDNF) exerts a trophic activity to increase the expression and channel activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor subunits. Here, we demonstrate that the epidermal growth factor (EGF) receptor (ErbB1) ligands exert the opposite biological activity in cultured neocortical neurons. Subchronic stimulation of ErbB1 with transforming growth factor alpha (TGFalpha), EGF, or heparin-binding EGF (HB-EGF) down-regulated protein expression of the GluR1 AMPA receptor subunit in cultured neocortical neurons. In agreement, TGFalpha treatment decreased the Bmax of [3H] AMPA binding and GluR1 mRNA levels. Immunocytochemistry revealed that the decrease in GluR1 was most pronounced in multipolar GABAergic neurons. To examine the physiological consequences, we recorded AMPA-evoked currents as well as miniature excitatory postsynaptic currents in morphologically identified putative GABAergic neurons in culture. Subchronic TGFalpha treatment decreased AMPA-triggered currents as well as the amplitude and frequency of miniature excitatory postsynaptic currents. An ErbB1 tyrosine kinase inhibitor, PD153035, inhibited the TGFalpha effect. Moreover, TGFalpha counteracted the neurotrophic activity of BDNF on AMPA receptor expression. Co-application of TGFalpha with BDNF blocked the BDNF-triggered up-regulation of AMPA receptor expression and currents. These observations reveal a negative regulatory activity of the ErbB1 ligand, TGFalpha, which reduces the input sensitivity of cortical GABAergic neurons to attenuate their inhibitory function.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Kaufmann WE, Johnston MV, Blue ME. MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution. Brain Dev 2005; 27 Suppl 1:S77-S87. [PMID: 16182491 DOI: 10.1016/j.braindev.2004.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 10/15/2004] [Indexed: 02/06/2023]
Abstract
Most cases of Rett syndrome (RTT) are associated with mutations of the transcriptional regulator MeCP2. On the basis of molecular structure, ontogeny, and subcellular and regional distribution, MeCP2 appears to be a link between synaptic activity and neuronal transcription. Integrating data on MeCP2 neurobiology, RTT neurobiology, MeCP2 mutational patterns in RTT and other disorders, histone profiles of relevance to RTT, and genotype-phenotype correlations in RTT, we update here our synaptic hypothesis of RTT. We postulate that MeCP2 dysfunction leads to abnormal brain development through maladjustment of neuronal gene expression to synaptic and other extra-cellular signals, mainly during the critical period of synaptic maturation. RTT phenotype will develop, only if severe MeCP2 dysfunction is present during early neuronal differentiation. Two models are proposed for explaining general and regional neuronal abnormalities in RTT and the phenotypical outcome of MeCP2 dysfunction, respectively.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Center for Genetic Disorders of Cognition and Behavior, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA.
| | | | | |
Collapse
|
18
|
Gascon E, Vutskits L, Zhang H, Barral-Moran MJ, Kiss PJ, Mas C, Kiss JZ. Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur J Neurosci 2005; 21:69-80. [PMID: 15654844 DOI: 10.1111/j.1460-9568.2004.03849.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dendritic arbor development of subventricular zone-derived interneurons is a critical step in their integration into functional circuits of the postnatal olfactory bulb. However, the mechanism and molecular control of this process remain unknown. In this study, we have developed a culture model where dendritic development of purified subventricular zone cells proceeds under serum-free conditions in the absence of added growth factors and non-neural cells. We demonstrate that the large majority of these cells in culture express GABA and elaborate dendritic arbors with spine-like protrusions but they do not possess axons. These neurons expressed receptors for neurotrophins including p75, TrkB and TrkC but not TrkA. Application of exogenous neurotrophins, including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and nerve growth factor (NGF), to cultures stimulated dendritic growth and led to more complex dendritic arbors during the initial 3 days in culture. Our results suggest that these effects are independent of Trk receptors and mediated by the p75/ceramide signaling pathway. We also show that brain-derived neurotrophic factor is the only neurotrophin that is able to influence late-phase dendritic development via TrkB receptor activation. These results suggest that dendritic arbor development of subventricular zone-derived cells may be regulated by neurotrophins through the activation of p75 and the TrkB receptor signaling pathways in a sequentially defined temporal pattern.
Collapse
Affiliation(s)
- E Gascon
- Department of Neuroscience, University of Geneva Medical School, 1 Rue Michel Servet, CH-1211, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Gärtner U, Alpár A, Reimann F, Seeger G, Heumann R, Arendt T. Constitutive Ras activity induces hippocampal hypertrophy and remodeling of pyramidal neurons in synRas mice. J Neurosci Res 2004; 77:630-41. [PMID: 15352209 DOI: 10.1002/jnr.20194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The small G protein Ras, which is involved critically in neurotrophic signal transduction, has been implicated in neuronal plasticity of both the developing and the adult nervous systems. In the present study, the cumulative effects of constitutive Ras activity from early in postnatal development into the adult upon the morphology of hippocampal pyramidal neurons were investigated in synRas mice overexpressing Val12-Ha-Ras postmitotically under the control of the rat synapsin I promoter. In synRas mice, stereologic investigations revealed hypertrophy of the hippocampus associated with an increase in perikaryal size of pyramidal neurons within the CA2/CA3 region and the gyrus dentatus. Morphometric analyses of Lucifer Yellow-filled CA1 pyramidal neurons, in addition, demonstrated considerable expansion of dendritic arbors. The increase in basal dendritic size was caused primarily by alterations of intermediate and distal segments and was associated with an enlarged dendritic surface. Apical dendrites showed similar but more moderate changes, which were attributed mainly to elongation of terminal segments. Sholl analyses illustrated higher complexity of both basal and apical trees. Despite significant morphologic alterations, dendritic arbors preserve their major design principles. The synaptic density within the stratum radiatum of CA1 remained unchanged; however, increases in the total hippocampal volume and in apical dendritic size imply an increment in the absolute number of synaptic contacts. The data presented here suggest a critical involvement of Ras dependent signaling in morphoregulatory processes during the maturation and in the maintenance of hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Ulrich Gärtner
- Department of Neuroanatomy, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Gärtner U, Alpár A, Seeger G, Heumann R, Arendt T. Enhanced Ras activity in pyramidal neurons induces cellular hypertrophy and changes in afferent and intrinsic connectivity in synRas mice. Int J Dev Neurosci 2004; 22:165-73. [PMID: 15140470 DOI: 10.1016/j.ijdevneu.2004.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 02/04/2004] [Indexed: 01/19/2023] Open
Abstract
Neurotrophic actions are critically controlled and transmitted to cellular responses by the small G protein Ras which is therefore essential for normal functioning and plasticity of the nervous system. The present study summarises findings of recent studies on morphological changes in the neocortex of synRas mice expressing Val12-Ha-Ras in vivo under the control of the rat synapsin I promoter. In the here reported model (introduced by Heumann et al. [J. Cell Biol. 151 (2000) 1537]), transgenic Val12-Ha-Ras expression is confined to the pyramidal cell population and starts postnatally at a time, when neurons are postmitotic and their developmental maturation has been basically completed. Expression of Val12-Ha-Ras results in a significant enlargement of pyramidal neurons. Size, complexity and spine density of dendritic trees are increased, which leads, finally, to cortical expansion. However, the main morphological design principles of 'transgenic' pyramidal cells remain preserved. In addition to somato-dendritic changes, expression of Val12-Ha-Ras in pyramidal cells induces augmented axon calibres and upregulates the establishment of efferent boutons. Despite the enlargement of cortical size, the overall density of terminals representing intra- or interhemispheric, specific and non-specific afferents is unchanged or even higher in transgenic mice suggesting a significant increase in the total afferent input to the neocortex. Although interneurons do not express the transgene and are therefore excluded from direct, intrinsic Val12-Ha-Ras effects, they respond with morphological adaptations to structural changes. Thus, dendritic arbours of interneurons are extended to follow the cortical expansion and basket cells establish a denser inhibitory innervation of 'transgenic' pyramidal cells perikarya. It is concluded that expression of Val12-Ha-Ras in pyramidal neurons results in remodelling of neocortical structuring which strongly implicates a crucial involvement of Ras in cortical plasticity.
Collapse
Affiliation(s)
- Ulrich Gärtner
- Department of Neuroanatomy, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
21
|
Alpár A, Palm K, Schierwagen A, Arendt T, Gärtner U. Expression of constitutively active p21H-rasval12 in postmitotic pyramidal neurons results in increased dendritic size and complexity. J Comp Neurol 2004; 467:119-33. [PMID: 14574684 DOI: 10.1002/cne.10915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The small G protein p21Ras is a critical molecular switch for relaying neurotrophic actions and is essential for normal functioning and plasticity of the nervous system. In this study, the morphogenetic effects of p21Ras were investigated on neurons in vivo. Morphological changes of layers II/III and Vb commissural pyramidal neurons of the primary somatosensory cortex were analyzed in transgenic mice expressing permanently active p21H-RasVal12 in postmitotic neurons. Pyramidal cells were retrogradely labelled with biotinylated dextran amine and subsequently traced using Neurolucida. Compared with wild-type mice, transgenic animals showed a significant increase in the surface area and volume of basal dendrites on the proximal and intermediate segments in layers II/III and on further distal segments in layer V. In addition, the surface area and volume of the trunk and of the proximal segments of oblique branches of apical dendrites were enlarged in both layers. Sholl analyses of basal and apical dendrites showed a significant increase in dendritic complexity of layer V neurons. A positive correlation was observed between the size of the basal dendrite and the neuronal soma size in the transgenic population, indicating that growth-promoting effects of p21H-RasVal12 affect both cellular compartments in parallel. However, the dendritic surface correlated with the number of tips and dendritic stem diameter in both wild-type and transgenic populations, demonstrating that these relations represent rather conservative design principles in dendritic morphology. The data presented here suggest an important role of p21Ras-dependent signaling in the final differentiation and maintenance of dendritic morphology.
Collapse
Affiliation(s)
- Alán Alpár
- Department of Neuroanatomy, Paul Flechsig Institut for Brain Research, University of Leipzig, D-04109 Leipzig, Germany.
| | | | | | | | | |
Collapse
|